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Abstract

Quadratic cone programs are rapidly becoming the standard canonical form
for convex optimization problems. In this paper we address the question of
differentiating the solution map for such problems, generalizing previous work
for linear cone programs. We follow a similar path, using the implicit function
theorem applied to the optimality conditions for a homogenous primal-dual
embedding. Along with our proof of differentiability, we present methods for
efficiently evaluating the derivative operator and its adjoint at a vector. Addi-
tionally, we present an open-source implementation of these methods, named
diffqcp, that can execute on CPUs and GPUs. GPU-compatibility is already
of consequence as it enables convex optimization solvers to be integrated into
neural networks with reduced data movement, but we go a step further demon-
strating that diffqcp’s performance on GPUs surpasses the performance of
its CPU-based counterpart for larger quadratic cone programs.
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1 Introduction

A quadratic cone program (QCP) is an optimization problem which minimizes a
convex quadratic function over the intersection of a subspace and a convex cone.
Quadratic cone programming is the generalization of both quadratic programming
and (linear) cone programming, which date to the 1950s [16] and 1990s [23, Chapter
4], respectively. Specifically, a quadratic program (QP) is a QCP whose cone is
restricted to the product of {0}, R, and R+, while a (linear) cone program is a QCP
restricted to having a linear objective.

Quadratic programs, despite their limited modeling power, have been studied
extensively as they arise ubiquitously across many disciplines—from classical engi-
neering contexts to finance. Cone programming, on the other hand, has been studied
for its generality—all convex optimization problems can be equivalently written as
a cone program. Along with their rich theory, signficant development has gone into
specialized solvers for both quadratic programs [34, 8] and cone programs [14, 28].
Moreover, domain specific languages, such as CVXPY [5] and CVXR [18], have been
designed to enable easy modeling with both classes of programs [20].

Perturbation and sensitivity analysis has also been thoroughly developed for QPs
and cone programs. Clasically, this analysis centered on the Lagrange multipli-
ers [32, 33, 31]. In recent years, differentiable optimization—the derivative of the
solution map between an optimization problem’s parameters and its solution—has
been developed. The gradients of the solution map of a quadratic program (with
respect to the problem data) were derived in [7] by exploiting the problem struc-
ture. Subsequently, [4] proposed a technique for differentiating the solution map of
a cone program using a more general approach based on the implicit function theo-
rem. Differentiable optimization has found applications across energy systems [13],
statistics [24, 25], control [3, 9], and in neural networks [2, 26].

In recent years, specialized solvers for QCPs have been developed and have
demonstrated significant speedups on problems previously solved via cone programs
or quadratic programs [27, 19]. As a result, QCPs are emerging as a practical al-
ternative to cone programs for many convex optimization problems. Further, there
has been success at GPU-accelerating these QCP solvers [12]. However, the theory
of differentiating the solution map of QCPs has remained undeveloped.

1.1 Our contribution

Closely following [4], we derive conditions for when the derivative, and its adjoint,
of the primal-dual solution map to a QCP with respect to the QCP’s parameters
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exists. We then present an extension to [4] to evaluate Jacobian-vector and vector-
Jacobian products with these derivatives via projection onto cones and sparse linear
system solves. We then describe our GPU-accelerated Python implementation of
this method in §3, which forms the derivative of the solution map as an abstract
linear operator. Additionally, in §A we present a unified reference of cone projection
operators and their derivatives. Notably, this reference and our implementation
includes the power cone, which has previously been neglected in the differentiable
optimization literature.

2 Solution map and its derivative

Following [4], we consider the mapping from the numerical data defining the primal
and dual problems of a QCP to its solutions. This solution map is in general set-
valued, but in neighborhoods where it is single-valued it is an implicit function of
the problem data. In the sequel, we present a system of equations that implicitly
define the solution map of a QCP when it is single-valued. Applying the implicit
function theorem to this system, we obtain regularity conditions on the problem
data that guarantee when the solution map is single-valued and its derivative exists.
Finally, we provide an expression for the derivative at points where these conditions
are satisfied.

2.1 QCPs and implicit functions

The primal and dual problems for a (convex) QCP are

(P) minimize 1
2
xTPx+ qTx

subject to Ax+ s = b
s ∈ K,

(D) maximize −1
2
xTPx− bTy

subject to Px+ ATy = −q
y ∈ K∗,

(1)

where x ∈ Rn is the primal variable, y ∈ Rm is the dual variable, and s ∈ Rm is
the primal slack variable. We assume that K ⊆ Rm is a nonempty, closed, convex
cone with dual cone K∗. The problem data are P ∈ Sn

+, A ∈ Rm×n, q ∈ Rn, and
b ∈ Rm. (The convex cone can also be problem data, but for our purposes we fix
K.) To simplify the subsequent discussion, we define the set

Θ =
{
θ = (P,A, q, b)

∣∣ (P,A, q, b) ∈ Sn ×Rm×n ×Rn ×Rm
}
.

That is, θ is the concatenation of problem data (relaxed to allow P ̸⪰ 0)—a change
from [4] which embeds the problem data into a skew-symmetric matrix.
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Optimality conditions. The optimality conditions for (1) are

Ax+ s = b, Px+ ATy = −q, s ∈ K, y ∈ K∗, sTy = 0. (2)

Note that sTy is the duality gap, i.e., at any point that satisfies the first four equalities
and inclusions, sTy = p̂ − d̂ where p̂ is the primal objective at (x, s) and d̂ is the
dual objective value at (x, y). Also note that (2) is an implicit system that defines
the solution map to a QCP when it is single-valued.

Homogenous embedding. By applying sTy = p̂− d̂, a solution that satisfies (2)
is equivalent to a solution of the following nonlinear systems of equations−q

s
0

 =

 P AT

−A 0
−qT −bT

[
x
y

]
+

 0
b

−xTPx

 , (x, s, y) ∈ Rn ×K ×K∗. (3)

However, because this system is not guaranteed to be feasible (e.g., when the problem
is primal or dual infeasible), we instead consider the homogeneous embedding (as
defined in [19])0s

κ

 =

 Px+ ATy + τq
−Ax+ τb

−(1/τ)xTPx− qTx− bTy

 ,

(x, s, y, τ, κ) ∈ Rn ×K ×K∗ ×R+ ×R+, τ + κ > 0,

(4)

where τ and κ are new real-valued variables. Unlike (3), this embedding is guaranteed
to be (asymptotically) feasible even when (1) is primal or dual infeasible.

Applying a change of variable with N = n+m+ 1, the sets

K = Rn ×K∗ ×R+, K∗ = {0}n ×K ×R+,

the variables,
u = (x, y, τ) ∈ RN , v = (0, s, κ) ∈ RN

and the functions Q1 : R
N → Rn, Q2 : R

N → Rm, and Q3 : R
N → R defined as

Q1(u) = Px+ATy+ τq, Q2(u) = −Ax+ τb, Q3(u) = −(1/τ)xTPx− qTx− bTy,

we simplify the sequel by writing (4) as

Q(u) = v, u ∈ K, v ∈ K∗, uN + vN > 0. (5)

Here Q : RN → RN is defined as Q(u) = (Q1(u), Q2(u), Q3(u)). Lastly, we define a
solution to (5) as a complementary solution if uNvN = 0.
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2.2 Solution map

For given problem data, the corresponding QCP (1) may have no solution, a unique
solution, or multiple solutions. For the remainder of this paper, we assume it has
a unique solution. We define the solution map S : Θ → Rn+2m of a family of
parameterized optimization problems as the function mapping θ to vectors (x, y, s)
that satisfy (2). Similar to [4], we express this function as composition of functions.
Unlike in [4], we only have two functions in our composition: S = ϕ ◦ s, where

• s : Θ → RN maps the problem data to a complementary solution of the
homogeneous embedding and

• ϕ : RN → Rn+2m maps a complementary solution to a solution of the primal-
dual pair.

At a point θ where S is differentiable, the derivative of the solution map is

DS(θ) = Dϕ (s(θ))Ds(θ),

by the chain rule. In the remainder of this section we develop an expression for
DS(θ) by following the approach taken in [4]:

• We pose the problem of finding a (complementary) solution to the homogeneous
embedding (5) as finding a root of a (differentiable) map, a function of both
an input to the embedding and the primal-dual pair’s problem data θ.

• We consider the differentiability of this map and collect its derivatives with
respect to both the embedding input and problem data.

• Using the implicit function theorem, we findDs(θ) in terms of these derivatives.
While Ds(θ) will require the evaluation of s at a point θ and we never find an
expression for s directly, in practice we can supply such a point, s(θ), by using
a (convex) quadratic conic optimization numerical solver.

2.3 Other machinery

This subsection closely follows [11].

The conic complementarity set. The conic complementarity set is defined as

C =
{
(u, v) ∈ K ×K∗ ∣∣uTv = 0

}
.

Let Π and Π◦ be the projections onto the cone K and its polar cone K◦ = −K∗,
respectively. Note the functional equality (a form of the Moreau decomposition)
Π◦ = I − Π, where I is the identity operator.
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Minty’s parameterization of the complementarity set. Let M : RN → C be
the Minty parameterization of C, defined as

M(z) = (Πz,−Π◦z),

with inverse M−1 : C → RN given by

M−1(u, v) = u− v.

Unlike in [11],
−Π◦z = Q(Πz), zN ̸= 0 (6)

are not equivalent to the homogeneous embedded conditions (5). While z satisfying
(6) implies that u, v = M(z) satisfy (5), there exists a non-complementary solution
(u, v) to (5) such that z = M−1(u, v) does not satisfy (6). However, (6) is equivalent
to the KKT conditions (2).

Residual map. The residual map R : RN → RN is defined as

R(z) = Q (Πz) + Π◦z = Q (Πz)− Πz + z. (7)

The map R is positive homogeneous and differentiable almost everywhere.

Normalized residual map. The normalized residual map N :
{
z ∈ RN

∣∣ zN ̸= 0
}
→

RN is defined as
N (z) = R(z/ |zN |) = R(z)/ |zN | . (8)

By (6), if z ∈ RN is a solution to the conic pair (1) then N (z) = 0. Conversely, if
N (z) = 0, then z is a solution to (1).

Data dependence. Throughout this note we have fixed the data defining the
primal-dual pair (1), and consequently have not made explicit the dependence of
R,N , Q on θ. As we consider the derivative of these functions with respect to θ, we
will update our notation writing

Q(u, θ), R(z, θ), and N (z, θ).
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2.4 Derivatives

Normalized residual map with respect to the data. The normalized residual
map is an affine function of the problem data, θ. Therefore, it is differentiable with

DθN (z, θ)[θ̃] =
1

|zN |
DθQ(Πz, θ)[θ̃] and DθN (z, θ)T [w] =

1

|zN |
DθQ(Πz, θ)T [w],

where

DθQ(u, θ)[θ̃] =

 P̃ x+ ÃTy + τ q̃

−Ãx+ τ b̃

(−1/τ)xT P̃ x− q̃Tx− b̃Ty


and DθQ(u, θ)T [w] = (P̃ , Ã, b̃, q̃, b̃) where

P̃ = 1/2
(
w1:nx

T + xwT
1:n

)
− (wN/τ)xx

T , Ã = ywT
1:n − wn+1:n+mx

T ,

q̃ = τw1:n − wNx, b̃ = τwn+1:n+m − wNy,

for w ∈ RN and θ̃ ∈ Θ.

Normalized residual map with respect to the variables. The normalized
residual map is differentiable at z if zN ̸= 0 and Π is differentiable at z. When z is
a solution of the primal-dual pair (1),

DzN (z, θ) =
1

zN
(DzQ(Πz, θ)DΠ(z)−DΠ(z) + I) ,

where the Jacobian of the nonlinear, homogeneous map Q with respect to the em-
bedding input is

DuQ(u, θ) =

 P AT q
−A 0 b

(−2/τ)xTP − qT −bT (1/τ 2)xTPx

 .

Implicit function theorem applied to N . If z is a solution of the primal-dual
pair (1) and Π is differentiable at z, then N is differentiable at z, N(z, θ) = 0, and
zN > 0. Now suppose that DzN (z, θ) is invertible. The implicit function theorem
[33] guarantees that there exists a neighborhood V ⊆ Θ of θ on which the solution
z = s(θ) of N (z, θ) is unique. Furthermore, s is differentiable on V , N (s(θ), θ) = 0
for all θ ∈ V , and

Ds(θ) = − (DzN (z, θ))−1DθN (z, θ).
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Solution construction. To construct a solution (x, y, s) of the primal-dual pair (1)
from a complementary solution z of the homogeneous embedding, we use the function
ϕ given in [4]. With ϕ : RN → Rn+2m given by

ϕ(z) = (z1:n,ΠK∗(zn+1:n+m),ΠK∗(zn+1:n+m)− zn+1:n+m)/zN .

If ΠK∗ is differentiable at zn+1:n+m, then ϕ is also differentiable and

Dϕ(z) =

I 0 −x
0 DΠK∗(zn+1:n+m) −y
0 DΠK∗(zn+1:n+m)− I −s

 .

3 Implementation

3.1 Computing the Jacobian-vector product

Applying the derivative DS(θ) to a perturbation dθ = (dP, dA, dq, db) ∈ Θ corre-
sponds to evaluating

(dx, dy, ds) = DS(θ)[dθ] = Dϕ(s(θ))Ds(θ)[dθ]

= Dϕ(z)
(
− (DzN (z, θ))−1)DθN (z, θ)[dθ].

Given a solution (x, y, s) to (1), we construct a root of the normalized residual map
as z = s(θ) = M−1(u, v) = u− v where u = (x, y, 1) and v = (0, s, 0).

We now work from right to left. First, we compute Πz and form dθN = DθN (z, θ)[dθ].
Second, we compute

dz = −F−1dθN ,

where
F = DzN (z, θ) = 1/zN (DzQ(Πz, θ)DΠ(z)−DΠ(z) + I) .

Since it is impractical to form or factor F as a dense matrix in some applications
(e.g., when F is large), we use LSMR [15] to solve

minimize
dz

∥Fdz + dθN∥22 ,

which only requires multiplication with F and F T . Finally, we compute the solution
perturbations asdxdy

ds

 =

 dz1:n − (dzN)x
DΠK∗(zn+1:n+m)[dzn+1:n+m]− (dzN)y

DΠK∗(zn+1:n+m)[dzn+1:n+m]− (dz)n+1:n+m − (dzN)s

 .
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3.2 Computing the vector-Jacobian product

The adjoint of the derivative applied to a perturbation (dx, dy, ds) is

dθ = (dP, dA, dq, db) = DS(θ)T [(dx, dy, ds)]
= Ds(θ)TDϕ(s(θ))T [(dx, dy, ds)]

= DθN (z, θ)T
(
−
(
DzN (z, θ)T

)−1
)
Dϕ(z)T [(dx, dy, ds)],

letting z = s(θ) as in §3.1. Working right to left, first, we evaluate

dz = Dϕ(z)T [(dx, dy, ds)] =

 dx
DΠK∗(zn+1:n+m)[dy + ds]− ds

−xTdx− yTdy − sTds

 .

Second, we evaluate Πz and form dθN = −F−Tdz using LSMR. Finally the problem
data perturbation dθ = (dP, dA, dq, db) is given by

dP =
1

2

(
dθN1:n (Πz)

T
1:n + (Πz)1:n dθN

T
1:n

)
− (dθNN/ (Πz)N) (Πz)1:n (Πz)

T
1:n ,

dA = (Πz)n+1:n+m dθN T
1:n − dθNn+1:n+m (Πz)T1:n ,

dq = (Πz)N dθN1:n − dθNN (Πz)1:n ,

db = (Πz)N dθNn+1:n+m − dθNN (Πz)n+1:n+m .

However, we do not form dP and dA exactly as formulated. Instead we only compute
their nonzero (or, more precisely, non-explicit-zero) entries as dictated by the sparsity
patterns of P and A respectively.

3.3 Hardware accelerated Python implementation

We have developed an open-source JAX [10] library (also making significant use of
the packages Equinox [22] and Lineax [30]), diffqcp, which implements these algo-
rithms and is available at https://github.com/cvxgrp/diffqcp. Our implementa-
tion supports any QCP whose cone can be expressed as the Cartesian product of the
zero cone, the positive orthant, second-order cones, and positive semidefinite cones.
(Support for exponential cones, power cones, and their duals is in development.)

Data movement. Host-to-device transfers have been a long-standing limitation of
CVXPYlayers, a Python library for constructing differentiable convex optimization
layers in PyTorch [29], JAX, and TensorFlow [1] using CVXPY. Since CVXPYlayers
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only supports computing the derivative (and its adjoint) of the solution map of a conic
program on the CPU, using this library to embed a differentiable convex optimization
layer in a neural network requires tranferring any data on the device to the host
during the forward or backward pass. Such transfers can be expensive, so having
to perform them on both the forward and backward passes during every training
iteration can make this embedding prohibitive. Being a JAX library, diffqcp can
compute JVPs and VJPs on a GPU, allowing our software to be integrated into GPU
workflows, such as neural network training, without these significant host-to-device
data transfers.

Performance. diffqcp relies on JAX to enable its high performance. The JAX
library uses Python as a “metaprogramming language” to build performant and
just-in-time compiled XLA programs. Moreover we rely on the JAX transformation
vmap, to simplify writing SIMD computations. diffqcp makes extensive use of
this transformation to “batch” projections onto a family of cones with the same
dimensionality. This batching is especially advantageous when computing JVPs and
VJPs on a GPU, as it enables the execution of many independent computations in
parallel, thereby maximizing processor occupancy and overall throughput.

3.4 Example

To test our implementation, we applied gradient descent to a loss function of the
form

∥x− x⋆∥22 + ∥r − r⋆∥22 + ∥s− s⋆∥22 + ∥y − y⋆∥22.

where each (x, r), s, y are the optimal primal, slack, and dual solutions of

minimize rTPr + qT
[
x
r

]
subject to

C D
E 0
fT 0T

[
x
r

]
+ s = b

s ∈ {0}m ×Rn
+ × {0}

(9)
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with D,E, P are diagonal, and q, f, b are vectors and where (x⋆, r⋆), s⋆, y⋆ are the
primal, slack, and dual solutions of

minimize rT Ir

subject to

C⋆ −I
−I 0
1T 0T

[
x
r

]
+ s =

d⋆0
1


s ∈ {0}m ×Rn

+ × {0}

for a randomly selected C⋆, d⋆.

Results. We take m = 2000 and n = 1000. CuClarabel and diffqcp on an Intel
Xeon E5-2670 CPU and an NVIDIA TITAN Xp GPU took 44.20 seconds per itera-
tion. As a control, we canonicalized the objective with SOCs and ran the gradient
descent with Clarabel and diffcp, which took 96.86 seconds per iteration on the
Intel Xeon E5-2670 CPU. The improved modeling capacity and GPU-acceleration
enabled a 2.19× speedup.
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A Cones, projections, and derivatives

Zero cone. The zero cone {0} has dual cone R, projection operation Π{0}(z) = 0,
and DΠ(z)[dz] = 0.

Nonnegative cone. The nonnegative cone {x | x ≥ 0} has dual cone {x | x ≥ 0},
projection operator

Π{x|x≥0}(z) =

{
z z ≥ 0

0 z < 0,

and

DΠ{x|x≥0}(z)[dz] =

{
dz z > 0

0 z < 0.

Second-order cone. The second order cone Ksoc = {(t, u) ∈ R×Rn : ∥u∥2 ≤ t}
has dual cone Ksoc, projection operator

Πsoc((t, u)) =


0 ∥u∥2 ≤ −t

(t, u) ∥u∥2 ≤ t

(1/2)(1 + t/∥u∥2)(∥u∥2, u) ∥u∥2 ≥ |t|

and

DΠsoc((t, u))[(dt, du)] =


0 ∥u∥2 < −t

(dt, du) ∥u∥2 < t

1
2∥u∥2

[
∥u∥2dt+ uTdu

udt+ (t+ ∥u∥2)du− (t/∥u∥22)(uTdu)u

]
∥u∥2 > |t|.

Positive semidefinite cone. The positive semidefinite cone Kpsd = {A ∈ Sn |A ⪰
0} has dual cone Kpsd, projection operator

Πpsd(Z) =
n∑

i=1

max {0, λi} vivTi

where {(λi, vi) |λ1 ≥ · · · ≥ λi ≥ · · · ≥ λn} is the eigendecomposition of Z, and

DΠ(Z)[dZ] = V
(
B ◦

(
V TdZV

))
V T ,

13



where ◦ denotes the Hadamard (i.e., element-wise) product, k = min {k |λk < 0}.
The symmetric B is given by

Bij =


0 i ≥ k, j ≥ k

λi

λi−λj
i < k, j ≥ k

λj

λj−λi
i ≥ k, j < k

1 i < k, j < k.

See [11] for the derivation and proof of DΠpsd.

Exponential cone. The exponential cone

Kexp =
{
(x, y, z) ∈ R3

∣∣ yex/y ≤ z, y > 0
}
∪
{
(x, 0, z) ∈ R3

∣∣x ≤ 0, z ≥ 0
}

has dual cone

K∗
exp =

{
(u, v, w) ∈ R3

∣∣u < 0,−uev/u ≤ ew
}
∪
{
(0, v, w) ∈ R3

∣∣ v ≥ 0, w ≥ 0
}

and polar cone K◦
exp = −K∗

exp. Let p = (x, y, z).

• For p ∈ Kexp, Πexp(p) = p.

• For p ∈ K◦
exp, Πexp(p) = 0.

• For p ̸∈ Kexp ∪ K◦
exp with x < 0 and y < 0, Πexp(p) = (x, 0,max {z, 0}).

• For all other p, the projection Πexp(p) must be found via its definition, i.e., as
the (unique) solution to

minimize 1
2
∥p̂− p∥

subject to ẑ = ŷex̂/ŷ, ŷ > 0,
(10)

where p̂ = (x̂, ŷ, ẑ) is the optimization variable. See [17] for a fast and numeri-
cally robust univariate root-finding algorithm that can be used to compute the
projection.

In the following cases, the projection operator is differentiable at p.

• For p ∈ intKexp, DΠexp(p) = DΠexp(p)
T = I.

• For p ∈ intK◦
exp, DΠexp(p) = DΠexp(p)

T = 0.
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• For p ̸∈ Kexp ∪ K◦
exp with x < 0, y < 0, and z ̸= 0, DΠexp(p) = DΠexp(p)

T =
diag(1, 0,1 {z > 0}) where for α ∈ R, 1 {α > 0} is 1 if α > 0 else is 0.

• For p ∈ int
(
R3 \

(
Kexp ∪ K∗

exp ∪ (R− ×R− ×R)
))
, DΠexp(p) = (J−1)1:3,1:3

where

J =


1 + µ⋆ex

⋆/y⋆

y⋆
−µ⋆x⋆ex

⋆/y⋆

(y⋆)2
0 ex

⋆/y⋆

−µ⋆x⋆ex
⋆/y⋆

(y⋆)2
1 +−µ⋆(x⋆)2ex

⋆/y⋆

(y⋆)3
0 (1− x⋆/y⋆)ex

⋆/y⋆

0 0 1 −1
ex

⋆/y⋆ (1− x⋆/y⋆)ex
⋆/y⋆ −1 0

 .

In this Jacobian, (x⋆, y⋆, z⋆) is the solution to (10) and µ⋆ ∈ R is the solution
to the dual problem. See [6] for the derivation and proof of J .

Dual exponential cone. The dual exponential cone is given above. Via the
Moreau decomposition, its projection operator is Πexp∗(z) = z + Πexp(−z) with
derivative DΠexp∗(z)[dz] = dz −DΠexp(−z)[dz]

Power cone. Our power cone and dual power cone results are based on [21]. The
(3D) power cone

Kpow,α =
{
(x, y, z) ∈ R3

∣∣xαy1−α ≥ |z| , x ≥ 0, y ≥ 0
}

has dual cone

K∗
pow,α =

{
(u, v, w) ∈ R3

∣∣∣∣∣ (uα)α
(

v

1− α

)1−α

≥ |w| , u ≥ 0, v ≥ 0

}

and polar cone K◦
pow,α = −K∗

pow,α. Let p = (x, y, z).

• For p ∈ Kpow,α, Πpow,α(p) = p.

• For p ∈ K◦
pow,α, Πpow(p) = 0.

• For p ̸∈ Kpow,α ∪ K◦
pow,α and z = 0, Πpow(p) = (max {x, 0} ,max {y, 0} , 0).

• For p ̸∈ Kpow,α ∪ K◦
pow,α and z ̸= 0, Πpow(p) = (fx, fy, sign(z)r), where

fx(r) =
1

2

(
x+

√
x2 + 4αr(|z| − r)

)
, fy(r) =

1

2

(
y +

√
y2 + 4(1− α)r(|z| − r)

)
,
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and r is the (unique) solution to the (nonconvex) problem

find r
subject to r = fx(r)

αfy(r)
1−α

0 < r < |z|
(11)

defined in [21, (5)].

In the following cases, the projection operator is continuously differentiable at p.

• For p ∈ intKpow,α, DΠpow(p) = DΠpow(p)
T = I.

• For p ∈ intK◦
pow,α, DΠpow(p) = DΠpow(p)

T = 0 ∈ R3×3.

• [21, Theorem 3.1] For p ̸∈ Kpow,α ∪ K◦
pow,α and z ̸= 0,

DΠpow(p) =


1
2
+ x

2gx
+ α2(|z|−2r)rL

g2x

(α−α2)(|z|−2r)rL
gygx

sign(z)αrL
gx

(α−α2)(|z|−2r)rL
gxgy

1
2
+ y

2gy
+ (1−α)2(|z|−2r)rL

g2y
sign(z) (1−α)rL

gy

sign(z)αrL
gx

sign(z) (1−α)rL
gy

r
|z| +

r
|z|TL

 ,

where gx = 2fx − x, gy = 2fy − y,

L =
2(|z| − r)

|z|+ (|z| − 2r)(αx
gx

+ (1−α)y
gy

)
, T = −

(
αx

gx
+

(1− α)y

gy

)
,

and r is the solution of (11).

• For p ̸∈ Kpow,α ∪ K◦
pow,α, z = 0, and x, y ̸= 0,

DΠpow(p) =

1 {x > 0} 0 0
0 1 {y > 0} 0
0 0 d

 .

The component d is defined as

d =


1 x > 0, y < 0, α > 1/2, or y > 0, x < 0, α < 1/2

0 x > 0, y < 0, α < 1/2, or y > 0, x < 0, α > 1/2

dx x > 0, y < 0, α = 1/2

dy x < 0, y > 0, α = 1/2,

where
dx =

x

2 |y|+ x
and dy =

y

2 |x|+ y
.

16



Dual power cone. The dual power cone is given above. Via the Moreau de-
composition, its projection operator is Πpow∗(z) = z + Πpow(−z) with derivative
DΠpow∗(z)[dz] = dz −DΠpow(−z)[dz]
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