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Abstract

We consider the problem of minimizing the largest generalized eigenvalue of a pair of sym-
metric matrices, each of which depends a�nely on the decision variables. Although this
problem may appear specialized, it is in fact quite general, and includes for example all
linear, quadratic, and linear fractional programs. Many problems arising in control theory
can be cast in this form.

The problem is nondi�erentiable but quasiconvex, so methods such as Kelley's cutting-
plane algorithm or the ellipsoid algorithm of Shor, Nemirovksy, and Yudin are guaranteed
to minimize it. In this paper we describe relevant background material and a simple interior
point method that solves such problems more e�ciently. The algorithm is a variation on
Huard's method of centers, using a self-concordant barrier for matrix inequalities developed
by Nesterov and Nemirovsky. (Nesterov and Nemirovsky have also extended their potential
reduction methods to handle the same problem [NN91b].)

Since the problem is quasiconvex but not convex, devising a non-heuristic stopping cri-
terion (i.e., one that guarantees a given accuracy) is more di�cult than in the convex case.
We describe several non-heuristic stopping criteria that are based on the dual of a related
convex problem and a new ellipsoidal approximation that is slightly sharper, in some cases,
than a more general result due to Nesterov and Nemirovsky.

The algorithm is demonstrated on an example: determining the quadratic Lyapunov
function that optimizes a decay rate estimate for a di�erential inclusion.

Key words: quasiconvex nondi�erentiable optimization, generalized eigenvalue, linear
fractional programming, analytic center, method of centers, interior point method, logarith-
mic barrier, Newton algorithm, path-following method, ellipsoidal approximations.
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1 Introduction

In this paper we consider the problem of minimizing the maximum generalized eigenvalue of
a (symmetric, symmetric-positive-de�nite) pair of matrices that depend a�nely on a vari-
able x that is subject to some convex constraints. This problem includes linear fractional
programming as a special case. Our main motivation, however, is control theory, in which
generalized eigenvalue minimization arises in many contexts, e.g., optimal scaling of matri-
ces with block-structured similarity transformations, determining Lyapunov functions that
optimize some objective (such as stability margin), and determining a joint Lyapunov func-
tion and state feedback that optimize some objective (see for example [BGFB93, FBB92,
FBBEG92, EGBFB92, BFBG92]).

The problem is quasiconvex and so can be solved reliably by several methods, for example,
the ellipsoid algorithm developed by Shor, Nemirovsky, and Yudin [Sho85, NY83, BGT81,
BB91] or Kelley's cutting plane algorithm [Kel60, BB91]. In this paper we describe an
interior point algorithm that solves the problem, and appears to be very e�cient compared
to these methods. We give a simple proof of convergence for our algorithm, but we do not
give a detailed complexity analysis.

The same problem has been considered by Nesterov and Nemirovsky, who have also
developed an interior point algorithm to solve it [NN91b]. Moreover, they give a complete
complexity analysis of their algorithm.

Since the problem is not convex, the problem of developing a stopping criterion or con-
dition is more complicated than for convex problems. (In convex problems duality theory
often gives us a simple stopping condition that requires little extra computation.) We pro-
pose several stopping conditions that can be used for generalized eigenvalue minimization.

When the \denominator" matrix is constant, the problem reduces to minimizing the
maximum eigenvalue of a symmetric matrix that depends a�nely on x. In this case, the
problem is in fact convex (but still nondi�erentiable). Many researchers have considered
this problem. Relevant work includes Cullum et al [CDW75], Craven and Mond [CM81],
Polak and Wardi [PW82], Fletcher [Fle85], Shapiro [Sha85], Friedland et al. [FNO87], Goh
and Teo [GT88], Panier [Pan89], Allwright [All89], Overton [Ove88, Ove92, OW93, OW92],
Ringertz [Rin91], Fan and Nekooie [FN92], and Fan [Fan92]. In [BY89], Boyd and Yang
use the cutting-plane algorithm and Shor's subgradient method [Sho85] to solve eigenvalue
minimization problems that arise in control theory. They also describe a saddle point method
for eigenvalue mimimization due to Pyatnitski and Skorodinsky [PS83].

Interior point methods for eigenvalue minimization have recently been developed by sev-
eral researchers. The �rst were Nesterov and Nemirovsky [NN88, NN90b, NN90a, NN91a,
NN93]; others include Alizadeh [Ali92b, Ali91, Ali92a], Jarre [Jar91a], and Vandenberghe
and Boyd [VB93].

Of course, general interior point methods (and the method of centers in particular) have
a long history. Early work includes the SUMT book by Fiacco and McCormick [FM68],
the method of centers described by Huard et al. [LH65, Hua67], and Dikin's interior point
method for linear programming [Dik67]. Interest in interior point methods, mostly for lin-
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ear and quadratic programs, surged in 1979 when Khachyian used the ellipsoid method
developed by Shor, Nemirovsky, and Yudin to prove that linear programs can be solved in
polynomial time [Kha79, GL81]. Interest surged again in 1984 when Karmarkar [Kar84]
gave his interior point method for solving linear programs, which appears to have very good
practical performance as well as a good worst-case complexity bound.

Since the publication of Karmarkar's paper, many researchers have studied interior point
methods for linear and quadratic programming. These methods are often described in such
a way that extensions to more general (convex) constraints and objectives are not clear.
However, Nesterov and Nemirovsky have developed a theory of interior point methods that
applies to more general convex programming problems, and in particular, problems involving
eigenvalue minimization and matrix inequality constraints (see the book [NN93]). Other
recent articles that consider interior point methods for more general convex programming
include Sonnevend [Son88], Jarre [Jar91b], Kortanek et al. [KPY91], and the survey by
Wright [Wri92].

1.1 Outline

In the remainder of section 1 we describe the notation used throughout this paper, the
problem we consider (along with the assumptions), and some duality results and optimality
conditions for our problem. In section 2 we show how many convex constraints can be cast in
the form of an a�ne matrix inequality, and similarly, how many quasiconvex objectives can
be expressed as maximum generalized eigenvalues of a pair of matrices that depend a�nely
on a variable. This justi�es our claim that the problem is much more general than it might
�rst appear.

In section 3 we discuss the idea of the analytic center of an a�ne matrix inequality, and
in section 4 we describe the method of centers and give a simple proof of convergence. In
the two following sections we discuss some important \details" of the method of centers:
nonheuristic stopping criteria and some issues that arise in implementation.

In section 7 we present an example: �nding a quadratic Lyapunov function for a dif-
ferential inclusion that optimizes a decay rate estimate. Numerical results are given for an
instance of this problem, and compared to the performance of the ellipsoid algorithm.

1.2 Notation

Throughout this paper we use the following notation. R denotes the set of real numbers,Rm

the set of real (column) vectors with m components, and Rp�q denotes the set of real p � q

matrices. I will denote the identity matrix, with size determined from context. XT is the
transpose of the matrix or vectorX; for an invertiblematrix we abbreviate (X�1)T = (XT )�1

as X�T . N (X) denotes the nullspace of X. TrX is the trace of a matrix X 2 Rn�n, i.e.,

TrX
�
= X11 + � � � + Xnn. Since we will often encounter expressions of the form Tr(XY )

with X and Y symmetric matrices (Tr(XY ) is the natural inner product), we will write
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it as TrXY . In other words, matrix multiplication has higher precedence than the trace
operator.

For symmetric matrices X = XT , Y = Y T 2 Rn�n, X < Y refers to the partial
ordering of symmetric matrices with respect to the cone of positive de�nite matrices, i.e.,
zTXz < zTY z for all nonzero z 2 Rn. For matrices X and Y , X � Y will denote the block
diagonal matrix formed from X and Y , i.e.,

X � Y
�
=

"
X 0
0 Y

#
:

The largest eigenvalue of a symmetric matrix X = XT 2 Rn�n will be denoted �max(X).
For a matrix (or vector) X, kXk will denote the spectral norm or largest singular value of

X, i.e., kXk
�
=
�
�max(XTX)

�1=2
. (If X is a vector, kXk reduces to the Euclidean norm,

kXk =
�
XTX

�1=2
.) kXkF denotes the Frobenius norm of a matrix, kXkF

�
=
�
TrXTX

�1=2
.

For a matrix X = XT � 0, X1=2 will denote the symmetric square-root.
In describing algorithms, a superscript of the form (k), as in x(k), will denote the value

of a variable at the kth iteration. The symbol := will denote assignment.

1.3 Maximum generalized eigenvalue

The generalized eigenvalues of the pair X = XT , Y = Y T > 0, are the roots of det(�Y �X),
or equivalently, the eigenvalues of Y �1=2XY �1=2 (which of course are real). Throughout this
paper we only encounter generalized eigenvalues of pairs of matrices X, Y with X = XT

and Y = Y T > 0.
The maximum generalized eigenvalue of the pair X, Y , denoted �max(X;Y ), can be

characterized in several ways:

�max(X;Y )
�
= maxf � 2 R j det(�Y �X) = 0 g (1)

= �max

�
Y �1=2XY �1=2

�
(2)

= inf f � 2 R j �Y �X > 0 g (3)

= sup
n
vTXv

��� vTY v = 1
o

(4)

= sup

(
TrXU

TrY U

����� U = UT � 0; U 6= 0

)
: (5)

The maximum generalized eigenspace of the pair X, Y refers to

Vmax(X;Y )
�
= N (�max(X;Y )Y �X) :

Excluding 0, these are precisely the vectors that achieve the supremum in (4), when scaled so
that vTY v = 1. Similarly, the matrices that achieve the supremum in (5) can be described in
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terms of Vmax(X;Y ) as follows. Let u1; : : : ; up, with p � 1, be nonzero vectors in Vmax(X;Y ),
and �1; : : : ; �p > 0. Then

U = �1u1u
T
1 + � � �+ �pupu

T
p (6)

satis�es U = UT � 0, U 6= 0, TrXU=TrY U = �max(X;Y ). Conversely, any such U can be
expressed as (6) for suitable choice of ui and �i. (Indeed, we can choose these vectors to
be orthonormal, but we won't need this fact.) Thus, the cone of matrices that achieve the
supremum in (5) is generated by the dyads uuT formed from u 2 Vmax(X;Y ).

On any region in which Y > 0, �max(X;Y ) is a quasiconvex function of the matrices
X = XT and Y = Y T , which means that for each � 2 R, the sublevel set

f (X;Y ) j X = XT ; Y = Y T > 0; �max(X;Y ) < � g

is convex, since it can be expressed as

f (X;Y ) j X = XT ; Y = Y T > 0; �Y �X > 0 g:

Quasiconvexity can also be characterized as follows. For any symmetricX, ~X , Y > 0, ~Y > 0,
and 0 � � � 1,

�max(�X + (1� �) ~X; �Y + (1 � �) ~Y ) � maxf �max(X;Y ); �max( ~X; ~Y ) g:

For �xed Y > 0, �max(X;Y ) is a convex function of X, but in general it is not a convex
function of X and Y .

Whenever the dimension of Vmax(X;Y ) exceeds one, �max(X;Y ) is not a di�erentiable
function of X and Y .

1.4 The problem

We consider the optimization problem with variables x 2 Rm and � 2 R given by:

minimize
�B(x)�A(x) > 0

B(x) > 0
C(x) > 0

� (7)

or equivalently,
minimize
B(x) > 0
C(x) > 0

�max(A(x); B(x)): (8)

Here, A, B, and C are symmetric matrices that depend a�nely on x 2 Rm:

A(x)
�
= A0 +

mX
i=1

xiAi; B(x)
�
= B0 +

mX
i=1

xiBi; C(x)
�
= C0 +

mX
i=1

xiCi; (9)
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where Ai = AT
i , Bi = BT

i 2 Rr�r, and Ci = CT
i 2 Rs�s.

The form of the constraint, i.e., C(x) > 0, may seem quite specialized, but we will see in
section 2 that a large variety of constraints on x including, e.g., linear and convex quadratic
inequalities, can be expressed in this form with suitable C.

The optimum value of (8) will be denoted �opt:

�opt
�
= inf f �max(A(x); B(x)) j B(x) > 0; C(x) > 0 g : (10)

Complex Hermitian matrices are readily handled by representing them in the standard
way as real symmetric matrices which are twice as big. For example, if A and B in (8) are
complex Hermitian, we form the real symmetric matrices

~A(x)
�
=

"
<A(x) �=A(x)
=A(x) <A(x)

#
; ~B(x)

�
=

"
<B(x) �=B(x)
=B(x) <B(x)

#

and solve (8) with ~A, ~B, and C.

1.5 Assumptions

We make the following assumptions about the data in problem (8):

1. The problem is feasible and we are given an initial feasible point, i.e., we know �(0)

and x(0) with �(0)B(x(0))�A(x(0)) > 0, B(x(0)) > 0, and C(x(0)) > 0.

2. B is bounded away from singularity on the feasible set, i.e., we know bmin > 0 such
that C(x) > 0 =) B(x) � bminI.

3. The feasible set is bounded, i.e., there is some R such that C(x) > 0 =) kxk � R.

Let us brie
y discuss these assumptions. We can �nd appropriate �(0) and x(0), or verify
that the problem is infeasible, by solving an unconstrained (\phase I") problem, i.e., by
minimizing the maximum eigenvalue of �(C(x) � B(x)) (using the algorithm described in
this paper, or the more e�cient methods for minimizing ordinary eigenvalues mentioned in
section 1). Similarly, we can �nd an appropriate bmin, or determine that assumption (2) does
not hold, by minimizing the maximum eigenvalue of �B(x) subject to C(x) > 0.

Assumption (2) implies that the constraint B(x) > 0 appearing in (8) is redundant.
We can enforce the assumption (2) by augmenting the original constraint C(x) > 0 with
B(x) � bminI, i.e., replacing C(x) with C(x)� (B(x)� bminI) (adding this constraint may,
of course, change the problem).

Assumption (3) implies that B is bounded on the feasible set, i.e., there is a bmax such that
C(x) > 0 =) B(x) � bmaxI. Assumptions (1) and (3) imply that the matrices C1; : : : ; Cm

are linearly independent (if not, fxjC(x) > 0g contains a line passing through x(0)).
Of course the assumptions (1-3) imply that �opt is �nite.
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We make one last comment about the assumptions. A simple transformation allows us to
relax assumptions (2) and (3). With assumption (1) in force, we can replace the constraint
C(x) > 0 with C(x)� (�(0)B(x)�A(x)) > 0 without a�ecting the problem. (The additional
constraint �(0)B(x)�A(x) > 0 is equivalent to limiting the objective �max(A(x); B(x)) to be
smaller than �(0), which does nothing since x(0) is a feasible point with objective less than
�(0).) For this transformed problem, assumption (2) becomes

�(0)B(x)�A(x) > 0 and C(x) > 0 =) B(x) � bminI:

This same comment holds for assumption (3) as well. This trick allows us to consider some
problems that were, in original form, unconstrained.

1.6 Duality and optimality conditions

Consider �rst a general symmetric matrix function that depends a�nely on x, F (x)
�
=

F0 +
Pm

i=1 xiFi. Recall that

f x j F (x) > 0 g = ; () 9U = UT � 0; U 6= 0;
TrUFi = 0; i = 1; : : : ;m;
TrUF0 � 0:

(11)

This can be seen as follows. fxjF (x) > 0g is empty if and only if the a�ne set fF (x)jx 2
Rmg does not intersect the cone of positive de�nite matrices. From convex analysis, this is
equivalent to the existence of a linear functional that is positive on the positive de�nite cone
and nonpositive on the a�ne set of matrices. The equivalence (11) follows from the fact that
the linear functionals that are positive on the positive de�nite cone are exactly of the form
 (X) = TrUX where U is positive semide�nite and nonzero.

Applying (11) to F (x) = (�B(x)�A(x))� C(x) we have:

� � �opt () f x j �B(x)�A(x) > 0; C(x) > 0 g = ; (12)

() 9U = UT � 0; V = V T � 0; U � V 6= 0;
TrU(�Bi �Ai) +TrV Ci = 0; i = 1; : : : ;m;
TrU(�B0 �A0) +TrV C0 � 0:

(13)

We will use this result in section 5 to develop appropriate stopping criteria for our algorithm.
Note that we can consider the problem

maximize
U = UT � 0; V = V T � 0

TrU +TrV = 1
TrU(�Bi �Ai) +TrV Ci = 0; i = 1; : : : ;m

TrU(�B0 �A0) + TrV C0 � 0:

� (14)
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as a sort of dual problem to the quasiconvex problem (8). The problem (14), however, has
no nice convexity or quasiconvexity properties (except that for �xed �, the set of U and V
that satisfy the constraints is convex).

Let xopt be any optimal point, i.e., a limit of feasible points with maximum generalized
eigenvalue converging to �opt. Such a point xopt satis�es:

�max(A(x
opt); B(xopt)) = �opt (15)

�optB(xopt)�A(xopt) � 0 (16)

B(xopt) � bminI (17)

C(xopt) � 0 (18)

(We note, however, that conditions (15)-(18) can also be satis�ed by points that are not
limits of feasible points and hence not optimal.)

Now let Uopt and V opt be a pair of matrices that satisfy the conditions in (13) for � = �opt.
Then for all z,

TrUopt(�optB(z)�A(z)) +TrV optC(z) = �; (19)

where � does not depend on z, and � � 0. In particular for z = xopt, where xopt is any
optimal point, we conclude that

TrUopt(�optB(xopt)�A(xopt)) +TrV optC(xopt) = �: (20)

Each term on the left-hand side of this equation is the trace of the product of two nonnegative
de�nite matrices, and so must be nonnegative. So we conclude that � = 0 and moreover,
both of the terms are zero:

TrUopt(�optB(xopt)�A(xopt)) = 0; (21)

TrV optC(xopt) = 0: (22)

From (13) we know that at least one of Uopt and V opt is nonzero. In fact, our assumptions
imply that Uopt 6= 0. If Uopt = 0, then V opt satis�es TrV optCi = 0, i = 0; : : : ;m, which
by (11) implies that the constraint C(x) > 0 is infeasible.

We can describe the matrices Uopt and V opt in terms of generalized eigenvectors of A, B,
and C at xopt, as follows. From (21), Uopt is one of the matrices that achieves the supremum in
the characterization (5), i.e., Uopt � 0, Uopt 6= 0, and TrUoptA(xopt)=TrUoptB(xopt) = �opt.
Therefore, we can express Uopt as

Uopt =
pX

i=1

�iuiu
T
i ;

where ui 2 Vmax(A(xopt); B(xopt)), ui 6= 0, and �i > 0. Similarly, from (22) we have

V opt =
qX

i=1

�iviv
T
i

where vi 2 N (C(xopt)) and �i > 0. (Here, however, it is possible that q = 0, i.e., V opt = 0.)
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2 Convex constraints as a�ne matrix inequalities

In this section we discuss ways of representing convex constraints on the variable x in the
form of an a�ne matrix inequality C(x) > 0. The idea that a�ne matrix inequalities
can be used to represent a wide variety of convex constraints can be found in Nesterov
and Nemirovsky [NN90b, NN90a, NN93] (who formalize the idea of a \positive de�nite
representable" function) and Alizadeh [Ali92b, Ali91].

2.1 Multiple constraints

We �rst note that multiple constraints on x, expressed as the a�ne matrix inequalities
Ci(x) > 0, i = 1; : : : ; l, are equivalent to the single a�ne matrix inequality C1(x) � � � � �
Cl(x) > 0.

2.2 Linear constraints

The constraint aTx < b, where a 2 Rm and b 2 R, is represented by C(x) > 0, where
C(x) = b� aTx. (Here C(x) 2 R1�1.)

2.3 Convex quadratic constraints

The constraint kZ(x)k < 1, where Z is an a�ne function from Rm into Rp, is represented
as

C(x) =

"
I Z(x)

Z(x)T 1

#
> 0:

The ellipsoid described by (x�xc)TP�1(x�xc) < 1, where P = P T > 0, can be expressed
in the alternate form

C(x) =

"
P x� xc

(x� xc)T 1

#
> 0

(this matrix is related to the one above by a congruence).

2.4 Matrix norm constraints

More generally, a constraint on the norm of a matrix Z(x) 2 Rp�q that depends a�nely on
x, i.e., kZ(x)k < 1, is represented as

C(x) =

"
I Z(x)

Z(x)T I

#
> 0:
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2.5 Algebraic Riccati inequality

The (convex) Riccati constraint

ATP (x) + P (x)A+ P (x)BR�1BTP (x) +Q < 0;

where P (x) = P (x)T is an a�ne function of x, and A, B, Q = QT , R = RT > 0, are matrices
of appropriate size, can be expressed as

C(x) =

"
�ATP (x)� P (x)A�Q P (x)B

BTP (x) R

#
> 0:

These inequalities arise in control theory[BGFB93].

2.6 Schur complement constraints

The constraints described above are special cases of constraints having a \Schur complement
form":

Q(x)� S(x)R(x)�1S(x)T > 0 and R(x) > 0; (23)

where Q(x) = Q(x)T , S(x) and R(x) = R(x)T are matrices of appropriate size that depend
a�nely on the vector x. The constraint (23) can be represented as

C(x) =

"
Q(x) S(x)
S(x)T R(x)

#
> 0:

2.7 Quasiconvex functions as generalized eigenvalues

Analogously, many quasiconvex functions can be represented in the form �max(A(x); B(x))
(with some suitable constraint that ensures B(x) > 0). For example, the maximum of two
functions expressed in this form can be expressed in this form by forming block diagonal
matrices.

The sum of two quasiconvex functions expressed in the form �max(A(x); B(x)) need not
be quasiconvex, and therefore cannot in general be expressed in the same form. However, the
sum of the (convex) objectives �max(A1(x)) + �max(A2(x)) is readily handled. The problem

minimize
x 2 Rm

C(x) > 0

�max(A1(x)) + �max(A2(x))

is equivalent in the obvious way to the problem with m+ 2 variables

minimize
x 2 Rm; z 2 R2

C(x) > 0
z1I �A1(x) > 0
z2I �A2(x) > 0

�max(z1 + z2)
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which is of the form (8).
Several common convex objectives can be expressed as ordinary maximum eigenvalues,

i.e., in the form �max(A(x)). The objective kZ(x)k2, where Z(x) 2 Rp�q is an a�ne function
of x, is given by

�max

 "
0 Z(x)

Z(x)T 0

#!
:

This includes all quadratic (q = 1) and (squared) matrix norm objectives.
The usual linear fractional objective is given by

aTx+ b

cTx+ d
= �max(a

Tx+ b; cTx+ d)

(where cTx+ d > 0). So the problem (7) includes all linear, linear fractional, and quadratic
programs.

The linear fractional objective can be generalized to a quasiconvex \norm of matrix
fractional" objective as follows. Given a�ne functions N(x) = N(x)T , D(x) = D(x)T , we
have 


N(x)1=2D(x)�1=2




2 = �max (N(x);D(x))

(for N(x), D(x) > 0).
Using Schur complements we can express several interesting convex and quasiconvex

functions as maximum eigenvalues or maximum generalized eigenvalues. As an example
consider the convex function

TrN(x)TD(x)�1N(x) =



N(x)TD(x)�1=2




2
F

(24)

where N(x) 2 Rp�q and D(x) = D(x)T are a�ne functions of x (and D(x) > 0). The
objective (24) can be minimized by introducing a \slack matrix" Y 2 Rq�q:

minimize
x 2 Rm; Y 2 Rq�q; � 2 R

TrY < �"
Y N(x)T

N(x) D(x)

#
> 0

�:

The function (24) includes as a special case the quadratic-over-linear objective
kAx + bk=(cTx + d). Note also that by substituting Y < �I for TrY < � we can mini-
mize the convex function

�max

�
N(x)TD(x)�1N(x)

�
=



N(x)TD(x)�1=2




2 :
As a �nal example we consider the condition number of a positive de�nite matrix A that

depends a�nely on x, which is readily minimized as follows:

minimize
A(x)� �I > 0; � > 0

�max(A(x); �I):
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3 Analytic center of an a�ne matrix inequality

Throughout this section, which is completely independent of the others, we consider a general
a�ne matrix inequality F (x) > 0, where

F (x) = F0 +
mX
i=1

xiFi

and Fi = F T
i 2 Rn�n. We will assume that the matrices F1; : : : ; Fm are linearly independent.

We denote the feasible set by X:

X
�
= f x 2 Rm j F (x) > 0 g :

3.1 A barrier function for X

The function

�(x)
�
=

(
log detF (x)�1 x 2 X

1 x 62 X
(25)

is �nite if and only if x 2 X, and becomes in�nite as x approaches the boundary of X, i.e., it
is a barrier function for X. There are many other barrier functions for X (for example, trace
can be substituted for determinant in (25)), but this one enjoys many special properties. In
particular, when x 2 X, it is analytic and strictly convex.

We �rst give formulas for the gradient g(x) and Hessian H(x) of � at x 2 X. It is readily
shown (see appendix A) that

gi(x) = �TrF (x)�1Fi (26)

= �TrF (x)�1=2FiF (x)
�1=2 (27)

for i = 1; : : : ;m. Similarly,

Hij(x) = TrF (x)�1FiF (x)
�1Fj (28)

= Tr
�
F (x)�1=2FiF (x)

�1=2
� �
F (x)�1=2FjF (x)

�1=2
�

(29)

for i; j = 1; : : : ;m.
From (29) we can verify that � is strictly convex for x 2 X. For x 2 X and y 2 Rm,

yTH(x)y =
mX

i;j=1

yiyjTr
�
F (x)�1=2FiF (x)

�1=2
� �
F (x)�1=2FjF (x)

�1=2
�

(30)

= Tr

 
F (x)�1=2

 
mX
i=1

yiFi

!
F (x)�1=2

!2

(31)

=






F (x)�1=2
 

mX
i=1

yiFi

!
F (x)�1=2







2

F

� 0 (32)
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which establishes that � is convex in x. From (32) we see that yTH(x)y = 0 if and only ifPm
i=1 yiFi = 0. By independence of F1; : : : ; Fm, we conclude that H(x) > 0, i.e., � is strictly

convex.
For future use we note a few more important formulas. From (27) we see that for x 2 X

and z 2 Rm we have

TrF (x)�1=2F (z)F (x)�1=2 = TrF (x)�1=2
 
F (x) +

mX
i=1

(zi � xi)Fi

!
F (x)�1=2 (33)

= n � g(x)T (z � x): (34)

From (29) we have:




F (x)�1=2F (z)F (x)�1=2


2
F

= Tr

 
F (x)�1=2

 
F (x) +

mX
i=1

(zi � xi)Fi

!
F (x)�1=2

!2

(35)

= (z � x)TH(x)(z � x)� 2g(x)T (z � x) + n: (36)

The barrier function � is bounded below if and only if X is bounded. The \if" part is
clear. To see the \only if" part, suppose that X is unbounded. Since it is convex it must
contain a ray, say fx0+�vj� � 0g, where v 6= 0. Since F (x) > 0 along this ray we conclude
that

~F
�
=

mX
i=1

viFi � 0:

By independence of F1; : : : ; Fm, ~F is nonzero. It follows that detF (x0 + �v), which is a
polynomial in � with degree equal to the rank of ~F , grows at least linearly with �. Therefore,
� is unbounded below on the ray.

3.2 Analytic center

We suppose now that X is nonempty and bounded. From the discussion above we conclude
that � has a unique minimizer, which we denote x�:

x�
�
= argmin

x

�(x): (37)

We refer to x� as the analytic center of the a�ne matrix inequality F (x) > 0. Equivalently,

x� = argmax
x 2 X

detF (x); (38)

that is, F (x�) has maximum determinant, among all positive de�nite matrices of the form
F (x). Note that the analytic center is invariant with respect to congruence transformations,
i.e., the analytic center of F (x) > 0 is the same as the analytic center of ZTF (x)Z > 0 for
any nonsingular matrix Z.

12



From (27) we see that x� is characterized by

TrF (x�)�1Fi = 0; i = 1; : : : ;m; (39)

or equivalently
TrF (x�)�1F (x) = n; for all x (40)

(since the left-hand side is independent of x, and the right-hand side is its value at x�).
Thus, F (x�)�1 is orthogonal to the span of F1; : : : ; Fm.

The de�nition (37) of the analytic center of an a�ne matrix inequality follows Nesterov
and Nemirovsky [NN93] (see also Sonnevend [Son91]). It agrees with the usual de�nition
of the analytic center of a set of linear inequalities (see e.g., Sonnevend [Son86]), aTi x < bi,
i = 1; : : : ; n (which can be represented as an a�ne matrix inequality with diagonal matrices).
In this case, x� maximizes among feasible points

Qn
i=1(bi�a

T
i x), or equivalently, the product

of the distances to the constraint planes aTi x = bi.

3.3 Ellipsoidal approximations

The level curves of the barrier function � give a smooth approximation of the shape of the
boundary of X, which of course need not be smooth. Near x� the shape of these level curves
is determined by H(x�), so it seems plausible that the ellipsoids centered at x� and with
shape determined by H(x�) should give a good quadratic approximation of the shape of X.
Alternatively, it seems that X should be reasonably well conditioned in the coordinates given
by �x = H(x�)�1=2x.

This intuition is correct. The following inner and outer ellipsoidal approximations hold
for X:

Ein � X � Eout;

where the ellipsoids Ein and Eout are given by

Ein
�
=

n
x 2 Rm

��� (x� x�)TH(x�)(x� x�) < 1
o
; (41)

Eout
�
=

n
x 2 Rm

��� (x� x�)TH(x�)(x� x�) � n(n� 1)
o
: (42)

A proof is given in appendix B. The inner ellipsoidal approximation holds for a general class
of barrier functions (called self-concordant), which includes our barrier function (25), and is
given in [NN88, NN93]. The outer approximation (42) is similar to an outer approximation
given by Nesterov and Nemirovsky, which holds for these more general (self-concordant)
barriers.

3.4 Nesterov and Nemirovsky's Newton algorithm

Newton's method, with appropriate step length selection, can be used to e�ciently compute
x�, given an initial point in X. We consider the algorithm:

x(k+1) := x(k) � �(k)H(x(k))�1g(x(k)); (43)
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where �(k) is the damping factor of the kth iteration.
In [NN93], Nesterov and Nemirovsky give a simple step length rule appropriate for the

general class of self-concordant barrier functions mentioned earlier, along with a complete
convergence analysis and sharp bounds on the number of iterations required to compute the
analytic center to within a given accuracy, starting from a given initial feasible point. We
refer the reader to [NN93] for details of this generalization.

Their damping factor depends on a quantity which they call the Newton decrement of �
at x:

�(x)
�
=



H(x)�1=2g(x)




 :
(The name comes from the observation that �(x)2=2 is the di�erence between �(x) and the
minimum value of the quadratic approximation of � at x. Alternatively, �(x) is the length
of the Newton step �H(x)�1g(x) measured in the norm induced by the Hessian H(x).) The
Nesterov-Nemirovsky damping factor is:

�(k) :=

(
1 if �(x(k)) � 1=4
1=(1 + �(x(k))) if �(x(k)) > 1=4

(44)

Nesterov and Nemirovsky show that this step length always results in x(k+1) 2 X (the
inner ellipsoidal approximation in appendix (B) shows that x(k+1) 2 X provided �(k) <

1=�(x(k))). Moreover, for �(x(k)) < 1=4, we have �(x(k+1)) � 2�(x(k))2, i.e., the algorithm
converges quadratically once we start taking undamped Newton steps. They show that
whenever �(x(k)) > 1=4, �(x(k)) � �(x(k+1)) > c, where c is some absolute constant. Using
this fact they bound the number of iterations required to reach the region of quadratic
convergence.

Their analysis holds for step length given by exact line search, i.e.,

�(k) := argmin
�

�
�
x(k) � �H(x(k))�1g(x(k))

�
;

since the reduction of � while � > 1=4 must exceed the absolute constant c guaranteed using
the step length rule (44). (See section 6.5 for a discussion of exact line search.)

3.5 A least-squares interpretation

The undamped Newton step �H(x)�1g(x) can be interpreted as the solution of an appro-
priate weighted least-squares problem:

�H(x)�1g(x) = argmin
v 2 Rm




F (x)�1=2F (x� v)F (x)�1=2




F

(45)

= argmin
v 2 Rm






I �
mX
i=1

viF (x)
�1=2FiF (x)

�1=2







F

(46)
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Thus, the Newton step at x is given by projecting I onto the span of the normalized matrices
F (x)�1=2FiF (x)�1=2.

We can give a rough interpretation of this result. We are trying to make F (z) \large" (as
measured by the determinant). To do this, we �rst normalize the problem by a congruence
transformation (multiply each Fi on the left and right by F (x)�1=2), so that, in e�ect, we
have F (x) = I. Now we �nd the \smallest" F (z), as measured by the Frobenius norm. Let
us call the minimizer xsmall. The Newton step is then given by the opposite of the step from
x to xsmall. (Roughly speaking, if stepping from x to xsmall makes F \smaller", then stepping
in the opposite direction should make F \larger".)

The result can also be seen as follows. Suppose the problem has been normalized by
a congruence transformation so that F (x) = I. Now consider the two functions �(x) =
log detF (x)�1 and  (x) = 1

2
kF (x)k2F . From the formulas for the gradient and Hessian of �

(with F (x) = I) we see that the gradients of � and  at x are the same, except for a change
of sign, and the Hessians are identical. Therefore the Newton step for � is the negative of
the Newton step for  . Since  is quadratic, its Newton step is the di�erence between x and
its minimizer.

The Newton decrement at x is related to the distance between I and the span of the
normalized matrices:

n� �(x)2 = min
v 2 Rm






I �
mX
i=1

viF (x)
�1=2FiF (x)

�1=2







2

F

: (47)

Equivalently,

�(x) =







mX
i=1

viF (x)
�1=2FiF (x)

�1=2







F

(48)

where v = �H(x)�1g(x) is the Newton step. These results follow from the formula (36)
noted in section 3.2.

This least-squares interpretation of the Newton step generalizes a well known fact for
the linear inequalities aTi x < bi; i = 1; : : : ; n. In this case the Newton step is given by the
diagonally weighted least-squares problem

�H(x)�1g(x) = argmin
v 2 Rm

nX
i=1

 
aTi v

bi � aTi x
� 1

!2

:

4 The method of centers

We now consider again the problem (7):

minimize
�B(x)�A(x) > 0

C(x) > 0

�:

Let n
�
= r + s, so that (�B �A)� C 2 Rn�n (recall that A; B 2 Rr�r and C 2 Rs�s).
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4.1 Path of centers

The assumptions of section (1.5) imply that for � > �opt, the set fxj(�B(x)�A(x))�C(x) >
0g is nonempty and bounded; therefore the analytic center of the inequality (�B(x)�A(x))�
C(x) > 0 is well de�ned. We will denote this analytic center by x�(�) when we need to
emphasize its dependence on the parameter �. To simplify notation we will write x�(�) as
x� when � is understood.

From (39) we see that x� is characterized by

Tr(�B(x�)�A(x�))�1(�Bi �Ai) +TrC(x�)�1Ci = 0; i = 1; : : : ;m: (49)

The curve given by x�(�) for � > �opt is called the path of centers. It can be shown that
it is analytic and has a limit as � ! �opt, which we denote xopt (see e.g., [FM68]). xopt is
optimal, since for all � > �opt, x�(�) is feasible and

�opt � �max(A(x
�(�)); B(x�(�))) � �:

(There may be other optimal points too.) Since xopt is optimal it satis�es the conditions
given in (15){(18).

4.2 A dual bound on the path of centers

Let us �x � > �opt. Let A� denote A(x�(�)), and similarly for B� and C�.
We will show that

�� �opt � � (� � �max(A
�; B�)) (50)

where �
�
= nbmax=bmin (recall that n = r + s is the size of (�B � A)� C, and bmin and bmax

are de�ned in section 1.5). We can put (50) in the form:

�max(A
�; B�)� �opt �

 
1 �

1

�

!
(�� �opt): (51)

This equation shows that the maximum generalized eigenvalue at the analytic center of
(�B �A)� C > 0 is guaranteed to be a �xed fraction closer to �opt than �.

De�ne
U

�
= (�B� �A�)�1; V

�
= C��1:

From (49) we see that
TrU(�B(z)�A(z)) +TrV C(z) = n (52)

for all z (cf. (19)), so in particular

TrU(�B(xopt)�A(xopt)) +TrV C(xopt) = n: (53)

Since V > 0 and C(xopt) � 0, TrV C(xopt) � 0, so we have

�TrUB(xopt)� n � TrUA(xopt): (54)
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Since U > 0 and B(xopt) > bminI, TrUB(xopt) > 0 and therefore

��
n

TrUB(xopt)
�
TrUA(xopt)

TrUB(xopt)
� �max(A(x

opt); B(xopt)) = �opt (55)

(the second inequality uses (5)). Thus we have:

�� �opt �
n

TrUB(xopt)
�

n

bminTrU
(56)

(The second inequality uses TrUB(xopt) � bminTrU , which follows from B(xopt) � bminI).
Now we note that

TrU = Tr(�B� �A�)�1 �
1

(� � �max(A�; B�))kB�k

which we prove in appendix C. Finally, noting that kB�k � bmax, we have

� � �opt � (nbmax=bmin)(�� �max(A
�; B�)) (57)

which is the desired result.
This is the simplest dual bound for the objective that can be obtained; in section 5 we

derive more complicated, but better, bounds.

4.3 Basic algorithm

Perhaps the simplest optimization algorithm based on the notion of analytic center is the
method of centers due to Lieu and Huard [LH65, Hua67]. We describe here a simple variation
on the method of centers.

The algorithm is initialized with �(0) and x(0) with �(0)B(x(0))�A(x(0)) > 0 and C(x(0)) >
0, and proceeds as follows:

�(k+1) := (1� �)�max(A(x
(k)); B(x(k))) + ��(k) (58)

x(k+1) := x�(�(k+1)) (59)

where � is a parameter with 0 < � < 1.
The classic method of centers is obtained with � = 0. In this case, however, x(k) does not

(quite) satisfy the new inequality �(k+1)B(x)�A(x)� C(x) > 0. With � > 0, however, the

current iterate x(k) is feasible for the tightened inequality
�
�(k+1)B(x)�A(x)

�
� C(x) > 0,

and therefore can be used as the initial point in computing the next iterate x�(�(k+1)).
We now give a simple proof of convergence. From (51), we have

�max(A(x
(k)); B(x(k)))� �opt �

 
1�

1

�

!�
�(k) � �opt

�
: (60)
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Subtracting �opt from both sides of (58) yields

�(k+1) � �opt = (1 � �)(�max(A(x
(k)); B(x(k)))� �opt) + �(�(k) � �opt): (61)

Substituting (60) into this, we have

�(k+1) � �opt �

 
1�

1� �

�

!
(�(k) � �opt);

so that

�(k) � �opt �

 
1 �

1 � �

�

!k

(�(0) � �opt):

Thus, �(k) converges to �opt at least geometrically.

5 Stopping criteria

5.1 Objective duality gap

From (57), we see that the stopping criterion

�(k) � �max(A(x
(k)); B(x(k))) �

�bmin

nbmax

guarantees that on exit, �(k) � �opt � �, and therefore

�max(A(x
(k)); B(x(k)))� �opt � �:

This simple stopping criterion has essentially no computational cost, since �max(A(x(k)); B(x(k)))
must be computed to �nd �(k+1) anyway. In this section we investigate better lower bounds
on �opt that can be obtained with a little more computation.

Using the notation of section 4.2, we derive from (53) the inequality

�� �opt �
n�TrV C(xopt)

TrUB(xopt)
: (62)

The idea is to derive some computable upper bounds on the right-hand side.
Let us list some information we have, once we have computed x�(�):

C(xopt) � 0; (63)

B(xopt) � bminI; (64)

xopt 2 Eout (65)

where Eout is the outer ellipsoid given in (42).
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Using (63) and (64), we derive the bound

�� �opt �
n

bminTrU
(66)

(which is always better than the simple bound (50)).
Another bound can be derived using (65) and the inequality (62):

� � �opt � max
z 2 Eout

n �TrV C(z)

TrUB(z)
: (67)

Note that (n�TrV C(z))=TrUB(z) is a linear fractional form in z. Therefore the right-hand
side of (67) is readily computed|there is a \closed form" expression for the maximum of
a linear fractional form over an ellipsoid, which is derived in appendix D. The bound (67)
has one major drawback, however: it can be worse than the simple bound (50). It can even
happen that the hyperplane fzjTrUB(z) = 0g intersects the ellipsoid Eout, in which case the
right-hand side of (67) is in�nite.

This problem can be circumvented. From (64) we know that TrUB(xopt) � bminTrU .
Hence xopt lies in the halfspace fzjTrUB(z) � bminTrUg. Similarly, from (63) we know that
TrV C(xopt) � 0, i.e., xopt lies in the halfspace fzjTrV C(z) � 0g. Therefore we can localize
xopt to the intersection of Eout and these two halfspaces.

A bound that uses this information is:

� � �opt � max
z 2 Eout

n�TrV C(z) � n

TrUB(z) � bminTrU

n�TrV C(z)

TrUB(z)
: (68)

This bound is always better than all the bounds described so far. To compute it requires the
solution of the following problem: maximize a linear fractional form over an ellipsoid, subject
to an upper bound on the numerator and a (positive) lower bound on the denominator. This
problem also has a \closed form" solution, given in appendix E. This solution is harder
to describe than in the unconstrained case. Computing it, however, requires essentially no
additional e�ort compared to the unconstrained problem.

5.2 Constraint duality gap

We continue to use the notation of section 4.2. In this section we show that

� � min
C(x) > n�min(C�)

�max(A(x); B(x)): (69)

This means that � is a lower bound on the minimum value of the maximum generalized
eigenvalue of the pair (A;B), subject to the tightened constraint C(x) > n�min(C�). If the
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constraint C(x) > 0 is active at xopt for the original problem, then �min(C�) converges to
zero as � approaches �opt. The result (69) shows that in this case, the stopping criterion

�min(C(x
(k))) < �=n

guarantees that on exit, x(k) is �-optimal for the \tightened" problem

minimize
C(x) > �I

�max(A(x); B(x)):

To show (69), recall that

TrU(�Bi �Ai) +TrV Ci = 0; i = 1; : : : ;m (70)

and
TrU(�B0 �A0) +TrV C0 = TrU(�B� �A�) +TrV C� = n:

Let �
�
= �min(C�). Then

TrU(�B0 �A0) +TrV (C0 � �I) = n � �TrV:

From
TrV = TrC��1 �

n

�min(C�)

we conclude
TrU(�B0 �A0) +TrV (C0 � �I) � 0: (71)

Now note that (70) and (71) establish that the a�ne matrix inequality

(�B(x)�A(x))� (C(x)� �I) > 0

is infeasible (by the duality result (11)). This establishes (69).

6 Some notes on implementation

In this section we brie
y mention some of the issues that arise in implementing the method
of centers.

6.1 Problem structure

In many problems, the matrices A, B, and C, and hence F = (�B � A) � C have a block
diagonal structure, say,

Fi 2
KM
j=1

Rnj�nj ;
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where n1 + � � � + nK = n. Moreover, each of these K blocks may have one of the special
structures mentioned in section 2, e.g., the special structure that corresponds to a quadratic
constraint.

The choice of method used to compute the Newton step depends on how much of the
problem structure we choose to exploit. As far as we know, there is not a simple description
of a \best" method that exploits all of the structure.

For future reference we note an inequality relating m and
PK

j=1 n
2
j . Since the dimension

of the set of symmetric matrices in
LK

j=1R
nj�nj is

PK
j=1 nj(nj+1)=2 and the matrices Fi are

independent (otherwise the feasible set contains a line, violating the assumptions), we have

m �
KX
j=1

nj(nj + 1)=2: (72)

6.2 Normalizing with Cholesky factors

In numerical computations based on the formulas of section 3, it is more convenient to use
a triangular factor of F (x)�1 instead of the symmetric square-root F (x)�1=2 that appears
throughout section 3. All of the formulas of that section are readily modi�ed to use triangular
factors rather than F (x)�1=2.

Let L be the Cholesky factor of F (x), i.e., L is lower triangular with LLT = F (x). The
gradient of � is given by

gi(x) = �TrF (x)�1Fi (73)

= �TrL�TL�1Fi (74)

= �TrL�1FiL
�T ; (75)

and the Hessian is given by

Hij(x) = TrF (x)�1FiF (x)
�1Fj (76)

= TrL�TL�1FiL
�TL�1Fj (77)

= Tr
�
L�1FiL

�T
� �
L�1FjL

�T
�
: (78)

Similarly, the least-squares characterization of the Newton step, given by formula (46), be-
comes

�H(x)�1g(x) = argmin
v 2 Rm






I �
mX
i=1

viL
�1FiL

�T






 (79)

(this follows from the fact that there is an orthogonal matrixQ such that F (x)�1=2 = QL�1 =
L�TQT , so that F (x)�1=2FiF (x)�1=2 = QL�1FiL

�TQT ).
In other words, the congruence ~F := L�1FL�T normalizes the problem so that ~F (x) = I.
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6.3 Full blocks

Suppose �rst that the blocks in F are \full" (or, we choose to ignore any structure the
individual blocks in F may have). Of course, L�1 will have the same block structure as F .
Let's give a rough operation count for computing the Newton step at a given x. We will
ignore constant factors and keep only dominant terms.

Forming F (x) given x costs m
P
n2j . We can compute L�1 by Cholesky factorization of

each block of F (x) and then inversion. The cost is
P
n3j . Normalizing the problem, i.e.,

forming L�TFiL
�1, costs m

P
n3j . This cost dominates so far.

We suppose �rst that we compute the Newton direction by forming g(x) and H(x) and
solving H(x)v = �g(x). Forming g(x) costs mn, and forming H(x) (which is the Gram
matrix of the normalized Fi) costs m2

P
n2j . Finding v then costs m3. The dominant term

is thus m2
P
n2j (since by (72), m �

P
n2j ).

Now suppose that we compute the Newton direction by solving the least-squares prob-
lem (79), which has m variables and (ignoring constant factors)

P
n2j \equations". Using

for example QR factorization, the cost is m2
P
n2j , which is the same cost as forming the

gradient and Hessian and solving for the Newton direction. (Computing the Newton step
via QR factorization will have better numerical properties, however, since we don't \square
up," i.e., form, the Hessian.)

Therefore, the total operation count for one step of the Newton method is of order
maxfm2

P
n2j ;m

P
n3jg.

6.4 Exploiting internal block structure

We can exploit additional structure that the blocks may have to reduce the computation
required for the Newton step. As an example, consider a single block that arises from the
quadratic constraint kAx� bk < 1, where A 2 RN�m and is full rank. We may assume that
N � m.

The block associated with this constraint is

Fquad(x) =

"
I Ax� b

(Ax� b)T 1

#

(we ignore for now the other blocks in F (x)). Suppose that we use the method described
above in section 6.3, i.e., normalize and then solve a least-squares problem. If we treat this
block as full, it incurs a cost of maxfm2N2;mN3g = m2N2 for one Newton step. We will
see that by exploiting the special structure, this can be reduced to m2N , or even m2, along
with some initial precomputation. For a quadratic constraint of high rank (i.e., N signi�cant
compared to m), this factor of N2 is signi�cant.

The barrier term for the constraint kAx� bk < 1 is

log detFquad(x)
�1 = � log(1� yTy)
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where y
�
= Ax�b. Hence from (27) and (29) (or direct calculation), the gradient and Hessian

of this barrier term are

g(x) =
2

1� yTy
ATy (80)

H(x) =
2

1� yTy
ATA+ g(x)g(x)T (81)

Given x, the cost of computing y and 1=(1 � yTy) is mN ; forming g(x) via (80) costs mN ,
and forming H(x) via (81) costs m2N . Hence by computing g(x) and H(x) in this way, the
cost incurred by the constraint kAx� bk < 1 is m2N per Newton step.

Moreover, suppose that we precompute and store the Gram matrix ATA. Then the cost
of forming H(x) via (81) drops to m2, so the overall cost incurred by the block is m2. (Note
that the cost of the precomputation, i.e., forming ATA, is m2N , but this cost is amortized
over all of the Newton steps performed throughout the whole algorithm.)

This computational savings can also be understood in the context of the method described
in section 6.3. It is possible to derive a simple explicit expression for the inverse Cholesky
factor L�1. We save computation by simply evaluating this expression rather than performing
a Cholesky factorization and inversion.

More generally, by exploiting the special structure of the blocks that arise from the
constraints described in section 2, we can lower the computational cost per Newton step
below the \full" block cost described in section 6.3, although in many cases the savings is
not as large as in this quadratic constraint example.

6.5 Line search

We noted in section 3.4 that Nesterov and Nemirovsky's analysis holds for exact line search
step length selection, i.e.,

�(k) := argmin
�

�
�
x(k) � �H(x(k))�1g(x(k))

�
(82)

With exact line search, the number of iterations required to compute the analytic center is
typically smaller than with the Nesterov-Nemirovsky step length (44), but of course each
iteration involves the extra computation required to determine the step length �(k). In many
cases, there is an overall advantage in using exact line search.

We need to compute

��
�
= argmaxfdet(I + �P )jI + �P > 0g (83)

where
P =

X
i

viF (x)
�1=2FiF (x)

�1=2
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and v = �H(x)�1g(x). (Note the similarity to the standard problem of computing eigenvalues|
the di�erence is that here, we want to compute a zero of the derivative of the characteristic
polynomial instead of the characteristic polynomial itself.)

We �rst reduce P to tridiagonal or even diagonal form, which costs
P
n3i . Now the

derivatives g(�) and H(�), and hence the Newton step, can be computed at a cost of n.
(This reduction is used in the algorithm described in [NN90a].) Several methods can be used
to �nd ��, e.g., we can use Newton's method with the Nesterov-Nemirovsky step length, or
bisect until � < 1=4 and then switch to Newton's method. For this latter method, it can be
shown that in the worst case we perform no more than (a constant times) log n bisections
to reach the region of quadratic convergence, i.e., � < 1=4 (after which we perform at most
a small �xed number of iterations). Thus, in the worst case the cost of computing �� is no
more than n log n, once we have reduced the pencil. So the cost of exact line search is at
most maxfn log n;

P
n3jg, which in many cases is small compared to the cost of computing

the Newton direction.

7 An example

7.1 A Lyapunov function search problem

We consider a simple example of determining a Lyapunov function that optimizes a decay
rate estimate for a linear di�erential inclusion. More detail on this and similar problems can
be found in [BGFB93] or [BY89].

We consider the di�erential equation

dy

dt
(t) =

 
LX
i=1

�i(t)Gi

!
y(t) (84)

where Gi 2 RN�N (and do not depend on t) and the �i(t) satisfy
P
�i(t) = 1, �i(t) � 0, but

are otherwise arbitrary.
Given any P = P T > 0, let V (z) = zTPz. For y(t) satisfying (84), we have

d

dt
V (y(t)) =

LX
i=1

�i(t)y(t)
T
�
GT

i P + PGi

�
y(t) (85)

� max
i

y(t)T
�
GT

i P + PGi

�
y(t) (86)

� max
i

�max

�
GT

i P + PGi; P
�
V (y(t)): (87)

This proves that
V (y(t)) � e�tV (y(0)) (88)

where

�
�
= max

i
�max

�
GT

i P + PGi; P
�
= �max

 
LM
i=1

(GT
i P + PGi);

LM
i=1

P

!
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(and, moreover, � is the smallest number for which we can guarantee that dV=dt � �V

regardless of y(t) and the particular �i(t)).
We can interpret ��=2 in (88) as a conservative stability degree estimate or guaranteed

decay rate (if � < 0) of the di�erential inclusion (84), and V (z) = zTPz as a Lyapunov
function that proves it. Our problem is to determine the Lyapunov function that gives the
best guaranteed decay rate estimate for the system (84):

minimize
P > 0

�max

 
LM
i=1

(GT
i P + PGi);

LM
i=1

P

!
:

Since the objective is homogeneous in P of degree zero, we can normalize P by, e.g., TrP =
N . We also impose the constraint that P > bminI where 1 > bmin > 0, which essentially
limits the condition number of the Lyapunov functions we are willing to consider, but in
most cases is irrelevant if bmin is small enough (see[BY89]). This results in:

minimize
TrP = N

P � bminI > 0

�max

 
LM
i=1

(GT
i P + PGi);

LM
i=1

P

!
: (89)

When this problem is put in the form (8), by eliminating the equality constraint, we �nd
that the number of variables is m = N(N + 1)=2 � 1, the size of the matrices �B � A is
r = LN , and the size of the constraint matrix C is s = N . The matrix F = (�B �A)� C

has size n = r + s = (L+ 1)N , and consists of L+ 1 blocks each of size N .
As initial feasible point we can take

P (0) = I; (90)

�(0) = �max

 
LM
i=1

(GT
i +Gi)

!
+ 1: (91)

Since the set fP jTrP = N; P > 0g is bounded, it is clear that all the assumptions of
section 1.5 are satis�ed. Moreover we can take bmax = N , which can be seen as follows.
Since P > 0 and TrP = N , we have �max(P ) < N , so �max

�
�L

i=1P
�
< N .

7.2 An instance of the problem

In the next two sections we give some numerical results for an instance of the problem (89).
We consider a physical system consisting of two unit masses, which are connected to each
other by a spring. In addition, one of the masses is connected to a wall (in�nite mass) by
another spring. The two springs can instantly change sti�ness over the range of [1; 2]. By
loosening and sti�ening the springs appropriately we can pump energy into our system; our
task is derive the best upper bound, based on a quadratic Lyapunov function, on the rate
at which this can be done.
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With y1 and y2 denoting the positions of the masses and y3 and y4 denoting their veloc-
ities, the di�erential inclusion describing this system is

dy

dt
(t) =

2
6664

0 0 1 0
0 0 0 1

�k1(t)� k2(t) k2(t) 0 0
k2(t) �k2(t) 0 0

3
7775 y(t); 1 � ki(t) � 2; i = 1; 2:

Thus we have N = 4 and L = 4 (representing the four extreme matrices). There are 9
variables, and the matrix F = (�B �A)� C is 20�20, and consists of �ve 4�4 blocks. The
Lyapunov function P is initialized as I, and we take bmin = 0:01 (which limits the condition
number of P below 400). The optimal Lyapunov function turns out to have a minimum
eigenvalue of about 0.42, so the constraint P > bminI is (quite) inactive. The optimum value
is �opt = 0:6056, which has multiplicity four. (The multiplicity is split between one active
eigenvalue corresponding to the case of both springs loose, i.e., k1 = k2 = 1, and one active
eigenvalue corresponding to the case of both springs tight, i.e., k1 = k2 = 2.)

7.3 Some numerical results: method of centers

The table below shows the progress of the method of centers with the parameter � set at
0:001, i.e., the next � is set 99.9% of the way towards the current objective value, from the
current value of �. The �rst and second columns show the iteration number and objective
value. The third column, labeled gap 1, shows the simple bound on the di�erence between
the current value of the objective and the optimal value from the simple formula (50), i.e.,
(�(k)��max(A(x(k)); B(x(k))))nbmax=bmin. The fourth column, labeled gap 2, shows the better
bound obtained using (68). The next column, labeled NeNe, shows the number of Newton
steps that were required to compute the analytic center (i.e., the current iterate) using the
Nesterov-Nemirovsky step length. The last column shows the number of Newton steps that
were required to compute the analytic center using exact line search step length. (In both
cases, the stopping criterion for the analytic center computation is � < 0:001, which can be
shown to imply that �(x)� �(x�) < 0:0012.)

� = 0:001

iteration �max gap 1 gap 2 NeNe LS

1 2:6511e + 00 1:03e + 05 6:21e+ 01 5 3
2 1:4645e + 00 4:76e + 04 3:36e+ 01 12 6
3 8:5597e � 01 2:44e + 04 6:05e� 01 18 8
4 6:6293e � 01 7:74e + 03 4:32e� 01 17 8
5 6:6093e � 01 8:76e + 01 5:79e� 02 9 5
6 6:6061e � 01 1:29e + 01 8:74e� 03 15 7
7 6:6057e � 01 1:82e + 00 1:27e� 03 14 7
8 6:6056e � 01 2:88e� 01 2:02e� 04 7 4
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Five iterations (30 LS Newton steps) are required to reduce the objective value to within
0:001 of the optimal value (but of course, we don't know this at the �fth iteration). Eight
iterations (48 Newton steps) are required to reduce the better gap (gap 2) below 0:001.

To see the e�ect of the parameter �, we now consider the large value � = 0:5. Note that
the table does not show every iteration.

� = 0:5

iteration �max gap 1 gap 2 NeNe LS

1 2:6511e + 00 1:03e + 05 6:21e+ 01 5 3
5 1:0344e + 00 3:18e + 04 1:41e+ 00 3 3
10 6:6751e � 01 2:68e + 03 1:03e+ 00 2 2
15 6:6117e � 01 1:44e + 02 9:36e� 02 2 2
20 6:6060e � 01 8:88e + 00 6:09e� 03 2 2
24 6:6056e � 01 9:61e� 01 6:61e� 04 2 2

As expected, convergence is slower|15 iterations (37 Newton steps) are required to converge
to within 0:001 of the optimal value and 24 iterations (55 Newton steps) are required to
reduce the better gap below 0:001. Also as expected, the number of Newton steps required
to compute each analytic center is smaller than in the case � = 0:001, since the initial points
for the analytic center computations are \more feasible" than in the case � = 0:001. Note
that the total numbers of Newton steps required (37 and 55, respectively) are not much
larger than the numbers required in the case � = 0:001 (30 and 48, respectively).

We now consider the value � = 1e-6, which is very nearly the classical method of centers.
The results are shown below:

� = 1e� 6

iteration �max gap 1 gap 2 NeNe LS

1 2:6511e + 00 1:03e + 05 6:21e+ 01 5 3
2 1:4726e + 00 4:72e + 04 3:35e+ 01 12 6
3 8:6616e � 01 2:42e + 04 6:21e � 01 12 6
4 6:6201e � 01 8:16e + 03 2:70e � 01 11 5
5 6:6078e � 01 4:92e + 01 3:32e � 02 25 11
6 6:6059e � 01 7:38e + 00 5:03e � 03 10 5
7 6:6056e � 01 1:04e + 00 7:28e � 04 31 11

While the convergence is essentially the same as for the case � = 0:001, the number of
Newton steps required per iteration is larger, since the initial points for the analytic center
computations are \less feasible" than in the � = 0:001 case.
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7.4 Some numerical results: ellipsoid algorithm

For comparison we solve the same problem using the ellipsoid algorithm, which is a general
algorithm that can minimize a quasiconvex function subject to a convex constraint. We
give a brief but complete description of the algorithm here. More details can be found in,
e.g., [BB91].

The ellipsoid algorithm must be initialized with an ellipsoid that contains a minimizer.
As initial ellipsoid we take

E(0) =
�
P

���� kP � IkF �
q
N(N � 1); TrP = N

�

which (by our outer ellipsoidal bound) contains the set of positive de�nite matrices with
trace N , and so contains the entire feasible set for our problem.

At each iteration, we produce an ellipsoid of smaller volume that is still guaranteed to
contain a minimizer, as follows. First we �nd a cutting-plane that separates the center
of the current ellipsoid from the set of minimizers, so the minimizer is now localized to the
intersection of a half-space and the current ellipsoid. Then, the next ellipsoid is the minimum
volume ellipsoid that contains this intersection. (There are simple formulas for this update.)

The cutting-plane is computed as follows. If the current iterate P (k) (which is the center
of the ellipsoid E(k)) is not feasible, i.e., does not satisfy P (k) > bminI, we compute the
minimum eigenvalue of P (k) along with a corresponding eigenvector v with kvk = 1. The
cutting-plane is then given by vTPv = bmin, which describes a hyperplane in fP jTrP = Ng.
In other words, the minimizer is contained in the half-spacen

P
��� vTPv � bmin; TrP = N

o
;

since P 's not in this half-space are surely infeasible. (P (k) is not in this half-space, so
intersecting E(k) with this half-space \cuts away" more than half of E(k). For this reason this
is called a \deep-cut." )

If P (k) is feasible, i.e., satis�es P (k) > bminI, then we generate a cutting-plane from the
objective, as follows. we compute

�(k)
�
= �max

 
LM
i=1

(GT
i P

(k) + P (k)Gi);
LM
i=1

P (k)

!

along with a corresponding generalized eigenvector v with kvk = 1. Then any minimizer
must lie in the half-space

(
P

����� vT
LM
i=1

�
�(k)P �GT

i P � PGi

�
v � 0; TrP = N

)

(since any other P will either be infeasible or have an objective value larger than �(k)). In
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this case we can also compute a lower bound on the optimal objective value:

�opt � min
TrP = N; P 2 E(k)

vT
LL

i=1 Pv � bmin

vT
LL

i=1

�
GT

i P + PGi

�
v

vT
LL

i=1 Pv
: (92)

The table below shows the progress of the ellipsoid algorithm. The column labeled gap
shows the di�erence between �(k) and the lower bound (92). (The iterates shown in the table
are all feasible.)

iteration �max gap

1 4.2361e+00 6.48e+02
10 6.8871e-01 2.67e+02
100 6.7125e-01 2.92e+01
200 6.6213e-01 3.54e+00
300 6.6075e-01 1.20e+00
400 6.6059e-01 2.20e-01
500 6.6057e-01 1.30e-02
600 6.6056e-01 4.51e-03
674 6.6056e-01 9.27e-04

The ellipsoid algorithm requires 190 iterations to converge within 0.001 of �opt and 674
iterations to reduce the gap below 0.001.

7.5 Comparison

For this problem, the computation cost of an ellipsoid algorithm iteration is less than but still
roughly comparable to the cost of a Newton step and line search in the method of centers.

The table below summarizes the numbers of Newton/line search steps for the method of
centers, and the number of iterations for the ellipsoid algorithm, required for convergence
within 0:001 of the optimal value (�(k) � �opt � 0:001) and for reduction of the gap below
0:001.

criterion � = 1e-3 � =5e-1 ell. alg.

�(k) � �opt � :001 30 37 190
gap � :001 48 55 674

We should make several comments concerning this comparison. First, we were able
to initialize the ellipsoid method with an e�cient ellipsoid (indeed, the minimum volume
ellipsoid that contains fP jP � 0; TrP = Ng). In the general problem, no such e�cient
ellipsoid is available. Second, the e�ciency of the method of centers, as compared to the
ellipsoid method, rapidly increases with problem size.
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8 Conclusions

The method of centers is a simple interior point algorithm that appears to be very e�cient
when compared to other algorithms for minimizing the maximum generalized eigenvalue of
a pair of matrices that depend a�nely on a decision variable.

We do not, however, present the algorithm as described in section 4.3 as the \fastest"
measured either by typical practical performance or by bounds on worst case performance.
In particular, the algorithm can be made to run faster using standard techniques, three of
which we mention here:

� First-order predictor.

It is possible to cheaply compute @x�=@� at �(k). This can be used to initialize the
Newton algorithm for computing x(k+1). This reduces the number of Newton steps per
iteration.

� Weighted analytic centers.

Let � � 1 be some integer. Then we apply the method of centers to the problem
with data ~A, ~B, and C where ~A = ��

i=1A and ~B = ��
i=1B. Of course, working

with � \copies" of the inequality �B � A > 0 does not change the optimal value
or set of minimizers for the problem. In e�ect, we substitute the barrier function
� log det(�B �A)�1 + log detC�1 for log det(�B �A)�1 + log detC�1.

This results in a larger reduction of � per iteration but more Newton steps required
per iteration. In practice, this can lead to substantially faster convergence of �(k) to
�opt (measured in total Newton steps). However, the dual bounds are often worse than
for � = 1.

For � large, the method of centers will approach an analog of Dikin's a�ne scaling
algorithm [Dik67].

� Switching to a quadratically convergent local method.

We note the possibility of combining the method of centers with a quadratically con-
vergent local method. The method of centers identi�es the active eigenvalues and
eigenvectors (via the dual matrices U and V ) as it proceeds (or more precisely, it iden-
ti�es the branches of the eigenvalue functions that are active at the optimal point xopt).
We presume that once these active eigenvalues are identi�ed, an optimum point can
be computed more rapidly by switching to a quadratically convergent method such as
Overton's (see [Ove88]; the extension to the generalized eigenvalue case is considered
in [Hae91]).

We have not given a complete complexity analysis (worst case operation count) of the
algorithm, since we have not given any bound on the number of Newton steps required to
reach (in some appropriate approximate sense) the analytic center. To do this would require
modifying the algorithm to use some appropriate approximate analytic center instead of
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the analytic center (which of course cannot be computed in a �nite number of steps for
n � 6) and in addition restricting � to be close enough to one to get a suitable bound on the
number of Newton iterations required to compute the approximate center. We remind the
reader that in [NN91b], Nesterov and Nemirovsky describe a potential reduction algorithm
for generalized eigenvalue minimization and give a complete worst case complexity analysis.

In any case, the material of sections 2, 3, and 6 only concern the notion of the analytic
center of an a�ne matrix inequality, and is independent of the method of centers.
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A Derivative of log detF

The derivatives given in section 3.1 are readily derived once the reader knows that

d

dt

�����
t=0

log det(F0 + tF1) = TrF�1
0 F1 (93)

(assuming of course that detF0 6= 0). This is shown as follows.

log det(F0 + tF1) = log det
�
F0

�
I + tF�1

0 F1

��
(94)

= log detF0 + log det
�
I + tF�1

0 F1

�
(95)

= log detF0 + log
�
1 + tTrF�1

0 F1 + o(t)
�

(96)

from which (93) follows.

B Proof of ellipsoidal bounds

Suppose that x satis�es F (x) = F0 +
Pm

i=1 xiFi > 0. We assume without loss of generality
that x = 0 and F0 = I (the latter by multiplying the original matrices on the left and

right by F�1=2
0 ). From the formulas for the gradient and Hessian of the barrier, we have

gi(0) = �TrFi and Hij(0) = TrFiFj.
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We �rst establish the inner ellipsoidal bound. Suppose that zTH(0)z < 1. Since

zTH(0)z =
mX

i;j=1

zizjTrFiFj = kF (z)� Ik2F � kF (z)� Ik2

we conclude that kF (z) � Ik < 1, and hence F (z) > 0. This proves the inner ellipsoidal
bound (41). Note that we did not use here the fact that 0 is the analytic center of the matrix
inequality. Therefore the inner ellipsoidal approximation holds for any feasible point x:

F (x) > 0 and (z � x)TH(x)(z � x) < 1 =) F (z) > 0

(see Nesterov and Nemirovsky [NN93] for a generalization to any self-concordant barrier).
Now we prove the outer ellipsoidal bound, assuming that 0 is the analytic center of

F (x) > 0, so that TrFi = 0. Then for any z 2 Rm, we have TrF (z) = TrF (0) = n.
Similarly,

TrF (z)2 =
mX

i;j=1

zizjTrFiFj + 2
mX
i=1

ziTrFi +TrI (97)

= zTH(0)z + n: (98)

Now suppose that z satis�es F (z) > 0. For any X = XT 2 Rn�n with X > 0, TrX2 �
(TrX)2 (this can be seen by diagonalizing X). Therefore we have

zTH(0)z + n = TrF (z)2 � (TrF (z))2 = n2 (99)

so
F (z) > 0 =) zTH(0)z � n(n� 1)

which is the outer ellipsoidal bound.
The same type of argument can be used to derive an outer ellipsoidal bound centered at

any point x with �(x) < 1 (again, see Nesterov and Nemirovsky [NN93] for a generalization
to any self-concordant barrier). We proceed as follows. Suppose now that x = 0 is not
necessarily the analytic center. Then (99) becomes:

zTH(0)z � 2g(0)T z + n = TrF (z)2 � (TrF (z))2 = (n � g(0)T z)2:

This implies that

zT
�
H(0)� g(0)g(0)T

�
z + 2(n� 1)g(0)T z � n(n� 1);

which can be put in the form

(z � xc)
T
�
H(0)� g(0)g(0)T

�
(z � xc) �

(n� 1)(n� �(0)2)

1 � �(0)2
; (100)

where

xc
�
= �

n� 1

1� �(0)2
H(0)�1g(0):

The inequality (100) de�nes an ellipsoid if and only if H(0) � g(0)g(0)T > 0, which is the
same as �(0)2 = g(0)TH(0)�1g(0) < 1. The center of the ellipsoid, xc, is displaced along the
Newton direction from the point x = 0.
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C A generalized resolvent inequality

Suppose that Y > 0 and �Y �X > 0, and let �max
�
= �max(X;Y ). We will show that

Tr(�Y �X)�1 �
1

(�� �max)kY k
:

Find v 6= 0 such that Xv = �maxY v. Then we have

(�Y �X)�1Y v =
1

�� �max

v;

so that 


(�Y �X)�1Y



 � 1

� � �max

:

Therefore 


(�Y �X)�1



 � 1

(�� �max)kY k)
:

Our conclusion follows from

Tr(�Y �X)�1 �



(�Y �X)�1




 :

D Maximum of a linear fractional form on an ellipsoid

In section (5.1) we derive an upper bound for �(k) � �opt that is given by the maximum of a
linear fractional form over an ellipsoid. We use a similar bound for the ellipsoid algorithm
in (92). Here we show how this can be computed.

By a suitable change of coordinates we may assume that the problem is to determine

�
�
= max

xTx � 1

aTx

cTx+ 1
:

We will assume that a 6= 0 (if a = 0 then obviously � = 0).
If kck > 1, then � = 1, since the linear fractional form is unbounded above near

x = �c=kck.
Assume now that kck < 1. Then,

� � 
 () aTx=(cTx+ 1) � 
 for all x with kxk � 1 (101)

() (a� 
c)Tx � 
 for all x with kxk � 1 (102)

() ka� 
ck � 
: (103)

Therefore � is equal to the larger root of the quadratic equation ka� 
ck2 = 
2.
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In the case kck = 1, the solution depends on the sign of aTc. (Although this case is
irrelevant in any numerical computation, we include it below for completeness.) In summary,
the solution is:

� =

8>><
>>:

�q
(aTc)2 + aTa(1 � cT c)� aTc

�.
(1� cTc) kck < 1;

aTa=(2aT c) kck = 1; aTc > 0;
1 otherwise:

(104)

E Solution of the constrained problem

Here we describe the solution of the following problem: maximize a linear fractional form over
an ellipsoid, subject to an upper bound on the numerator and a (positive) lower bound on
the denominator. As in the previous section we change coordinates so the ellipsoid becomes
the unit ball. The problem we must solve assumes the following form: determine

� = max
xTx � 1
aTx � �

cTx+ 1 � �

aTx

cTx+ 1
(105)

In our problem, � and � are positive, and 0 is feasible, i.e., 1 > �.
We can always reduce the problem (105) to a two dimensional problem (which is not

surprising since the two a�ne functions aTx and cTx+ 1 do not vary along directions lying
in a subspace of dimension n � 2). Using a Lagrange multiplier or direct argument, it can
be shown that a maximizer of (105) always lies in the span of a and c. (This is clear in
the case where the Lagrange multiplier corresponding to the constraint xTx � 1 is nonzero,
in which case there is exactly one maximizer. When this Lagrange multiplier is zero, the
problem (105) can have multiple maximizers, one of which, however, lies in the span of a
and c.)

We proceed under the assumption that a and c are linearly independent. (If they are not,
the problem reduces to a trivial one dimensional problem.) We de�ne the new optimization
variable w 2 R2 given by

x =
h
a c

i
G�1

 
w �

"
0
1

#!

where G is the Gram matrix

G
�
=

"
aTa aTc

cTa cT c

#
:

Therefore,

aTx = w1;

cTx+ 1 = w2;
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and the constraint xTx � 1 becomes w 2 E where

E
�
=

8<
: w

������
 
w �

"
0
1

#!T

G�1
 
w �

"
0
1

#!
� 1

9=
; :

Our problem (105) becomes: determine

� = max
w 2 E
w1 � �

w2 � �

w1

w2

: (106)

The solution to this problem is readily obtained by solving a few quadratic equations, and
so has essentially no computational cost (e.g., when compared to the computational cost
of reducing the original problem to the �ve parameters appearing in (106)). Its solution is
cumbersome to describe, however.

We �rst note that the solution must lie in the �rst quadrant (w1 > 0, w2 > 0), and on
the boundary of the feasible set E \ fwjw1 � �; w2 � �g. We distinguish several cases:

Case I: [� �]T 2 E.
In this case the maximizer is the point wI = [� �]T , and we have � = �=�. Henceforth we
assume that [� �]T 62 E.

Case II: [� �]T 62 E, 0 2 E.
In this case the maximizer lies on the line segment fwjw2 = �g \ E (which is readily found
by solving a quadratic equation; the assumptions ensure that the line segment is nonempty).
The maximizer is

w(�) =

2
4
�
(� � 1)aTc+

q
(cTc� (� � 1)2) detG

�.
cTc

�

3
5 :

Henceforth we assume that 0 62 E, i.e., aTa > detG.
We now compute ~w, the local maximum of w1=w2 on @E which satis�es w1 > 0, w2 6= 0.

By solving a quadratic equation we �nd:

~w =

" p
aTa� detG

1 +
�
aTc

p
aTa� detG � detG

�.
aTa

#
:

We distinguish three more cases depending on ~w.

Case III: [� �]T 62 E, 0 62 E, ~w1 � �, ~w2 � �.
The condition is simply that ~w is feasible. In this case, ~w is the maximizer.

Case IV: [� �]T 62 E, 0 62 E, ~w1 > �, ~w2 � �.
The condition is that ~w violates violates the �rst linear constraint. In this case the maximizer
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lies on the line segment fwjw1 = �g \ E. By solving a quadratic equation we �nd the
maximizer as:

w(�) =

2
4 �

1 +
�
�aTc�

q
(aTa� �2) detG

�.
aTa

3
5 :

Case V: [� �]T 62 E, 0 62 E, ~w1 � �, ~w2 < �.
If ~w violates the second linear constraint, then the maximizer lies on the line segment fwjw2 =
�g \ E. In this case the maximizer is w(�).

In summary, the solution is given by

� =

8>>>>><
>>>>>:

�=� Case I�
(� � 1)aTc+

q
(cTc � (� � 1)2) detG

�.
(�cTc) Case II or V

(�aTa)
.�
aTa+ �aTc�

q
(aTa� �2) detG

�
Case IV

(aTa)
.�
aT c+

p
aTa� detG

�
Case III
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