
23

Dirty Pixels: Towards End-to-end Image Processing and Perception

STEVEN DIAMOND, Stanford University

VINCENT SITZMANN, Stanford University, MIT

FRANK JULCA-AGUILAR, Algolux

STEPHEN BOYD and GORDON WETZSTEIN, Stanford University

FELIX HEIDE, Princeton University

Fig. 1. A RAW input image subsampled on a color filter array and corrupted by sensor characteristics in low light (left) and its class prediction using

MobileNet-v1 along with conventional processing pipelines. Processing RAW data using conventional image processing pipelines (ISPs) does not necessarily

improve performance because conventional pipelines are optimized for human viewing, not for machine vision. Here, the image of a Samoyed dog is

missclassified as the much smaller Maltese dog with thinner coat and smaller snout. We propose an end-to-end architecture for joint demosaicking,

denoising, deblurring, and classification that makes classification robust in low-light scenarios. The proposed architecture learns a processing pipeline

optimized for classification, which enhances fine details relevant for this high-level task—at the expense of more noise as measured by conventional metrics,

PSNR and SSIM—and improves state-of-the art accuracy. Here, the dog’s snout, ears, fur, and outline are enhanced in contrast at the loss of surrounding

background class regions. The proposed architecture has a principled and modular design and generalizes across light levels and cameras.

Real-world, imaging systems acquire measurements that are degraded by

noise, optical aberrations, and other imperfections that make image pro-

cessing for human viewing and higher-level perception tasks challenging.

Conventional cameras address this problem by compartmentalizing imag-

ing from high-level task processing. As such, conventional imaging in-

volves processing the RAW sensor measurements in a sequential pipeline
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of steps, such as demosaicking, denoising, deblurring, tone-mapping, and

compression. This pipeline is optimized to obtain a visually pleasing im-

age. High-level processing, however, involves steps such as feature ex-

traction, classification, tracking, and fusion. While this silo-ed design ap-

proach allows for efficient development, it also dictates compartmental-

ized performance metrics without knowledge of the higher-level task of

the camera system. For example, today’s demosaicking and denoising al-

gorithms are designed using perceptual image quality metrics but not

with domain-specific tasks such as object detection in mind. We pro-

pose an end-to-end differentiable architecture that jointly performs de-

mosaicking, denoising, deblurring, tone-mapping, and classification (see

Figure 1). The architecture does not require any intermediate losses based

on perceived image quality and learns processing pipelines whose outputs

differ from those of existing ISPs optimized for perceptual quality, pre-

serving fine detail at the cost of increased noise and artifacts. We show

that state-of-the-art ISPs discard information that is essential in corner

cases, such as extremely low-light conditions, where conventional imag-

ing and perception stacks fail. We demonstrate on captured and simu-

lated data that our model substantially improves perception in low light

and other challenging conditions, which is imperative for real-world ap-

plications such as autonomous driving, robotics, and surveillance. Finally,

we found that the proposed model also achieves state-of-the-art accuracy

when optimized for image reconstruction in low-light conditions, validat-

ing the architecture itself as a potentially useful drop-in network for recon-

struction and analysis tasks beyond the applications demonstrated in this

work. Our proposed models, datasets, and calibration data are available at

https://github.com/princeton-computational-imaging/DirtyPixels.
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1 INTRODUCTION

Image sensor measurements are affected by various degradations

in the physical image formation process. Raw sensor readings

suffer from photon shot noise, optical aberration, read-out noise,

spatial subsampling in the color filter array (CFA), spectral

cross-talk on the CFA, motion blur, and other imperfections. The

image signal processor (ISP) is a hardware block that addresses

these degradations by processing the RAW measurement in a se-

quential pipeline of steps [Ramanath et al. 2005a] each targeting a

sub-problem in isolation, before displaying or saving the result-

ing output image. The ISP performs an extensive set of opera-

tions, such as demosaicking [Zhang et al. 2011], denoising, deblur-

ring, and tone-mapping. All of these low-level imaging tasks are

ill-posed problems with recent active research [Chen et al. 2018;

Gharbi et al. 2016; Heide et al. 2014; Zhang et al. 2016]. Existing

image reconstruction algorithms are designed to minimize an ex-

plicit or implicit reconstruction loss aligned with human percep-

tions of image quality as a prior to resolve the ill-posedness of

the sub-problems listed above. Explicit losses are based on chart-

based metrics [Phillips and Eliasson 2018] and emerging domain-

specific standards, such as CPIQ [Jin et al. 2017], DxOMark, VCX

Score for cellphone imaging, and the emerging IEEE P2020 stan-

dard [Stead 2016] for autonomous vehicles. However, the approach

widely adopted by ISP manufacturers is to design and tune ISPs to

eliminate artifacts human experts find visually unpleasant, thereby

minimizing an implicit perceptual loss.

At the same time, applications in emerging domains, includ-

ing autonomous driving, robotics, and surveillance, consume im-

ages directly by a higher-level analysis module without ever being

viewed by humans. Human expert assessment is not applicable to

these “image-free” cameras, and this gives rise to the question if

low-level processing is necessary or if existing higher-level net-

works should better be trained directly on RAW sensor data.

ISPs are useful in that they map data from diverse camera sys-

tems into a common interface, a visually pleasing image, that most

large-scale computer vision datasets adopt, e.g., Deng et al. [2009]

and Lin et al. [2014]. For downstream tasks, the real-world perfor-

mance of a deployed high-level network will be close to the per-

formance on clean images so long as the low-level pipeline can ap-

proximately recover the latent clean image from RAW data. How-

ever, in challenging capture conditions, i.e., the corner cases of the

ISP, recovering the latent image is extremely challenging, such as

low-light captures that are heavily degraded by photon shot noise.

For example, a denoising block that is optimized for perceptual

quality will remove apparent chromatic noise, e.g., the Movidius

Myriad 2 ISP includes a Chroma-NLM stage for perceptual qual-

ity [Moloney et al. 2014], thereby destroying high-frequency color

detail that could be exploited in the higher-level image analysis.

Identical design tradeoffs are found in other key processing blocks,

such as demosaicking, tone-mapping, and sharpening [Moloney

et al. 2014].

An immediate solution for such failure modes appears to be re-

moving the ISP completely and training the perception model di-

rectly on RAW measurement data. That way no information will be

suppressed in the low-level image processing modules. Indeed, we

demonstrate that existing classifiers trained on RAW data perform

on-par with pre-processing from traditional ISPs, hand-crafted for

perceptual viewing instead of CNN feature extraction.

In this work, we depart from traditional ISPs and investigate

learned architectures that perform end-to-end image processing

and classification jointly. We propose an end-to-end differentiable

model that uses RAW color filter array data as input and outper-

forms existing deep classification directly trained on this RAW

input streams by a more than 5% in top-5 accuracy on in-the-

wild captures. We validate that low light is indeed a failure mode

for conventional computer vision systems that combine exist-

ing ISPs with existing high-level networks. We propose a novel

neural architecture for joint denoising and demosaicking, dubbed

“Anscombe networks,” that we learn jointly with a high-level net-

work and that exploits knowledge of the camera image formation

model. We show that fine-tuning an Anscombe network with a

high-level model performs better than training a high-level model

directly on the RAW data or on the output of traditional ISPs, or

recent state-of-the-art learnable ISP [Chen et al. 2018]. We demon-

strate that the proposed Anscombe network ISP generalizes across

imaging setting akin to a traditional ISP. Nevertheless, the output

of the neural ISP differs from that of traditional ISPs, scoring worse

on traditional perceptual metrics when trained for classification.

However, when trained for human viewing, and no downstream

analytic task, the proposed architecture achieves state-of-the-art

image quality for low-light imaging, highlighting the potential of

domain-specific imaging pipelines.

The contributions of this article are the following:

• We demonstrate that conventional perception pipelines,

which use a state-of-the-art ISP and classifier trained on a

standard JPEG dataset, perform poorly in low light.

• We introduce Anscombe networks, a lightweight neural cam-

era ISP for demosaicking and denoising that generalizes

across camera architecture and capture settings. We show

that Anscombe networks, by themselves, achieve state-of-

the-art image quality when trained for low-light imaging us-

ing a perceptual loss for image quality.

• We demonstrate that jointly learning Anscombe networks

with classification networks outperform training the high-

level networks directly on RAW data or the output of state-

of-the-art software, hardware, and learnable ISPs, both when

trained from scratch or fine-tuned.

• We evaluate the joint end-to-end model on synthetic and cap-

tured RAW data. To this end, we introduce a dataset of real-

istic noise and blur models calibrated from mobile cameras

and a dataset of annotated noisy RAW captures.
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• We demonstrate a real-time smart-phone implementation of

the proposed end-to-end low-light classification model.

In the future, a large portion of our images will be consumed by

high-level perception stacks, not by humans. We propose to reex-

amine the foundational assumptions of image processing (ISPs).

Existing approaches tackle this challenge either by discarding ISPs

and retraining downstream networks directly on RAW data, or

they manually tune or optimize the parameters of hardware ISPs

for a fixed network. Our work departs from both approaches and,

to the best of our knowledge, it is the first that jointly learns image

processing and classification network parameters in an end-to-end

fashion. We note that specialized domain-specific processing is the

goal of the proposed approach. We do not dismiss traditional ISPs

for general imaging tasks with unknown downstream applications

but illustrate the potential of domain-specific camera processing.

2 RELATED WORK

Effects of Noise and Blur on High-level Networks. A small body

of work has explored the effects of noise and blur on deep net-

works trained for high-level vision tasks. Dodge and Karam eval-

uated a variety of recent classification networks under noise

and blur and found a substantial drop in performance [2016].

Vasiljevic et al. similarly showed that blur decreased classifica-

tion and segmentation performance for deep nets, though much

of the lost performance was regained by fine-tuning on blurry im-

ages [2016]. Karahan et al. showed that noise and blur degrade

the performance of CNNs trained for face recognition [2016]. Sev-

eral authors demonstrated that preprocessing noisy images with

trained or classical denoisers improves the downstream perfor-

mance [Agostinelli et al. 2013; da Costa et al. 2016; Jalalvand

et al. 2016; Tang and Eliasmith 2010; Tang et al. 2012]. Chen

et al. showed that training a model for denoising and separately

classification can improve performance on both tasks [2016] when

tested on corrupted versions of the MNIST and USPS datasets. Note

that the models trained from scratch, in Tables 1 and 2, are equiva-

lent to Chen et al. [2016] approach, where we optimize the classi-

fication network directly from RAW data.

Camera Image Processing Pipelines. Most digital cameras per-

form low-level image processing such as denoising and demo-

saicking in hardware ISP pipelines based on efficient heuristics

[Ramanath et al. 2005b; Shao et al. 2014; Zhang et al. 2011]. Modern

imaging systems for cellphone use-cases may acquire a burst of im-

ages or images from multiple camera modules. Recently, Hasinoff

et al. [2016] have demonstrated high-quality imaging in low light

using bursts, which are then processed in a software ISP tuned

for perceptual quality. Cameras for driver assistant systems, au-

tonomous cars, or other robotic purposes, however, have to react in

real-time and therefore cannot acquire sequential exposures, lead-

ing to the emergence of split-pixel sensors (OmniVision OV10640,

OV10650) and domain specific ISPs, such as the ARM Mali C71.

Most conventional camera ISPs are implemented as fixed-function

ASIC blocks to handle high-resolution image feeds at real-time

rates [MT9P111 2015]. Only recently, camera ISPs are starting to

become more programmable (also the case for software ISPs such

as Hasinoff et al. [2016]). The Movidius Myriad 2 [Moloney et al.

2014] hardware ISP offers configurable pipelines with room for a

few general-purpose blocks run on SIMD Vector Processors, but

still relies on a large number of fixed-function hardware blocks.

Hegarty et al. [2014] propose a domain-specific language for cam-

era ISP processing on FPGAs, which translates image process-

ing pipelines into efficient, low-power FPGA architectures. Instead

of designing pipelines, Heide et al. [2014] pose low-level image

processing as an optimization problem, achieving higher qual-

ity than previous ISPs for a variety of camera systems. However,

their iterative optimization method is computationally intensive

and an order of magnitude slower than real-time. Recently, Gharbi

et al. rely on deep convolutional architectures to perform low-level

vision tasks, such as demosaicking [2016] or tonemapping [2017].

While being computationally efficient, their architectures depend

on heavily engineered datasets for training their models, whereas

we use standard classification datasets. Liba et al. [2019] proposed

a system for capturing images in low-light conditions based on

the alignment and combination of multiple frames and learning-

based white balance and tonemapping. Schwartz et al. [2019],

Liang et al. [2019], and Chen et al. [2018] proposed learnable ISPs

based on deep convolutional networks. The model proposed by

Chen et al. [2018] consists of convolutional network with CFA

pixel packing similar to Gharbi et al. [2016]. While their results are

perceptually on-par or better than naive post-filtering approaches,

using BM3D [Dabov et al. 2007] as an artifact suppression block,

it remains unclear if recent state-of-the-art ISPs using traditional

denoising blocks on RAW data, i.e., not as post-processing artifact

suppression block, perform better as concluded in Plotz and Roth

[2017]. Our results described in Section 5 show that our proposed

Anscombe ISP improves accuracy of a classifier trained on top of

Chen et al. [2018]-preprocessed (and fine-tuned) images.

Traditional Image Processing Pipelines for Computer Vision. The

role of traditional hardware ISP components in vision systems

was examined in Buckler et al. [2017], Tseng et al. [2019], and

Yahiaoui et al. [2019]. Buckler et al. [2017] suggested that ISPs

should be configurable to switch between a human-viewable mode

and computer vision mode to produce data optimized for vision

tasks. However, ISP parameter tuning by visual inspection is ex-

tremely challenging if performed manually, motivating simulation

environments [Blasinski et al. 2018]. Simulated environments, un-

fortunately, suffer from a significant domain gap [Hoffman et al.

2017]. Recently, Tseng et al. [2019] proposed an automatic method

for optimizing black-box ISPs. They propose to model and learn

a differentiable proxy function that approximates the entire im-

age processing pipeline. In contrast to the proposed method, Tseng

et al. rely on traditional hardware ISPs and optimize only ISP hy-

perparameters, not the high-level network. The efficacy of this ap-

proach relies on the accuracy of the ISP approximation. As such,

in our low-light scenario, the approximator network from Tseng

et al. failed (see Figure 5 in Supplemental Material). We note that

none of the above methods propose a jointly end-to-end optimized

ISP and downstream network.

Domain Adaptation. A common problem in deep neural net-

works trained for high-level computer vision tasks is domain

shift, meaning the difference in image statistics between the

training data and the unknown real-world data, leading to poor
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Fig. 2. A RAW frame captured indoors using a Nexus 6 rear camera (after

demosaicking). The image was taken at ISO 3000 with a 32 ms exposure

time. The noise in the image is clearly visible.

performance of a trained model in the final real-world scenario.

The literature on domain adaptation includes many methods for

adapting models trained on one distribution to a target distribu-

tion, ranging in sophistication from simply fine-tuning the model

on labeled data from the target distribution to more recent work

that only requires sparsely labeled or unlabeled data (e.g., Ganin

and Lempitsky [2015], Long et al. [2015], Sun and Saenko [2016],

and Tzeng et al. [2017, 2014]). The domain adaptation literature

has an implicit assumption, however, that the mapping from the

training domain to the target domain is unknown. In our prob-

lem of classification under noise and blur, the mapping from the

clean training data to degraded real-world data can be modeled

extremely accurately. We are thus able to map the clean training

data into the target domain through simulation, and moreover to

efficiently incorporate oura priori knowledge of the physical model

into the classification architecture. We put this into practice in the

design of our efficient Anscombe networks, which, as validated in

Section 5.1, outperform existing image processing layers when in-

tegrated and end-to-end trained.

3 CAMERA IMAGE FORMATION MODEL

3.1 Image Formation

We consider the image formation I for a RAW sensor image as

yx ∼ αP ��
�

∑
c ∈{R,G,B }

Sc (kc ∗ Ecx )/α��
�
+N (0,σ 2)

⇔ yx ∼ αP (Ax/α ) +N (0,σ 2)

y = I (x ) = Π[0,1] (yx ),

(1)

where x ∈ R3N is the vectorized latent color image, with N be-

ing the number of pixels, y ∈ RN is the measured RAW image,

α > 0 and σ > 0 are parameters in a Poisson and Gaussian dis-

tribution, respectively, the operator Ec extracts the color chan-

nel c ∈ {R,G,B}, kc represents the lens point spread function

(PSF) in the color channel c , ∗ denotes the linear operator corre-

sponding to 2D convolution on the vectorized input, and Π[0,1]

denotes projection onto the interval [0, 1]. The matrix Sc models

the spatial sub-sampling for color filter c on the color filter array of

the sensor. This matrix is a diagonal sub-sampling matrix defined

as

Sc
ii =

{
1 if pixel t has color filter i,
0 else.

(2)

The image formation model from above is composed of a linear

part Ax , modeling all optical effects in the capture process with

the matrix A, and a non-linear sampling process according to the

noise characteristics of the sensor. The measured image follows the

physically accurate Poisson-Gaussian noise model with clipping

described by Foi et al. [2009, 2008]. In the noise model, decreas-

ing the light level increases α , but the dynamic range is kept con-

stant by increasing the ISO, represented by multiplying P (Ax/α )
by α .

The image formation model from Equation (1) is general and

applicable to a variety of different camera architectures, ranging

from traditional Bayer CFA cameras to interlaced HDR sensors,

each covered by changing the linear forward model A according

to the given camera architecture. We refer the reader to Heide et al.

[2014] for a variety of camera architectures this model supports.

Note that, in contrast to Gharbi et al. [2016] and Heide et al. [2014],

we assume a more accurate noise model, including the Poissonian

component, which is critical for the model accuracy in the low-flux

regime.

3.2 Calibration

We calibrated the parameters α , and σ of the image formation

model from Section 3.1 by acquiring calibration captures of a

charts containing patches of different shades of gray (e.g., ISO

12233:2014 [2014]) at various gains with auto-white-balance dis-

abled. We then follow Foi et al. [2009] to estimate the unknown

noise parameters. The photograph on the left in Figure 3 shows

our noise calibration setup. The center plot in Figure 3 shows plots

of s (x ) = std(ỹ) versus E[ỹ] and ŝ (x̂ ) = std(y) versus E[y] for dif-

ferent ISO levels on a Nexus 6P rear camera. The parameters α and

σ at a given light level are computed from the s (x ) and ŝ (x̂ ) plots.

The noise under our calibrated image formation model can be high.

Figure 2 shows a typical capture of a Nexus 6 rear camera in low

light. This image was acquired for ISO 3000 and a 32 ms exposure

time. The only image processing performed on this image was bi-

linear demosaicking. The severe levels of noise present in the im-

age demonstrate that low and medium light conditions represent

a major challenge for imaging and computer vision systems. Note

that particularly inexpensive low-end sensors will exhibit dras-

tically worse performance compared to higher end smartphone

camera modules.

In addition, we calibrated the optical aberrations k from Equa-

tion (1) using a Bernoulli noise chart with checkerboard features,

following Mosleh et al. [2015] for spatially varying PSF calibration.

The right plots in Figure 3 show the PSF k for entire field-of-view

of a Nexus 5 rear phone camera optic. An in-depth description of

our calibration procedure is provided in the Supplemental Mate-

rial. Alternative approaches to learned data generation for image

reconstruction methods have been proposed in Brooks et al. [2019]

and Jaroensri et al. [2019].
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Fig. 3. (Top left) The noise calibration setup. (Bottom left) The PSF calibration setup. (Center) s (x ) = std(ỹ ) versus E[ỹ] and ŝ (x̂ ) = std(y ) versus E[y] for

different ISO levels on a Nexus 6P rear camera. The noise parameters α and σ at a given light level are computed from the s (x ) and ŝ (x̂ ) plots. (Right) The

PSFs for the entire field-of-view of a Nexus 5 rear camera. Two center PSFs, an off-axis PSF, and a periphery PSF are magnified.

4 END-TO-END FRAMEWORK

In this section, we describe the proposed architecture for joint de-

noising, demosaicking, (deblurring,) and classification. We evalu-

ate the joint architecture in Section 5, as well as ablated models

where only the low-level or high-level pipeline is trained or a con-

ventional ISP pipeline is used. We assess the performance of the

proposed model both on the simulated data and on captured RAW

images to show that our simulated results carry over to real data.

The architecture proposed in this work is illustrated in Figure 4.

It combines jointly learned low-level and high-level processing

units, taking RAW sensor CFA data as input and outputting im-

age labels. We propose a single differentiable model that gen-

eralizes across cameras and light levels. This allows our model

to abstract away the details of the camera for downstream ap-

plications while being flexible and applicable to novel camera

architectures.

We base the low-level block, which we dub Anscombe network

unit, on an optimization algorithm Λ that solves the problem of re-

constructing an uncorrupted latent mid-level representation from

noisy, single-channel, spatially subsampled RAW measurements.

In contrast to standard CNN models, the Anscombe layers in this

model make the approach light-level independent, and the un-

rolled optimization model achieves generalization across camera

models (without retraining). We express the joint reconstruction

and perception problem as a bilevel optimization problem:

min
ϑ ,ν
L (Λ(y,ϑ ),x ,ν )

s.t. Λ(y,ϑ ) = argmin
x

G (x ,y,ϑ ) ,
(3)

where Λ minimizes here a lower-level objective G. The output

layer of this lower-level unit is a multi-channel mid-level repre-

sentation Λ(y,ϑ ), which is input into the higher-level model com-

ponent and associated classification loss L. Here, the model pa-

rameters ν of the higher-level model are absorbed in L as a third

argument.

For the nested objective G, we follow a Bayesian approach as

architecture backbone, as it estimates a latent three-channel im-

age x exploiting both the probabilistic image formation model and

allows for priors expressed in a principled fashion. The Bayesian

model assumes that x is drawn from a prior distribution Ω(ϑ ),
parameterized by ϑ . We solve the Bayesian inference problem by

unrolling an iterative optimization algorithm, only parameterizing

the image prior with unknown, learned parameters, and truncat-

ing the iterations yielding the operator Λ.

Any differentiable higher-level image analysis method can be

used in the proposed stack. In the following, we use the MobileNet-

v1 classification network [Howard et al. 2017] as a higher-level

network (which is replaced by a perceptual image loss when spe-

cializing the model for imaging for human vision 5.1). The higher-

level classification loss L is the standard cross-entropy classi-

fication loss. We chose the MobileNet model family, since it is

computationally efficient, running on modern smart-phone plat-

forms in real-time while achieving competitive classification per-

formance [Howard et al. 2017]. As the model is small, it can also be

trained from scratch without data-center-scale training resources.

Note that the proposed architecture can be adapted to other high-

level computer vision tasks such as segmentation, object detection,

and tracking, by replacing the classification network with another

network for the given task. This also includes no high-level model,

which then allows for the method to act as a learned ISP optimized

for human viewing with adequate loss L, which we demonstrate

in Section 5.3.

4.1 Anscombe Networks

The proposed low-level image processing unit, Anscombe net-

works, performs image reconstruction as a statistical estimation

problem, which estimates a feature-preserving mid-level image

from corrupted observations. We adopt a Bayesian approach and

derive the proposed Anscombe network model as a maximum-a-

posteriori (MAP) estimation method. As part of this model, we

introduce novel Anscombe network layers in this section, which

allow for an efficient, compact, and transferable model that hence

behaves like an ISP but is differentiable. Central to the design of our

Anscombe networks are our variance-stabilizing Anscombe trans-

form layers. Anscombe layers map Poisson-Gaussian distributed

measurements y, to IID Gaussian noise [Foi and Makitalo 2013]

with variance σ = 1. Recall that the input to our Anscombe net-

work,y, is the result of the camera image formation model defined

ACM Transactions on Graphics, Vol. 40, No. 3, Article 23. Publication date: April 2021.
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Fig. 4. The proposed end-to-end architecture (top) for joint denoising, demosaicking, (deblurring), and classification combines a novel low-level Anscombe

network block and a high-level task-specific network component in a single stack that takes in RAW CFA sensor data and outputs image labels. The

Anscombe network component (zoom-in on the bottom) exploits knowledge of the calibrated image formation model and a learned proximal operator in a

recurrent manner. The high-level model takes the output of the Anscombe network unit (either a feature tensor or an image) and feeds it into a standard

classification network trunk. This proximal operator in the Anscombe network is a recurrent residual U-Net model with dense skip connections across all

operator “iterations.” A partly unrolled network is shown at the bottom.

in Equation (1) (see calibration described in Section 3.2). We show

in Section 5.1 that Anscombe networks improve the accuracy of

classifiers, trained with RAW data, that use conventional layers

with capacity similar to our Anscombe networks.

In the Bayesian model, an unknown latent image x is drawn

from a prior distribution Ω(ϑ ) with parameters ϑ . The linear trans-

form A from Equation (1), modeling all optical processes, trans-

forms x to the incident signal on the sensor, which is then mea-

sured by this sensor as an imagey drawn from a noise distribution

ω (Ax ). Recalling the image formation model from Equation (1), the

transform A models both the convolution with the kernel k and

subsampling on the CFA, and ω represents the calibrated Poisson-

Gaussian noise.

Then the posterior probability of an unknown image x yielding

an observation y is

P (x |y;ϑ ) =
P (y |Ax )P (x ;ϑ )∫
x
P (y |Ax )P (x ;ϑ )

, (4)

with P (y |Ax ) being the probability of sampling y from ω (Ax ) and

P (x ;ϑ ) is the prior probability of sampling x from Ω(ϑ ). Because

the posterior is proportional to P (y |Ax )P (x ;ϑ ) the MAP estimate

of x is then given by

x = argmax
x

P (y |Ax )P (x ;ϑ ), (5)

or equivalently

x = argmin
x

f (y,Ax ) + r (x ,ϑ )︸�����������������︷︷�����������������︸
G (x,y,ϑ )

, (6)

where the data term f (y,Ax ) = − log P (y |Ax ) and prior r (x ,ϑ ) =
− log P (x ;ϑ ) are negative log-likelihoods. These two terms define

the lower-level objective G (x ,y,ϑ ) from Equation (3).

Implicit Unrolled Proximal Optimization. The low-level unit Λ
minimizes the loss G by solving Equation (6). A large variety

of algorithms have been developed for solving problem (6) effi-

ciently for different convex data terms and priors, e.g., FISTA [Beck

and Teboulle 2009a], Chambolle-Pock [Chambolle and Pock

2011], ADMM [Glowinski and Marroco 1975]). The majority of

these algorithms are iterative methods, in which a mapping

Γ(xk ,A,y,ϑ ) → xk+1 is applied repeatedly to generate a series of

iterates that converge to a solutionx�, starting with an initial point

x0.

While an algorithm implementation can only be derived for ex-

plicitly given f and r , we can define the algorithm itself with im-

plicitly defined objectives. Suppose f and r are convex in x , and

r is differentiable. Then, we can solve Equation (6) with the prox-

imal gradient method [Beck and Teboulle 2009a, 2009b; Diamond

et al. 2017; Parikh and Boyd 2013], which consists of the following
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ALGORITHM 1: Anscombe networks: Variance-stabilized im-

plicit proximal gradient network.

1: ỹ, σ ← A (y )

2: Recurrent vars: x 0 = AT y , αk = C0C−k , C0 > 0, C > 0

3: for k = 0 to N − 1 do

4: x k+1/2 ← CNN(x k , ϑ k ).
5: x k+1 ← argminx αk f (Ax, ỹ ) + 1

2 ‖x − x k − x k+1/2 ‖22 .

6: end for

7: x̃ ← A−1 (x N , σ )

updates:

xk+1/2 = xk − αk∇x r (xk ,ϑ ) (7)

xk+1 = argmin
x

f (y,Ax ) +
1

2αk
‖x − xk+1/2‖22 , (8)

where αk > 0 is a step length. Each update consists of a prior

step (7) and a data step (8). The data step (8) is known as the prox-

imal operator of f , that is

prox λ
β

f (y,A·) (x ) = argmin
z

λ

β
f (y,Az) +

1

2
‖x − z‖2. (9)

Please see Parikh and Boyd [2013] for a detailed review of prox-

imal operators and corresponding proximal optimization algo-

rithms. One central idea that we rely on in this work is that we

can also implicitly define steps of this algorithm. In particular,

we propose to learn the prior mapping without explicitly defin-

ing the objective r , the space of all representations interpretable

by the higher-level block, but rather parameterize the projection

operator CNN(ν ,θk ) = ν − α∇x r (ν ,ϑ ) with ϑ and α being learned

implicitly.

Solving Equation (6) using an iterative optimization algorithm

of the reader’s choice would lead to an algorithm with a data-

dependent termination criterion and no obvious method to learn

unknown algorithm parameters, since computing the derivatives

of the output with respect to the algorithm parameters ϑ is value-

dependent. An alternative approach is to execute a pre-determined

number of iterations N ; in other words, unrolling the optimiza-

tion algorithm. This approach is motivated by the fact that for

many imaging applications very high accuracy, e.g., convergence

below tolerance of 10−6 for every local pixel state, is not needed

in practice, as opposed to optimization problems in, for instance,

control. Instead, many applications are runtime-constrained, and

truncation allows for a fixed runtime. Fixing the number of iter-

ations allows us to view the iterative method as an explicit func-

tion ΓN (·,A,y,ϑ ) → xN of the initial point x0. Parameters such

as ϑ may be fixed across all iterations or vary by iteration. The

unrolled iterative algorithm can be interpreted as a deep network,

and, if each iteration of the unrolled optimization is differentiable,

the gradient of ϑ and other parameters with respect to a loss func-

tion on xN can be computed efficiently through backpropagation.

The proposed network recipe is given in Algorithm 1. Note that

we allow all parameters to differ across layers. The model is differ-

entiable in its output with respect to each layer’s free parameters.

Anscombe Layers. The network generated by Algorithm 1 is

an implicit unrolled proximal gradient network. However, rather

than working directly on the measurements y, which are Poisson-

Gaussian distributed according to Equation (1), we embed the

unrolled architecture in variance-stabilizing Anscombe transform

layers, converting the Poisson-Gaussian noise into IID Gaussian

noise [Foi and Makitalo 2013] with variance σ = 1. This has the

benefit that the data step in line 5 of Algorithm 1 becomes a sim-

ple quadratic term, and image features at all intensity levels are

affected by the same noise degradations, effectively regularizing

the model to perform robustly independent of the light level.

Specifically, we apply the generalized Anscombe transform [Foi

and Makitalo 2013] as a first layer, denoted by the operator A, to

the measured single channel RAW observation y, The transform

and its unbiased inexact inverse are defined as

A : x 
→ 2

√
x + 3

8 , (10)

A−1 : x 
→ 1

4
x2 − 1

8
− σ 2. (11)

However, RAW data input to this transform, without modifica-

tions, results in peak signals that are not consistent across training

examples. Hence, the gradient components of the unrolled prox-

imal gradient method are not normalized with respect to light

level, leading to poor network performance. To avoid this behav-

ior, we max-normalize the output of the forward Anscombe trans-

form with the multiplicative factor sA = 1/max(Ax ). While this

normalizes the value range to the interval [0, 1], the unit-variance

Gaussian noise distributedAx becomes Gaussian-distributed with

variance σ = s2
A . As this parameter is known, we provide it to the

network as a separate channel, which is illustrated in Figure 4. The

output of the unrolled proximal gradient network component fol-

lowed by the inverse generalized Anscombe transformA−1, which

inverts the shift and scaling, then applies the inverse transform.

The noise parameters are known from the ISO and the precali-

brated noise curves from Section 3.2.

Soft Projection Layers. The data step in Algorithm 1 (line 5) is the

“soft projection” operator Π(·,γ ,A,y) given by

Π(v,γ ,A,y) = argmin
z

1

2
‖y − Az‖22 +

γ

2
‖v − z‖22 .

Recalling Equation (9), Π(·,γ ,A,y) is the proximal operator of the

function f . With the Anscombe layers present, this function, i.e.,

the negative log-likelihood − log P (y |Ax ) from Equation (6), be-

comes a simple quadratic now, that is

f (y,Ax ) =
1

2
‖y − Ax ‖22 .

Hence, the operator Π can be computed efficiently as an uncon-

strained quadratic optimization problem. In the case of joint de-

mosaicking and denoising, the operator A = S and Π becomes

Π(v,γ , S,y) =
STAy + γz

S1 + γ
,

where division is elementwise. The soft projection parameter γ >
0 trades off closeness to the input v with fidelity to the measure-

ments y (i.e., ensuring y ≈ Ax ). We dub this operator “soft pro-

jection,” because in the limit γ → 0, Π(v,γ ,A,y) is the Euclidean

projection of v onto the linear system y = Ax . Note that γ may be

learned or fixed.
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The soft projection data step is inspired by analysis in the Sup-

plemental Material. We found that substantially improved gener-

alization over naive residual CNN models could be achieved due

to applying soft projection in the proposed unrolled architecture,

in particular for tasks where the imaging operator A varies across

camera or example (for instance, different CFA patterns, optical

systems, or images that are blurred with different blur kernels).

Intuitively, soft projection decouples the (approximate) inversion

of the physical image operator A from the prior step. Thus, the

model does not have to re-learn the (approximate) inversion of A

depending on sensor, optical parameters, or capture settings, and

need instead only learn prior parameters and algorithm hyper-

parameters.

4.2 Residual U-Net Prior Parametrization

The purpose of the cascade of prior network units in our architec-

ture is to map estimates of the unknown midlevel representation

x onto a nearby point in the manifold of representations that are

interpretable by the higher-level network or when optimizing for

human viewing (i.e., the space of perceivable natural images). The

prior steps from Algorithm 1 must therefore be flexible enough to

learn the complex statistics of natural images but also project on a

subset according to the higher-level loss L.

We use a CNN as learnable prior architecture, as CNNs are estab-

lished architectures for feature-encoding in the image domain and

are thus a natural choice for learning the mapping onto the subset

manifolds of natural images. Specifically, we propose a deep resid-

ual U-Net [Ronneberger et al. 2015] variant with three levels (see

Figure 4), 3 × 3 convolution kernels, ReLU nonlinearities, down-

sampling with 2 × 2 average pooling, upsampling by 2 × 2 decon-

volution layers (transpose convolution), and batch normalization

in the intermediate layers to ease training [Ioffe and Szegedy 2015].

The number of channels in the first U-Net level increases by a fac-

tor of 2. The channels are doubled in each of the three levels of the

U-Net. The U-Net prior at iteration k in the unrolled stack takes as

input the output of the soft projection stepk − 1 concatenated with

the Anscombe noise parameter σ as a separate channel. To handle

the RAW color-filter array data, the very first layer in the U-Net

prior at iteration 0 uses a stride 2 convolution in the very first con-

volutional layer. Further information on the U-Net parametriza-

tion can be found in the supplement.

We note that the U-Net priors are trained end-to-end as part of

the complete architecture in Figure 4 and a different prior is trained

for each iteration of the unrolled optimization stack. This allows

each prior step to specialize in removing correlated noise, i.e., re-

construction artifacts, introduced by the preceding data step, such

as inpainting artifacts aligned with the CFA or inverse filtering

ringing artifacts.

5 EVALUATION

Next, we describe the evaluation of our proposed methods. First,

we evaluate our joint imaging and perception model on classifi-

cation of low-light RAW images. Specifically, we captured a new

dataset over a range of low-light levels and also built a synthetic

low-light dataset based on ImageNet. We include ablated studies

that show the importance of our proposed low-level Anscombe

network to improve the high-level network accuracy. Second, we

evaluate our low-level model for image reconstruction in low-light

for human viewing (imaging without considering a high-level task,

i.e., classification). For this evaluation, we use a recent publicly

available dataset [Chen et al. 2018] that consists of short and low

exposure images. Third, we demonstrate a real-time mobile proto-

type implemented using the Android Camera2 API and a remote

Tensorflow model server. The next sections describe the experi-

mental setup and results found over these evaluations.

5.1 Evaluation of Low-light Imaging and Perception –
Synthetic Data

We trained instances of the proposed joint architecture for four

challenging scenarios: 3 lux, 6 lux, the range 2 to 20 lux, and the

range 2 to 200 lux. While the first two settings allow us to ana-

lyze the models in specific low-light conditions, the scenarios with

ranges of illuminance allow us to evaluate the generalization of

the models over a variety of different light levels. Specifically, we

trained and evaluated the models on a noisy version of ImageNet,

constructed using the image formation model from Section 3.1, cal-

ibrated for the Nexus 5 rear camera for a given light-level (or a

light-level sampled randomly from a range). To evaluate the effect

of noise separately from optical aberrations, we ignore aberrations

in the following (see Supplemental Material). The results reported

next correspond to the ImageNet validation set of 50,000 images

[Deng et al. 2009], which consists of 1,000 object classes and 50

samples per class.

To evaluate over many different noise settings and to be able to

train deep nets completely from scratch (Table 1), we opt to use the

computational efficient MobileNet classification network in all the

following experiments. We refer the reader to the Supplemental

Material document for results using the much larger Inception-v4

classifier on a smaller subset of the evaluations taking one month

of training time. We compare the proposed joint architecture (Joint

Anscombe Network and MobileNet-v1) to the following baselines:

• The conventional approach of combining a high-quality ISP,

optimized for human viewing, with an existing pretrained

MobileNet-v1 classifier.

• Using a trainable state-of-the-art ISP [Chen et al. 2018],

fine-tuned for image quality in each noise scenario, and a

MobileNet-v1 classifier fine-tuned on the learned ISP output.

• A MobileNet-v1 classifier directly trained from scratch on

RAW noisy data.

• As a deeper version of our classifier with higher model capac-

ity, we train the MobileNet-v2 (1.4) classifier [Sandler et al.

2018] from scratch, with 50% more parameters and about

40 million more FLOPS.

We train all the evaluated models until convergence with large

iteration buffer. Table 1 summarizes the results for the described

low-light scenarios. We next describe our findings from this

evaluation.

Combining high-quality ISPs with pretrained high-level network

fails in low-light. In this experiment, we use the hardware ISP of a

Movidius Myriad 2 evaluation board and the high-quality open-

source ISP Darktable [2018] both engineered and optimized for
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Table 1. Classification Results on Simulated Data

3 lux 6 lux 2 to 20 lux 2 to 200 lux Size and Complexity

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 # Params. (M) FLOPs (M)

From Scratch MobileNet-v1 (RAW input w/o ISP) 23.53% 44.13% 32.65% 55.94% 35.16% 58.14% 42.65% 66.13% 4.23 181

From Scratch deeper MobileNet-v2 (RAW input w/o ISP) 27.87% 50.82% 36.80% 61.31% 36.32% 59.40% 38.56% 61.58% 6.90 320

Movidius Myriad 2 ISP + Pretrained 0.22% 1.10% 1.69% 5.39% 9.12% 18.63% 17.78% 32.11% 4.23 181

Darktable ISP + Pretrained 0.22% 0.46% 0.46% 1.52% 7.12% 15.28% 18.20% 32.04% 4.23 181

Movidius Myriad 2 ISP + Finetuning 23.52% 44.69% 36.11% 60.27% 17.31 % 34.98 % 21.75% 40.93 % 4.23 181

Darktable ISP + Finetuning 20.02% 39.56% 34.73% 58.55% 16.45 % 33.13% 23.47% 43.77% 4.23 181

U-Net [Chen et al. 2018] + Finetuning 29.89 % 52.62 % 36.20% 60.23% 14.38% 30.44% 20.23% 39.35% 11.99 537

U-Net [Chen et al. 2018] + percep. loss + Finetuning 9.52% 20.84% 25.74% 45.81% 19.09% 36.26% 26.17% 46.78% 11.99 537

Proposed Joint Architecture (MobileNet-v1 Head) 30.50% 53.28% 43.63% 67.73% 40.87% 64.01% 48.46% 71.44% 4.28 282

We compare the proposed joint architecture to classifiers that ingest (and are trained on) pre-processed images output by conventional ISPs, including Darktable and the Movidius
Myriad 2 ISP, and learnable deep ISPs [Chen et al. 2018]. Off-the-shelf MobileNet-v1 classifiers pretrained on Imagenet perform poorly on ISP-preprocessed data (Movidius Myriad 2
ISP + Pretrained and Darktable ISP + Pretrained). Fine-tuning these classifiers on the ISP-processed data (Movidius Myriad 2 ISP + Finetuning, Movidius Myriad 2 ISP + Finetuning,
and U-Net [Chen et al. 2018] deep ISP models) results in substantially improved performance. While the parameters of the conventional ISPs have been expert-tuned, we train
the deep U-Net ISP from Chen et al. [2018] on the clear/noisy training corpus, and we also report results when adding an perceptual loss [Johnson et al. 2016] (+ percep. loss).
However, none of the fine-tuned models, trained on top of traditional or learnable ISPs, outperforms networks that do not employ an ISP at all across all settings, as evidenced
by results of a MobileNet-v1 on unprocessed RAW data (From Scratch MobileNet-v1). Only the proposed joint architecture with a learned Anscombe network outperforms
both, traditional pipelines, as well as from-scratch-trained models in both Top-1 and Top-5 classification accuracy across illumination conditions. The proposed approach even
outperforms from-scratch-trained MobileNet-v2 models that are deeper networks with larger network capacity compared to our architecture. Note that all other models compared
in this table use the MobileNet-v1 architecture as classifier heads. We highlight the best and second-best models using bold and underlined text, respectively.

visual image quality. We note that the Darktable uses a non-local

means block-matching denoiser (NLM) [Buades et al. 2005]

that is prohibitively costly to implement in hardware. The parame-

ters of the Darktable RAW developing tool and the Movidius Myr-

iad 2 were hand-tuned by a human expert to maximize perceptual

quality. In the results in Table 1, the third and fourth rows validate

that the conventional approach of combining a high-quality ISP,

optimized for human viewing with an existing pretrained high-

level network, fails in low-light scenarios. In all cases, this ap-

proach performs weakly due to the severe noise present in the im-

age data. This applies both to efficient hardware ISP architectures,

such as the Movidius Myriad 2 ISP, as well as to high-performance

photography RAW processing ISPs, such as Darktable. In fact, as

detailed below, processing RAW measurements with conventional

image processing units, tuned for perceptual quality, can decrease

classification performance, compared to almost unprocessed bi-

linearly interpolated color images. These findings also apply to

image degradations introduced by optical aberrations. We refer

the reader to the supplement for a study on the effect of optical

aberrations.

Fine-tuning a classifier on top of ISP-preprocessed images does not

do better than a model trained directly on RAW noisy data. Tradi-

tional ISP pipelines achieve acceptable performance only when the

networks are fine-tuned, i.e., specialized, to the degraded low-light

imaging data output by the respective ISP (fifth and sixth rows of

Table 1). However, the performance of these specialized networks

applied on the output of existing ISPs is exceeded by simply train-

ing a network from scratch for the given imaging condition but

without an ISP at all, only using bilinearly demosaicked color im-

ages (first row of Table 1). The classifier trained without ISP pre-

processing obtained higher Top-1 accuracy on three out of the four

noise settings. Overall, processing images with conventional ISP

pipelines, which are designed and tuned for human viewing, at

best marginally increased classification accuracy for models spe-

cialized to individual light levels and in many cases substantially

decreased performance. This is especially apparent for varying

low-light conditions (columns 2-to-20 lux and 2-to-200 lux), where

classifiers fine-tuned on ISP outputs obtain only half of the Top-1

accuracy of classifiers trained from scratch. On a first glance, this

result may argue for completely removing traditional ISP pipelines

and simply train standard CNN classifiers with as little traditional

preprocessing as possible.

Anscombe Networks outperform classifiers trained from scratch

on RAW data (even with larger model capacity). We compare

the proposed method to MobileNet-v1 trained directly on RAW

data and its deeper larger variant, MobileNet-v2 (see first,

second, and last rows of Table 1). The MobileNet-v2 variant

introduces inverted residual blocks, in which shortcut connec-

tions are introduced between bottleneck layers, and improves ef-

ficiency and accuracy relative to MobileNet-v1. Specifically, we

use MobileNet-v2 (1.4) [Sandler et al. 2018], which has larger ca-

pacity (1.4 width multiplier) than the standard version. We ob-

serve that this deeper model improves results in almost all il-

lumination conditions compared to MobileNet-v1. For the larger

2-to-200 lux illumination range, we do observe worse perfor-

mance, which we attribute to the larger architecture being slightly

more prone to overfitting as a result of memorization. We note

that our joint network obtains higher Top-1 and Top-5 accu-

racy compared to both models across all noise settings. Although

MobileNet-v2 has a substantial higher number of parameters, this

larger capacity does not translate into an improvement over our

joint models. Finally, note that for both MobileNet networks,

there is not explicit modeling of an intermediate image. These

results validate that the improvement obtained by our joint ar-

chitecture does not come from a larger capacity compared to

the MobileNet-v1 version, but from the design of our Anscombe

network. As such, we demonstrate that Anscombe Networks are

highly effective at recovering an intermediate image representa-

tion that are tailored to the downstream task across different noise

scenarios.
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Anscombe Networks outperform classifiers trained on top of learn-

able deep ISP outputs. As a further comparison, we fine-tune a clas-

sifier network also on the outputs of existing learnable deep ISPs.

Specfically, we train the deep ISP network from Chen et al. [2018]

for image reconstruction with the loss settings proposed by the

authors. We then fine-tune a MobileNet-v1 network on a corpus

of denoised images. The results of this experiment are shown in

the seventh row of Table 1, validating that our network also out-

performs this approach for all noise scenarios. The margins are

especially high for varying light levels (2-to-20 lux and 2-to-200

lux).

In addition, we also provide results using a perceptual

loss [Johnson et al. 2016] in the first stage of the deep ISP train-

ing in addition to the �1-loss proposed in Chen et al. [2018]. We

manually optimized the weight ratios of both objective compo-

nents. While this perceptual loss adds robustness across light level

ranges, the proposed model maintains a high margin over this

baseline. These results emphasize the efficiency and effectiveness

of Anscombe Networks, which have 2.5× and 2× fewer parameters

and FLOPs, respectively, compared to the learnable baselines.

Computational Complexity. The last two columns of Table 1 list

the computational complexity of all models. For the deep ISP [Chen

et al. 2018] with perceptual loss [Johnson et al. 2016], we do not

consider the additional parameters of the pre-trained classifier

used in the perceptual loss calculation, and for the Movidius and

Darktable ISPs we only measure the MobileNet-v1 network com-

pute cost, although modern ASIC ISPs require tremendous engi-

neering efforts to be power efficient. For all models, we list com-

plexity for RAW input images of 128×128 size. We note that the

proposed joint architecture consists of only 0.1× additional param-

eters (Anscombe network) relative to MobileNet-v1, and this repre-

sents 2.5× fewer parameters than the deep ISP from Chen et al.

[2018]. Our joint architecture runs at 60 fps.

Robustness and Generalization. The results in Table 1 validate the

effectiveness of our proposed joint architecture to recover relevant

information from RAW data to improve accuracy for a high-level

task. We also emphasize our model’s outstanding generalization

across different light levels. We can see in Table 1 that while the ac-

curacy of the models that use state-of-the-art software, hardware,

and learnable ISPs drastically decrease over the 2-to-20 and 2-to-

200 lux ranges, the accuracy of our proposed model remains stable.

This again underlines the limitations of conventional models un-

der more realistic scenarios, where light levels are highly variable,

and the importance of building generalizable models. Our models

also shine when comparing computational complexity, enabling

robust real-time applications, as shown in Section 6.

Qualitative Interpretation. The results in Table 1 raise the ques-

tion of why the jointly training Anscombe networks was so much

more helpful to the classifier than conventional algorithms. The

images in Figure 5 suggest an answer. Figure 5 shows a low-light

image that was incorrectly classified by the pretrained MobileNet

network but correctly classified by the joint architecture.1 The

RAW input image and a bilinearly demosaicked image is shown,

1Please see Supplemental Material document for additional visualizations of the fine-
tuned outputs of the deep ISP from Chen et al. [2018].

as well as the outputs of the conventional hardware and software

ISPs, and the intermediate mid-level representation produced by

the Anscombe network unit. The label assigned by the classifier is

given in each instance, as well as the PSNR and SSIM relative to

the original image.

The images output by conventional ISPs for human viewing

contain less noise than unprocessed RAW data. Fine details of

the target class are blurred out, however. Comparing conventional

and learned ISP outputs with Anscombe network’s intermediates,

we hypothesize that our joint Anscombe architecture tailors pro-

cessing to the classification task by selectively boosting contrast

around structures of the target class while removing noise in large

smooth regions. This selective processing seems to be key to re-

cover the target class structures independently of the noise or light

level, which explains the robustness of our model across different

light levels.

As a result, by conventional metrics of restoration quality such

as SSIM and PSNR, the joint unit is, in fact, worse than con-

ventional algorithms. These metrics do not distinguish between

scene content necessary for a classification and background re-

gions without task-specific information. We can also see, though

it preserves and amplifies detail that is useful to the classification

network, the proposed Anscombe network does perform denoising

and deblurring of the image. The qualitative results suggest tradi-

tional reconstruction algorithms and metrics used to make images

visually pleasing to humans are not appropriate for high-level an-

alytic tasks.

5.2 Evaluation in Low-light Imaging and Perception –
Captured RAW Data

We demonstrate generalization of the proposed models to real-

world low-light images. Using a Google Pixel phone rear cam-

era, we collected low-light image patches in the wild. Rather than

adopting the lengthy process of extracting these patches from ob-

jects at various scales in arbitrary photographs, we acquire full-

frame images that directly correspond to classes in the ImageNet

dataset and create patches by subsampling. While not affecting

per-pixel noise, this process enables us to eliminate the effect of

blur in the capture, allowing us to make solid claims about the ef-

fect of noise in isolation. The same applies to demosaicking, which

typically only considers a small neighborhood of pixels. We col-

lect a low-light dataset approximately corresponding to light lev-

els between 1 lux and 200 lux. The dataset consists of 1,103 im-

ages across 40 imagenet classes, respectively. Table 2 lists results

on the real-world dataset, including ablations of our proposed ar-

chitecture. The evaluated models correspond to the 2 to 200 lux

models in Table 1. These experiments evaluate the generalization

performance of the respective models to real captured data. Abso-

lute performance is worse than on the simulated datasets, which

is likely due to a mismatch between how classes appear in Ima-

geNet and how they appear in the wild. The relative margins are

consistent with the simulated results.

Anscombe networks generalize well to real data. Table 2 con-

firms that the highest classification accuracy was achieved by

the proposed joint model, with Top-1 and Top-5 accuracy up to

6% higher than the fine-tuned models. The from-scratch tuned
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Fig. 5. Synthetic and real low-light RAW images and their corresponding classification results after processing with conventional ISPs (Darktable and

Movidius), bilinear demosaicking, and Anscombe Networks. The proposed joint architecture scores lower in terms of PSNR and SSIM. However, results

suggest that our proposed model does not only remove noise, but selectively amplifies structures of the target class, which seems to benefit the overall

classification accuracy of the model.
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Table 2. Results on Data Captured in the Wild with a Google Pixel

Phone Rear Camera for Models Trained on 2 to 200 Lux

Top-1 Top-5 #Parameters FLOPS

From Scratch MobileNet-v1 27.03% 52.45% 4.23 181

From Scratch MobileNet-v2 26.92% 56.45% 6.90 320

Pixel ISP2+ Pretrained MobileNet-v1 1.4% 14.1% 4.23 181

U-Net + Anscombe layers + MobileNet-v1 28.80% 55.20% 11.99 537

Proposed Joint Architecture (no Anscombe layers) 28.53% 54.25% 4.28 282

Proposed Joint Architecture 33.13% 58.36% 4.28 282

The exposure time was fixed at 1/10000 and the ISO at 8000. Additional digital gain
was applied to normalize brightness. The best and second-best methods are high-
lighted in bold and underlined text, respectively.

MobileNet-v1 and MobileNet-v2 models outperform the pre-

trained MobileNet network on Pixel ISP substantially, by 10s of

percent.

Ablations of the proximal operator and Anscombe layers. Table 2

also includes results of the joint architecture without the proximal

operator network (fourth row) and without the Anscombe trans-

form (fifth row). For additional comparison, the network without

the proximal operator uses the larger U-Net architecture described

by Chen et al. [2018] while keeping the Anscombe transform at the

input and its inverse at the output of this network. These exper-

iments validate that the architecture that uses Anscombe trans-

form outperforms the one that does not include this transform by

around 5% in both Top-1 and Top-5 accuracy. Also, replacing the

proximal operator network with U-Net reduces the accuracy of our

proposed model by 4% and 3% in Top-1 and Top-5 accuracy, re-

spectively. This margin validates that the Anscombe network as a

whole is key for the performance of the overall joint model includ-

ing the high-level classification model.

Qualitative Results. Figure 5 helps to explain the improvement

in classification accuracy of the proposed joint model as compared

to conventional+fine-tuned and from-scratch baselines. We show

image examples that each went through four different classifica-

tion pipelines: one without any processing except for bilinear de-

mosaicking for viewing, one processed with conventional ISPs be-

fore the MobileNet network, and two other processed using jointly

trained models with and without Anscombe layer. As with the sim-

ulated data, conventional ISPs produce visually pleasing images by

removing severe noise to a certain extent. However, fine details are

lost in the process, leading to an incorrect classification result. The

proposed joint stack does preserve and amplify fine detail neces-

sary for correct classification of the images.

5.3 Single-image RAW Image Reconstruction in
Low-light for Human Viewing

Next, we evaluate the proposed Anscombe network architec-

ture when trained as an ISP replacement for human viewing.

Specifically, we demonstrate joint demosaicking, denoising, and

tonemapping for human viewing on a single capture in low light,

using the training and validation data set from Chen et al. [2018].

We employ the identical Anscombe network architecture from

2We do not count the parameters and FLOPS of the proprietary Pixel ISP here.

Table 3. Anscombe Networks for Single-Image

Low-Light Photography (w/o Classification)

PSNR SSIM

Darktable ISP3 8.94 0.03

Chen et al. [2018] 28.88 0.79

Proposed 29.14 0.81

PSNR and SSIM comparison for Darktable ISP, Chen
et al. [2018]’s learned U-Net ISP, and the proposed
method, using the same training and test dataset pro-
posed by Chen et al. [2018].

Section 4, but, instead of concatenating this model with a higher-

level domain-specific network, we minimize a loss L formulated

directly on the output image of the Anscombe network. This loss

penalizes the difference between the prediction for a noisy obser-

vation and the corresponding clean long-exposure capture pro-

cessed by a conventional ISP (with settings for normal lighting

conditions). We use an �1-loss after evaluating other alternative

loss functions.

Anscombe Networks also achieve state-of-the-art low-light perfor-

mance for human viewing. The results in Table 3 show that our

proposed model also obtains state-of-the-art performance for low-

light image processing for human viewing. Our method outper-

forms the U-Net-based deep ISP [Chen et al. 2018] qualitatively

and quantitatively. We visualize RAW imaging results obtained by

the evaluated methods in Figure 6. In the presented low-light sce-

nario, conventional ISPs fail due to the significant noise degrada-

tions affecting the RAW sensor readings. In particular, the dark-

table ISP produces severe chromatic artifacts in smooth image re-

gions. Furthermore, fine details at object boundaries are severely

distorted as a result of an edge-preserving denoising block. In

contrast, the plain U-Net model proposed in Chen et al. [2018]

produces visually pleasing images without chromatic artifact and

free of residual noise. Chen et al.’s method also over-smooths im-

age regions, i.e., noise is suppressed at the cost of texture loss.

This behavior is particularly prevalent in areas with high inten-

sity variations, around depth and illumination edges. The pro-

posed Anscombe network model is tailored to intensity-dependent

noise, and hence restores fine detail without over-smoothing or

re-introducing residual noise. The results validate that Anscombe

networks have the potential to be not only a domain-specific re-

placement for conventional general-purpose ISPs when consider-

ing non-traditional perception tasks, but also when specialized to

processing images for human viewing. We note that specialized

domain-specific processing is the goal of the proposed approach. We

do not dismiss traditional ISPs when the downstream application

is unknown but highlight the potential of domain-specific camera

processing pipelines.

6 MOBILE PROTOTYPE

We have implemented our joint low/high-level classification ar-

chitecture on a mobile smartphone prototype along with a remote

TensorFlow model server. The smartphone front-end application

3Traditional processing pipelines suffer also from severe color and white-balance ar-
tifacts in low-light such that quantitative results offer little insight. See Figure 6 for
qualitative examples.
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Fig. 6. Anscombe networks forsingle-image low-light photography (w/o classification). Qualitative low-light denoising results for human viewing using the

traditional Darktable ISP, the U-Net model proposed by Chen et al. [2018], and the proposed Anscombe network. The proposed model and Chen et al. [2018]

have been trained on the same low-light dataset from the dataset proposed in Chen et al. [2018]. All methods use the same single RAW image as input.

handles all dynamic camera control and the capture itself. While

we rely on the hardware ISP for control of white-balance and auto-

focus, we manually fix the exposure to ensure repeatable measure-

ments with consistent signal-to-noise ratio. We use the Android

Camera2 API for capture control and acquisition of the raw mea-

surements. The captured raw data is transferred to a remote in-

stance using TensorFlow’s high-performance protocol buffer serv-

ing system, which then performs the inference on the transferred

data. We use an Amazon Web Services P2.1x GPU instance to host

the servables for our joint models, and baseline models for com-

parison. Figure 7 shows a photograph of the deployed application

that classifies captures in the wild.

We achieve an inference throughput of about 60 FPS, while the

vanilla MobileNet network performs at 80 FPS under the same con-

ditions. Note that this performance is achieved without any in-

ference optimization or integer-quantization, which frameworks

such as TensorRT offer. We leave an efficient embedded hardware

implementation as future work and note that variants of the Mo-

bileNet architecture already achieve interactive framerates on mo-

bile devices [Howard et al. 2017].

6.0.1 Ultra Low-light Classification. The mobile prototype

performs classification tasks robustly even in extreme low-light

scenarios. Figure 7 shows two such challenging capture scenarios

along with classification results of the proposed and fine-tuned

conventional MobileNet model. Both scenes were captured in

a closed room without windows or other sources of ambient

illumination. The only light sources present at the capture

were the phone screen’s illumination and the photocopier’s dim

LCD screen light. The scene captures shown in the left row

of Figure 7 were captured with a Canon Rebel T4 (f/4.5) with

a long 2-second exposure at f/4.5. Note that even these DSLR

setup shots are severely degraded by noise due to the low scene

illumination. We acquired cellphone images with a long exposure

of 125 ms that, however, still allows for interactive frame-rates.

The mobile prototype correctly performs classification even in

these extreme imaging scenarios, where the from-scratch and

fine-tuned MobileNet models fail. Please see the supplemental

video for additional low-light classification results in the wild.

7 DISCUSSION

In summary, we showed that the performance of conventional

imaging and perception stacks, combining a high-quality ISP for

human viewing with high-level networks trained on clean JPEG

datasets, fails in low-light capture scenarios (and with optical off-

axis aberrations of inexpensive mobile optics). Moreover, train-

ing classification architectures from scratch without any ISP out-

performs sequential fine-tuned architectures that include an ISP,

seemingly advocating for the removal of an ISP for higher-level

image analysis tasks.

In this work, we investigated learned processing architectures

that perform end-to-end image processing and perception jointly.

The proposed Anscombe networks act as an ISP, using RAW color

filter array data as input, and is flexible to transfer to different

ACM Transactions on Graphics, Vol. 40, No. 3, Article 23. Publication date: April 2021.



23:14 • S. Diamond et al.

Fig. 7. Extreme low-light cellphone classification. Two scenes acquired

without any light sources other than the cellphone screen (and printer

LCD screen). The left column shows scene captures acquired over a long

2-second exposure using a Canon Rebel T4 DSLR camera. Note that these

are still severely degraded by noise. The right column shows the corre-

sponding mobile capture, acquired over a 125 ms exposure, along with the

classification label under these extreme conditions.

sensor architectures and capture settings without retraining or

capture of new training datasets. However, by making the model

end-to-end differentiable, the architecture can be trained jointly

for a high-level loss function, achieving state-of-the-art perfor-

mance both for RAW image processing for human viewing and

perception tasks across light levels from ultra-low light to well-lit

scenes.

We demonstrated that the proposed architecture makes imag-

ing and perception robust to the extreme capture scenarios that

can be commonly found in real-world imaging. We highlighted

major qualitative differences between sequential approaches and

our joint end-to-end approach by visualizing intermediate repre-

sentations in the proposed architecture and the output of conven-

tional pipeline algorithms. We demonstrated that Anscombe net-

works generalize across camera architectures, including different

CFA patterns, optical systems, and noise models, promising that

analogue neural ISPs can be developed for other sensor modali-

ties across computational imaging, such as time-of-flight cameras,

multi-spectral cameras, and sensor fusion systems.

Limitations and Future Work. While our proposed end-to-end

model handles all the processing and image analysis after a RAW

measurement has been acquired, a limitation of the method is that

it does not address the dynamic control aspect of the capturing

process, which is handled by the remaining trunk of the traditional

ISP. Our proposed model then does not perform camera-control

tasks, such as white-balance or auto-exposure. In the future, we

plan to include auto-exposure and white-balance control in the

proposed end-to-end model. These control tasks are particularly

suited to include, as image analysis feedback could severely affect

the performance of these highly ill-posed problems.

In the future, we will also expand the proposed architecture to

model the camera optics and sensors as unknowns. Just as we op-

timized the full perception and imaging stack, we aim to optimize

the optics, CFA pattern, and other elements of the imaging system

for the given high-level vision task, effectively learning not only

the processing but also the camera architecture itself.

8 CONCLUSION

In the future, a large portion of the images taken by cameras

and other imaging systems will be consumed by high-level per-

ception stacks, not by humans. We must reexamine the founda-

tional assumptions of image processing in light of this momentous

change. Image reconstruction algorithms designed to produce vi-

sually pleasing images for humans are not necessarily appropri-

ate for a given perception task. We have proposed one approach

to redesigning low-level processing pipelines in an end-to-end

optimization framework in a way that incorporates and benefits

from knowledge of the physical image formation model and pro-

duces high-quality perceptually pleasing images when optimized

for human-viewing.
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