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Abstract

We consider the problem of multi-period portfolio optimization over a finite hori-
zon, with a self-financing budget constraint and arbitrary distribution of asset returns,
with objective to minimize the mean-square deviation of final wealth from a given de-
sired value. When there are no additional constraints, this problem can be solved by
standard dynamic programming; the optimal trading policy is affine, i.e., linear plus
a constant. We describe a suboptimal policy that handles additional constraints on
the portfolio or trading, such as linear transaction costs or a no-shorting constraint.
The suboptimal policy involves solving an optimization problem, typically a convex
quadratic program, at each step, using the Bellman (value) function for the associated
unconstrained problem to approximately account for the value of future portfolios.
Examples show that this suboptimal trading policy often obtains an objective value
close to that for the associated problem without constraints, and is therefore nearly
optimal. In particular we will see that even with transaction costs, our suboptimal
trading policy performs almost as well as when there are no transaction costs.

1 Introduction

In this paper we formulate the multi-asset multi-period portfolio optimization problem as
a stochastic control problem with linear dynamics and a convex quadratic objective, the
mean-square error in achieving a desired final wealth. When there are no transactions costs,
and the trading is self-financing, i.e., the total revenue from sales equals the total cost of
purchases, the optimal trading policy, which is affine (i.e., linear plus a constant), can be
found using dynamic programming (DP).

When transaction costs are present, or additional constraints are imposed, the optimal
policy is very difficult to compute, even though it can be characterized easily using DP.
(By gridding the value function, however, the case of one risk-free and one risky asset can
be effectively solved.) In this paper we propose two suboptimal policies for the general
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constrained case. Both are based on the optimal policy for the associated unconstrained
case. Simulations show that the more sophisticated suboptimal policy performs very well.

1.1 Previous and related work

There is a large body of work on dynamic portfolio optimization with constraints. Interest
in the effects of transaction costs on portfolio optimization go back to Samuelson [28] and
Constantinides [9, 23]. Literature varies with the choice of objective (usually, a utility to be
maximized), continuous versus discrete time, finite versus infinite horizon, and so on. For a
representative sample, see [1, 11, 12, 16, 21, 20] and [33]. Typical choices of utilities have been
power (CRRA) utilities (e.g., [21]) or log utilites (e.g., [1]). Papers have most frequently dealt
with the case of two assets (one risky and one risk-free) but there is also some published work
for the case of multiple risky assets (e.g., [20]). Our choice of objective, mean-square error in
achieving a desired final wealth value, is not traditional in dynamic portfolio optimization,
but is used in problems such as index tracking and portfolio replication. For more on these
see, e.g., [8, 13, 14].

2 Multi-period portfolio optimization problem

Portfolio evolution. We let xt ∈ Rn be the vector (portfolio) of holdings (in dollars) in n
assets, at the beginning of period t, for t = 1, . . . , T +1, with negative entries denoting short
positions. We assume that the initial portfolio x1 is given. The wealth, or total portfolio
value, at time period t is denoted wt = 1T xt, where 1 is the vector with all components
one. We let ut ∈ Rn, t = 1, . . . , T , denote the vector of trades (in dollars) executed at
the beginning of the period t, with positive entries denoting purchases and negative entries
denoting sales. We let x+

t = xt + ut ∈ Rn denote the vector of holdings after the trades.
The holdings at the beginning of the next investment period are given by

xt+1 = Atx
+
t = At(xt + ut), t = 1, . . . , T,

where At = diag(rt), with rt ∈ Rn
+ the vector of (random) asset returns. We will assume

that rt are independent, with known distributions. We denote the return mean and variances
as

r̄t = Ert, Σt = Ertr
T
t − r̄tr̄

T
t , t = 1, . . . , T.

We assume that the second moment of rt,

Pt = Σt + r̄tr̄
T
t ,

is positive definite, for t = 1, . . . , T . (If this is not the case, there is a nonzero portfolio with
certain return zero.) We can have, but do not require, an asset with a risk-free return. (This
corresponds to a zero row and column in Σt.)
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Trading policies. The goal is to find a trading policy, i.e., functions ϕ1, . . . , ϕT : Rn →
Rn, with ut = ϕt(xt). The trading policies must be such that the trades ut satisfy

(ut, xt) ∈ Ct, t = 1, . . . , T, (1)

where Ct ⊆ R2n is the constraint set for period t. In the simplest case, with no transaction
costs and the requirement that the trading be self-financing, we have

Ct = Cbasic = {(x, u) | 1T u = 0}, t = 1, . . . , T. (2)

This constraint means that the total asset sales balances the total asset purchases in each
period. We refer to this case as the unconstrained case.

We will always assume that

(x, u) ∈ Ct =⇒ 1T u ≤ 0, (3)

i.e., the total value of assets purchased is no more than the total value of the assets sold.
We can interpret −1T ut, which is the difference between the total value of assets sold and
the total value of assets bought, as the transaction cost in period t. Our assumption is that
the transaction costs are nonnegative; when Ct = Cbasic, the transaction costs are zero.

For later reference, we describe some other possible constraint sets. We can model linear
transaction costs by replacing the constraint 1T u = 0 in (3) with

1T u + κT
buyu+ + κT

sellu− = 0, (4)

where κsell is the (nonnegative) vector of selling transaction cost rates, κbuy is the (nonneg-
ative) vector of buying transaction cost rates, and u+ = max(u, 0) and u− = max(−u, 0)
are the positive and negative parts of u, respectively. (We assume that 0 ≤ κbuy < 1 and
0 ≤ κsell < 1.) The constraint (4) states that −1T u, which is the total gross proceeds from
sales minus the total gross paid for purchases, equals κT

buyu+, the total transaction cost for
purchases, plus κT

sellu−, the total transaction cost for sales.
We can impose a no-shorting constraint, as in

x+
t = xt + ut ≥ 0. (5)

This constraint states that after trading there are no short positions. Since the returns are
nonnegative, this ensures that xt+1 = Atx

+
t ≥ 0, and in particular, the wealth is always

nonnegative, when the no-shorting constraint (5) is imposed.
In the general case, it can happen that there is no ut for which (ut, xt) ∈ Ct, which means

that there is no feasible trade from the portfolio xt. We refer to this event as ruin. For
the basic unconstrained case (3) or with linear transactions costs (4), with or without the
no-shorting constraint (5), ruin cannot occur, since ut = 0 is always feasible, no matter what
xt is.
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Objective. The final wealth is wT+1 = 1T xT+1. We take as objective the mean-square
error,

J = E(wT+1 − wdes)2, (6)

where wdes > 0 is a desired final wealth. The square-root of J , which has units dollars, is
the root-mean-square (RMS) error in achieving the desired wealth.

Our quadratic objective actually penalizes final wealth that exceeds the desired value,
where of course we should be happy with such an outcome. This undesirable penalty on
increasing final wealth, above the desired value, is shared with several other standard ob-
jectives, such as variance-adjusted mean return, which also penalizes large positive values
of final wealth. For final wealth values less than the desired value, however, our objective
provides the right incentive. A down-side mean-square error,

Jds = E(wT+1 − wdes)2
−,

better matches our true goals than does J . With this objective, however, we lose tractability
of the unconstrained problem, which is the basis of our method for handling the constrained
problem.

Our mean-square error objective is not a traditional one for dynamic portfolio optimiza-
tion. A more typical objective is the expected value of a concave utility function of final
wealth, which is to be maximized. Common examples include variance adjusted mean, log
utility, and power (CRRA) utility. Our mean-square error objective is used in other contexts,
such as index tracking and portfolio replication. Our goal in this paper is not to defend our
choice of objective over others, but rather to point out that with this choice of objective, the
optimal trading policy can be found when there are no transaction costs or other constraints,
and what appear to be good suboptimal policies can be found when constraints are present.

Our mean-square error objective is easily related to the mean and variance of the final
wealth, EwT+1 and varwT+1, which are traditional measures of portfolio performance, by
expressing J as

J = (EwT+1 − wdes)2 + varwT+1.

Minimizing J is the same as maximizing

EwT+1 − γvarwT+1 − γ(EwT+1)
2,

where γ = 1/(2wdes). The first two terms here are a traditional variance adjusted mean
utility.

Multi-period portfolio optimization problem. The multi-period portfolio problem is
to determine trading policies ϕ1, . . . , ϕT , that satisfy the constraint (1), and minimize J .
This is a stochastic control problem with linear dynamics (for more on stochastic control,
see, e.g., [3, 5, 6, 19, 25, 32]). We let J⋆ denote the optimal objective value, i.e., the minimum
possible value of J over all trading policies that satisfy the constraint.
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3 Optimal policies for unconstrained case

For the unconstrained case, we can compute the optimal trading policies, which are affine,
using DP (see, e.g., [4, 5, 15, 26, 27]). Let Vt(z) be the optimal objective value (i.e., minimum
possible value of J), of the truncated problem started in state xt = z at time period t. (Here
we optimize over the policies ϕt, . . . , ϕT .) Let V +

t (z) denote the optimal objective value (i.e.,
minimum possible value of J) of the truncated problem started in post-trade state x+

t = z
at time period t. (Here we optimize over the policies ϕt+1, . . . , ϕT .)

We will show that, for t = 1, . . . , T , Vt and V +
t are convex quadratic functions with the

specific forms
Vt(z) = at(1

T z − wtar
t )2 + bt, (7)

and
V +

t (z) = at+1

(

(r̄T
t z − wtar

t+1)
2 + zT Σtz

)

+ bt+1, (8)

where a1, . . . , aT+1 > 0, wtar
1 , . . . , wtar

T+1, and b1, . . . , bT+1 will be defined below. Along the
way we will show that the optimal policies are affine, i.e., have the form

ϕt(z) = Kt(z − gt),

where Kt and gt will be defined below.
The form (7) states that Vt is a function of only the total portfolio value at time step t.

This is easily explained. Going forward, no other attribute of the current portfolio matters:
Since there are no transactions costs, we are free to select as the post-trade portfolio any
one with the same total value. We can interpret wtar

t as a time-varying target wealth. (As
with the final desired wealth, it can also be interpreted as a wealth level above which our
objective actually gives the wrong incentive.)

We will use induction, running backward from the last period t = T to the first period
t = 1, to establish (7) and (8). We first show that V +

T has the form (8). Then we show that,
for t = 1, . . . , T , if V +

t has the form (8), then Vt has the form (7). Finally, we show that, for
t = 2, . . . , T , if Vt has the form (7), then V +

t−1 has the form (8).

Expression for V +
T . To derive an expression for V +

T , we assume that x+
T = z. Using

xT+1 = AT x+
T , we have wT+1 = 1T AT z = rT

T z, and so

V +
T (z) = E(wT+1 − wdes)2 = (r̄T

T z − wdes)2 + zT ΣT z,

which has the form (8), with

aT+1 = 1, wtar
T+1 = wdes, bT+1 = 0. (9)

Expression for Vt from V +
t . Now suppose that V +

t has the form (8). To find Vt(z), we
suppose that xt = z and ut = v, which results in x+

t = z + v. From this state we follow the
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optimal policy, which yields objective V +
t (z + v) (by definition). So we must choose v to

minimize V +
t (z + v) subject to 1T v = 0:

ϕt(z) = argmin
1T v=0V

+
t (z + v), (10)

which results in optimal objective value

Vt(z) = min
1T v=0

V +
t (z + v). (11)

To minimize V +
t (z + v) we can just as well minimize

(V +
t (z + v) − bt+1)/at+1 = (r̄T

t (z + v) − wtar
t+1)

2 + (z + v)TΣt(z + v)

= (z + v)TPt(z + v) − 2wtar
t+1r̄

T
t (z + v) + (wtar

t+1)
2.

A straightforward Lagrange multiplier argument tells us that the optimal post-trade state
has the form

z + v = P−1
t (λ1 + wtar

t+1r̄t),

where λ is chosen so that 1T v = 0,

λ =
1T z − wtar

t+11
T P−1

t r̄t

1T P−1
t 1

.

Substituting this value of λ into our expression for z + v we see that the optimal v is an
affine function of z,

ϕt(z) = Kt(z − gt), (12)

where

Kt = −I +
1

1T P−1
t 1

P−1
t 11T , gt = wtar

t+1P
−1
t r̄t. (13)

Using the optimal value of z + v we obtain

Vt(z) = at+1

(

λ2(1T P−1
t 1) + (wtar

t+1)
2(1 − r̄T

t P−1
t r̄t)

)

+ bt+1

= at(1
T z − wtar

t )2 + bt,

where

at = at+1/(1T P−1
t 1), (14)

wtar
t = wtar

t+1(1
T P−1

t r̄t), (15)

bt = bt+1 + at+1(w
tar
t+1)

2(1 − r̄T
t P−1

t r̄t). (16)

Since Pt is positive definite, at > 0, so Vt(z) has the claimed form (7).
From (14), (15), and (9) we have the explicit expressions

at =
T
∏

τ=t

1

1T P−1
τ 1

, wtar
t = wtar

T
∏

τ=t

1T P−1
τ r̄τ . (17)

From (16) and (9) we have

bt =
T

∑

τ=t

aτ+1(w
tar
τ+1)

2(1 − r̄T
τ P−1

τ r̄τ ). (18)
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Expression for V +
t−1 from Vt. Now suppose that Vt has the form (7). Assuming x+

t−1 = z,
we have xt = At−1z (which is random), from which point the optimal objective value is
Vt(xt). It follows that the optimal objective value starting from x+

t−1 = z is

V +
t−1(z) = EVt(At−1z)

= atE(rT
t−1z − wtar

t )2 + bt

= at

(

(r̄T
t−1z − wtar

t )2 + zT Σt−1z
)

+ bt.

We have therefore shown that, if Vt has the form (7), V +
t−1 has the form (8), for t = 2, . . . , T .

Summary. We have shown that the pre- and post-trade optimal value functions Vt and
V +

t have the forms given in (7) and (8), where at, wtar
t , and bt are given in (17) and (18).

The optimal policy is affine,
ϕ(z) = Kt(z − gt),

where Kt and gt are given in (13).
The optimal objective value for the stochastic control problem is given by

J⋆ = V1(x1) = a1(w1 − wtar
1 )2 + b1. (19)

Interpretations. We have seen that each post-trade state is a linear combination of P−1
t r̄t

and P−1
t 1. The portfolio (1/r̄T

t P−1
t r̄t)P

−1
t r̄t is the one that minimizes variance after one

period of investment, zT Σtz, subject to a mean return of one, r̄T
t z = 1. (This constraint

implies that zT Ptz = zT Σtz + 1.) When there is a risk-free asset, the minimum variance
is zero and this portfolio is concentrated in the risk-free asset; see below. The portfolio
(1/1T P−1

t 1)P−1
t 1 is the portfolio that minimizes the return second moment zT Ptz subject

to unit investment, i.e., 1T z = 1. It in turn can be expressed as a linear combination of the
first portfolio, and one that minimizes one-step variance, subject to unit investment.

Each post-trade portfolio is on the mean-variance efficient frontier for the single period
investment problem; wtar

t determines which point on the frontier we choose in period t.

Risk-free asset. Suppose asset 1 is risk-free with return (rt)1 = µt > 0. (We assume
that there are no other risk-free assets.) This means that Σt has zero first row and column,
with the remaining submatrix positive definite, and the first component of r̄t is µt. Then
P−1

t r̄t = (1/µt)e1, where e1 is the first standard unit vector. (This portfolio achieves zero
one-step variance, with mean return one.)

Several other expressions appearing above simplify in this case. We have r̄T
t P−1

t r̄t = 1,
from which it follows that bt = 0, and the optimal objective value is just a1(w1 −wtar

1 )2. We
have 1T P−1

t r̄t = 1/µt, so wtar
t = wtar ∏T

τ=t(1/µτ). In other words, the target just scales with
the risk-free return at each step. The vector gt has the simple form gt =

∏T
τ=t(1/µτ)e1.
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Computation. The only significant computation is in computing P−1
t r̄t and P−1

t 1. (If
there is a risk-free asset, then only P−1

t 1 involves computation.) If we exploit no structure
in Pt, these can both be computed from one Cholesky factorization of Pt, which costs n3/3
arithmetic operations. In the general case, then, the cost of determining the optimal policies
is O(Tn3). The optimal gain matrix Kt is diagonal plus rank one, and can be stored in this
form. Computing ut = Kt(xt − gt) can then be carried out with O(n) cost. If Pt does not
depend on time, we evidently need to compute P−1

t r̄t and P−1
t 1 only once.

One common form for Σt, especially when n is large, is diagonal plus rank k, with k ≪ n.
(This corresponds to a factor model with k factors.) In this case Pt is diagonal plus rank
k+1, so P−1

t r̄t and P−1
t 1 can be computed efficiently using for example the Sherman Morrison

Woodbury formula, at O(nk2) cost. For a problem with n = 10000 assets and k = 30 factors
(say), P−1

t r̄t and P−1
t 1 can be computed in a handful of milliseconds, on a typical 2GHz

personal computer.

4 Suboptimal policies for the constrained case

In this section we describe two heuristics for finding suboptimal trading policies when the
constraint sets Ct are not the basic one Cbasic, e.g., if there are nonzero linear transaction
costs or a no-shorting constraint is imposed.

The optimal objective value for the associated unconstrained case, obtained by replacing
Ct with Cbasic, which is easily obtained using the methods described in §3, provides a lower
bound on the optimal objective value for the constrained problem. To see this we note that
an optimal policy for the constrained problem is also a feasible policy for the unconstrained
problem, since Ct ⊆ Cbasic, from which it follows that the optimal value obtained is no more
than the optimal value for the unconstrained problem. For any suboptimal policy for the
constrained case, we can compare its objective value obtained (evaluated using Monte Carlo,
in general) to the optimal objective value for the associated unconstrained problem. If these
numbers are close, we can be certain that the suboptimal policy is nearly optimal.

4.1 Projected affine policies

Our first suboptimal policy is simple: We simply project the optimal action (trade) for the
associated unconstrained problem, given by Kt(xt − gt), onto the constraint set:

ut = ϕpa
t (xt) = argmin(xt,v)∈Ct

‖v − Kt(xt − gt)‖2. (20)

The super script ‘pa’ stands for ‘projected affine’. With the projected affine policies, we
execute the feasible trade that is closest to the one for the associated unconstrained problem.
In the terms of dynamic programming, ϕpa

t is a simple policy approximation method.
When Ct is convex, evaluating (20) requires solving a convex optimization problem, and so

is tractable. When Ct is polyhedral, evaluating ϕpa
t (xt) involves solving a (convex) quadratic

program (QP). In simple cases (e.g., when the constraints include just linear transaction
costs) we can work out an explicit form for, or simple algorithm for computing, ϕpa

t (xt).
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When Ct is not convex, computing the projection can be a hard problem. In some cases,
however, it can be efficiently computed, for example by solving a convex relaxation. For
more on convex optimization, see, e.g., [7].

Linear transaction costs. As an example, consider the case with linear transaction costs,
but no other constraints,

Ctrans = {(x, u) | 1T u + κT
buyu+ + κT

sellu− = 0}.

To evaluate ut, we must solve the problem

minimize ‖v − uopt
t ‖2

subject to 1T v + κT
buyv+ + κT

sellv− = 0,
(21)

with variable v, where uuopt
t = Kt(xt − gt) is the optimal trade vector for the unconstrained

problem. We first form the convex relaxation

minimize ‖v − uopt
t ‖2

subject to 1T v + κT
buyv+ + κT

sellv− ≤ 0,
(22)

with variable v.
The relaxed problem (22) can be solved; using a simple Lagrange multiplier argument,

it can be shown that

ut = (uuopt
t − λ(1 + κbuy))+ − (uuopt

t − λ(1 − κsell))−,

where uuopt
t = Kt(xt − gt) is the optimal trade vector for the unconstrained problem, and λ

is the solution of the equation

1T ut + κT
buy(ut)+ + κT

sell(ut)− = 0. (23)

When uuopt
t 6= 0, the lefthand side is a decreasing piecewise linear function of λ, which is

positive for λ = 0 and zero for λ = maxi ui/(1 + (κbuy)i), so the solution is readily found by
bisection. Since ut satisfies (23), it is evidently feasible for, and therefore optimal for, the
nonconvex problem (20). (Note that we use 1T uopt

t = 0 to show that the relaxed solution
solves the original problem; for general uopt

t , the solutions of (20) and (22) need not be the
same.)

No-shorting constraint. With no transaction costs and no-shorting constraints, i.e.,

Ct = {(x, u) | 1T u = 0, x + u ≥ 0},

evaluating ϕpa
t (xt) entails solving a convex QP, which has the simple solution

ut = min(uopt
t ,−xt).
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4.2 Control-Lyapunov policies

Our second suboptimal trading policy is motivated by (12), which states that the optimal
trade is the feasible one that maximizes the post-trade optimal value function. The policy is

ut = ϕclf
t (xt) = argmin(xt,v)∈Ct

V +
t (xt + v), (24)

where V +
t is the optimal post-trade value function for the associated unconstrained problem,

described in §3. When Ct is convex, evaluating ϕclf
t (xt) is a convex optimization problem;

when Ct is polyhderal, it is a QP. When Ct is not convex, evaluating ϕclf
t (xt) can be hard,

and we may need to resort to an approximation, for example by solving a convex relaxation.
The trading policy defined by (24) is called a control-Lyapunov policy ; here V +

t is called
the associated control-Lyapunov function. If V +

t were replaced by the true post-trade optimal
value function for the constrained problem (which is not in general quadratic), then (24)
would give the optimal policy. In the terms of dynamic programming, ϕclf

t is a simple value
function approximation method. For more on control-Lyapunov policies, see [10, 17, 29, 30,
31].

We can give a simple interpretation of (24). By solving (24), we find the optimal trade at
time period t, assuming that, from time period t + 1 on, there are no further constraints or
trading costs, i.e., we replace Ct+1, . . . , CT with Cbasic. Thus, we are underestimating the true
optimal objective value, and the trading policy (24) can therefore, and roughly speaking,
result in more trading than would take place under the optimal policy. But we will see that
it still often results in a very good trading policy.

No trade zone. When Ct is a convex cone, the (necessary and sufficient) optimality con-
dition for (24) is

(xt, v) ∈ Ct, ∇V +
t (xt + v) ∈ C∗

t , ∇V +
t (xt + v)T v = 0,

where C∗
t is the dual cone of Ct. (See, e.g., [7].) From this we can find the necessary and

sufficient condition under which v = 0 is a solution of (24):

(xt, 0) ∈ Ct, ∇V +
t (xt) ∈ C∗

t . (25)

If C∗
t has nonempty interior (which occurs when Ct is pointed) then (25) defines a cone of

portfolios, with nonempty interior, for which no trading is done. In other words, (25) defines
a no-trade zone.

Let us work out this condition more explicitly for the specific case of linear transaction
costs, with

Ct = {u | 1T u + κT
buyu+ + κT

sellu− ≤ 0}.
The dual cone is

C∗

t = {c | − (1 + κbuy) ≤ c/ν ≤ −(1 − κsell) for some ν > 0} ∪ {0}.
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Therefore there is no trading in time period t if and only if

max
i=1,...,n

di

1 + (κbuy)i
≤ min

i=1,...,n

di

1 − (κsell)i
.

where d = −(Ptxt − wtar
t+1r̄t).

Self-validating property. The control-Lyapunov policy is self-validating, in the following
sense. If we replace V +

t in (24) with the actual cost-to-go function for the constrained
problem, then (24) defines the optimal policy for the constrained problem. If the actual
cost-to-go function is close to the quadratic function V +

t , we can guess that the control-
Lyapunov policy will be close to optimal. From this we can guess that the performance
will be nearly optimal, which in turn suggests that the actual cost-to-go function will be
close to the quadratic function V +

t . In summary, and very roughly: If the control-Lyapunov
policy achieves performance that is close to the performance obtained for the unconstrained
problem, the assumption on which it is based, i.e., that V +

t is a good approximation of the
actual cost-to-go function, will be valid.

5 Example

In this section we illustrate the trading algorithms described above with a numerical example
with simulated returns. We first describe how the return model was generated. Our goal is
to obtain a simple return model that captures (at least crudely) some of the typical features
seen in real return models.

5.1 Return model

We will let p denote the number of trading days per year and q the number of years that
will be considered, so the total number of trading periods is T = pq. We take the returns rt

to be independent identically distributed with a log-normal distribution, i.e.,

log(rt) ∼ N (µ/p, S/p),

where µ and S are the mean and variance of the log annual returns. We choose S and µ as
follows. Asset 1 will be a risk free asset with log annual return µ1 = µrf , so Sij = 0 for i = 1
or j = 1. For the remaining assets we set

Sii = (σmax(i − 1)/n)2 , i = 1, . . . , n,

so the assets have log annual return standard deviations linearly varying from 0 (the risk
free asset) to σ2

max (the riskiest asset). We set log annual return means as

µi = µrf + ρSii, i = 1, . . . , n,
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where ρ is the reward-to-risk ratio.
The off-diagonal elements of S are given by

Sij = (SiiSjj)
1/2 Cij , i, j = 1, . . . , n,

Here C is the matrix of log annual return correlation coefficients. We choose C so that the
correlations between log annual returns range from around −0.1 to 0.9 or so. To do this we
generate a matrix Z ∈ Rn×n will all entries drawn from a standard Gaussian distribution,
then form Y = ZZT + λ11T , where λ > 0, and finally we take

C = diag(Y
−1/2
11 , . . . , Y −1/2

nn )Y diag(Y
−1/2
11 , . . . , Y −1/2

nn ).

We choose λ so the minimum entry of C is around −0.1.
We now describe the particular numerical instance we use in the simulations. We have

n = 10 assets, and trade monthly for 10 years, i.e., p = 12, q = 10, so T = 120. The risk-free
log annual return is µrf = 2%, and the reward-to-risk ratio is ρ = 0.4. We take σmax = 40%,
so the asset log annual return standard deviations range from 0 to 25% in 4.44% increments,
and the log annual mean returns range from 2% to 18% in 1.78% increments.

We emphasize that the details of our return statistics are given here only for completeness;
we have tried our methods with several other return statistics, with similar results.

5.2 Simulations

Our initial portfolio has total value one entirely invested in the risk-free asset, i.e., x1 = e1.
We take the desired final wealth to be wdes = 2.5937, which represents a log annual growth
rate of 10% per year, which is in the middle of the range of asset returns.

We generate N = 1000 return realizations, and for each realization we simulate the
portfolio evolution with several constraint sets and trading policies.

• Unconstrained case.

– Optimal policies.

– Optimal buy-and-hold strategy, in which we choose u1 to optimize the objective
with u2 = · · · = uT = 0. (The optimal u1 can be found by solving a QP.)

• Linear transaction costs. We impose a 0.25% transaction cost for buying and selling
all assets except the risk-free one.

– Projected affine policies.

– Control-Lyapunov policies.

– Optimal buy-and-hold strategy, which can be found by solving a QP.

• Linear transaction costs with no-shorting constraint.

– Projected affine policies.

– Control-Lyapunov policies.

– Optimal buy-and-hold strategy, which can be found by solving a QP.

12
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Figure 1: Wealth trajectories for unconstrained case with optimal policies.

5.3 Unconstrained case

From (19) we find that J⋆ = 2× 10−6, so the RMS final wealth error is
√

J⋆ = 0.0014. This
small value means that the final wealth obtained with the optimal policies is very near the
desired final wealth. This is confirmed in our simulations of 1000 trajectories, for which the
final wealth has average 2.5937 (which is the desired wealth to four significant figures) and
(negligible) standard deviation 4×10−11. Ten wealth trajectories are shown in Figure 1. The
figure also shows two dotted curves: 1.02t (the growth of one dollar invested in the risk-free
asset), and wtar

t = 2.5937(1.02)T−t (the desired final wealth’s present value at time t, using
the risk-free rate).

The optimal trading policy starts with aggressive, highly leveraged trading. After the
first trade (which is the same for all trajectories since the initial portfolio is always x1 = e1),
the total short position, 1T (x2)−, is around 60. Once the wealth gets near the target wealth
value, however, most of the portfolio is shifted to, and maintained in, the risk-free asset.

For one of the ten trajectories plotted, the total wealth drops to smaller than half the
original wealth before regaining value, and ultimately finishing with a wealth very close to
the desired value (as all trajectories do). In fact, the wealth can drop to a negative value
before recovering. This occurs in 7.7% of the trajectories. (The objective in our problem
formulation does not depend on intermediate wealth values, so we cannot complain about
this. Methods described in §6 can be used to reduce large fluctations in intermediate wealth.)

We also simulate the optimal buy-and-hold strategy, for comparison. This has optimal
objective value (obtained from the QP) 0.4845, which is consistent with the empirical value
from our simulations, 0.4820. The average final wealth is 2.2407, with standard deviation

13



0 20 40 60 80 100 120
0

0.5

1

1.5

2

2.5

3

t

w
t

Figure 2: Wealth trajectories for unconstrained case, with optimal buy-and-hold
policy.

0.5999. Figure 2 shows wealth trajectories for the optimal buy-and-hold strategy. One
(favorable) trajectory goes off our plot, reaching a final wealth of wT+1 ≈ 4.5.

We can see that the final wealth has a very large standard deviation, as we would expect.
For example, the probability of the final wealth falling below a 9.5% annual return is 67.4%
for the optimal buy-and-hold policy (whereas, in comparison, it is essentially zero for the
the optimal trading policy).
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5.4 Linear transaction costs

We now consider the case with 0.25% linear buying and selling transaction costs on all assets
except the risk-free asset. The projected affine, control-Lyapunov, and optimal buy-and-hold
strategies are simulated for each realization.

The projected affine policy is found using the simple method described in §4.1. For the
control-Lyapunov policy, we solve the convex relaxation of the problem, using the (convex)
constraint

1T ut + κT
buy(ut)+κT

sell(ut)− ≤ 0, (26)

which yields a QP. This constraint allows for the possibility of discarding money, and while
we cannot prove that the relaxation is always tight, this is the case is all of our simulations.
Simulation of the control-Lyapunov policies required the solution of 120000 QPs. To do
this in reasonable time, we implemented a basic primal-dual interior-point method for this
specific QP, using the C code generation feature of CVXMOD [24]. This custom C code
solves the QP in around 100µsec on a 2GHz PC. (The results were verified using CVX [18].)

The control-Lyapunov policies perform very well, with average cost J = 2 × 10−5, cor-
responding to RMS final wealth error

√
J = 0.0045, which is small enough to mean that,

as with the optimal policy for the unconstrained case, the final wealth is always very close
to the desired final wealth. Indeed, the final wealth has average (over the 1000 realizations)
2.5914 and standard deviation 0.0039.

The projected affine policies perform a bit worse, obtaining J = 0.0053, corresponding
to RMS final wealth error

√
J = 0.0728. The final wealth has average 2.5506 and standard

deviation 0.0583.
For the optimal buy-and-hold policy, the objective value is 0.4897, corresponding to RMS

final wealth error
√

J = 0.6998. The final wealth has a mean 2.2369 and standard deviation
0.6020.

Figures 3, 4, and 5 show ten wealth trajectories when the projected affine, the control-
Lyapunov, and the optimal buy-and-hold policies are used, respectively. The probability
of the final wealth falling below 9.5% annual return is 67.3% for the optimal buy-and-hold
policy. It is 5.2% for the projected affine policy, and 0% (none out of our 1000 trajectories)
for the control-Lyapunov policy.

As in the optimal policies for the unconstrained case, there is agressive leveraging in the
first step of the projected affine policy, with a total short position in x2 around 60. With
the control-Lyapunov policy, however, there is much less leveraging; the total short position
in x2 is around 3. The projected affine policies trade at each step, but the control-Lyapunov
policies do not trade around 9% of the time.

The plots show that the total wealth can become negative at some intermediate time;
for example, one trajectory in Figure 3 drops to a wealth of −0.5 dollars before recovering.
This occurs in 23.3% of the trajectories for projected affine policies, 8.7% of the trajectories
for control-Lyapunov policies, and never for the optimal buy-and-hold policy.
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Figure 3: Some wealth trajectories for the projected affine policy with linear trans-
action costs.
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Figure 4: Some wealth trajectories for the control-Lyapunov policy with linear trans-
action costs.
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Figure 5: Some wealth trajectories for the optimal buy-and-hold policy with linear
transaction costs.
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Figure 6: Some wealth trajectories for the control-Lyapunov policy with transaction
costs and no-shorting constraints.

5.5 Linear transaction costs and no-shorting constraint

We now consider the case with 0.25% linear transaction costs (except on the risk-free asset)
and a no-shorting constraint. The projected affine, control-Lyapunov, and buy-and-hold
strategies are simulated for each realization, using the convex relaxation (26) instead of the
linear transaction cost constraint. To solve the 240000 QPs for the simulations, we used a
custom generated primal-dual solver as described above for the linear transactions case.

The control-Lyapunov policies obtain J = 0.0773, corresponding to RMS final wealth
error 0.2780. This is significant, especially when compared to the unconstrained or linear
transaction cost cases considered above. The final wealth has mean 2.5298 and standard
deviation 0.2707.

The projected affine policies perform much worse, obtaining J = 1.8842. The final wealth
has mean 1.2211 and standard deviation 0. In fact, the projected affine policies never trade;
all final wealth values are an initial investment of 1 help in the risk-free asset the entire time.
For the optimal buy-and-hold policy, the objective value is 0.5500; the final wealth has a
mean 2.1485 and standard deviation 0.5931.

Figures 6 and 7 show ten wealth trajectories when the control-Lyapunov and the buy-
and-hold policies are used, respectively.

The probability of the final wealth falling below 9.5% annual return is 73.7% for the
optimal buy-and-hold policy, 100% for the projected affine policy, and 6.3% for the control-
Lyapunov policy. The control-Lyapunov policy does not trade 19% of the time.
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Figure 7: Some wealth trajectories for the optimal buy-and-hold policy with trans-
action costs and no-shorting constraints.

6 Variations and extensions

The methods described in this paper can be generalized and modified in many ways, some
of which we describe here.

General linear dynamics. We have taken At to be diagonal, but everything works when
At has off-diagonal elements (with suitable modification of the formulas). Off-diagonal ele-
ments can be used to model (random) dividend payments.

Cash in and out. So far we have required self financing. But we can allow cash in and
cash out (as in retirement planning). In the unconstrained case we replace 1T ut = 0 with
1T ut = dt, where dt is the deposit into the account (if positive) or withdrawal (if negative).

Constraint set. A wide variety of constraints can be handled, either exactly (if convex)
or approximately (if nonconvex). Examples include maximum and minimum allowed values
for ut and x+

t , or a leverage limit such as

1T (xt + ut)− ≤ η1T (xt + ut)+,

which limits the total short position to a factor η times the total long position. (This can
be re-written as a convex cone constraint on (xt, ut).)
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Other transaction costs. We have use a simple linear transaction cost model, but many
others can be used, including quadratic or fixed-plus-linear transaction costs. (The latter
can be handled using the methods described in [22].)

Objective function. We can add a cost for tracking a wealth trajectory along the way,
such as

J = E
T+1
∑

t=2

αt(wt − wdes
t )2,

where (wdes
2 , . . . , wdes

T+1) is a desired trajectory that we want to track, and αt ≥ 0 are weights.
Taking αT+1 = 1 and αt = 0 for t = 2, . . . , T recovers the problem presented in §2. One
simple choice for the target wealth trajectory is wdes

t = w1(w
des/w1)

t/T , which corresponds
to a constant wealth growth rate.

We can also add a quadratic penalty to penalize large trades,

J = E
T+1
∑

t=2

αt(wt − wdes
t )2 +

T
∑

t=1

ρt‖ut‖2, (27)

where ρt ≥ 0 are trading penalty weights.
In both of these cases, the methods described in §3 can be used to work out the optimal

policy for the unconstrained case. Both Vt and V +
t are convex quadratic functions, which

can be found using DP. (The particular formulas for these differ from the ones given in §3.)

7 Conclusions

We have shown that, for the unconstrained case with a mean-square final wealth error
objective, the multi-period portfolio optimization problem can be solved exactly, using DP.
The optimal trading strategy is affine, and the pre- and post-trade optimal value functions
are convex quadratic.

We proposed two suboptimal policies for the case when there are transaction costs or
constraints. Our examples show that the first one, which simply projects the optimal trade
for the unconstrained case onto the constraint set, can work reasonably well in some cases,
but can fail in others. The second policy, of the control-Lyapunov type, however, works
well in more cases. In some cases (for example, with linear transaction costs), it can deliver
performance that is very close to the unconstrained case. Even in cases where the basic idea
behind the control-Lyapunov policy does not apply (i.e., the actual value function for the
constrained problem is not close to the value function for the unconstrained problem), the
control-Lyapunov policies seem to do very well.

Our final comment is about how the methods of this paper might be used. Control policies
designed by linear-quadratic stochastic control methods are widely used in traditional control
engineering applications. In these applications, the quadratic objective functions are not
considered to be the true engineering objectives; rather they are thought of as surrogates
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for the true engineering objectives. The weights in the objective function are then tuned to
give good simulation results. For some description of this, see, e.g., [2].

We suggest the same approach can be used for multi-period portfolio optimization, us-
ing control-Lyapunov policies to handle constraints. We use the objective (27) instead of
the objective (6), and tune the parameters and weights (i.e., wdes

t , αt, ρt) to obtain good
performance, as judged by Monte Carlo simulation.
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