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Abstract

The Kalman filter (KF) provides optimal recursive state estimates for linear-
Gaussian systems and underpins applications in control, signal processing,
and others. However, it is vulnerable to outliers in the measurements and
process noise. We introduce the iteratively saturated Kalman filter (ISKF),
which is derived as a scaled gradient method for solving a convex robust
estimation problem. It achieves outlier robustness while preserving the
KF’s low per-step cost and implementation simplicity, since in practice it
typically requires only one or two iterations to achieve good performance.
The ISKF also admits a steady-state variant that, like the standard steady-
state KF, does not require linear system solves in each time step, making
it well-suited for real-time systems.

1.1 Introduction

The Kalman filter is the prevalent tool for state estimation, prized for
its simplicity, low computational cost, and optimality for linear-Gaussian
systems. It has found extensive use in many fields, including control, signal
processing, robotics, navigation, neural interface systems, and econometrics
[1], [2], [3], [4]- Despite its popularity, the KF is notoriously vulnerable
to outliers in the measurements and process noise in the dynamics [5].
Measurement outliers may arise from occasional sensor malfunctions, while
process noise outliers can result from sudden shocks to the system or
unmodeled dynamics.

In this work, we propose the iteratively saturated Kalman filter, which
is a modification of the standard KF’s update (or correction) step. It
iterates a modified KF update step, in which a saturating nonlinearity is
applied to compensate for both measurement and process noise outliers.
The method is derived as a scaled gradient method [6], [7] for solving a



particular convex robust estimation problem involving the Huber function.
Since the ISKF typically requires only one or two iterations to achieve
good performance, it retains the standard KF’s ease of implementation
and per-step cost.

A key advantage of the ISKF is its steady-state variant, which matches
the computational efficiency of the steady-state KF. Whereas the full KF
must update its covariance estimate at each step, incurring matrix-matrix
multiplications and linear solves, the steady-state KF uses precomputable
gain matrices and requires only matrix-vector multiplications and vector
additions. Our steady-state ISKF inherits this low per-step cost while
compensating for both measurement and process-noise outliers. In contrast,
existing robust KF extensions either lack robustness to process-noise
outliers or rely on full covariance estimates in each step.

The rest of the paper is organized as follows. We review prior work
in §1.2. The system model is given in §1.3, and the iteratively saturated
Kalman filter is introduced in §1.4. We derive the filter as a scaled gradient
method in §1.5. Finally, we present numerical experiments in §1.8 and
conclude in §1.9.

1.2 Prior work

There is a large body of work on modifying the KF to be robust to outliers
without sacrificing its computational efficiency. Many of these heuristics
involve modifying the covariance estimate in each KF step, by scaling the
measurement noise covariance matrix or the process and prior covariance
matrices when outliers are detected [8], [9], [10]. The idea is that if an outlier
is detected, the corresponding covariance should be scaled up to account
for the increased uncertainty. Some variations of this idea were derived
by replacing the Gaussian distribution used by the KF with heavy-tailed
distributions [11], [12]. Others are derived by Huberizing the quadratic
costs used by the KF [5], [8], [13], [14], [15], [16].

Yet others have proposed combining the KF with inlier detection meth-
ods such as RANSAC [17], [18]. Several of the robust KF methods have
also been extended to nonlinear systems [19], [20].

Our method generalizes the saturated KF [21] by compensating for
process noise outliers in addition to measurement outliers. In the single-step
case, our method is almost equivalent to the saturated KF, but uses a
different saturation function.
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Besides modified KF methods, we also mention particle filtering meth-
ods, which have been applied to handle outliers [22], although they tend
to be computationally expensive.

1.3 System model

We consider a linear time-invariant dynamical system that evolves according
to

Ti41 :AiL't—i-’wt, yt:Cact—i—vt, t=0,1,..., (1.1)

where ¢ denotes time or epoch, z; € R" is the state, and y; € R? is the
output measurement. The matrix A € R™*" is the state dynamics matrix,
and C' € RP*™ is the output matrix. We assume that the dynamics matrix
A and the output matrix C are known. The dynamics are driven by the
process noise wy € R™, and the outputs are influenced by the measurement
noise v; € RP. We assume that the initial state zg is Gaussian, with
o ~~ N (0, X()).

Linear Gaussian model. In the classical model, the process noise w; € R"
and the measurement noise v; € RP are Gaussian with

we ~ N0, W), v ~N(0,V),

where W is the known positive semidefinite (PSD) process noise covariance
(which can be degenerate, i.e., singular) and V' is the known positive definite
(PD) measurement noise covariance. We assume that the initial state o,
the process noise w¢, and the measurement noise v; are independent and
identically distributed (IID). In this case, the state and measurements are
jointly Gaussian, and the Kalman filter [1] gives the optimal estimate of the
state, both in the minimum mean squared error (MMSE) and maximum a
posteriori (MAP) sense.

QOutlier model. In this work, we consider a model where the process
and measurement noises are typically Gaussian, but may occasionally be
corrupted by outliers. We consider the model

wy = F(ﬁ)t + St), vV = G(’Dt + Ot), (12)

where F' € R"*™ and G € RP*P are known matrices, and w; € R™ and
0y € RP are zero-mean whitened Gaussian noises with w; ~ N (0, 1) and



0 ~ N(0,1). The additional terms s; € R™ and o; € R? are sparse outlier
terms which are zero for most times t.

The process noise outliers s; can result from system shocks or unmodeled
dynamics, while measurement outliers o; can arise from sensor malfunctions
or environmental disturbances. In the absence of outliers, i.e., when s; =0

and o; = 0 for all ¢, the system reduces to the linear Gaussian model, with
W =FFT and V = GGT.

Extensions. Several extensions of the system model are readily handled.
The model can be modified to handle known control inputs, process and
measurement noises w; and v; with nonzero mean, and correlation between
wy and v;. We may also consider the time-varying case, where A, C, W,
and V are allowed to vary with t.

1.4 Iteratively saturated Kalman filtering

Given a sequence of measurements y1,..., ¥y, our goal is to recursively
estimate both the state x; and its covariance P;. At each time step t, we
update our previous estimates #; 1;_ and P;_1;_1 to obtain new estimates
#y; and Py;. We assume in the following that (A, C) is detectable and
(A, W1/2) is stabilizable [23]. Here, W'/2 denotes any matrix such that
(WY)TW2 = W. Such a matrix can be found from the eigenvalue
decomposition of W, or when W is PD, via Cholesky factorization.
Our estimator starts with the standard Kalman filter prediction step

Typo1 = ARyqp (1.3)
Py = APt—1|t—1AT +W. (1.4)
The update step is then given by the iteration
20 = By (1.5)
i = 4 Koy, — CaF ) + (I — K,C)py(2° — 2571, (1.6)

fork=1,... .k, where & denotes the number of iterations. We then take
By = #*. The nonlinear functions

Az A
pt(z) = min — z, o(z) =min (1, _y) z,
MR [V=1722]12

saturate their inputs at threshold values A, and Ay, respectively, and K is
the Kalman gain matrix satisfying the standard Kalman filter covariance
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update equations

Ky = Pt\t—1CT(CPt|t—1CT +Vv)! (1.7)
Pt\t = (- KtC)Pt|t—1-

Comments. Our filter compensates for outliers in the measurements
by reducing the effect of outliers in the measurement noise on the state
estimate by attenuating the magnitude of the innovation y; — C'%y;_y when

V=2 (g — Cy—1)ll2

is large, ¢.e., unlikely under the Gaussian noise model. Similarly, our filter
compensates for outliers in the process noise by attenuating the magnitude
of the proximity to the predicted state Zy;_;.

Single-step case. When k = 1, the update step (1.6) is simply
By = g1 + Ko (yr — CZyp—r)-

In this case, the ISKF does not compensate for outliers in the process
noise, only in the measurements. It closely resembles the standard KF,
except that the innovation y; — C'#y;_ is attenuated by the function o.
The single-step ISKF is very similar to the saturated KF [21], but uses a
different saturation function.

Outlier-free case. In the absence of detected outliers, our state estimate
Iy, satisfies

_ N —1/2, . N
114 1/2(% - th\t)HQ < Ay, Hpt\t_/l (xtlt - $t|t—1)H2 < Az,

and the saturation functions p; and o reduce to the identity function. In
this case, the ISKF is equivalent to the standard KF

KE A N
By = Zy1 + Ke(yr — CZyp1),

with ¢ = illt{lff for all k.

Computational cost. At each time step, the ISKF costs O(k(n® 4 p* +
np)) floating-point operations (FLOPS) online, dominated by matrix-
matrix products and solving a linear system. For k fixed and small, this
is comparable to the cost of the KF. In our experiments, we found that
values between 1 and 5 were effective.



Steady-state case. A key property of the Kalman filter recursion is
that the covariance update steps (1.4) and (1.8) are independent of the
measurements. This means we can compute P;; offline, before processing
any measurements. Furthermore, as ¢ — oo, the covariance matrices Py,
Pyj;—1, and gain matrix K; converge to steady-state values given by:

P = APAT + W — APCT(CPCT + V) topAT
Y = APAT +w
K = xctcxct +v) !

respectively. In steady-state, we may dispense with the covariance and
gain update steps (1.4), (1.7), and (1.8).
This leads to the steady-state ISKF

= By (1.9)
i* = A Ko(y — 02" + (I - KO)p(2° — 271, (1.10)

for k =1,..., k. Like before, we take By = ik, Here, we drop the subscript
t on the function p, since it is now time-invariant.

Since K can be precomputed offline, the steady-state ISKF only requires
matrix-vector multiplications and vector additions online, with has cost
O(k(n?+np)) FLOPS online. Since the convergence of P; to P is in practice
often quick, the ISKF estimate (1.10) gives an excellent approximation to
the ISKF (1.6).

1.5 Derivation as a scaled gradient method

In this section, we show that the ISKF can be interpreted as a scaled
gradient method for solving a convex regularized maximum a posteriori
(MAP) estimation problem in which we estimate x¢, s¢, and o; jointly. We
focus on the steady-state case for simplicity, but the discussion applies to
the general case by replacing P with Py; and X with Fy; 1, and adding
the subscript ¢ on K and p.

1.5.1 Model

At each time step t, we consider the optimization problem

2
+ X[ E 7252 + Ay [V 0] 2
2

SV (- Tejp—1 — 8)
V12(y, — Cz — 0)

o1
minimize 5 H [
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with variables z, s, and o. This is a convex optimization problem, and it
has the following interpretation. When the outlier terms s and o are known
and fixed, the first term corresponds to the negative log likelihood of the
prior distribution over z; and the measurement noise. The second and third
terms are sparse regularization terms on s and o. When the thresholds A,

and )\, are infinite, the optimal values of s and o are zero, and the optimal

kf
tlt:

value of z is simply given by the (steady-state) KF estimate &
Comments. Our optimization problem is only an approximate MAP
estimate, since in general we do not have a statistical model of the outliers
s¢ and o;. Moreover, in the presence of process noise outliers, the prior
distribution over z is no longer necessarily Gaussian with mean Z;;_; and
covariance P. The goal is to reduce the influence of outliers on the state
estimate by regularization, where the regularization terms are chosen such
that the partial minimizations over s and o have closed-form solutions
which can be written in terms of the Huber function.

Circular Huber function. Let the function ¢ denote the partial minimiza-
tion .
p(ain) = min (Gla = bl + Alb2).

The function ¢ has a closed-form solution given by
1112
s|la alls < A,
sy = Ll Jall> <

Alllallz = A/2)  lall2 > A.

We refer to this function as the circular Huber function with threshold . It
is a smooth convex function that is quadratic for ||a|l2 < A, and grows only
linearly with the norm of a for ||al|2 > A. It is equivalent to the standard
Huber function, composed with the Euclidean norm.

The estimation problem may then be written as

Iy = argmin f(),
where
F@) = (572 (@ — Zyp1); o) + (V2 (g — Cz); ). (111)

For future reference, we observe that the Hessian satisfies V2p(a;d) < I,
which implies that its gradient V(a;d) has Lipschitz constant one.



1.5.2 Scaled gradient method

We propose a scaled gradient method for minimizing (1.11) over x € R".
The method has iterates

b =gk MR, k=0,1,... k-1,
where n € (0,2) is a constant step size,
M=x't+cTvC

is the scaling matrix, and the initial iterate 2° = Zy¢—1 1s the predict step
given by (1.3).
The gradient of f is given by

Vi@ = (&7 Ve (572 @ = dy)i M)
—CT(V 1TV (V2 (y — Ca)iy ), (112)

where

Aafllallzflallz > A

To simplify the scaled gradient M~V f(x), we can use the fact that the
Kalman gain can be written as

K=xctcxc” +v)t=m1toTv1,

by applying the Woodbury matrix identity. Then, since Vp(a; A) is a scalar
multiple of a, the scaled gradient becomes

M_IVf(m) = —Ko(y — Cx) — (I = KC)p(Zys-1 — ).

By setting the step size n = 1, we arrive at the ISKF update (1.6). Note
that in practice, it may be numerically advantageous to implement the
saturation functions as

pl2) = Vo(E722\),  a(2) = VeV 22
where Vi has the form in (1.13), since the division by ||a||2 only occurs

when |[lal|2 > A.

Choice of gradient method. In general a gradient method would be a
very poor choice for a problem that must be solved in real-time, since its
practical convergence can vary considerably depending on the input data.
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An interior-point method, which typically takes around 20 or so steps
independent of the data, would seem like a better choice. We propose the
use of a gradient method in this specific case only because an excellent
estimate of the curvature of the function f is available, which eliminates
the need for a line search, and gives very good estimates in just a few
iterations, independent of the data.

1.5.3 Convergence

We now show that the scaled gradient method converges to a solution, and
is a strict descent method, when the iterations are not terminated. Let L
be a matrix that satisfies LLT = M~ e.g., the Cholesky factorization of
M. Let g(z) = f(Lz). The scaled gradient method is then equivalent to
the iteration

KL=k _pvg(¥), k=0,1,...,T -1,

where 2¥ = Lz* for all k. To establish convergence and the descent property,
it is sufficient to show that the gradient Vg is Lipschitz continuous with
constant one [24]. Note that an upper bound on the Lipschitz constant
of Vg can be found by taking A, and A, to infinity, in which case g is a
quadratic function. In that case, g(z) is given by

9(z) = |=7V2(Lz =gy )3+ V20 — CL2)|I3
1-1/2 2—1/2@“71 2
= 1/20 _Vfl/Qyt ,
Since .
2—1/2 2—1/2
T _ 7T _
L l—V‘l/QC] [—V‘l/QC’] L=L"ML=1,

it follows that Vg has Lipschitz constant one.

1.6 Parameter selection

The performance of the ISKF depends on the number of iterations k and
the choice of parameters A\, and A,.

Number of iterations. In our experiments, we found that the ISKF can
compensate for outliers in the measurement noise even with k& = 1, and
outliers in both the measurement noise and process noise even with & = 2.
While small improvements can be achieved for larger k, we found k = 2 to
be a good default choice, with more iterations giving diminishing returns.



10

Threshold parameters. The parameters A\, and A\, balance robustness
against outliers and estimate bias. Larger values of A\, and )\, are ideal
when there are no outliers (with A, = A\, = oo reducing to the standard
KF), while tuned values improve performance when outliers are present.

Step size. The discussion in §1.5.2 suggests that the step size n in the
scaled gradient method could be made a tunable parameter. The (steady-
state) ISKF (1.10) can be modified as

2% = By (1.14)

it = e nKo(y — CF Y (I - KO)p(2° — 2571, (1.15)

However, we suggest fixing = 1 in practice. In our experiments, we found
that increasing 7 to be greater than one could give marginal improvements,
but at the cost of reducing the performance of the filter when there are
no outliers present. This is because 7 effectively acts as a type of gain
parameter for the filter. This is most clearly seen in the single-step case.
When k = 1 and there are no detected outliers (the saturation function o
is identity), the ISKF reduces to the standard KF with gain matrix nK.
Choosing n = 1 leads to a natural interpretation, since the filter is then
equivalent to the standard KF when there are no detected outliers.

Grid search. The parameters may be chosen via a simple grid search,
given a sequence of measurements yi,...,yn collected in the past. For
each combination of parameters, the ISKF can be run on the past data
containing outliers, and the parameter combination that best predicts the
observed measurements is chosen. For each parameter combination, we
compute the RMSE of the predicted measurements

| N 1/2
RMSE = <N > llye — CAi“t—ut—lH%) ; (1.16)
=1

although other metrics could be used. Note that we consider the RMSE of
the residuals y; — CA%;_;;_1, rather than the innovations y; — C'Zy;, since
the estimate &y, is computed as a function of y;.

In practice, a strategy for choosing the parameters is to first fix the
number of iterations & based on the computational budget, and then search
over A\, and A\, to minimize the RMSE.
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1.7 Extensions and variations

1.7.1 Time-varying and non-linear systems

When the system model (1.1) is time-varying, we introduce subscripts ¢
to the matrices A, C, W, and V. The ISKF naturally extends to this sce-
nario, though a steady-state version typically does not exist. For nonlinear
systems, we approximate the model by linearizing around the current state
estimate, resulting in time-varying matrices A;, Cy, W, and V;. Similar to
how the EKF and UKF generalize the KF' to nonlinear cases, analogous
modifications enable the ISKF to handle nonlinear systems by iteratively
updating the linearization.

1.7.2 Missing measurements

We have assumed thus far that the measurements y; are fully available at
each time t. When this is not the case, the update step is replaced with
conditioning on only the known entries of y;. The most general way to
handle this is to allow for any subset of the entries of y; to be known or
unknown. This is equivalent to the case where the measurement matrix
C and measurement covariance V are time-varying, where only the rows
of C' and V corresponding to the available measurements are included. In
the case where no measurements are available, the update step is skipped.

However, this approach leads to a time-varying system, so cannot be
applied to the steady-state case without increasing the online computational
cost from O(n? + np) to O(n3 + p> + np). Alternatively, there are only
2P possible patterns of missing measurements. If 2P isn’t too large, we
could precompute a different steady-state Kalman gain matrix K for each
pattern of known measurements.

1.8 Numerical experiments

In this section, we present numerical experiments evaluating the perfor-
mance of the ISKF, in comparison with the KF and other outlier-robust
filters. In our experiments, we use the steady-state form of the ISKF and
the KF.

Competing methods. We compare the steady-state ISKF against the
steady-state KF, and two outlier-robust Kalman filter variants: the weighted
observation likelihood filter (WoLF) [10] and the Huberized KF [5], [8],
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[13], [14], [15]. WoLF is a covariance scaling method, and is only designed
to reject measurement outliers. Our implementation of the Huberized
KF solves the Huber regression problem (1.11) using the interior-point
method Clarabel [25]. Both WoLF and the Huberized KF have online
computational cost approximately O(n® + p? + np), comparable to the full
KF. In contrast, the steady-state ISKF and steady-state KF have online
cost O(n? + np).

Evaluation. We evaluate the performance of each filter on a simulated
test trajectory of, using the state estimate RMSE

LT 1/2
RMSE = (1 3 - ) (L7
t=1

where z; is the true state and Zy; is the state estimate produced by a filter.
For the purposes of evaluation, we assume that the true state trajectory is
available. Test trajectories had lengths of 1000 time steps.

Parameter selection. We tuned the parameters of each filter using a
separate simulated trajectory than the test trajectory used for evaluation.
Unlike the test trajectory, we assumed that the true state trajectory was
not available for the tuning trajectory data. Instead, we minimized the
predicted measurement RMSE (1.16) in our grid search. For all parameters,
we considered 20 values between 0.1 and 10, logarithmically spaced. Like
the test trajectory, the tuning trajectory had length 1000 time steps. The
ISKF (for k > 1) and the Huberized KF have two tunable parameters, and
WOoLF has one.

1.8.1 Vebhicle tracking

System model. The position and velocity of a vehicle in two dimensions
are denoted & € R? and v, € R%. At time ¢, we observe a noisy measure-
ment of the position &, and aim to estimate the state x; = (&, ;). The
vehicle has unit mass, and is subject to a drag force —vy14 with coefficient
of friction v = 0.05. The discrete-time system with time step h = 0.05 is

Tiy1 = Az + Bug, yr = Cxp + vy,
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where
1o (1-%)h 0
h
401 0 (1-%)n
00 1—~h 0
00 0 1—~h
and 2
T
0 =% 1 0 00
B = 2 =
h 0o}’ ¢ [0 1 0 O]
0 h

The vehicle is driven by a random applied force u; € R?, which is dis-
tributed according to

N(0,10I)  with probability 0.9,
N(0,1007) with probability 0.1,

The measurement noise v; € R? is distributed according to

N(0,51) with probability 0.9,
N(0,5007) with probability 0.1.

such that 10% of the samples are large outliers. This fits the system model
(1.2) with F = v/10B and G = /51.

Performance comparison. With the number of iterations fixed at k = 2,
we selected the parameters to be

A, =010, A, =18

using the grid search procedure described in §1.6. The grid search was
carried out over the predicted measurement RMSE (1.16) on a separate
simulated trajectory of measurements. Figure 1.1 shows the true vehicle
position over time, along with measurements and position estimates pro-
duced by the (steady-state) ISKF and KF. Figure 1.2 shows the state
estimate errors (absolute values) for the KF and the two-iteration ISKF.

Table 1.1 shows the state estimate RMSE (1.17) evaluated for several
filters on the same test trajectory. The ISKF with & = 1 achieves compara-
ble performance to WoLF, as both are only designed to reject measurement
outliers. The (steady-state) ISKF with & = 2 and k = 3 achieves better
performance than WoLF, and performs comparably to the Huberized KF,
at lower computational cost.
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Figure 1.1: True vehicle position over time, along with measurements and position estimates
produced by the (steady-state) ISKF and KF.
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Figure 1.2: Vehicle tracking state estimate errors (absolute values) for the KF and the two-
iteration ISKF.
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3.2

(a) (b)

Figure 1.3: Parameter tuning for vehicle tracking example. Left: state estimate RMSE vs.
number of iterations k. A grid search was performed to choose A; and Ay for each value of k.
Right: contour plot of state estimate RMSE (1.17) for different values of Az and \y.

Effect of parameters. Figure 1.3 illustrates the effect of the parameters
k, Ay, and Ay on the performance of the ISKF on the test data. The left
plot shows the best-achieved state estimate RMSE (by grid search) for
each value of k. The ISKF achieves a 30% improvement over the KF after
two iterations, and does not improve after three iterations. The contour
plot on the right shows the state estimate RMSE for different values of A,
and \,.

1.8.2 Cascaded continuously-stirred tank reactor

CSTR model. The adiabetic continuous stirred-tank reactor (CSTR) is a
commonly-appearing system in the chemical process industry [26], [27]. We
consider an ideal model of a single, first-order exothermic and irreversible
reaction taking place in a reactor tank, which is assumed to be perfectly-
mixed. The reagent enters the tank through the inlet at a constant rate,

’ Method H RMSE ‘ Improvement over KF

KF 4.55 -
ISKF (k=1) || 3.43 25%
ISKF (k=2) || 3.19 30%
ISKF (k=3) || 3.15 31%
WoLF 3.50 23%
Huber KF 3.15 31%

Table 1.1: State estimate RMSE comparison of several filtering methods for the vehicle tracking
example. All filters were tuned using the same data, and evaluated on the same test data.
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and the output product leaves the reactor at the same constant rate. The
state consists of the concentration of the reagent ¢ and the temperature 7
in the reactor, and the dynamics are controlled by the inlet concentration
c™ and the tank’s jacket coolant temperature 7¢.

The continuous-time dynamics are linearized around an operating point
(co, 70, ¢, 7§). In the linearized model, the state is & = (¢ — co, T — 70), and
the process is driven by u = (¢ — ¢, 7¢ — 7§). We observe measurements
of the reactor’s temperature, but not of the reagent concentration. The
discrete-time dynamics with step size of h are

&41 = A& + Buy, y = C& +uy,

where 14 € R is the measurement noise and the matrices are [28]

i [1—5h+4.33h%  —0.34h + 0.38h2

- 47.68h — 52.81h% 1+ 2.79h — 4.29K%|’
5o [h— 2.5k —0.05h2

- I 23.84h% 0.3h + 0.42R%|°
¢ = Jo 1] .

Note that here, y; represents a measurement of the temperature offset from
the operating point 7y, rather than the temperature itself.

System model. In this example, we consider a cascade of three such
reactors, with the state of each reactor being the input to the next. Let ¢;
and 7; be the reagent concentration and temperature of the i-th reactor,
respectively. Then, the cascaded system has state 2 € RS given by z =
(&1,&2,&3), where & = (¢; — co, 7 — 7o) is the state of the i-th reactor. The
cascaded system has discrete-time model

i1 = Az +wy, Y = Cap + vy,

where

A:

o T
T, ©
o o
Q
I

and w € R% and v € R? are the process and measurement noises, with F
and G matrices given by

F=

al-
o
o o

B
0
0

o o
Q
Il
S O =
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Figure 1.4: True reagent concentration and temperature values over time, along with measure-
ments and state estimates produced by the (steady-state) ISKF and KF.

The process noise wy and measurement noise v; are distributed according

to
N(,FFT) with probability 0.9,
"7 N(0,100FFT)  with probability 0.1,
and
N(0,1) with probability 0.9,
t ~Y

N(0,100I) with probability 0.1,

We discretized the continuous-time dynamics with a step size of h = 50ms.
The operating point is ¢y = 2kmol/m3, 70 = 373K, ¢ = 1Okmol/m3, and
7¢ = 299K.

Performance comparison. With the number of iterations fixed at k = 2,
we selected the parameters to be

Ap =0.10, A\, =33

using the grid search procedure described in §1.6. Like in the vehicle
tracking example, the grid search was carried out over the predicted mea-
surement RMSE (1.16) on a separate simulated trajectory of measurements.
Figure 1.4 shows the true reagent concentration and temperature values
over time, along with measurements and estimates produced by the (steady-
state) ISKF and KF. Figure 1.5 shows the state estimate errors (absolute
values) for the KF and the two-iteration ISKF.
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Cy error

Figure 1.5: State estimate errors (absolute values) for the KF and the two-iteration ISKF.

Table 1.2 shows the state estimate RMSE (1.17) evaluated for several
filters on the same test trajectory. The ISKF with & = 1 achieves compara-
ble performance to WoLF, as both are only designed to reject measurement
outliers.

Effect of parameters. Figure 1.6 illustrates the effect of the parameters k,
Az, and Ay on the performance of the ISKF on the test data. The left plot
shows the best-achieved state estimate RMSE (by grid search) for each
value of k. The ISKF achieves a 49% improvement over the KF after two
iterations, and, like in the vehicle tracking example, does not improve after

Table 1.2: State estimate RMSE comparison of several filtering methods for the cascaded
CSTR example. All filters were tuned using the same data, and evaluated on the same test data.

’ Method H RMSE ‘ Improvement over KF

KF 2.46 -
ISKF (k=1)| 157 36%
ISKF (k=2) || 1.25 49%
ISKF (k=3) | 121 51%
WoLF 1.79 27%
Huber KF 1.56 37%
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Figure 1.6: Parameter tuning for CSTR example. Left: state estimate RMSE vs. number of
iterations k. A grid search was performed to choose A and Ay for each value of E. Right: contour
plot of state estimate RMSE (1.17) for different values of Az and Ay.

155 \ I
1.50
145

9 10 ‘]’Z 0.4 0.6 0.8 1.0 1.2 1.4

(a) (b)

three iterations. The contour plot on the right shows the state estimate
RMSE for different values of A, and A,.

1.8.3 Tuning step size

As discussed in §1.6, the step size n may be tuned jointly with A, and A, as
part of the same grid search procedure. For both the vehicle tracking and
CSTR examples, we found that while increasing n can provide marginal

Table 1.3: Results of tuning the step size n jointly with Az and \,. RMSE is evaluated on the
same test data as in §77 and §??7. The RMSE with no outliers is computed by removing the
outliers from the test data, so that the process and measurement noises are Gaussian with fixed
covariance.

| Method | n | A | Ay || RMSE | RMSE (no outliers) |
KF - | - [ - || 455 1.40

ISKF (k=2) | 1 [0.10][ 183 319 1.50

ISKF (k=2) | 2.64 | 0.10 | 0.89 || 3.15 1.67

(a) Vehicle tracking example

| Method | 5 [ A | A\, || RMSE | RMSE (no outliers) |
KF -1 -1 - 2.46 0.68

ISKF (k=2) | 1 |0.10][380 | 1.27 0.78

ISKF (k=2) | 1.83 | 0.26 | 2.34 || 1.23 0.92

(b) CSTR example
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improvements in performance, the resulting filter underperforms when there
are no outliers in the simulation, i.e., the process noise and measurement
noises are Gaussian with fixed covariance. In the following, we consider a
grid search over 20 values of  between 0.1 and 100, logarithmically-spaced.
The results are shown in Table 1.3. In the vehicle tracking example, the
(two-step) ISKF with a tuned value of n = 2.64 achieves a 1% improvement
over the ISKF with n = 1 on the test data, but underperforms by 10%
when the outliers are removed from the test data. In the CSTR example,
the ISKF with tuned value n = 1.83 achieves a 3% improvement over the
ISKF with n = 1 on the test data, but underperforms by 15% when the
outliers are removed from the test data.

1.9 Conclusion

We have introduced the iteratively saturated Kalman filter, a modification
of the standard KF’s update step that makes it robust to outliers. The
method is derived as a scaled gradient method for solving a particular
convex maximum a posteriori estimation problem. The steady-state variant
of the ISKF matches the computational efficiency of the steady-state KF,
and is well-suited for real-time applications.
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