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Joint Optimization of Communication Rates

dress the initial shift problem. The convergence and robustness proper- and Linear Systems

ties of the scheme WIFh respe_ct to initial shifts have be_gn presented b}iin Xiao, Mikael Johansson, Haitham Hindi, Stephen Boyd, and
the developed analysis technique. Under certain conditions, the system Andrea Goldsmith

output is ensured to converge to a neighborhood of the predefined tra-
jectory and the error bound is proportional to the bound on initial shifts.

The system undertaken has been ShOWh to possess asymptotic trackinghstract—we consider a linear control system in which several signals
capability and the converged output trajectory can be assessed byalfaetransmitted over communication channels with bit rate limitations.
initial condition. The initial rectifying action has been shown effectivivith the coding and medium access schemes of the communication

to improve the tracking performance further, by which the comple?é(Stem fixed, the achievable bit rates are determined by the allocation of
h . o . . ’ communications resources such as transmit powers and bandwidths, to
tracking with specified transient is guaranteed.

different communication channels. We model the effect of bit rate limited
communication channels by uniform quantization and the quantization
errors are modeled by additive white noises whose variances depend on
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Fig. 3. Scaling of the uniform quantizer.
Fig. 1. Linear time-invariant (LTI) system closed over communication

network.
There has been significant research on control with quantized
w P feedback information (see, e.g., [9]-[14]) and joint optimization
— > > of quantizer and estimator/controller has been considered in, e.g.,
» LTI System [9]-[11]. However, joint optimization of communications resource

allocation and linear system design, interacting through bit rate
limitations and quantization, has not been addressed before in the

Yr1 o Y literature. Even in the simplified setting under our assumptions,

: : the joint optimization problem is quite nontrival and its solution

. . requires concepts and techniques from communication, control and

UYr M YM optimization. We show that for fixed linear system, the problem of
< optimally allocating communication resources is often convex and,

hence, readily solved. We discuss efficient solution methods and
Fig. 2. Uniform quantization model of communication links. suggest a heuristic for obtaining suboptimal integer solutions. The
problem of jointly designing the linear system and allocating the
. . . .__.communication resources is in general not convex and we present a
yr are the signals transmitted and received over the communlcan?n . L :

. . Iferative heuristic that exploits problem structure and appears to work
network, respectively. This general arrangement can represent a Va- . .
. . ; . very well in practice.
riety of systems, for example a controller or estimator in which ac-
tuator and sensor signals are sent over wireless channels. In this note,
we address the problem of optimizing the stationary performance of Il. LINEAR SYSTEM AND QUANTIZER MODEL
the linear system by jointly allocating resources in the communicatigQ Linear System Model

network and tuning parameters of the linear system. To simplify th tati h inale-rat
Many issues arise in the design of networked controllers, includin, o simplify the presentation we assume a synchronous, single-rate

bit rate limitations, communication delays, packet loss, transmissig%'?‘crme't'me system. The LTI system (see Fig. 1) can be described as

errors and asynchronicity (see, e.g., [1]-[8]). In this note, we consider
problems related to only the firstissue, i.e., bit rate limitations. Much of
the work on control with bit rate limitations has concentrated on joint
design of control and coding to find the minimum bit rate required

stabilize a linear system. For example, [1] and [2] established variotLrJ
closed-loop stability conditions involving the feedback data rate al il

eigenvalues of the open-loop system and [8] and [3] studied contfggﬁ_ no ex ) twhen n v W ' me that the signal Nt (i
with communication constraints within the classical linear quadratlci” onp exceptwhen necessary. Ye assume that the signais se (ie.,
Gaussian (LQG) framework. y) and received (i.ey,) over the communication links are related by

Our focus in this note is different. We assume that the source Codir%?moryless scalar quantization.
channel coding and medium access scheme of the communication
system are fixed and we concentrate on finding the allocation Bt
communications resources such as transmit powers and bandwidth&jnit Uniform Quantizer and ScalingA unit-range uniform
that yields the optimal performance of the linear system. For a fixég-bit quantizer partitions the range-1, 1] into 2¢ intervals of
sampling frequency of the linear system, the limit on communicatiamiform width 2 ~*:. To each quantization interval a codeword of
rate translates into a constraint on the number of bits that can ke bits is assigned. Given a received codeword, the input vglue
transmitted over each communication channel during one samplisgapproximated by (or reconstructed as), the midpoint of the
period. We assume that the individual signglsare coded using corresponding interval. As long as the quantizer does not overflow,
memoryless uniform quantizers, see Fig. 2. We impose lower bourids, |y;| < 1, the quantization error lies in the interval2=":. To
on the number of quantization bits, which correspond to lower bounasoid overflow, each signaj;(¢) is scaled by a factos;' > 0
on the channel bit rates. These lower bounds ensure that the daiar to encoding and rescaled by after decoding (see Fig. 3).
rates are high enough for stabilization (i.e., much higher than low& minimize quantization error while ensuring no overflow (or
bounds given in [1], [2]) and allow us to use the white-noise model fohat overflow is rare) the scaling facter should be chosen as the
guantization errors introduced by Widrow (see, e.g., [15] and [16fnaximum possible value dfj;(¢)|, or as a value that with very high
Memoryless uniform quantization is certainly not the optimal sourgerobability is larger thary;(¢)|. We will use the so-calledd3rule,
coding scheme (see, e.qg., [3], [8], and [12]), but it is conventional; = 3rms(y:), whererms(y;) = (lim, o Ev,(£)%)'/? denotes
easily implemented and leads to a simple model for how the systé¢ihhe rms (root-mean-square) value @f For example, ify; has a
performance depends on the bit rates which, in turn, are determir@dussian distribution, then overflow occurs only about 0.3% of the
by the allocation of communications resources to different channelgdime.

z=Guile)w + Gia(@)yr ¥y = Gar(p)w + Ga2(@)yr 1)
hereG;; are LTI operators (i.e., convolution systems described by

gnsfer or impulse matrices). Hergis the vector of design parame-
s, such as estimator or controller gains, that can be tuned to optimize

Quantization Model



150

w z
LTI System
Yr Yy

(P
b,

Fig. 4. Additive-white-noise model for quantization errors.

White-Noise Quantization Error ModelWe adopt the stochastic
quantization noise model introduced by Widrow (see, e.g., [15]). As-

suming that overflow is rare, we model the quantization erge =

yri(t) — yi(t) as independent random variables, uniformly distributed
on the intervals;,[—27%,27%]. In other words, we model the effect

of quantizingy;(¢) as an additive white-noise sourggt) with zero
mean and variandB ¢;(t)? = (1/3)s?272*:, we will impose a lower

bound on each;, which corresponds to a lower bound on the bit rate for
individual communication channels. This lower bound should be high
enough for stabilizing the closed-loop system (cf. [1]-[3]) and make
the white noise model a reasonable assumption in a feedback control

context (cf. [15], [16]).

C. Performance of the Closed-Loop System

Using the white noise quantization error model, we obtain the system

in Fig. 4. The LTI system is driven by exogenous inputeindgq. We
express: andy in terms ofw andq as

2= Gww+Goqq Y= Gyow + Gyqq

whereG..., G.q, Gyw, andG,, are the closed-loop transfer matrices
from w andgq to >z andy, respectively. They can be expressed as linear

fractional transformations of the matric@s; in (1). The variance of
induced by the quantization is given by

M
. o (1 o _op.
V=BGl =316 (3327) @
i=1

whereG.,; is theith column of the transfer matri&., and|| - || de-
notes thd.” norm (see [17, Sec. 5.2.3]). This expression showsHpw
depends on the allocation of quantizer Bits. . ., bar, as well as the
scalingssi, ..., sy and the LTI system. We can u$g as a measure
of the effect of quantization on the overall system performanae.i$f
also modeled as a stationary stochastic process (independgnttod
overall variance of is given by

V=E|:I’ =V, +ElG-wu|’.

~
z

®3)

I1l. COMMUNICATIONS MODEL AND ASSUMPTIONS

A. A Generic Model for Bit Rate Constraints

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 48, NO. 1, JANUARY 2003

We letb € R* denote the vector of bits allocated to each quantized
signal. The associated communication ratgin bits per second) is
proportional toh; and their relationship can be expressed;as ar;.

The constant has the formy = ¢,/ f,, wheref, is the sample fre-
guency of the linear system anglis the channel coding efficiency (in
source bits per transmission bit) for a fixed coding scheme. This re-
lationship will allow us to express capacity constraints in terms of bit
allocations rather than communication rates.

We will use the following general model to relate the vector of bit
allocationsh and the vector of communications variabtes

fi(b,0) <0, i=1,...,my
hiTG <d;, i=1,...,mp
6; >0 i=1,...,my

b < b; <b;, i=1,...,M. 4)

We make the following assumptions about this generic model.

« The first set of inequalities describe capacity constraints on the
communication channels. The functiofisare convex in¥, #),
monotone increasing ih and decreasing id. We will show
below that many classical capacity formula satisfy these assump-
tions.

» The second set of constraints describes resource limitations, such
as a total available power or bandwidth for a group of channels.

» The third constraint specifies that the communications variables
are nonnegative.

« The last group of inequalities specify lower and upper bounds
for each bit allocation. We assume tihatndb; are nonnegative
integers. The lower bounds are imposed to ensure that the white
noise model for quantization errors is a reasonable assumption
(see Section 1lI-B). The upper bounds can arise from hardware
limitations.

This generic model will allow us to formulate the communication
resource allocation problem, i.e., choos#ig optimize overall system
performance, as a convex optimization problem.

There is also one more important constrainbarot included in the
model above: thé;’s should all be integers. We ignore this constraint
for now and will return to it in Section IV.

B. Examples of Channel Capacity Constraints

In this section, we describe some classical channel models and
show how they fit the generic model (4). Detailed descriptions of more
channel models can be found in, e.g., [18] and [19]. Channels with
gain variations (fading) as well as rate constraints based on bit-error
rates can be formulated in a similar manner (see, e.g., [20]).

Frequency Division Multiple Access (FDMA) Gaussian Chan-
nels: In the Gaussian broadcast channel with FDMA, a transmitter
sends information ton receivers over disjoint frequency bands
with bandwidthsW; > 0 and assigns a transmit powé& > 0
to each band. The communications variables Breand W; for
each individual channel. The receivers are subject to independent

The capacities of communication channels depend on the media adelitive white Gaussian noises with power spectral densiies
cess scheme and the selection of certain critical parameters, suciitas classical Shannon capacity result (see, e.g. [18]) relates the
transmission powers and bandwidths or time-slot fractions allocatachievable bit allocations; and the communications variables by
to individual channels (or groups of channels). We refer to these ciit-< «W; log, (1 4+ (P;/N;W;)), which is equivalent to

ical communications parameters collectivelycasnmunications vari-
ablesand denote the vector of communications variableg byhe

communications variables are themselves limited by various resource
constraints, such as limits on the total power or total bandwidth avail-

fi(bi, Wi, ;) =b; — aW;

log,

) <o

j
) /
< T W

1 =1,...,n.

(5)

able. We will assume that the medium access methods and coding and
modulation schemes are fixed, but that we can optimize over the utis easily verified thaff; is jointly convex in the variable$ (, W;, F;),

derlying communications variablés

monotone increasing ih; and monotone decreasing ; and F;.
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So, (5) is in the generic form of the first set of constraints in (4). Thgrality constraints) when the linear system is fixed. Similarly, when
communications variables are constrained by total resource limits the communications variables are fixed, it is often possible to compute
the globally optimal linear system variables. Finally, when the linear
Pi+---+PFP, <Po Wi+---4+W, <Wy system and the communications variables are fixed, it is straightfor-
ward to find the quantizer scalings, e.g., by tler8le. This naturally
which have the generic form for total resource limits (the second setjefids to an approach where we sequentially fix one set of variables and

constraints) in (4). optimize over the others.
In the Gaussian multiple access channel with FDMAfransmit-

ters send information to a common reveiver, each using pdWwever A, Alternating Optimization for Joint Design
bandwidthV;. It has the same set of constraints as for the broadcas
channel, exceptthdf; = N, : = 1,...,n (since they have acommon
receiver).

T'I'he fact that the joint problem is convex in certain subsets of the
variables while others are fixed can be exploited by the following iter-
ative optimization procedure.

IV. RESOURCEALLOCATION FOR FIXED LINEAR SYSTEM

iven initial linear system variables 00,
In this section, we assume that the linear system is fixed and consiggimmunications variables 9, scalings 50
the problem of choosing the communications variables to optimize theneat
system performance. We take as the objective (to be minimized) he Fix  ,(¥)  s(*) and optimize over 0. Let
variance of the performance signalgiven by (3). Since this variance g(k+1) phe the optimal value.
consists of a fixed term (related to) and the variance induced by thep  Fix  g(k+1) ~ 5(k) and optimize over 0. Let

quantization, we can just as well minimize the variance afduced ,(v+1) pe the optimal value.
by the quantization error, i.e., the quanfity defined in (2). Thisleads 3. Fix  ,(k+1) g+ et s(k+1) pe appro-

to the optimization problem priate scaling factors.
N untii  convergence
minimize Zai?’zbﬂ'
) =1 ) Many variations on this basic heuristic method are possible. We can,
subjectto (b, ¢) <0, i=1....mys for example, add trust region constraints to each of the optimization
nle <d, i=1,...,mp steps to limit the variable changes in each step. Another variation is to
6; >0, i=1,...,mg convexify (by, for example, linearizing) the jointly nonconvex problem

and solve in each step using linearized versions for the constraints and
objective terms in the remaining variables; see, e.g., [24] and the refer-
ences therein.

Since the joint problem is not convex, there is no guarantee that this

b. We note that while the formula (2) was derived assumingithate - . ;
. o . . heuristic converges to the global optimum. On the other hand it appears
integers, the objective function makes sensebfoe R. Since the . .

to work well in practice.

objective function and each constraint in problem (6) are convex, this’is

a convex optimization problem. It can be solved globally and efficient

using a variety of methods, e.g., interior-point methods (e.g., [21]).

many cases, the problem (6) has an separable structure, which can bie consider a system with distributed sensors and actuators. The

efficiently exploited by dual decomposition (e.g., [21] and [22]).  Sensors send their measurements to a central controller through a mul-
We now return to the requirement that the bit allocations must igle access channel and the controller sends control signals to the ac-

integers. Since general-purpose integer programming techniques Ha@éors through a broadcast channel, as shown in Fig. 5.

high computational complexity, it is of interest to develop efficient The linear dynamical system has a state-space model

heuristic methods that give good suboptimal integer solutions. We pro-

pose to use a simpieriable threshold roundingor a given threshold x(t+1) =Ax(t) + B (u(t) + w(t) 4+ p(t))

0 <t <1, we roundb; down if its fractional part is no larger than yr(t) =Cx(t) + v(t) + q(t)

and round it up otherwise. Given the rounded bit allocations, we find

the associated communications varialfldsy solving a convex feasi- Whereu(t) € R™ andy(t) € R", w(t) is the process noise(t) is

bility problem with the constraints in (6). We then find the smaltest the sensor noise andt) andq(t) are quantization noises due to the bit

that admits a feasible solution. In [23], we discuessed some theoretigde limitations of the communication channels. Assumetdhat and

properties of this scheme and demonstrated its effectiveness on a nét} are independent zero-mean white noises with covariance matrices

b; <b; < bi, i=1,....M (6)

wherea; = (1/3)||G-4:|*s? and the optimization variables afeand

\% Control Over Communication Networks

worked least-squares estimator. R, andR,, respectively. Using the independent white-noise model for
the quantization noises, we can define the equivalent process noise and
V. JOINT DESIGN OFCOMMUNICATION AND LINEAR SYSTEMS sensor noise
We have seen that when the linear system is fixed, the problem of op- W(t) = w(t)+pt) () =v(t)+ q(t)

timally allocating communication resources is often convex (ignoring
integrality constraints) and can be efficiently solved. In order to achievéth covariance matriceR~ = R, + R, andR> = R, + R, re-
optimal system performance, however, one should optimize the linegpectively, where
system parameteedthe communications variablgsintly. Unfortu- , ,
nately, this joint design problem is in general not convex. R, =diag <Sa‘1 9—2ba1 MQ—%M)
In some cases, however, the joint design problem is convex in sub-

.....

3
sets of the variables. For example, the globally optimal communica- 52

2
. 5
tions variables can be computed very efficiently (ignoring the inte- Ry =diag < 3

271 ZEmg=2ben ) 7
b g (7
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Controller |4 T Fig. 6. Control of a mass-spring system.

The mechanical system parameters:are= 10, ms = 5, mg =
20, m4 = 2,m5 = 15, andk = 1. The discrete-time system dynamics
. is obtained using a sampling frequency which is five times faster than
Here,b,; andb,; are numbers of bits allocated to the actuators ar{a 9 piing freq y

. . e fastest mode of the continuous-time dynamics. The independent
sensors anel,; ands.; are corresponding scaling factors for the quarse.o mean white noisesand have covariance matricé®, — R, —
tizers, found by the 3-rule.

. . I 107°I. The actuators impose rms constraints on the control signals:
Our goal is to design a controll_er that minimizes the root-mearnms(u‘i) <li=1...5
square (rms) value of = C'z, subject o somg upper bound con- The multiple access channel and the broadcast channel have separate
straints on the rms values of the control signals: total power iMits Powc.cor = Phetoi = 7.5, but they share a total
bandwidth limitiW;.: = 10. All receivers have the same noise power
densityN = 0.1. The proportional coefficient in the capacity formula

isa = 2. We impose an upper boud= 12 and a lower bound = 5

Fig. 5. Control over communication networks.

minimize rms(z)
subject torms(u,;) < 3, i=1,...,m. (8)

The constraints are added to avoid actuator saturation. It can be shé@fif!l quantizers.

that the optimal controller for this problem has the standard estimated I"St: We allocate power and bandwidth evenly to all sensors and
state feedback form actuators, which results in a uniform allocation of eight bits for each

channel. For this fixed resource allocation, the iterative controller and
Z(t+ 1t) =AZ(t|t — 1) + Bu(t) + L (y(t) — Cz(t|t — 1)) scaling design yieldsms(u;) = 1 for all i’s and rms(z) = 0.549.
u(t) = — K&(t|t — 1) 'I_'ht_an we used_the alternating procedure in S_ection V-A.to _do joi_nt op-
timization of bit allocation and controller design. After four iterations,
whereK is the state feedback control gain ahds the estimator gain, it resulted inrms(u;) = 1 for alli’'s andrms(z) = 0.116. The vari-
found by solving an appropriately weighted LQG problem. Finding thable threshold rounding procedure [23] yields the threstiotd 0.615
appropriate weights, for which the LQG controller solves the probleand rms(z) = 0.126, which is quite close to the relaxed noninteger
(8), can be done via solving the dual problem; see, e.g., [17] and [25plution. We see a significant 77% reduction in rms value compared
lterative Procedures for Controller DesignFirst, we allocate an with the uniform bit allocation.
equal number of bits to each actuator and sensor. This means thatig. 7 shows the rounded resource allocation. We see that more band-
we assign power and bandwidth (in the case of FDMA) uniformlwidth and, hence, more bits are allocated to the broadcast channel than
across all channels. We can design a controller for this fixed unifori the multiple access channel. This means that the closed-loop per-
resource allocation via an iterative design on the scaling factors dieimance is more sensitive to the equivalent process noises than to the
the controller. The iterative procedure is very similar to the one @quivalent sensor noises.
Section V-A, but without the resource allocation step. For the joint
optimization problem, we use the alternating optimization procedure VI. CONCLUSION

in Section V-A. Here, the controller parametersare the state feed- . o
back gaink and estimator gai and the communications variables Ve have addressed the problem of jointly optimizing the parame-

§ are the powers and bandwidths allocated to the multiple accdels of a linear system and allocating resources in the communication

and broadcast channels. Step 1) of the iterative procedure solvesS¥iem that is used for transitting sensor and actuator information. We
E#nsmered a scenario where the coding and medium access scheme of

resource allocation problem (6); step 2) solves the controller desi St : 4 e
problem (8); step 3) computes the rms values géindy;: and find the e communication system_ are fixed, but the ava_ulable communications
scaling factors using thes3rule. resources, such as transmit powers and bandwidths, can be allocated to
different channels in order to influence the achivable communiucation
C. Numerical Example: Control of a Mass-Spring System rates. To model the effect of limited communication rates on the per-
formance of the linear system we assumed conventional uniform quan-

Now, we consider the system shown in Fig. 6. The position SENSQtion and used a simple white-noise model for quantization errors.

on each mass send measurements »; + v;, wherew; is the sensor
noise, to the controller through a Gaussian multiple access channeHere the open-loop system is critically stable and the lower bound for sta-
using FDMA. The controller receives; = x; + v; + ¢;, whereg; is  bilization given in [1]-[3] is zero. More generally, if we discretize an unstable

the quantization error. The controller sends control signal® actua- continuous-time open-loop system using a sampling rate which is at least twice

. . largest magnitude of the eigenvalues (a traditional rule-of-thumb in design
tors on each mass through a Gaussian broadcast channel using FDIQ fgital control systems: see. e.g., [16]), then the lower bound given in [1]-[3]

The actual force acting on each masgi$ = u; + w; + p;, Where s less than one bit and > 3 or 5 is usually high enough for assuming the
w; is the exogenous disturbance ands the quantization error. white noise model for quantization errors.
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