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(1)

In 1918 Hausdorff [1]) defined a set of measures 1in
metr ic spaces whicn included the Lebesgue a-dimensiovnal
measures, counting weasures, as well as various non-
integral-dimensional measures. These measures are the basis
for various theories of generalized dimension, including
Besicovitci’s theory of fractionally dimensioned sets (now
called Fractals). I will restrict my study to tnese meas=—
ures on the line, and a few foundational questions.

If h is defined for t>0 , h(t)>0, increasing and con-—
tinuous on the right, it is called a Hausdorff function.
Let us reserve the sywbols h and g for Hausdorfft functious,
i.e. h and g will always denote Hausdorff functiouns. Given
h and E €R (not necessarily measurable), we form the liaus-—

h
dorff outer h-measure m (E) as follows:
00

[s%e]

t . .
m1(2)=inf Z:h(b,—a,) [ EQLJ (a ,b ), b —-a <d
d i=1 * i=1

i :
m (E)=lim w (E)
d—0

Note that as d-»0 the class of sums over which we take the
. . h .

infimum decreases, hence md(E) increases and therefore
does indeed converge (possibly to infinity). It is easy to

h | : , . L

see that m is a metric outer measure, that 1is, additive on
- I3 3 : fod t‘
sets separated by positive distance. Hence the field of u

measurable sets includes the Borel sets, in particular the

closed sets 1 coastruct are measurable. We shall also



n !
denote tne measure m , and shall assume tnat all sets wen-

tioned are measurable.
Since h is continuocus on the ripgnt, it is clear that m?
a
can be calculated using closed iatervals, 1n fact usinyg any
sets Si’ if we replace bi_ai by diam(%i). It is for this

reason that h i1s required to be contiauous on the right.

Thhe definition I have given follows Rogers [2] and is the

most general definition used. Often h 1s required to be
continuous, or satisty h(0)=0. For examnple ‘Hausdorff him-
self considered only concave, continuous b with h(0)=0. 1

shall show that, for measures in R, we nay as well assume h
to be continuous and supadditive, that is, satisfy
h(x+y)<h(x)+h(y).
A few questions arise immecdiately. It 1is clear that
1
for h(t)=t, mn is ordinmary Lebesgue measure and that for
. b .
h(t)=1, m is counting measure. Are there any other mnon-
trivial Hausdorff wmeasures? In his original paper, Haus-
dorff snowed that if h is continuous, concave, and satisfies
N . . h
h(0)=0, then there is a set S such that m (S)=1 and proved

. h
as a specific example that m (C)=1, where C is the Cantor

1n?2

n
niddle third set and h(t)=t . The necessary and suffi-
cient condition on h that there exist a set with finite

positive measure was a long-standing problen, solved by A.

Dvoretsky {31 in 19435, The condition is only
t
limint SEL 5 4,
t—> t

A nore vague question: what is the relationship between

n  and the measure it 4yenerates? For exxample, when do



different functions generate the same measure? This is a
difficult question which I shall answer in the case the

functions are concave.

h
It is clear that m is determined by its behavior near

0. 1 start with:

. t
Prop. 2.1: 1f limsup égt; b, then for all E,
t—0
g h
m®(E) < bm (E).
Proof: 1f b=o0, the inequality is trivial. Suppose b is

finite, E &R. Given e>0 choose d_  such that

¢ < a4 = g(t)

0 h(t) < b+te

o0
If d<d,. and L} (a.,b )2%E%, b —-a <d, then
0 im1 i i i i

0o o6
mg(E) < Zz g(b -a ) < (b+e)2{_h(b,—a4)
i T bl =1 "t

Since this holds for all d-coverings of E where d<d_,

mﬁ(E) < (b+e)m:(E) (d<d)

.

S w8y < (bterm ()



As e was arbitrary, m (u) < bm ( )

Corollary 2.1: If liminf alc) = a, and lim sup 3L£l = b,
£ =50 n(t) £ =0 h(t)

then for all E
I§ g t
"(£) < m®(E) < bm (T

I will show later that these bounds are the best possible,

when h and g are councave.

) . t
Corollary 2.2: If liam ﬁ%:% = a, then for all L
t—>0

a4 h
n"{(E)=am (L)

. g(t)
In particular, if lim i%:; = 1l, g and h generate the same
t—0

measure. The converses of the above are quite difficult and
tneir consideration will be postponed. 1 turn now to show

that h wmay be assuned to be continuous and subadditive.

(3]

Lemma 3.1: If h(0)=0, h generates the same wmeasure as

Oo
fi(t)=inf {Zh(c e) | Zci=1, 05':.51}

i=1 *
Proof: Let E G©R, n(0)=90. A(t)<h(t) (just let
c.=l, ¢ =0, for §>1 ). Hence lim sup Ele) <l, so by Prop.
1 j - h(t) =

t—~>0



h I
2.1, m (E) < m (£). 1711 now establish the opposite
. i
quality. If m (L)=oo, the inequality is trivial, so
¥
now 1w (E) is finite. Given d, e >0, choose a

(oS ]
\J (a ,o )2 E, b -a <d, such that
2y 10 i i

Co
[ 5o —a) - ulz) < 2
i=1 i i d 2
We can do this by the definition f m?

(o]

[l

i,k=1,2,... such that 0 < c, < 1, /2
k:

ik c k=l’ and

1 i
Co
2 hle (b -a)) - i(b -a ) < e2” i}
k=1 1K 1 1 1 1

We can do this by the definition of H. Consider the

intervals [a., ,b_ 1, i,k=1,2,... given by
ik ik

k-1
= + b -
a =2, {_Z cij}( ;ma))
i=1
k
= + b -
P {fzicij}( 173

These are just a subdivision of [a_ ,b ). Thus
1 1

(3= Co
U ta. . 12U, )2 F  and
i k=1 ik ik i=1 i i :

Py ™85k T Gy (Pymay) < bymay <d

((E) Choose

ine-

assunme

cover

(]

ik

closed



llence
oo 0O
al(8) < Z h(b -a ) € 2 (Kb -a ) + Zi7ly .
i,k=1 I i=1 o
o0
= Z:ﬁ(bt—a_) + £ mﬁ(E) + e
i=1 i i 2 — °d

As e was arbitrary, we conclude m:(E) < mS(E). Consequently

h [ ¢ 3]
m (E) <m (E), therefore ml(E) = m (E).

[=2%5]
Lemma 3.2: 1f Z:c. =1, 0< ¢, <1, then
(e°e) i=1 1t 1
Z: B(c t) > B(t) ( B as in lemma 3.1).
i=1
Proof: Since TH(c.t) 1is finicte, given e >0, choose
i
0 < e <1, h that
€y’ e = such a
[o20] (Vo)
Zz e . = 1 and Zi n{e ¢ t) - B(c t) < e2 t
k=1 * k=1 7
(&) oo o0
Then we note Zi e c, = ZZ c . Z: e . = 1, and
. _ ik i . i ik
i k=1 i=1 k=1
0 < e,kc_ <1, so by the definition of H(t),
ik i

3

o0
B(e) < 2 hlec t) < 2. (B(c.t)+e2™ by
i,k=1 7 i=1 t

oo

= 2{ A(c t) + e
; i
i=1

As e wag arbitrary, lemma 3.2 is established.

Lemma 3.3: i is increasing ( B as in lemma 3.1 ).




Proof: Suppose x<y, but H(y) < ni(x). Choose ¢, such that
i

oo oo
0 < c. <1, Z: c, = 1, and Z: h{c.,y) < B{(x). By uwono-
St i=1 * i=1  *

tonicity of h and x<y,

o co

Zontex) < L oney) < f(x)
. i . 1

1= i=1

contradicting the definition of 0. Therefore N is increas-
ing.

Lemnma 3. 4: i is continuous (R as in Lemuma 3.1 ). Proof:

If x<y, A(x) < A(y) < H(x) + h(y-x), hence

[B(y) - H(x)| < H(y-x)

which goes to U0 as x goes to y, establishing the continuity
of H.
Theorem 3.1: Every Hausdorff measure in R is pgenerated Dby

a continuous, subadditive h.

h(0)
m

h h
Proof: Given m , if h(0) > 0O then m , and h(0) 1is

certainly continuous and subadditive. If h(0)

h
=0, by Lewmmas 3.1 through 3.4, m =m and K is countinuous

and subadditive.

Subadditive is weaker than concave, for if h is con-

t
cave, Ekti is increasing, hence

i

h(xty) < B§Xl(x+y) h(y) + fh(y)



By symmetr we ma assume x< hence
) y ’

h(y) < h(x)‘i h(x+y) < h(x) + h(y)

Thus h is subadditive. 1 am not sure whether every Haus-
dorff measure 1in R 1is generated by a concave continuous

function, but I suspect that this is not the case.

[4]

The converse of Corollary 2.1:

(t)

. o
Theorem 4.1: If h is concave, continuous, liminf = = a,
(=0 h(t)

and e>0, then there is a set § < R such that
h
0 < m (§8) <o©
h g h
an (S) < w (S) < (l+e)am (S)

Theorewm 4.1 does not appear in the 1literature, though
it may be known. The proof is a combination of A. Dvoretsky
[3] and a generalization of llausdorff [1], though more
involved than either. I have chosen the notation to agzree
with these sources, so that their contributions are clear.
Proof of theoren 4.1: We assume first that a is finite,

h

and h and g satisfy the hypotheses. If h(0)>0, thenm m 1is

counting measure, so we let S be any finite set. It is easy



to check that the conclusion of theorem 4.1 is then satis-—

. . h(t h .
fied. If lim —g-l <00 | then mw 1is Lebesiue measure and a
t—>0

simple argument shows, so 1is mh; in this case we can take

S={0,1]. So assume now that lim hit) = 0D | and h{0)=0,
t=—>0

I first choose two sequences which are close to each
other and have nice properties with respect to h and gz; fron

one of these sequences 1 construct the desired set S.

*
Claim 1: Ue can choose two sequences {xj}, th} such that:

*
= x = .
(i) X, 0 1 (ii) Xi+1 = Xj+l < %
* . *) ]
X, X 1(x, j
e j+l i . ] 2
(iii) 1('* ) D) (iv) ;(x* ) EYEETS 1
PR ' T4
*
g(x,+1) ) h(x, )
(v) —% - a < —— (vi) n(x,, ) = —1—
\ j+1 j+1 Y.
nx, ) j+l
*
h(x, )
where Kj+1 = “—-;L—“ + 1 ([]denotes integer part)
BOx )
*
Proof by induction. Suppose we’ve picked Xj’ X, for
j=0,1,...n satisfying (i)-(vi). 1 will show we may choose
*
X i1 Xoal satisfying (i)-(vi). Since h(t)=>»0 as t—0, for
n t

sufficiently small x (iv) will be satisfied. Since

n+l?

*
h(t)~>o as t—»0, for'sufflc1ent1y small Xu+l(lll) will Dbe

satisfied. The second nalf of (ii) is clearly satisfied for
%

sufficiently small X o+l

. Since (v) is satisfied for



* *
arbitraril small X we may choose X satisfying i)-
¥ ntl? Y n+l ying (i)
(vi) 1 *
vi simultaneously. Having chosc¢a x we choose ® SO
y & e ntl n+l

that (vi) is satisfied. This we wmay do pecause h is con-

tinuous. Mow
*
o * h(xu) h(xn) )
1(X > > = |
arl) 7 X K hOx e
n+l n+l
by the definition of K , choice of x , and the inductive
n+l n+l .
*
is. ince h i S < x
hypothesis S is monotone, we conclude LI el

so (i) turough (vi) are satisfied, proving claim 1.

Claim 2:

(i) K, > 2 (ii) ¥ x <

41 = RS RIS
g(X‘+1) 1

(iii) —L15< < (1+e)( a + —)
h(xj+l) +1

Proof of Claim 2:

. . . . t ,
(i) is immediate from (iv) of claim l. Since increases

h(t)

(as h is concave), by claim 1 (ii),(iii),

*
i+l 41 .
h(x ) — * h(x,)
i+l h ()
h(x, )
—_—] = K . < :
h(xj+l)xj+1 JHL AL T



- 11 -
estabplishing (ii). Since
* *
h(x, ) h(x,)
—— < Kip < —— + 1
h(xj+l) h(Xj+1)
h(x, )
and K, = 1l
j+1 h(x]._H)
) *
h(x ) h(x‘*z h(x )
i . + i
h * {1 x 2 h(x )
(xj+1) h(xj) n+1
n(x h(x
. X]+1) 1 (x)
‘* h(x )—{ l+‘( -1 E(x)i e
j+1 i+l j
j+1 1
= .Tr{l + K."l}
i=1 b
21+l 1
But we’ve arranged Ki > —I——m + 1. Since —77 <1,
0 A\i
is easy to verify that
1 2 -i
1n(l + K_—l) <S¥-r =2 In(l+e)?2
i i
j+1 1 j+1 1
1n jT'(l + T o1 = 2 In(l + o) <
i=1 j i=1 b

j+1 -
< 2{ In(l+e)2 ~ < 1In(l+e)
1=1

it



*
nix ) %
Thus “——L—*j £ l+e. Since g is increasing and x, < x|
h(xj+1 i+l i+1°
(x, ) (x I
(% e
A S SN A £ R S N U
h(x, ) — N * it
j+l h(xj+1)

establishing claim 2.

We now construct S, using t he sequence {x.}. Let

SO = [0,1], B[0] = (=%°,0), B(l) = (l,00)

Let §, = [O,xl]tJ[x1+yl,2x1+y

. TU +»» Ull=x , 1]

1

consist of the closed intervals J{, j=1,2,...K1 got by

deleting the ¥ -1 open intervals B[j], j=1,2,... K _~-1

’

(ordered left to right) of length Y, fron SO. By claim 2

K132 and lelil, so that none of the B intervals is empty.

Proceeding inductively we let S1Fl be the
n-

n+1 j

TT K, closed intervals J got by deleting the open inter-
] n+l ©

j=1
vals Blk.,yeeek ,il, i=1,2,...K -1 (ordered left to rizht)

1 n n+1

of length from the J to the right of B[kl,...k ]. As

Yn+1 n n

above we note that K >2, and X X , so this slicing
~ n

X <
+1 n+l n+l n

is really possible.
o0
S = 5 is the desired set.
n
n=1

Claim 3: mh(S) <1

Proof: Given d>0 we choose n to be large enough that x <d.
' n

n .
Consider the TT-K_ closed intervals J) which make up S -
n n
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They cover S, since S S , and they are each of lengta

o

1

Hence

n
m,(S) < h(x ) = [ K.n(x ) =1
i:l J=1 ] n

. b
As d was arbitrary, we conclude m (S) < 1.
The converse is true, but the proof is more iunvolved. It is

easy to see that the B’s are disjoint and lexicographically

érdered left to right. We let
o)
Bk _ ,esek 1| = Zt_k,h(x.)
1 n ) b 3
j=1
and rank B[kl,...k ] = n (we assume k >0) For technical
n n

convenience, we let |B(l)|=1, rank B3[0]l= rank B(l)=0. Say ©
= (uB,v3).
Claim 4: If 0<r<K_, then h(rx +(r-1)y ) > rh(x )
n n n n
Proof by induction on r. The inequality is clear for «r=1l.

Suppose mnow h(rx +(r-1)y ) > rh(x ) and r+l < K . Then
n n n n
rx t(r=1)y < (r+l)x +ry < ¥ x +(K =-1)y = x
n n n n n o n n

So by convexity of h and inductive hypothesis,

h((r+l)x +y ) >
11 11

rh{x )(XK -r-1)(x +y )+Z h(x )(x +y )
D o n_n 18! n_n

> n —
- (¥ —r)(x +y )
n n Al



= (r+l)h(x ) establishing claim 4.
n

Claim 5: If IBZI > |B1|, (Bv lies to the right of Bl)’ then

B_-vB ) > |3 |-|B
h(uB, R l 2I I 11

Proof by iaduction on the ranks of the B3°s. When the ranks

are 0, we nust have Bl=5[U] and B =35(1), then
h(UBq‘VSI) =1 = |B2|—IBII. Now suppose Claim 5 holds for

B°s of ranks <n, and BZ’ Bl have ranks <n+l. There are three

nontrivial cases:

Case 1: rankﬂl=n+1, ranszf_n

= B[k ek
Say Bl [ l’ Lnyr]

Let L = Blk,, ek ]
1 n

Blk,,e sk +1] if k +1<K
1 n n n
d R= Blk,,e+eok +1] if k +1=K ,...k +1=X
an [ 1 m n n m+1 [m+1
B(1) if k. +1=K_  j=1,2,...n
J J
L and R are merely the left and right nearest neighbors of

Bl which have rank <n.

=3

Then |Ll<|nll<|315Ile- 1f =32=B(l),

-vB = h X - + K -r-1
h(uB,=vB ) COR 7m0 % & Kby )

>(X__ . -T)h
2(x L =Tinx ) )

it
=

i
w



using claia 4. If |R|<|B(1)] we

uBz—VR < uB _-v8B

Tnerefore by ianductive hypothesis

lazl-—lRI)(vB1

< uB

and convexity of

note

-vL

N,

-vL) + (IBZI-IL|)(VR—vBl)

h B _=-vB >
(u 2 1) - vR

- vl

v =|B -th(x and RI=|8 [+(X - n(x
Now |L| Iﬁll ( n+1)’ and [R]|=] ll (\n+1 r)ﬁ(Yn+1),
B = vL + rx r
Vo a+1 Y a1
R = vL+x + = vL+X X + (L -1 +
M v Xn yn nt+l n+1 ¢ n-+1 )yu+1 yn
-v3 )>
Hence h(uB2 l)_
rh(x Y(y -y
- |z - IB + n+1 n ntl _ -
EFYERLN x_ ¥y 2 18,1 - 18,
n n
i >
since yn_yn+1
Case 2: rankBljn, ransz=n+l
Again, let L, R be the the rank <pn+l left and rizht
neighbors of B,e Then |Bl|§|Ll<|5ql<|R]-
= B[k ee ek rl. 1f B _=L=3{0],
BZ [ 1’ n’ 1
hirx 9 > rh(x )

— 8 =
h(uB, -V 1) . n

+(r-1
+1 (r )yn+l

ntl

ncarest

Say
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=]32|-|81| using claim 4. If 0<|L|, we note

ul - vB < ub - vBl < uR - vB

Hence by inductive hypothesis and convexity of h

(IL|-|31|)(uR-u32) + ('QI—IBL')(UBW-UL)

B =-vB >
h(u 9 1) >

)

ukRk - ul
o ai =13 -rh(x ’ Ri=13 + (K - 1 ,
Again, |L|=]| 2| 1( n+l) IR | Iazl ( . r)n(xn+ )
= + (K - +
uk UBZ (An+l r)(xn+l yn+1)
= ur - - rXx - r-1
ul qu yn n+l ( )yn+l
h(x ) (K -r)(y -y
n+1l n+1 n n+l
- > - +
h(uB,-vB,) 2 |B, -8 | Y 1y
n n
) -1B since r<K -1.
218, 1=18, 1 since rek .,
Case 3: rank Bl= rank Bq=n+l.

Let L, R be the rank <n+l left and risht nearest

of Bz' Then 0<|B1l<IL|<|BZI<IR|<1, and

ul - vB < ubB - VvB < uR - vB

Now using case 1 and coanvexity,

neizghbors

(ILI—!Bll)(uR—uBE)) + (lRl—IBll)(uBg—uL)

h B _-vb >
Cu 2 1)_ uR - ul



= lel-lB [+

proving Claim 5.
X . h
Claim 6: m (5)=1.

Proof: Suppose S < I, I open intervals. Since 3 is

1 1 1

v 3

compact, S 1s covered by a finite number of the 1, which
i

intersect S, say

N
S <
iy ‘U (al,bl)
i=1

where (a.,b. ) are some of the I ‘s whicn intersect S anid
i’ i i

< 0 <b, € a_+.. a <1 < b
4 2 N N
N
I claim ZZ h(b,-a ) > 1. b 4.8, say b €18 . Row
- i i 1 1 1
i=1
vB. €S, a_ <vB ,%La_ €B . Continuing, we get B _,...0D with
1 2 1 2 1 2 N=-1
b £ B <v3B b >uB . Let B =8[0), B =3(l). T
aj+1’ jE' i aj+1 v 50 Dj u:j e 0 [0] - (1) hen
b,=a,>uB =-v3B, , therefore by claim 5, n(b_-a_)>|B |-13, I,
i o j i-1 i3 j j=1

AT
N

2 h(b,-a ) > 1
i

i=1

(= @)

N
Butr clearly Z: h(diaml, k) > Z: h(b.,-a,) > 1. Thus mh(S)>l
i=1 1 ji=1 1 a7

h - h ‘
for d>0, hence m (S)>1, so by Claim 3, m (S)=1, establishiaqg

Claim 6.



Claim 7: a<m®(S)<(l+e)a

Proof: As in Claiam 3, given d>0 choose n larze enouzh that
n+1

xn+1<d. Consider the TH-Kj closed intervals which make up
j=1"

Sn+1- They cover S and have length <d, hence

o n+1
o o < : . : X o
md(b) - j = ()g( n+1)

nt+l g (x ) g(x '
- TT'K‘h( ) n+l - n+1l
j=1

RSN ) T T )
i (xn+l ](Xu+l

1 N
< (l+e)( a + ;:T ) by Claiam 2 (iii). Thus n (3)<(l+e)a. By

o h
Corollary 2.1, mb(S)Zaml(S)=a , hence
a £ m°(S) < (l+e)a
Thus by Claims 5 and 7,
h
m (S) =1
h g h
am (S) < m (S) < a(l+e)m (S)
establishing Theorem 4.1 in the case a<®®. 1If a=00, Claim 5
h
(setting g=h, say) yields a set S witih m (S)=1. By Corollary
2.1, though, mb(S)=09, establishing Theorem 4.1 when a= 0D .

I don‘t know whether Theorem 4.1 is true when h is not

concavee.
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Corollary 4.1: If h is concave and continuous, there is

h
set S R with 0<m (S)<eo.

This is Hausdorff’s result, slightly weaker than Dvoretsky’s

. o h(t)
result, which assumes only liminf >0.
t=—>90
gt
Corollary 4.2: If h and 3 are concave and llmlnEFL—l—

=a
t—>p 008 7

. g (t) -
llmsup?( y=b, e>0, then cthere are sets §

L’ 52 < R such that
t—>0 ,
h
0o < m (Si) < oo
b : h
aml(Sl) < mirj(Sl) < (l+e)am (Sl)
h 3 !
b(l-e)m (5,) < m®(5,) < bn'(s,)
i
This and corollary 3.2 are the relationship between h and n

referred to in section 2.

Corollary 4.3: Concave functions h and y generate the same
. h(t
measures in R if and only if lim ——wlz .
t.__)Og(t)

Corollary 4.3 answers another query of section 2, and is Dby
no means obvious.

We have shown that the ilausdorff measures in R gen-
erated by céncave functions are in one to one correspondence
with the equivalence classes of concave continuous functions
whose ratio tends to one as t guves to 0. I close by remark-—
ing that this set C has a very complicated structure. It is
not linearly ordered .by any of the natural partial orders ,

for example h <y %?limsupﬁ(t)gl or hd g & 1im-3L£l=U. Nor

t=—>0 t) r—sol(t)




do either of these orders have a countable basis in

(@]

Hausdorff constructed the "Logarithmic Scale"

a a a

h[al,...ay](L) = ¢t 1Ilntl 2...(lnln...llntl ) k

{(first nonzero aj is >0)

which is a countably based linear chain in C, but by the

preceeding remarks is ounly a (very) small part of C.

Cambridge, Mass. 1980
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