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Abstract

We consider a linear system, such as a controller or estimator, in

which several signals are transmitted over communication chan-

nels with bit rate limitations. We model the effect of bit rate

limited wireless channels by conventional uniform quantization,

and use a standard white-noise model for quantization errors.

We focus on finding the allocation of communication resources

such as transmission powers, bandwidths, or time-slot fractions,

that yields optimal system performance. We show that if the

linear system is fixed, the problem of allocating communication

resources is often convex. We discuss optimization algorithms

that exploit the problem structure, and present efficient heuris-

tics for obtaining integer-valued solutions. The problem of jointly

allocating communication resources and designing the linear sys-

tem is in general not convex, but can be solved heuristically in

a way that exploits the problem structure and appears to work

well in practice.

1 Introduction

We consider a linear system in which several signals
are transmitted over wireless communication links, as
shown in figure 1 (left). Here, w is a vector of exogenous
signals (such as disturbances or noises acting on the
system), z is a vector of performance signals (including
error and actuator signals) and y and yr are the signals
transmitted over the communication network, and re-
ceived, respectively. This arrangement can represent a
variety of systems, such as distributed controllers or es-
timators in which sensor, actuator, or command signals
are sent over wireless communication networks.

Many issues arise in the design of networked controllers
and the associated communication systems, including
bit rate limitations, communication delays, packet loss,
transmission errors, and asynchronicity. In this paper
we consider only the first issue, i.e., bit rate limitations.
Hence, we assume that each communication link has
a fixed and known delay (which we model as part of
the LTI system), does not drop packets, transfers bits
without error, and operates (at least for purposes of
analysis) synchronously with the linear system.

Our focus is the joint optimization of the linear system
and the resource allocation in the communication net-
work. We assume that the coding scheme and medium
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Figure 1: System set-up and uniform quantization model.

access control of the communication system is fixed,
and concentrate on the selection of certain critical com-
munication parameters, such as transmission powers
and bandwidths allocated to the channels (or groups of
channels), which in turn limit the achievable bit rates.

For a fixed sampling frequency fs of the linear system,
the bit rate limit translates into a constraint on the
number of bits that can be transmitted over each com-
munication channel during one sampling period. We
will assume that the individual signals yi are coded
using conventional memoryless uniform quantizers; see
figure 1 (right). This coding scheme is certainly not
optimal (see, e.g., [8]), but it is conventional, easily
implemented, and allows us to use a simple and stan-
dard model for the loss of system performance due to
the network communication constraints. Similar mod-
els have been used to analyze and design fixed-point
implementations of filters and controllers, see, e.g., [9].

We consider two specific problems in this paper. First,
we assume the linear system is fixed and consider the
problem of choosing the communication variables to
optimize the overall system performance. We show that
this problem is convex, and can be solved globally and
efficiently using a dual decomposition method. The
second problem we consider is the problem of jointly
allocating communication resources and designing the
linear system in order to optimize performance. This
problem is in general not convex. We propose a heuris-
tic approach that exploits the problem structure and
appears to work well in practice.

2 Linear system and quantizer model

Linear system model We assume a synchronous,
single-rate discrete-time system, described as

z = G11(ϕ)w + G12(ϕ)yr, y = G21(ϕ)w + G22(ϕ)yr



where Gij are LTI operators and ϕ ∈ Rq is the vector
of design parameters in the linear system that can be
tuned to optimize performance. To give lighter nota-
tion, we suppress the dependence of Gij on ϕ except
when necessary. We assume that y(t), yr(t) ∈ RM ,
i.e., that M scalar signals y1, . . . , yM are transmitted
over the network during each sampling period. We
also assume that the signals sent (y) and received (yr)
over the communication links are related by memory-
less scalar quantization, which we describe in detail be-
low. All communication delays are assumed constant
and known and included in the LTI system.

Unit uniform quantizer The unit range uniform
b-bit quantizer partitions the range [−1, 1] into 2b in-
tervals of uniform width 21−b. To each quantization in-
terval a codeword of b bits is assigned. Given the asso-
ciated codeword, a numerical value ur is reconstructed
by taking the midpoint of the interval corresponding
to the codeword. The relationship between the origi-
nal and reconstructed values can be expressed as

Qb(u) = round(2b−1u)/2b−1 (1)

for |u| < 1. Here, round(z) is the integer nearest to z
(with ties rounded down). The behavior of the quan-
tizer for |u| ≥ 1 is not specified. The details of the
overflow behavior will not affect our analysis or de-
sign, since we assume by appropriate scaling (described
below) that overflow does not occur, or occurs rarely
enough to not affect the system performance. The as-
sociated quantization error can be expressed as

Eb(u) = ur − u =
(
round(2b−1u) − 2b−1u

)
/2b−1.

As long as the quantizer does not overflow, the quan-
tization error Eb(u) lies in the interval ±2−b.

Scaling To avoid overflow, each signal yi(t) is scaled
by the factor s−1

i > 0 prior to encoding with a unit
uniform bi-bit quantizer, and re-scaled by the factor si

after decoding (figure 2), so that

yri(t) = siQbi
(yi(t)/si).

The associated quantization error is given by

qi(t) = yri(t) − yi(t) = siEbi
(yi(t)/si),

which lies in the interval ±si2−bi , provided |yi(t)| < si.
To minimize quantization error while ensuring no over-
flow (or ensuring that overflow is rare) the scale factors
si should be chosen as the maximum possible value of
|yi(t)|, or as a value that with very high probability is
larger than |yi(t)|. We will use the so-called 3σ-rule,

si = 3 rms(yi),

where rms(yi) is the root-mean-square value of yi. If
yi has a Gaussian distribution, this scaling ensures that
overflow occurs only about 0.3% of the time.
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Figure 2: Scaling before and after the quantizer.

White-noise quantization error model Assum-
ing that overflow is rare, we model the quantization er-
rors qi(t) as independent random variables, uniformly
distributed on the interval (cf. [5, Chapter 10])

si[−2−bi , 2−bi ].

In other words, we model the effect of quantizing yi(t)
as an additive white noise source qi(t), so that

yri(t) = yi(t) + qi(t)

where E qi = 0 and E qi(t)2 = (1/3)s2
i 2

−2bi .

Performance of the closed-loop system We can
express z and y in terms of the inputs w and q as

z = Gzww + Gzqq, y = Gyww + Gyqq,

where Gzw, Gzq, Gyw and Gyq are the closed-loop
transfer matrices from w and q to z and y, respectively.
The overall variance of z is given by

V = E ‖z‖2 = Vq + E ‖Gzww‖2. (2)

The variance of z induced by quantization is given by

Vq = E ‖Gzqq‖2 =
M∑
i=1

‖Gzqi‖2(1/3)s2
i 2

−2bi ,

where Gzqi is the ith column of the transfer matrix
Gzq, and ‖ ·‖ denotes the L2 norm (see [2, §5.2.3]). We
can use Vq as a measure of the effect of quantization on
the overall system performance. We express Vq as

Vq =
M∑
i=1

ai2−2bi , (3)

where ai = (1/3)‖Gzqi‖2s2
i . This expression shows

how Vq depends on the allocation of quantizer bits
b1, . . . , bM , as well as the scalings s1, . . . , sM and LTI
system parameters (which affect the ai’s). While the
formula (3) was derived assuming that bi are integers,
it makes sense for bi ∈ R.

3 Communications model and assumptions

The theoretical capacity of wireless communication
links depends on the media access scheme and the selec-
tion of certain critical parameters, such as transmission



powers and bandwidths or time-slot fractions allocated
to individual channels (or groups of channels). We re-
fer to these parameters collectively as communication
variables, and denote the vector of communication vari-
ables by θ. The communication variables are them-
selves limited by various resource constraints, such as
limits on the total power or bandwidth available. We
will assume that the medium access methods and cod-
ing and modulation schemes are fixed, but that we can
optimize over the communication variables θ.

We let b ∈ RM denote the vector of bits allocated to
each quantized signal, and r ∈ RM the vector of asso-
ciated communication rates (in bits per second). Then
bi = αri, where α = cs/fs, fs is the sample frequency,
and cs is the channel coding efficiency in source bits
per transmission bit. This allows us to express capac-
ity constraints in terms of bit allocations rather than
communication rates.

We will use the following general model to relate the
bit allocations b and the communication variables θ:

fi(b, θ) ≤ 0, i = 1, . . . , mf

hT
i θ ≤ di, i = 1, . . . , mh

θi ≥ 0, i = 1, . . . , mθ

bi ≤ bi ≤ bi, i = 1, . . . , M

(4)

We make the following assumptions:

• The functions fi are convex functions of (b, θ),
monotone increasing in b and monotone decreas-
ing in θ. These inequalities describe capacity con-
straints on individual links or groups of links.

• The second set of constraints describes resource
limitations, such as a total available power or
bandwidth. We assume the vectors hi have non-
negative entries and that di, which represent re-
source limits, are positive.

• The third constraint specifies that the communi-
cation resource variables are nonnegative.

• The last group of inequalities specify lower and
upper bounds for each bit allocation. We assume
that bi and bi are nonnegative integers. The lower
bounds ensure that the white noise model for
quantization errors is reasonable while the upper
bounds may arise from hardware limitations.

This generic model will allow us to formulate the com-
munication resource allocation problem, i.e., the prob-
lem of choosing θ to optimize overall system perfor-
mance, as a convex optimization problem. The im-
portant additional constraint that b should be integer
valued will be addressed in §4.1.

3.1 Capacity constraints
In this section, we describe some simple channel mod-
els, showing how they fit the generic model (4). More
detailed descriptions of these channel models, as well
as derivations, can be found in, e.g., [4, 6].

Gaussian channel We start by considering a single
Gaussian channel. The communication variables are
the bandwidth W > 0 and transmission power P > 0.
Let N be the power spectral density of the additive
white Gaussian noise at the front-end of the receiver.
The Shannon capacity is given by ([4])

R = W log2

(
1 +

P

N W

)
(in bits per second). The achievable communication
rate r is bounded by this channel capacity, i.e., we
must have r ≤ R. In terms of b, P and W , we have

f(b,W, P ) = b − αW log2

(
1 +

P

NW

)
≤ 0,

which fits the generic form (4). It can be verified that f
is convex and monotone increasing in b, and monotone
decreasing in W and P .

Gaussian broadcast channel with FDMA In
the Gaussian broadcast channel with frequency-domain
multiple access (FDMA), a transmitter sends informa-
tion to n receivers over disjoint frequency bands with
bandwidths Wi > 0. The communication parameters
are the bandwidths Wi and the transmit powers Pi > 0
for each individual channel. The communication vari-
ables are constrained by a total power limit

P1 + · · · + Pn ≤ Ptot

and a total available bandwidth limit

W1 + · · · + Wn ≤ Wtot,

which have the generic form for resource limits. The
receivers are subject to independent white Gaussian
noises with power spectral densities Ni. The trans-
mitter assigns power Pi and bandwidth Wi to the ith
receiver. The achievable bit rates b are constrained by
the Shannon capacity, i.e.,

bi ≤ αWi log2

(
1 +

Pi

NiWi

)
, i = 1, . . . , n. (5)

Again, the constraints relating b and θ = (P,W ) have
the generic form (4).

Gaussian multiple access channel with CDMA
In this model, n transmitters, each with power Pi, send
information to a common receiver which is corrupted
by additive white Gaussian noise of power density N .
For code-division multiplexing, the achievable rates b
satisfy the set of constraints∑
i∈Z

bi ≤ αW log2

(
1 +

∑
i∈Z Pi

NW

)
, ∀ Z ⊆ {1, . . . , n}.

The communication variables here are the transmission
powers Pi, which satisfy 0 ≤ Pi ≤ P̄i where P̄i is the
upper bound for Pi, or a total power limit. These in-
equalities also have the generic convex form (4).



Gaussian multiple access channel with FDMA
In a Gaussian multiple access channel with FDMA,
each transmitter sends information in disjoint fre-
quency bands with bandwidth Wi. The achievable bit
rates are determined by the constraints

bi ≤ αWi log2

(
1 +

Pi

NWi

)
, i = 1, . . . , n.

Here the communication variables are the powers Pi

and bandwidths Wi, limited by separate or total power
constraints, and a total bandwidth constraint.

Variations and extensions Channels with time-
varying gain variations (fading) as well as rate con-
straints based on bit error rates (with or without
coding) can be formulated in a similar manner; see,
e.g., [7]. We can also combine the channel models de-
scribed above to model more complex communication
systems, where different groups of channels may have
separate or total power and bandwidth constraints.

4 Resource allocation for fixed linear system

In this section, we assume that the linear system is
fixed and consider the problem of choosing the commu-
nication variables to optimize the system performance.
We take as the objective (to be minimized) the vari-
ance of the performance signal z, given by (2). Since
the variance induced by w is independent of the com-
munication variables, we can just as well minimize the
quantization-induced variance of z, i.e., the quantity Vq

defined in (3). This leads to the optimization problem

minimize
∑M

i=1 ai2−2bi

subject to fi(b, θ) ≤ 0, i = 1, . . . , mf

hT
i θ ≤ di, i = 1, . . . , mh

θi ≥ 0, i = 1, . . . , mθ

bi ≤ bi ≤ bi, i = 1, . . . , M

(6)

where the optimization variables are θ and b. Since
the objective function, and each constraint function in
the problem (6) is convex, this is a convex optimiza-
tion problem (ignoring the integrality constraint on b).
This means that it can be solved globally and efficiently
using a variety of methods (see, e.g., [3]).

In many cases, we can solve the problem (6) more ef-
ficiently by exploiting its special structure. The objec-
tive function in the communication resource allocation
problem (6) is separable, i.e., a sum of functions of
individual bi’s. In addition, the constraint functions
fk(b, θ) usually involve only one bi and a few compo-
nents of θ (since the channel capacity is determined by
the bandwidth, power, or time-slot fraction, for exam-
ple, allocated to that channel). Thus, the resource allo-
cation problem (6) is almost separable; small groups of
variables are coupled through the constraints hT

i θ ≤ di

that limit the total power, total bandwidth, or total

time-slot fractions. This structure can be efficiently
exploited using a technique called dual decomposition
(see, e.g., [3, 1]). The dual problem can be solved in
time linear in M , which is far better than the stan-
dard convex optimization methods applied to the pri-
mal problem, which require time proportional to M3.
More details are given in the full length version of this
paper [10].

4.1 Integrality of bit allocations
We now return to the requirement that the bit allo-
cations must be integers. The first thing we observe
is that we can always round down the bit allocations
found by solving the convex problem to the nearest in-
tegers. Let bi denote the optimal solution of the convex
resource allocation problem (6) and define b̃i = bbic.
Here, bbic denotes the floor of bi, i.e., the largest in-
teger smaller than or equal to bi. Since fk and hk are
monotone increasing in b, and b̃ ≤ b, the rounded solu-
tion b̃ is always feasible.

We can also obtain a crude performance bound for b̃.
Clearly the objective value Jcvx obtained by ignoring
the integer constraint is a lower bound on Jopt. Let
the objective value of the rounded-down feasible bit
allocation b̃ be Jrnd. It is easily shown that

Jcvx ≤ Jopt ≤ Jrnd ≤ 4Jopt,

i.e., the performance of the suboptimal integer alloca-
tion obtained by rounding down is never more than a
factor of four worse than the optimal solution.

Variable threshold rounding Of course, far bet-
ter heuristics can be used to obtain better integer so-
lutions. Here we give a simple method based on a vari-
able rounding threshold. Let 0 < t ≤ 1 be a threshold
parameter, and round bi as follows:

b̃i =
{ bbic, if bi − bbic ≤ t,

dbie, otherwise. (7)

Here, dbie denotes the ceiling of bi, i.e., the smallest
integer larger than or equal to bi. In other words, we
round bi down if its remainder is smaller than or equal
to the threshold t, and round up otherwise.

For a given fixed threshold t, we can round the bi’s as
in (7), and then solve a convex feasibility problem over
the remaining continuous variables θ:

fi(b̃, θ) ≤ 0
hT

i θ ≤ di

θi ≥ 0
(8)

The upper and lower bound constraints bi ≤ b̃i ≤ bi are
automatically satisfied because bi and bi are integers.
If this problem is feasible, then the rounded b̃i’s and
the corresponding θ are suboptimal solutions to the



integer constrained bit allocation problem. Since fi

is monotone increasing in b, hence in t, and monotone
decreasing in θ, there exists a t? such that (8) is feasible
if t ≥ t? and infeasible if t < t?. The optimal rounding
threshold t? can be found by bisection.

4.2 Example: a networked linear estimator
To illustrate the ideas, we consider the problem of de-
signing a networked linear estimator with the structure
shown in figure 3. We want to estimate an unknown
point x ∈ R20 using M = 200 linear sensors

yi = cT
i x + vi, i = 1, . . . , M.

Each sensor uses bi bits to code its measurement, and
transmits the coded signal to the central estimator over
a Gaussian multiple access channel with FDMA. The
performance of the estimator is evaluated by the esti-
mation error variance JK = E ‖x̂ − x‖2.

x
v

C SS−1
y yr x̂

EstimatorMAC
Channel

Figure 3: Networked estimator over MAC channel.

We assume that ‖x‖ ≤ 1 and that the sensor noises
vi are IID with E vi = 0, E v2

i = 10−6. In this exam-
ple, the sensor coefficients ci are uniformly distributed
in direction with ‖ci‖ uniformly distributed on [0, 5].
Since ‖x‖ ≤ 1, we choose scaling factors si = ‖ci‖.

The noise power density of the Gaussian multiple access
channel is N = 0.1, the coding constant is α = 2, and
the upper and lower bounds for bit allocations are b = 5
and b = 12. The total available power is P = 300 and
the total available bandwidth is W = 200.

The estimator is a linear unbiased estimator

x̂ = Kyr,

where KC = I, with C = [c1, · · · , cM ]T . In particular,
the minimum variance estimator is given by

K = (CT (Rv + Rq)−1C)−1CT (Rv + Rq)−1 (9)

where Rv and Rq are the covariance matrices for
the sensor noises and quantization noises, respectively.
(Note that the estimator gain depends on the bit allo-
cations) The associated estimation error variance is

JK(b) =
1
3

M∑
i=1

s2
i ‖ki‖22−2bi + Tr(KRvKT ).

where ki is the ith column of the matrix K. Clearly,
JK(b) is in the form of (2), and will serve as the objec-
tive function for the resource allocation problem (6).

First we allocate power and bandwidth evenly to all
sensors, which results in bi = 8 for each sensor. Based

on this allocation, we compute the quantization noice
variances E q2

i = (1/3)s2
i 2

−2bi and design a least-
squares estimator as in (9). The resulting RMS esti-
mation error is 3.676×10−3. Then we fix the estimator
gain K, and solve the relaxed optimization problem (6)
to find the resource allocation that minimizes the es-
timation error variance. The resulting RMS value is
3.1438×10−3. Finally, we perform a variable threshold
rounding with t? = 0.4211. Figure 4 shows the distri-
bution of rounded bit allocation. The resulting RMS
estimation error is 3.2916 × 10−3. Thus, the alloca-
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Figure 4: Bit allocation for networked estimator.

tion obtained from optimization and variable threshold
rounding give a 10% improved performance compared
to the uniform resource allocation, which is not very
far from the performance bound given by the relaxed
convex optimization problem.

5 Joint optimization of communication and
linear system variables

When the linear system is fixed, the problem of op-
timally allocating communication resources (ignoring
integrality of bit allocation) is convex and can be effi-
ciently solved. In order to achieve the optimal system
performance, however, one should optimize the param-
eters of the linear system and the communication sys-
tem jointly. Unfortunately, this joint design problem is
in general not convex.

In some cases, however, the joint design problem is
convex in subsets of the variables. For example (and
ignoring the integrality constraints) the globally op-
timal communication variables can be computed very
efficiently, sometimes even semi-analytically, when the
linear system is fixed. Similarly, when the communica-
tion variables are fixed, we can (sometimes) compute
the globally optimal variables for the linear system. Fi-
nally, when the linear system variables and the com-
munication variables are fixed, it is straightforward to
compute the quantizer scalings using the 3σ-rule. This
makes it natural to apply an approach where we se-
quentially fix one set of variables and optimize over
the others:



given initial linear system variables φ(0), com-
munication variables θ(0), scalings s(0)

repeat
1. Fix φ(k), s(k), and optimize over θ. Let

θ(k+1) be the optimal value.
2. Fix θ(k+1), s(k), and optimize over φ. Let

φ(k+1) be the optimal value.
3. Fix φ(k+1), θ(k+1). Let s(k+1) be appropriate

scaling factors.
until convergence

Since the joint problem is not convex, there is no guar-
antee that this heuristic converges to the global opti-
mum. On the other hand the method appears to work
well in practice.

5.1 Example: networked linear estimator
To demonstrate the heuristic method for joint opti-
mization described above, we apply it to the networked
linear estimator described in §4.2. The algorithm con-
verges in six iterations, and we obtain very different
resource allocation results from before. Figure 5 shows
the distribution of the rounded bit allocations. This
result is intuitive: try to assign as much resources as
possible to the best sensors, and give the bad sensors
the minimum number of bits. The RMS estimation
error of the joint design is 0.721 × 10−3, which is an
80% reduction compared to the result in §4.2. After
applying the variable threshold rounding, we find an
integer-valued bit allocation with RMS estimation er-
ror of 0.7221×10−3, which is very close to the objective
value of the relaxed problem.
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Figure 5: Joint optimization of network and estimator.

6 Conclusions

We have considered the problem of jointly optimizing
the parameters of a linear system and the resource al-
location in the associated communication system. To
model the influence of communication rate allocations
on the performance of the linear system, we assumed
conventional uniform quantization and used a simple
white noise model of the quantization errors. First, we
assumed the linear system to be fixed and considered
the problem of choosing the communication variables
to optimize the overall system performance. We ob-
served that this problem is often convex (ignoring the

integrality constraint) hence readily solved. Moreover,
for many important channel models, the communica-
tion resource allocation problem is separable except for
a small number of constraints on the total communica-
tion resources. We described how dual decomposition
can be used to solve this class of problems efficiently,
and gave a variable threshold rounding method to deal
with the integrality of bit allocations. Finally, we con-
sidered joint allocation of communication resources and
design of the linear system. This problem is in gen-
eral not convex. However, it is often convex in subsets
of variables. We gave an iterative heuristic method
for the joint design problem that exploits this special
structure.
This research was supported in part by NSF Grant ECS-9707111,

by AFOSR Grant F49620-98-1-0147, by the SEC DARPA Con-

tract F33615-99-C-3014, by NSF Grant CCR-9714002, by SRI

(DARPA) Contract: 50-000018, by Caltrans PATH program un-

der contract MOV4212, by the Swedish Foundation for Inter-

national Cooperation in Higher Education (STINT), and by a

Stanford Graduate Fellowship.

References

[1] D. P. Bertsekas. Nonlinear Programming. Athena
Scientific, second edition, 1999.

[2] S. Boyd and C. Barratt. Linear Controller Design:
Limits of Performance. Prentice-Hall, 1991.

[3] S. P. Boyd and L. Vandenberghe. Course reader for
EE364: Introduction to Convex Optimization with Engi-
neering Applications. Stanford University, 1998.

[4] T. Cover and J. Thomas. Elements of Information
Theory. John Wiley & Sons, 1991.

[5] G. F. Franklin, J. D. Powell, and M. L. Workman.
Digital Control of Dynamic Systems. Addison Wesley, 3rd
edition, 1990.

[6] A. Goldsmith. Course reader for EE359: Wireless
Communications. Stanford University, 1999.

[7] L. Li and A. J. Goldsmith. Capacity and optimal
resource allocation for fading broadcast channels: Part I:
Ergodic capacity. IEEE Transactions on Information The-
ory, 47(3):1103–1127, March 2001.

[8] G. N. Nair and R. J. Evans. State estimation under
bit-rate constraints. In Proc. IEEE Conference on Decision
and Control, pages 251–256, Tampa, Florida, 1998.

[9] D. Williamson. Finite wordlength design of digital
Kalman filters for state estimation. IEEE Transactions on
Automatic Control, 30(10):930–939, October 1985.

[10] L. Xiao, M. Johansson, H. Hindi, S. Boyd,
and A. Goldsmith. Joint optimization of commu-
nication rates and linear systems. IEEE Trans.
Aut. Control, 2001. Submitted. Also available at
http://www.stanford.edu/~boyd/.


