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Abstract

We introduce disciplined nonlinear programming (DNLP), a syntax for
specifying nonlinear programming problems. DNLP is inspired by disciplined
convex programming (DCP) and allows smooth functions to be freely mixed
with nonsmooth convex and concave functions, with rules governing how the
nonsmooth functions can be used. Problems expressed in DNLP form can be
automatically canonicalized to a standard nonlinear programming (NLP) form
and passed to a suitable NLP solver. As in DCP, the canonicalization relaxes
nonsmooth convex and concave functions in a lossless way, allowing them to
be handled by NLP solvers that require smooth functions. In addition to ex-
tending NLP to include useful nondifferentiable convex and concave functions,
transforming the original problem to an equivalent NLP form offers several ad-
vantages, including simpler problem initialization. We describe the language
and our open-source implementation of DNLP as an extension of CVXPY, a
parser for DCP.

1



Contents

1 Introduction 3

2 Nonlinear programming 4
2.1 Standard forms and oracles . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Algorithms and solvers . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Theoretical properties . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Disciplined nonlinear programming 7
3.1 Atoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3 Constraints and objectives . . . . . . . . . . . . . . . . . . . . . . . . 10
3.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.5 Connection to DCP . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Canonicalization 13
4.1 The canonical form . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 Smooth epigraph formulations . . . . . . . . . . . . . . . . . . . . . . 16
4.3 Two advantages of our canonicalization . . . . . . . . . . . . . . . . . 17
4.4 Our implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5 Numerical examples 19
5.1 Path planning with obstacles . . . . . . . . . . . . . . . . . . . . . . . 20
5.2 Circle packing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.3 Location from range measurements . . . . . . . . . . . . . . . . . . . 25
5.4 Nonnegative matrix factorization . . . . . . . . . . . . . . . . . . . . 27
5.5 Phase retrieval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.6 Sparse signal recovery . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.7 Nonlinear optimal control . . . . . . . . . . . . . . . . . . . . . . . . 33
5.8 Trimmed logistic regression . . . . . . . . . . . . . . . . . . . . . . . 36
5.9 Risk-budgeted portfolio construction . . . . . . . . . . . . . . . . . . 38
5.10 Optimal power flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2



1 Introduction

Nonlinear programming (NLP) has a long and well-established history [39], with
successful applications spanning decades in fields such as chemical engineering [12],
topology optimization [9], optimal control [11], aerospace design [49], and design op-
timization [61], among others. This breadth of applications highlights the remarkable
generality of NLP as a unifying framework for modeling and solving problems.

However, the generality of NLP comes at a cost. With the exception of global
optimization methods [62], which are often computationally prohibitive, there are no
universal guarantees of achieving global optimality, and in many cases solving NLPs
remains as much an art as a science. While the usual concern is the lack of global
optimality guarantees, other pathologies can occur, including failure to converge to a
feasible point even when one exists. NLP solvers will do their best to find a solution,
but success depends on how the problem is formulated, the choice of algorithm, its
hyperparameters, and the initialization. Nonetheless, NLP remains a powerful and
widely used tool, as evidenced by the popularity of general-purpose NLP solvers such
as Ipopt [72].

To interface with NLP solvers, several modeling languages have been developed.
Classic examples include the commercial systems AMPL [33], AIMMS [13], and
GAMS [16], which are based on their own domain-specific programming languages.
More recent open-source frameworks are instead embedded in general-purpose lan-
guages, such as YALMIP [56] in MATLAB, JuMP [27] in Julia, Pyomo [46, 19] in
Python, and CasADi [2] in C++. These modeling languages facilitate the specifica-
tion of NLPs but largely treat user-specified problem formulations as black boxes.
As a result, a poorly structured formulation may be passed to the solver, making it
difficult for the solver to find a solution. (We give two such examples in §4.3.)

In this paper, we take the viewpoint that an NLP modeling language should (to
the extent possible) exploit the structure of the user-specified problem formulation
and reformulate it to increase the likelihood that the solver succeeds. To this end,
we introduce a grammar for specifying NLPs, which we call disciplined nonlinear
programming (DNLP). To handle nonsmooth convex and concave functions, DNLP
adopts the same core idea as disciplined convex programming (DCP) [40, 42], a
grammar for specifying convex optimization problems, and analyzes monotonicity to
relax nonsmooth functions into equivalent smooth formulations [41]. The popular
convex optimization modeling language CVXPY [26, 1] is based on DCP, and we
have implemented a rewriting system based on DNLP as an extension to CVXPY.
This extension allows users to seamlessly specify NLPs as long as they conform to a
minimal set of rules, and the problem is then (hopefully) solved by an NLP solver.
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It is important to note, however, that the discipline imposed by DNLP does not,
in itself, guarantee that a solver will succeed and be able to compute a solution. But
we believe that following the DNLP ruleset increases the likelihood of successful con-
vergence. This should be contrasted with convex optimization and DCP, where the
benefits of imposing such discipline are much stronger: any formulation conforming
to DCP is automatically certified as convex and can be solved reliably and efficiently
to global optimality (up to some practical problem size limits and solver tolerances).

The remainder of this paper begins with a brief overview of NLP. In §3, we
introduce DNLP and its (minimal) ruleset, while §4 describes the canonicalization
process and explains how DNLP allows nonsmooth problems to be relaxed (without
loss) into equivalent smooth formulations. Finally, in §5 we present several numerical
examples.

2 Nonlinear programming

A nonlinear program is an optimization problem of the form

minimize f(x)
subject to c(x) = 0

ℓ ≤ x ≤ u,
(1)

or one that can be readily converted into this form. Here, x ∈ Rn is the optimiza-
tion variable, ℓ ∈ Rn and u ∈ Rn are given variable bounds, and f : Rn → R and
c : Rn → Rm are differentiable functions that are allowed to be nonconvex. An in-
equality constraint of the form ci(x) ≤ 0 can be expressed in this form by introducing
a slack variable si ≥ 0 together with the constraint ci(x) + si = 0. An unbounded
variable xi can be specified by setting ℓi = −∞ and ui = ∞.

In this section we provide a survey of NLP, including common variations on the
standard form given above, algorithms and solvers, and theoretical properties. For
more background we refer the reader to the many excellent textbooks on the subject
[60, 31, 36, 10].

2.1 Standard forms and oracles

Many NLP solvers have been developed over the years (we name a few of these in
§2.2), each with its own interface and its own standard form. While different solvers
have their own standard forms, they are all closely related to (1), or they convert
problems into this form internally. For example, Ipopt [72] requires constraints to be
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given as two-sided inequalities of the form ℓ ≤ g(x) ≤ u, and internally transforms
the constraint into the form (1) by introducing a new variable s together with the
equality constraint g(x) − s = 0 and the bounds ℓ ≤ s ≤ u. Other solvers, such as
Knitro [20] or SNOPT [35], allow users to specify linear constraints separately for fur-
ther efficiency. Manually reformulating an optimization problem to match a solver’s
standard form is tedious and prone to errors. Modeling languages automate this
process, allowing users to switch seamlessly between solvers with different standard
forms.

In addition to transforming user-specified problems into the standard form ex-
pected by solvers, NLP modeling languages are responsible for providing oracles that
evaluate the objective and constraint functions and their derivatives. Most, if not
all, modeling languages construct these oracles using automatic differentiation [43].

2.2 Algorithms and solvers

Algorithms for solving NLPs have been studied since at least the 1940s (see, e.g.,
[39]), but only in the past few decades, with advances in software, have these methods
become accessible to a broader audience. The two most common types of algorithms
implemented in modern NLP solvers are interior-point methods (IPMs) and sequen-
tial quadratic programming (SQP).

Interior-point methods reduce (1) to a sequence of equality-constrained problems
by incorporating the inequality constraints into the objective using barrier functions.
A large body of theory on barrier functions for solving NLPs was developed during the
1960s [29], but researchers lost interest in the most basic IPM—the primal barrier
method—due to concerns about ill-conditioning [57] that later proved unfounded
[74, 32]. Much later, more sophisticated IPMs for NLP were developed, and today
many of the most popular solvers implement IPMs, including the open-source solvers
Ipopt [72] and Uno [70], as well as the commercial solvers LOQO [71], Knitro [20],
and Gurobi [44].

Sequential quadratic programming methods reduce (1) to a sequence of quadratic
programs. The constraints of each quadratic subproblem are linearizations of the
constraints in the original problem, and the objective is a quadratic approximation
of the Lagrangian function. SQP methods were first proposed in the 1960s [73], and
modern solvers implementing SQP include the commercial packages SNOPT [35],
Knitro-Active [20], and WORHP [18], as well as the open-source solver GRANSO
[25, 55].

While IPMs and SQP methods are the most commonly implemented algorithms,
several solvers also implement augmented Lagrangian methods, including the open-
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source solver Algencan [3] and the commercial solvers MINOS [58], Lancelot [24],
and the recent Knitro-Augmented [7]. These methods reduce (1) to a sequence of
subproblems in which the objective is the Lagrangian augmented with a penalty term
for constraint violations, where some or all of the constraints are incorporated into
the penalty and the remaining constraints are enforced explicitly.

Given the many NLP solvers available, a natural question is which solver to use for
a given problem. While there is no definitive answer, the conventional wisdom is that
IPMs are faster and more reliable when solving a problem from scratch, i.e., without
a good initial point [37]. However, IPMs such as Ipopt may struggle with problems
that violate standard regularity conditions (see, e.g., [12, §11] or [69]), in which case
augmented Lagrangian methods can be more robust [48]. For example, Knitro states
on their website that the primary advantage of their augmented Lagrangian method
over IPMs is that it is “designed to better handle difficult problems with degenerate
constraints where the linear independence constraint qualification (LICQ) is not
satisfied”. Nevertheless, we recommend trying Ipopt first, because it is open-source,
widely adopted (as evidenced by its citation count), and performs well across many
applications. In our experience, it works very well.

2.3 Theoretical properties

Because NLP covers a vast range of problems, including many known to be NP-
hard, it is unrealistic to expect NLP solvers to guarantee convergence to a global
minimizer (i.e., a feasible point achieving the smallest possible objective value). In
fact, a common misconception is that solvers are guaranteed to converge even to
local minimizers (i.e., feasible points achieving the smallest objective value within
some neighborhood). In practice, most solvers at best guarantee (under regularity
conditions on the constraints) convergence to a point that approximately satisfies a
set of necessary but not sufficient optimality equations known as the Karush-Kuhn-
Tucker (KKT) conditions [10, §4]. When an NLP solver claims that it has solved a
nonlinear program, it typically means that it has found a KKT point, i.e., a point
satisfying the KKT conditions within some tolerances. However, not all KKT points
are local minimizers, so solvers incorporate various heuristics and techniques to steer
iterates away from such undesirable KKT points.

While not every KKT point is a local minimizer, the converse is true under so-
called constraint qualifications [10, §4.3.4]. The derivation of the KKT conditions
is based on the idea of linearizing the constraints around a local minimizer, and
constraint qualifications are conditions that ensure that this linearization is a good
approximation of the true constraints. A common constraint qualification assumed
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by NLP solvers is the linear independence constraint qualification (LICQ), which for
problem (1) requires that the set consisting of the gradients of the active bound
constraints and the gradients of the equality constraints is linearly independent. If
LICQ holds at a local minimizer x⋆, then x⋆ is guaranteed to also be a KKT point,
and the so-called Lagrange multipliers which are auxilliary variables in the KKT
conditions, are guaranteed to be unique. LICQ also seems to play a role in practice.
If LICQ does not hold at a local minimizer, some solvers are less robust and may fail
to converge.

3 Disciplined nonlinear programming

Nondifferentiable functions often arise in applications and pose significant challenges
for most NLP solvers. A naive approach is to simply ignore these nondifferentiabili-
ties or assume they will not occur in practice, but this often leads to poor performance
and solver failure. The difficulty is that the points of nondifferentiability are often
precisely the points of interest. For example, in problems with ℓ1-regularization, the
goal is typically to find a solution in which the argument is sparse, which is a point
where the ℓ1 norm is nondifferentiable.

To support nondifferentiable functions in nonlinear programs without compromis-
ing solver reliability, we introduce the notion of disciplined nonlinear programming
(DNLP). It consists of two key components:

• An atom library—a collection of functions that can be used to describe a prob-
lem. These functions have known attributes including smoothness, sign, mono-
tonicity, and curvature.

• The DNLP ruleset—a set of rules specifying how atoms may be combined to
form more complicated expressions, and how these expressions may appear in
objectives and constraints.

This framework guarantees that any problem with nonsmooth functions complying
with the DNLP ruleset admits an equivalent smooth formulation that takes standard
NLP regularity conditions, such as LICQ, into account. For problems that only
involve smooth functions, DNLP imposes no additional restrictions.

DNLP is heavily inspired by DCP, so readers familiar with DCP will find many
similarities. Roughly speaking, DNLP mirrors the structure of DCP, with smooth
functions playing the role of affine functions, and generalizations of convex and con-
cave functions that can be mixed with smooth functions.
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3.1 Atoms

The rules of DNLP depend on the smoothness and curvature properties of atoms.
We classify atoms into three categories: smooth, nonsmooth-convex (NS-convex),
and nonsmooth-concave (NS-concave). We list some atoms and their classifications
in table 1.

Smooth atoms. An atom is smooth if it is twice continuously differentiable in the
interior of its domain. For example, the atoms ϕlog and ϕsqrt defined by ϕlog(x) =
log x with domϕlog = R++, and ϕsqrt(x) =

√
x with domϕsqrt = R+, are both

smooth, and so is any affine or trigonometric atom. In contrast, the atom ϕabs

defined by ϕabs(x) = |x| with domϕabs = R is not smooth.

Nonsmooth-convex atoms. An atom is NS-convex if it is convex and not twice
continuously differentiable in the interior of its domain. Two examples are ϕmax and
ϕnorm2 defined by ϕmax(x, y) = max(x, y) and ϕnorm2(x) = ∥x∥2. (The latter is not
differentiable at x = 0.)

Nonsmooth-concave atoms. An atom is NS-concave if it is concave and not
twice continuously differentiable in the interior of its domain. Two examples are ϕmin

and ϕsum smallest defined by ϕmin(x, y) = min(x, y) and ϕsum smallest(x) =
∑n

i=n−k+1 x[i],
where x[i] is the ith largest element of x ∈ Rn, and k ∈ {1, . . . , n} is a fixed parameter.

Additional attributes. Functions in the atom library are also characterized by
their sign and monotonicity. Three categories of monotonicity are considered: non-
decreasing, nonincreasing, and nonmonotonic. The usual mathematical definitions
of monotonicity apply. For functions with multiple arguments, we specify the mono-
tonicity with respect to each argument separately. Furthermore, we use sign-dependent
monotonicity, i.e., the monotonicity of an atom can depend on the signs of its argu-
ments. For example, the atom defined by ϕ(x) = x3 is classified as nondecreasing for
x ≥ 0.

3.2 Expressions

An expression is recursively defined as an atom evaluated at a subexpression. The
subexpression can be a variable, a constant, or another expression itself. Mathe-
matically, an expression is of the form f(x) = ϕ(g(x)) where ϕ is the atom and
g(x) = (g1(x), . . . , gk(x)) is its argument, the subexpression. We classify expressions
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Table 1: Some atoms and their classifications. If the domain of an atom is not specified,
it means that the atom has full domain.

Atom Definition Domain

Smooth, nonconvex and nonconcave

multiply ϕ(x, y) = xy

quad form ϕ(x) = xTQx where Q ∈ Sn

sin ϕ(x) = sinx

cos ϕ(x) = cosx

tan ϕ(x) = tanx x ∈ (−π/2, π/2)

sinh ϕ(x) = (ex − e−x)/2

tanh ϕ(x) = (ex − e−x)/(ex + e−x)

asinh ϕ(x) = ln(x+
√
x2 + 1)

atanh ϕ(x) = 1
2
ln

(
1+x
1−x

)
x ∈ (−1, 1)

sigmoid ϕ(x) = 1
1+e−x

Smooth, convex or concave

exp ϕ(x) = ex

log ϕ(x) = log x x > 0

log sum exp ϕ(x) = log
(∑n

i=1 e
xi
)

power ϕ(x) = xp where p > 0 is an integer

power pos ϕ(x) = xp where p > 0 x ≥ 0

sqrt ϕ(x) =
√
x x ≥ 0

inv pos ϕ(x) = 1/x x > 0

quad over lin ϕ(x, y) = xT x/y y > 0

Nonsmooth, convex

abs ϕ(x) = |x|
max ϕ(x) = max{x1, x2, . . . , xn}
norm1 ϕ(x) = ∥x∥1
norm2 ϕ(x) = ∥x∥2
norm inf ϕ(x) = ∥x∥∞

huber ϕ(x) =

{
x2, |x| ≤ M

2M |x| −M2, |x| > M,
where M ≥ 0

sum largest ϕ(x) =
∑k

i=1 x[i] where k ∈ {1, . . . , n}

Nonsmooth, concave

min ϕ(x) = min{x1, x2, . . . , xn}
sum smallest ϕ(x) =

∑k
i=n−k+1 x[i] where k ∈ {1, . . . , n}
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into the three categories smooth, linearizable-convex (L-convex), and linearizable-
concave (L-concave).

Smooth expressions. An expression f(x) = ϕ(g(x)) is defined to be smooth if
both the atom ϕ and the subexpression g(x) are smooth. Constant expressions and
variable expressions are considered as smooth, so any smooth atom ϕ, evaluated at
variables or constants, is a smooth expression ϕ(x).

L-convex expressions. An expression f(x) = ϕ(g(x)) is defined to be L-convex
if the atom ϕ is smooth or NS-convex, and for each i = 1, . . . , k, one of the following
holds: gi(x) is smooth; or gi(x) is L-convex and ϕ is nondecreasing in its ith argument;
or gi(x) is L-concave and ϕ is nonincreasing in its ith argument.

L-concave expressions. An expression f(x) = ϕ(g(x)) is defined to be L-concave
if the atom ϕ is smooth or NS-concave, and for each i = 1, . . . , k, one of the following
holds: gi is smooth; or gi is L-convex and ϕ is nonincreasing in its ith argument; or
gi is L-concave and ϕ is nondecreasing in its ith argument.

Simple consequences of the definitions. We mention that any smooth expres-
sion is also both L-convex and L-concave. Furthermore, the sum of two L-convex
expressions is L-convex, and the sum of two L-concave expressions is L-concave. (All
these statements follow directly from the definitions of L-convexity and L-concavity.)
This logic is analogous to how, in convex optimization, affine expressions are both
convex and concave, and the sum of two convex (concave) expressions is convex
(concave).

3.3 Constraints and objectives

For an optimization problem to be a disciplined nonlinear program, its objective and
constraints must satisfy the following rules.

Objective. A valid objective is either the minimization of an L-convex expression
or the maximization of an L-concave expression. Maximizing an L-convex expression
or minimizing an L-concave expression is not valid (unless the expression is also
smooth).
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Constraints. A valid constraint is one of the following:

• An equality constraint between a smooth left-hand side (LHS) and a smooth
right-hand side (RHS).

• A less-than-or-equal-to inequality with an L-convex LHS and an L-concave
RHS.

• A greater-than-or-equal-to inequality with an L-concave LHS and an L-convex
RHS.

A problem description that conforms to these rules is called DNLP-compliant. We
will see that such a problem formulation can be canonicalized to an equivalent
(smooth) NLP without introducing LICQ violations.

3.4 Examples

DNLP expressions. We now give a few examples of expressions that conform to
the DNLP ruleset, and others that do not.

• The function f(x, y) = x/y with y > 0 can be expressed as

multiply(x, inv pos(y)).

When expressed this way, f(x) is a smooth expression since it is the composition
of the smooth atom multiply with two smooth expressions. (A variable or a
smooth atom by itself is considered a smooth expression; see §3.2.)

• The function f(x) = cTx/(xTAx) with A ∈ Sn
++ can be expressed as

multiply(c @ x, inv pos(quad form(x,A))).

When expressed this way, f(x) is a smooth expression since it is the composition
of the smooth atom multiply with two smooth expressions. (The second
argument of multiply is a smooth expression since it is itself the composition
of the smooth atom inv pos with a smooth expression.)

• The function f(x) = |cTx/(xTAx)− b| with A ∈ Sn
++ can be expressed as

abs(multiply(c @ x, inv pos(quad form(x,A)))− b).

When expressed this way, f(x) is an L-convex expression since it is the com-
position of the NS-convex atom abs with a smooth expression.
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• The function f(x) = (∥x− a∥2 − b)2 can be expressed as

square(norm2(x− a)− b).

When expressed this way, f(x) is not DNLP-compliant since the atom square

is not monotone and its argument is not smooth. However, when we rewrite it
as f(x) = (

√
∥x− a∥22 − b)2 and express it as

square(sqrt(sum squares(x− a))− b),

then the expression is smooth since it is the composition of the smooth atom
square with a smooth expression. (The first term of the argument of square
is a smooth expression since it is itself the composition of the smooth atom
sqrt with a smooth expression.)

• The function f(x) = (sinx)2 can be expressed as square(sin(x)). When ex-
pressed this way, f(x) is a smooth expression since it is the composition of the
smooth atom square with a smooth expression.

• The function f(x) = |x|2 can be expressed as square(abs(x)). When expressed
this way, f(x) is not a smooth expression since the atom abs is not smooth.
Although f(x) simplifies to the differentiable function f(x) = x2, the expression
as written is not smooth.

DNLP objectives and constraints. DNLP supports many types of nonconvex
objectives and constraints.

• An avoidance constraint of the form ∥x−a∥2 ≥ r, where a ∈ Rn and r ∈ R+ are
given, can be expressed as sum_squares(x - a) >= r ** 2. This is DNLP-
compliant since the left-hand side is an L-concave expression (as it is a smooth
expression) and the right-hand side is an L-convex expression (as it is constant
and thus a smooth expression).

• A discretized dynamics constraint of the form x1 = x0+s cos(θ), where x1, x0, s,
and θ are variables, can be expressed as x1 == x0 + multiply(s, cos(theta)).
This is DNLP-compliant since both sides are smooth expressions.

• Minimizing an objective function of the form ∥(Ax)2− b∥1, where the square is
taken elementwise, is DNLP-compliant when the objective is expressed as the
L-convex expression norm1(square(A @ x) - b).

In §5 we will see applications where constraints and objectives of these forms arise.
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3.5 Connection to DCP

As discussed in previous sections, DNLP is closely related to DCP. We now make
this relationship explicit.

A DNLP-compliant problem is one that is DCP if all its smooth atoms
are treated as affine.

In other words, a DNLP-compliant problem is one that becomes DCP if all the
smooth atoms are linearized. More precisely, the following statements hold.

• An L-convex expression is one that becomes convex when all smooth atoms
are linearized around some current point. This property justifies the terminol-
ogy linearizable-convex ; such expressions are not necessarily convex, but they
become convex after linearizing each smooth atom they contain.

• An L-concave expression is one that becomes concave after linearizing all
smooth atoms it contains.

4 Canonicalization

In this section we describe how problems conforming to DNLP are canonicalized
to a standard NLP form. Our canonicalization differs from the approach adopted
by most NLP modeling languages, in which the user-specified problem is not trans-
formed, and automatic differentiation is used to provide derivative oracles for the
objective and constraint functions. In contrast, in DCP-based modeling systems for
convex optimization, the core idea is to perform extensive transformations of the
original problem formulation into a standard conic form [4, 59, 14], which obviates
the need for derivative oracles based on automatic differentiation. This approach
gracefully also handles functions that are nondifferentiable or defined only on a re-
stricted domain. We adopt a similar approach to canonicalize problems conforming
to DNLP.

4.1 The canonical form

The first step of canonicalization is a parser that processes the user-specified problem
and constructs one expression tree for the objective and two for each constraint, the
left-hand and right-hand sides. In an expression tree, each inner node represents
an atom, with its children corresponding to the arguments of the atom. This is
illustrated in figure 1 for the function f(x) = |xTAx + c| where A ∈ Sn and c ∈ R
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+

quad form

x A

c

Figure 1: Expression tree for the L-convex expression abs(quad form(x, A) + c).

are parameters (constants), and x ∈ Rn is the variable, represented by the DNLP-
compliant expression abs(quad form(x, A) + c).

Once the expression trees are constructed, the parser traverses them from the
leaves to the root to determine the smoothness classification of each expression using
the definitions given in §3.2. Finally, it verifies that the objective and constraints
conform to the DNLP ruleset described in §3.3.

After the parser has verified that the problem conforms to DNLP, the canoni-
calizer traverses the expression trees from the root to the leaves and transforms the
user-specified problem, distinguishing between how smooth and nonsmooth atoms
are treated.

Smooth atoms. When a node corresponding to a smooth atom is encountered,
we first check whether the atom has full domain. If not, we introduce auxiliary
variables for its arguments and add constraints linking these new variables to the
original arguments. We also specify bounds on the new variables to explicitly encode
the domain of the atom. If a smooth atom has full domain but its arguments are not
variables by themselves, we likewise introduce auxiliary variables and constraints to
represent those arguments.

A simple example illustrating how smooth atoms are canonicalized is the problem

minimize −
∑m

i=1 log(bi − aTi x) + ∥Cx− d∥22
subject to ∥x∥22 ≤ 1,

14



with variable x. The corresponding canonicalized problem is

minimize −
∑m

i=1 log(ti) + ∥v∥22
subject to ∥x∥22 ≤ 1

t = b− Ax
v = Cx− d
t ≥ 0,

where the variables are (the original one) x and (the new ones) t and v. Here, t
was introduced for the argument of the logarithm since the log-atom has restricted
domain, and v was introduced for the argument to the squared Euclidean norm in
the objective since the argument was not a variable by itself. No new variable was
introduced for the argument to the squared Euclidean norm in the constraints, since
the atom has full domain and the argument is already a variable by itself. Also
note that we explicitly added the bound t ≥ 0. (Explicitly communicating function
domains via bounds to the solver makes them more robust.)

For a problem that only involves smooth atoms, this procedure for traversing the
expression trees results in an equivalent problem formulation similar to a canonical
form proposed by Smith [65, 66], known as the Smith form, with the minor modifica-
tion that we always introduce new variables for the arguments of atoms lacking full
domain. (In the original definition of the Smith form, a variable is never introduced
for the argument of an atom if the argument is a variable by itself [66, table 1].) An-
other distinction from our approach is that the original Smith form always converts
problems into graph form, i.e., each nonlinear atom ϕ is replaced by an auxiliary
variable t together with the equality constraint t = ϕ(x). For example, instead of
minimizing ϕ(x) directly, one minimizes t subject to the constraint t = ϕ(x) over x
and t.

Nonsmooth atoms. When a node corresponding to a nonsmooth atom ϕ is en-
countered, we replace the atom with an auxiliary variable t and add the constraint
t = ϕ(x). Next, we relax this constraint to t ≥ ϕ(x) if ϕ is NS-convex, or to t ≤ ϕ(x)
if ϕ is NS-concave. When the original problem is DNLP, this relaxation does not
change the optimal value of the problem or the set of optimal x-values, i.e., the
relaxation is lossless. Finally, we express the relaxed constraint using a smooth
reformulation, as we will describe in §4.2.
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Table 2: Smooth epigraph and hypograph formulations of nonsmooth atoms.

Atom Definition Smoothness Epigraph / Hypograph
Implementation

abs ϕ(x) = |x| NS-convex Epigraph: −t ≤ x ≤ t

max ϕ(x) = max(x, y) NS-convex Epigraph: x ≤ t, y ≤ t

norm1 ϕ(x) = ∥x∥1 NS-convex Epigraph: −v ≤ x ≤ v, 1T v ≤ t

norm2 ϕ(x) = ∥x∥2 NS-convex Epigraph:
quad over lin(x, t)− t ≤ 0

norm inf ϕ(x) = ∥x∥∞ NS-convex Epigraph: −t1 ≤ x ≤ t1

sum largest ϕ(x) =
∑k

i=1 x[i] NS-convex Epigraph: [14, Exercise 5.19]

min ϕ(x) = min(x, y) NS-concave Hypograph: x ≥ t, y ≥ t

sum smallest ϕ(x) =
∑n

i=n−k+1 x[i] NS-concave Hypograph: [14, Exercise 5.19]

4.2 Smooth epigraph formulations

As described in the previous section, any problem conforming to DNLP is equiv-
alent to a problem in which any atom that is not smooth appears in a constraint
of the form t ≥ ϕ(x) if ϕ is NS-convex, or t ≤ ϕ(x) if ϕ is NS-concave. The sets
{(x, t) | t ≥ ϕ(x)} and {(x, t) | t ≤ ϕ(x)} are known as the epigraph and hypograph
of ϕ, respectively. Table 2 describes how these are transformed into smooth formu-
lations that satisfy LICQ. Most of these transformations are standard and covered
in introductory linear programming classes. Automating them is nevertheless valu-
able, as the procedure can be tedious and error-prone, especially when the original
problem involves compositions of atoms.

For every atom in table 2, the smooth reformulation is equivalent to the original
epigraph or hypograph constraint, with one exception. Specifically, for the norm2

atom, the point (x, t) = (0, 0) belongs to the epigraph but does not satisfy the
smooth reformulation, since the domain of quad over lin is t > 0 (see table 1).
Thus, the smooth reformulation excludes this single point from the feasible set.

Conceptually, this exclusion closely parallels the behavior of interior-point meth-
ods for conic convex optimization such as MOSEK [5], which represent the epigraph
of the norm2 atom via a second-order cone constraint. These solvers use barrier func-
tions that enforce strict feasibility with respect to the cone, ensuring that iterates
remain in the cone interior and thus never reach the origin.
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4.3 Two advantages of our canonicalization

Initialization. One advantage of our canonicalization procedure is that it simpli-
fies the task of specifying an initial point when atoms have restricted domains. Our
canonical form ensures that the argument to any atom with a restricted domain is a
variable t that appears only as an argument to that atom and in a constraint of the
form t = f(x), where f(x) is an arbitrary expression. Since solvers require an initial
point that lies within the domain of all objective and constraint functions, we can
simply initialize each t within the domain of its corresponding atom, without ensur-
ing that the constraint t = f(x) holds initially. This is straightforward to implement
by providing an atom-specific oracle that returns a default initial value within the
atom’s domain. All of this is automated and handled internally, so the user does not
need to worry about it. (If a good starting point for the original variables is known,
the user should of course specify it manually. In this case, we propagate the starting
point to the auxilliary variables introduced during canonicalization by evaluating the
expressions defining them at the given starting point for the original variables.)

Without this approach, the task of finding an initial point in the intersection of
the domains of the objective and constraint functions falls to the user — a task that
can be highly nontrivial. For example, consider computing the analytic center of a
polyhedron of the form

{x ∈ Rn | aTi x ≤ bi, i = 1, . . . ,m},

which can be done by minimizing the function

f(x) = −
n∑

i=1

log(bi − aTi x).

This function is convex and smooth, so we expect the problem to be readily solved by
a solver like Ipopt. For a problem instance where the polyhedron does not contain
the origin, Ipopt crashes in its first iteration when we interface it using popular
NLP modeling languages such as AMPL, GAMS, JuMP, Pyomo, and CasADi. The
reason is that these modeling languages choose the default initial point to be the
origin, which lies outside the domain of the objective function. In contrast, when we
interface Ipopt using our modeling language, it successfully solves the same problem
instance in 14 iterations.

Nonsmoothness. Another advantage of our canonicalization procedure is that
it seems more robust for problems involving nonsmooth functions than other NLP

17



modeling languages that are not based on DNLP. For example, consider the sparse
linear regression problem

minimize ∥Ax− b∥22 + λ∥x∥1,

with variable x, where λ > 0 is a regularization parameter. For this problem we
expect the solution to occur at a point of nondifferentiability. When we interface
Ipopt using our modeling language, it gracefully solves a random problem instance in
12 iterations. In contrast, when we specify the same problem instance using AMPL,
GAMS, JuMP, Pyomo, and CasADi, Ipopt fails to solve it and terminates after
reaching its maximum number of 3000 iterations. The issue is that these modeling
languages treat the objective as a black box and supply Ipopt with derivatives via
automatic differentiation, even though the second term is nondifferentiable at the
solution.

4.4 Our implementation

We have implemented DNLP as an extension to the DCP-based modeling language
CVXPY. The implementation is currently available as a standalone package at

https://github.com/cvxgrp/DNLP,

with plans for future integration into the main CVXPY distribution. Problems are
expressed using standard CVXPY syntax, augmented with smooth nonconvex and
nonconcave atoms including those listed in table 1. (These atoms have previously not
been available in CVXPY, since DCP rules only permit atoms that are either convex
or concave.) For several common atoms we support simpler syntax as a convenience;
for example, squaring all entries of a vector-valued expression expr can be done using
both square(expr) and expr ** 2.

Some useful functions and features. The most useful functions and features of
the DNLP extension are summarized below.

• problem.is_dnlp() returns a Boolean indicating whether the problem is DNLP.

• problem.solve(nlp=True) carries out DNLP canonicalization and invokes the
default NLP solver on the canonicalized problem (assuming the specified prob-
lem is DNLP). The flag nlp=True explicitly instructs CVXPY to treat the
problem as a nonlinear program. If omitted, CVXPY attempts to canonicalize
the problem under DCP rules and raises an error if the problem is not DCP.
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• The solve() method also accepts the optional flag best_of=N, where N is a
positive integer. When provided, the problem is solved N times from different
random initializations, and the best solution found is returned. The random
starting point for a variable x is drawn uniformly from a user-specified box given
by the attribute x.sample_bounds. If best_of is used but x.sample_bounds is
not provided, no random initialization is done for that variable, unless the vari-
able has finite lower and upper bounds. In that case, the variable is initialized
uniformly at random within its bounds.

• As in CVXPY, the solve()method accepts the optional flag solver=’solver_name’,
to specify that the NLP solver solver_name should be used. Directives and
options can be passed to the solver as additional keyword arguments to the
solve() method.

• The variable attribute x.value can be used to manually set the initial value
for a variable x.

Supported solvers. Currently, we support the open-source interior-point solver
Ipopt [72] and the commercial solver Knitro [20]. Knitro implements several algo-
rithms for nonlinear optimization, including an interior-point method and an aug-
mented Lagrangian method. These can be selected by specifying solver=’knitro_ipm’
or solver=’knitro_alm’ in the solve() method, respectively. For example, to use
Knitro’s interior-point method, one would write

problem.solve(nlp=True, solver=’knitro_ipm’).

5 Numerical examples

In this section we present several simple examples illustrating our DNLP-based mod-
eling language. Most of these can be implemented in fewer than 10 lines of code, and
they are available at https://github.com/cvxgrp/DNLP-examples. The examples
were solved using Ipopt, unless otherwise specified.

The code snippets below avoid for-loop constructs where possible, using vector-
ized operations instead by specifying axis arguments to various atoms. This can have
a significant performance benefit, so we encourage users to do so in their own code.
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5.1 Path planning with obstacles

Problem. We seek the shortest path connecting points a and b in Rd that avoids
m circles, centered at pj with radius rj, j = 1, . . . ,m [51, 64]. After discretizing the
arc-length-parametrized path into a sequence of points x0, . . . , xn, the problem can
be written as

minimize L
subject to x0 = a, xn = b

∥xi+1 − xi∥22 ≤ (L/n)2, i = 0, . . . , n− 1
∥xi − pj∥22 ≥ r2j , i = 1, . . . , n− 1, j = 1, . . . ,m,

where L and xi are variables, and a, b, pj, and rj are given.

DNLP specification. The code specifying this problem is given below.

x, L = Variable((d, n + 1)), Variable()

constr = [x[:, 0] == a, x[:, n] == b,

sum((x[:, 1:] - x[:, :-1]) ** 2, axis=0) <= (L / n) ** 2]

for i in range(n):

constr += [sum((x[:, i] - p) ** 2, axis=1) >= r ** 2]

prob = Problem(cp.Minimize(L), constr)

x.value = ... # initialize to straight line path

prob.solve(nlp=True)

Alternative DNLP-compliant formulations. The constraint ∥xi+1 − xi∥22 ≤
(L/n)2 can also be expressed as ∥xi+1 − xi∥2 ≤ L/n, which is DNLP-compliant
because the left-hand side is L-convex. Since the objective is decreasing in L, these
constraints are tight at optimality, so we can also replace them by equalities of the
form ∥xi+1 − xi∥22 = (L/n)2. A constraint of this form is DNLP-compliant, as its
left-hand side is smooth. (Among these three formulations, the first one converges
in the fewest iterations in our experiments.)

Results. We consider a problem instance with dimension d = 2, n = 50 path
segments, and m = 5 obstacles. Figure 2 shows the solution to this problem instance,
when initialized as the straight line path from a to b. For other initializations, the
final path is different.
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Figure 2: Shortest path connecting two points while avoiding circular obstacles.
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5.2 Circle packing

Problem. The goal is to arrange n circles in R2 with given radii ri for i = 1, . . . , n,
so that they do not overlap and are contained in the smallest possible square [68, 47].
The optimization problem can be formulated as

minimize maxi=1,...,n (∥ci∥∞ + ri)
subject to ∥ci − cj∥22 ≥ (ri + rj)

2, 1 ≤ i < j ≤ n,

where the variables are the centers of the circles ci ∈ R2, i = 1, . . . , n, and the radii
ri are given. If L is the value of the objective function, the circles are contained in
the square [−L,L]2.

DNLP specification. The code specifying this problem is given below.

c, constr = Variable((n, 2)), []

for i in range(n - 1):

constr += [sum((c[i, :] - c[i+1:, :]) ** 2, axis=1) >=

(r[i] + r[i+1:]) ** 2]

cost = max(norm_inf(c, axis=1) + r)

prob = Problem(Minimize(cost), constr)

c.value = uniform(-5.0, 5.0, (n, 2)) # random initial point

prob.solve(nlp=True)

Results. We consider a problem instance with n = 10 circles, with each radius
sampled from a uniform distribution over the interval [1, 3]. Figure 3 shows one
solution to this problem instance, when initialized with random center locations.
The fraction of the square covered by the circles is 0.72.

To solve the problem multiple times with different random initializations, we can
replace the line prob.solve(nlp=True) in the code snippet above with

c.sample_bounds = [-5.0, 5.0]

prob.solve(nlp=True, best_of=500).

This solves the problem instance 500 times with different random initializations for
the circle centers, each drawn uniformly from the square [−5, 5]2. With this approach,
the fraction of the square covered by the circles is 0.77 for the best solution found.
Figure 4 shows the best solution, along with a histogram of the coverages obtained
across all initializations.
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Figure 4: The best circle packing found over 500 random initializations (left), and a
histogram of the coverages obtained across all initializations (right).
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5.3 Location from range measurements

Problem. The goal is to estimate the position of an object from noisy range (dis-
tance) measurements ρi to known anchor points ai in R2 for i = 1, . . . ,m [67, 8]. We
formulate the problem as

minimize
∑m

i=1(∥x− ai∥2 − ρi)
2, (2)

where the variable is the object position x ∈ R2, and the anchor points ai and range
measurements ρi are given.

DNLP specification. The code specifying this problem is given below. To get a
DNLP-compliant formulation, we express ∥x− ai∥2 as

√
∥x− ai∥22 (see §3.4).

x = Variable(2)

cost = sum_squares(sqrt(sum((x - a) ** 2, axis=1)) - rho)

problem = Problem(Minimize(cost))

problem.solve(nlp=True)

Results. We consider a problem instance withm = 10 anchor points, each sampled
from a uniform distribution over the square [−5, 5]2. We added zero-mean Gaussian
noise with unit standard deviation to the true range measurements. Figure 5 shows
the solution to this problem instance, with the initial point set to the origin. The
dashed circle around each anchor represents the range measurement from that anchor.
The left figure shows the anchors and range measurements without any noise, and
the true location of the object is at the intersection of the circles. The right figure
shows the noisy range measurements and the estimated location.
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5.4 Nonnegative matrix factorization

Problem. The goal is to approximate a given nonnegative matrix A ∈ Rm×n as
the product of two nonnegative matrices X ∈ Rm×k and Y ∈ Rk×n, where k is a
given positive integer [54, 38]. One formulation of the problem is

minimize ∥A−XY ∥2F
subject to X ≥ 0, Y ≥ 0,

(3)

where the variables are the matrices X and Y , and ∥·∥F denotes the Frobenius norm.

DNLP specification. The code specifying this problem is given below.

X = Variable((m, k), bounds=[0, None])

Y = Variable((k, n), bounds=[0, None])

X.value, Y.value = rand(m, k), rand(k, n) # random initialization

cost = sum_squares(A - X @ Y)

prob = Problem(cp.Minimize(cost))

prob.solve(nlp=True)

Results. We use nonnegative matrix factorization to decompose images into basis
images [53]. First, we generate 100 images of size 20 × 20 as random nonnegative
combinations of three geometric shapes (a circle, a square, and a triangle), and then
we add noise. After stacking the vectorized noisy images as columns of a matrix
A ∈ R400×100, we solve (3) with k = 3 to recover the underlying shapes. Figure
6 shows the true basis images followed by the recovered ones (first row), six of the
original images (second row), the same six images after adding noise (third row),
and the denoised images (fourth row) which are given as columns of X⋆Y ⋆, where
(X⋆, Y ⋆) is the solution to (3).
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Figure 6: Nonnegative matrix factorization for decomposing images into parts.
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5.5 Phase retrieval

Problem. The goal is to recover a signal x ∈ Cn from the magnitudes of the
complex inner products aHk x, k = 1, . . . ,m, where ak ∈ Cn are given measurement
vectors [30, 21]. One version of the recovery problem can be formulated as

minimize ∥|Ax|2 − y2∥1,

with variable x ∈ Cn. Here, A ∈ Cm×n has rows aHk , and the absolute value and
square operations are applied elementwise. Since |Ax| is the same if all entries of x
are multiplied by a complex number with unit magnitude, we can only recover x up
to some constant phase shift.

Our current DNLP extension of CVXPY does not support complex variables,
but we can manually reformulate the problem in terms of the real variable x̃ =
(ℜ(x),ℑ(x)) ∈ R2n as

minimize ∥(Bx̃)2 + (Cx̃)2 − y2∥1,

where the problem data are

B =
[
ℜ(A) −ℑ(A)

]
∈ Rm×2n, C =

[
ℑ(A) ℜ(A)

]
∈ Rm×2n.

(Here ℜ(·) and ℑ(·) denote the real and imaginary parts, respectively.)

DNLP specification. The code specifying this problem is given below.

x_tilde = Variable(2 * n)

cost = norm1((B @ x_tilde) ** 2 + (C @ x_tilde) ** 2 - y ** 2)

prob = Problem(Minimize(cost))

prob.solve(nlp=True)

Results. We consider a problem instance with n = 64 and m = 3n. The real and
imaginary part of each entry of the true signal and the measurement vectors are
sampled uniformly from the unit interval. Figure 7 shows the original and recovered
signals. We see that the signal is accurately recovered (up to a phase shift).
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Figure 7: Phase retrieval.
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5.6 Sparse signal recovery

Problem. The goal is to recover a sparse signal x0 ∈ Rn from a given measurement
vector y = Ax0, where A ∈ Rm×n (with m < n) is a known sensing matrix [22]. A
common heuristic based on convex optimization is to minimize the ℓ1 norm of x
subject to Ax = y. An alternative approach based on nonconvex optimization is to
minimize the sum of the square roots of the absolute values of the entries of x, which
tends to promote sparsity more aggressively [23]. This leads to the problem

minimize
∑n

i=1

√
|xi|

subject to Ax = y,

with variable x. This problem is DNLP-compliant since the objective is L-convex.

DNLP specification. The code specifying this problem is given below. For this
example, we use Knitro’s interior-point method as the solver, because Ipopt failed
to solve this problem reliably. The issue likely arises from the fact that the objective
function gradient becomes infinite as any entry of x approaches zero, so no KKT
point exists for the canonicalized problem.

x = Variable(n)

cost, constr = sum(sqrt(abs(x))), [A @ x == y]

prob = Problem(Minimize(cost), constr)

prob.solve(nlp=True, solver=’knitro_ipm’)

Problem instances. We consider a simulation with signal dimension n = 100,
where we vary the number of measurements m from 60 to 80, and the cardinality
of the true signal x0 from 30 to 50. The positions of the nonzero entries of x0

are sampled from a uniform distribution, with the nonzero values chosen as N (0, 25)
random variables. The entries of A are sampled from a standard normal distribution.
We say that the recovery is successful if the relative error ∥x̂ − x0∥2/∥x0∥2 is less
than 10−2, where x̂ is the recovered signal. To estimate the probability of successful
recovery for each pair of number of measurements and signal cardinality, we repeat
the simulation 100 times and compute the fraction of successful recoveries.

Results. Figure 8 shows a heatmap of the estimated probability of successful signal
recovery. We see that the nonconvex approach is more effective than the convex
approach.
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optimization. Right. Approach based on convex optimization.
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5.7 Nonlinear optimal control

Problem. We consider a simple model of a car in R2 as described in [15, §19.4].
After time discretization with step size h > 0, the state is xk ∈ R3, with ((xk)1, (xk)2)
denoting its position at time t = kh, and (xk)3 denoting its angle or orientation. The
control input, which we choose, is uk ∈ R2, where (uk)1 is the speed and (uk)2 is the
steering angle over the time interval t ∈ [kh, (k + 1)h]. The goal is to choose inputs
uk for k = 0, . . . , N −1 to move the car from a given initial state xinit to a given final
state xfinal.

The car dynamics are given by xk+1 = f(xk, uk), where

f(xk, uk) = xk + (uk)1h

 cos(xk)3
sin(xk)3

(tan(uk)2)/L


and L > 0 is the wheelbase length of the car. We are given limits amax and ωmax on
the acceleration and steering angle rate, expressed as |(uk+1)1 − (uk)1| ≤ amaxh and
|(uk+1)2 − (uk)2| ≤ ωmaxh. We also have lower and upper limits smin ≤ (uk)1 ≤ smax

and ϕmin ≤ (uk)2 ≤ ϕmax on the speed and steering angle. We want the control input
to be small and smooth, so as objective we take the sum of the squared Euclidean
norms of the control input over all time steps plus a term that penalizes rapid changes,
weighted by γ > 0. This gives us the problem

minimize
∑N−1

k=0 ∥uk∥22 + γ
∑N−2

k=0 ∥uk+1 − uk∥22
subject to xk+1 = f(xk, uk), k = 0, . . . , N − 1

x0 = xinit, xN = xfinal

|(uk+1)1 − (uk)1| ≤ amaxh, k = 0, . . . , N − 2
|(uk+1)2 − (uk)2| ≤ ωmaxh, k = 0, . . . , N − 2
smin ≤ (uk)1 ≤ smax, k = 0, . . . , N − 1
ϕmin ≤ (uk)2 ≤ ϕmax, k = 0, . . . , N − 1,

with variables x0, . . . , xN and u0, . . . , uN−1. The problem data are h, L, amax, ωmax,
smin, smax, ϕmin, ϕmax, γ, and the initial and final states xinit, xfinal.

DNLP specification. The code specifying this problem is given below.

x, u = Variable((N+1, 3)), Variable((N, 2))

cost = sum_squares(u) + gamma * sum_squares(u[1:, :] - u[:-1, :])

constr = [x[0, :] == x_init, x[N, :] == x_final]

constr += [x[1:, :] == x[:-1, :] + h * hstack([
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multiply(u[:, 0], cos(x[:-1, 2])),

multiply(u[:, 0], sin(x[:-1, 2])),

multiply(u[:, 0], tan(u[:, 1]) / L)])]

constr += [abs(u[1:, 0] - u[:-1, 0]) <= a_max * h,

abs(u[1:, 1] - u[:-1, 1]) <= omega_max * h]

constr += [s_min <= u[:, 0], u[:, 0] <= s_max,

phi_min <= u[:, 1], u[:, 1] <= phi_max]

prob = Problem(Minimize(cost), constr)

prob.solve(nlp=True)

Problem instance. We consider a problem instance where the car starts at the
origin with zero orientation, meaning that it is facing right. The final state is
(0.5, 0.5,−π/2), i.e., the car should end up half a unit above and to the right of
its starting position, facing down. We use the parameters L = 0.1, N = 50, h = 0.1,
and γ = 10. The acceleration and steering rate limits are given as amax = 0.35 and
ωmax = π/10, and the speed and steering angle limits are smin = −0.15, smax = 0.6,
ϕmin = −π/8, and ϕmax = π/8.

Results. Figure 9 shows the trajectory of the car, together with the speed, steering
angle, and their rates of change. We see that the steering angle is initially positive,
causing the car to turn left, and then negative, causing it to turn right, before finally
straightening out to reach the target position facing down.
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Figure 9: Car trajectory. Top. Position and orientation of the car. Middle. Speed and
steering angle. Bottom. Acceleration and steering rate.
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5.8 Trimmed logistic regression

Problem. We are given a data set xi ∈ Rd, yi ∈ {−1, 1} for i = 1, . . . , n. We seek
a prediction model ŷ = sign(θTx), where θ ∈ Rd is the model parameter. In logistic
regression, we choose θ to minimize the logistic loss

n∑
i=1

log(1 + exp(−yiθ
Txi)).

In trimmed logistic regression [45, 6], we introduce an auxiliary weight wi ∈ [0, 1]
for each data point, allowing the predictor to downweight outliers and potentially
corrupted data points. The parameter θ is found by solving

minimize
∑n

i=1wi log(1 + exp(−yiθ
Txi))

subject to 1Tw = k,
0 ≤ wi ≤ 1, i = 1, . . . , n,

with variables θ ∈ Rd and w ∈ Rn. Here, k ∈ (0, n) is a given parameter that
specifies the effective number of samples retained in the fit.

DNLP specification. The code specifying the trimmed logistic regression problem
is given below.

theta = Variable(d)

w = Variable(n, bounds=[0, 1])

loss = sum(multiply(w, logistic(-multiply(y, X @ theta))))

constr = [sum(w) == k]

prob = Problem(Minimize(loss), constr)

prob.solve(nlp=True)

Problem instance. We consider the task of classifying handwritten digits 0 and 1
from the MNIST data set [52]. From the full data set, we randomly select n = 2000
images of digits 0 and 1 for training, where each image is represented by d = 785
features (the 784 pixel intensities together with an additional bias term). First, we fit
a standard logistic regression model on the clean training data. We then adversarially
corrupt 1% of the samples by flipping their labels and refit the standard logistic
regression model on this corrupted data. Finally, we fit a trimmed logistic regression
model on the corrupted data using k = 0.95n. To compare the peformance of the
different models, we evaluate their accuracy on a separate test set of 2000 images of
digits 0 and 1.
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Results. The standard logistic regression model achieves a test accuracy of 99.1%
when fitted on the clean training data and 89.3% when fitted on the corrupted data.
In contrast, the trimmed logistic regression model achieves a test accuracy of 98.4%
when fitted on the corrupted data. The weights assigned to the corrupted training
samples are zero, indicating that the trimmed logistic regression model successfully
identified and ignored the corrupted samples.
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5.9 Risk-budgeted portfolio construction

Problem. Risk-budgeted portfolio construction aims to build a portfolio in which
different sectors contribute specified proportions to the total portfolio risk [63, 28].
We consider a portfolio of n assets grouped into K sectors, where Gk is the set of
asset indices in sector k. We let wi ≥ 0 denote the fraction of the total portfolio
value (assumed positive) invested in asset i. The total portfolio risk is the standard
deviation of the portfolio return σ = (wTΣw)1/2, where Σ ∈ Sn

++ is the asset return
covariance matrix. We can decompose the risk σ into components σk attributable to
the sectors as

σ =
wTΣw

(wTΣw)1/2
=

K∑
k=1

∑
i∈Gk

wi(Σw)i
(wTΣw)1/2

=
K∑
k=1

σk,

with

σk =
∑
i∈Gk

wi(Σw)i
(wTΣw)1/2

.

The risk-adjusted return of the portfolio is given by µTw − λwTΣw, where µ is the
asset return mean, and λ > 0 is a given risk aversion parameter.

In risk-budgeted portfolio construction, we seek portfolio weights w that maximize
risk-adjusted return subject to sector risks being close to given proportions bk ∈ (0, 1)
of the total portfolio risk, i.e., σk ≈ bkσ for k = 1, . . . , K. With a 10% tolerance for
sector risk targets, this can be written as the problem

maximize µTw − λwTΣw
subject to |

∑
i∈Gk

wi(Σw)i − bkw
TΣw| ≤ 0.1bkw

TΣw, k = 1, . . . , K

1Tw = 1, w ≥ 0,

with variable w ∈ Rn.

DNLP specification. The code specifying this problem is given below. For fur-
ther efficiency we have introduced two auxiliary variables t1 and t2 to represent the
subexpressions Σw and wTΣw that appear multiple times in the formulation.

w, t1, t2 = Variable((n, ), nonneg=True), Variable((n, )), Variable()

obj = mu.T @ w - lmbda * t2

constr = [sum(w) == 1, t1 == Sigma @ w, t2 == quad_form(w, Sigma)]

for k, g in enumerate(groups):

constr += [abs(sum(multiply(w[g], t1[g])) - b[k] * t2)

<= 0.1 * b[k] * t2]
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Figure 10: Sector risk contributions of the risk-budgeted portfolio.

w.value = np.ones(n) / n # uniform initial guess

prob = Problem(Maximize(obj), constr)

prob.solve(nlp=True)

Problem instance. We consider a problem instance with n = 319 assets from
S&P 500 grouped into the K = 5 largest sectors according to the Global Industry
Classification Standard (GICS), which are Information Technology, Health Care, Fi-
nancials, Consumer Discretionary, and Communication Services. The risk budgets
are set to b = (0.3, 0.25, 0.20, 0.15, 0.10), allocating approximately 30% of portfolio
risk to Information Technology, with the remaining sectors contributing approxi-
mately 25%, 20%, 15%, and 10%, respectively. We set the covariance matrix and
asset return mean to the sample covariance and empirical mean of the asset returns,
respectively, over the period from January 1, 2020 to January 1, 2025. (Of course,
in practice one would use sophisticated methods to estimate these.)

Results. Figure 10 shows the sector risk contributions of the optimized portfolio.
Two of them take on the highest allowed risk, two take on the smallest allowed risk,
and one is in between the sector risk limits.
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5.10 Optimal power flow

Problem. The optimal power flow problem seeks to optimize the operation of an
electric power system subject to network power flow constraints and system operating
limits [34]. We use a standard model, described by a graph with n buses (nodes),
where each bus i is characterized by a voltage magnitude vi and a phase angle θi.
The real and reactive power injected at the buses are denoted by p ∈ Rn and q ∈ Rn,
respectively. These are related to the voltage magnitudes and phase angles via the
equations p = P1 and q = Q1, where the bus injection matrices P ∈ Rn×n and
Q ∈ Rn×n are given by

P = (vvT ) ◦ (G ◦ C(θ) +B ◦ S(θ))
Q = (vvT ) ◦ (G ◦ S(θ)−B ◦ C(θ)).

(4)

Here, G ∈ Sn and B ∈ Sn are the (given) real and imaginary parts of the admittance
matrix of the network, C(θ) ∈ Sn and S(θ) ∈ Rn×n are defined as

Cij(θ) = cos(θi − θj), Sij(θ) = sin(θi − θj),

and ◦ denotes the elementwise (Hadamard) product. Physical limitations of the
network components requires that the power flows and voltages satisfy certain oper-
ational constraints, such as bounds

vmin ≤ v ≤ vmax, pmin ≤ p ≤ pmax, qmin ≤ q ≤ qmax. (5)

(The bounds on p and q can be used to model generation limits at generator buses
and load demands at load buses.) To fix the reference angle of the network, we force
the phase angle at the first bus to be zero. The total generation cost is typically a
convex quadratic function f(p) of the real power generated at each bus. The optimal
power flow problem can thus be formulated as

minimize f(p)
subject to P = (vvT ) ◦ (G ◦ C(θ) +B ◦ S(θ))

Q = (vvT ) ◦ (G ◦ S(θ)−B ◦ C(θ))
p = P1, q = Q1, θ1 = 0
vmin ≤ v ≤ vmax, pmin ≤ p ≤ pmax, qmin ≤ q ≤ qmax,

with variables v, θ, P , Q, p, and q.
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DNLP specification. The code specifying this problem is given below.

theta, P, Q = Variable((N, 1)), Variable((N, N)), Variable((N, N))

v = Variable((N, 1), bounds=[v_min, v_max])

p = Variable(N, bounds=[p_min, p_max])

q = Variable(N, bounds=[q_min, q_max])

C, S = cos(theta - theta.T), sin(theta - theta.T)

constr = [theta[0] == 0, p == sum(P, axis=1), q == sum(Q, axis=1),

P == multiply(v @ v.T, multiply(G, C) + multiply(B, S)),

Q == multiply(v @ v.T, multiply(G, S) - multiply(B, C))]

cost = ... # some cost function

prob = Problem(Minimize(cost), constr)

prob.solve(nlp=True)

Alternative DNLP specification. The code above declares the bus injection
matrices P and Q as dense matrices, and uses the power flow equations (4) to incor-
porate the sparsity pattern of the network only via the admittance matrices G and
B. We can also use the variable attribute sparsity to explicitly define P and Q as
sparse matrices. If E is the set of edges in the network, we do this by declaring P
and Q as

P = Variable((N, N), sparsity=E)

Q = Variable((N, N), sparsity=E).

This alternative approach is more efficient for large networks.

Results. We consider a 9-node network from [17] with 3 generator buses (green
squares), 3 transmission buses (blue circles), and 3 load buses (orange diamonds).
Figure 11 shows the optimized real power flow. Each directed edge is annotated
with the real power flowing into the bus at the arrowhead, and, in parentheses, the
corresponding real-power loss on that line. (The real power flow on each line (i, j)
is given by P flow

ij = v2iGij − Pij, with the convention that positive flow is toward bus
j. The loss of real power on line (i, j) is given by Lij = P flow

ij + P flow
ji .) The total

generation cost for the computed flow is $3087.4, which is known to be the global
solution [50, table 15.2].
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Figure 11: Optimal power flow.
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