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Abstract

A parametrized convex function depends on a variable and a parameter, and is con-
vex in the variable for any valid value of the parameter. Such functions can be used to
specify parametrized convex optimization problems, i.e., a convex optimization family,
in domain specific languages for convex optimization. In this paper we address the
problem of fitting a parametrized convex function that is compatible with disciplined
programming, to some given data. This allows us to fit a function arising in a convex
optimization formulation directly to observed or simulated data. We demonstrate our
open-source implementation on several examples, ranging from illustrative to practical.
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1 Introduction

1.1 Parametrized convex functions

A parametrized convex function (PCF) f has the form

f : Rn ×Θ → Rd,

where Θ ⊆ Rp. To be a PCF, f must be continuous in θ, and for each i = 1, . . . , d, fi(x, θ)
is convex in x for any θ ∈ Θ. We refer to the first argument x of the PCF f as the variable,
and the second argument θ as the parameter. When d = 1, we refer to f as a scalar PCF.

1.2 Disciplined convex programming

The terms variable and parameter in a PCF are taken from disciplined convex programming
(DCP), a method for expressing a PCF as an expression in a domain specific language
(DSL) constructed from variables, constants, parameters, and a small library of functions
called atoms [AVDB18, DB16]. In DCP, the expression must be constructed in a specific
way that corresponds to a composition rule that establishes convexity of the function with
respect to the variable, for any valid parameter.

Functions expressed in DCP form can be used to form a parametrized convex optimization
problem or convex optimization family. When the parameters are given specific numerical
values, we obtain a problem instance, which can be solved by automatically transforming
the problem instance to a canonical form, solving the canonical form, and then retrieving
the solution of the original problem instance from the solution of the canonicalized problem
instance. Examples of DSLs that leverage DCP for modeling convex optimization problems
(and support parameters) include CVXPY [DB16] (in Python), CVXR [FNB20] (in R), Con-
vex.jl [UMZ+14] and JuMP [DHL17] (in Julia). Precursors that do not handle parameters
include CVX [GB14] and YALMIP [L0̈4] (in Matlab).

1.3 Examples

PCFs arise in many applications, including control, machine learning, resource allocation,
and finance, to name just a few. We describe below a few typical ones, some specific and
some more generic. In our examples we assume that f is a scalar PCF.

Fuel use map. Here f(x, θ) gives the instantaneous fuel use rate. The variable x might
correspond to thrust or power output, variables that typically appear in an optimization
problem; the parameter θ contains additional parameters that affect the fuel use, such as
temperature. When modeling the total fuel use of a set of actuators on a moving vehicle,
x can represent the net force and torque on the vehicle, and θ can contain the vehicle
orientation, which would affect which actuators are used to obtain the required force and
torque.
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Battery aging model. Here f(x, θ) gives the rate of aging of a battery, i.e., reduction
of capacity due to use, relative to the initial battery capacity. The variable x corresponds
to the battery charge/discharge rate, which might appear in an optimization problem. The
parameter θ contains other quantities that affect aging of the battery, such as its temperature.

Convex optimization control policy (COCP). A control policy maps the context,
i.e., what is known at a given time, such as the state of a dynamic system and other
measurable quantities, into an action denoted u ∈ U ⊆ Rr. In a convex optimization control
policy (COCP) [BAB20] the action u is found as the solution of a convex optimization
problem that is parametrized by the context. As a concrete example, f(x, θ) gives the cost
of the action u, combined with the long term cost of the next state, which depends on the
action. The parameter θ contains the context observed when computing the control action
[RMD+17, KC16, GPM89].

Resource allocation. Here f(x, θ) gives the cost (or negative utility) of providing re-
sources specified by the vector x ∈ Rn to n agents. The parameter θ might contain infor-
mation like time of the year, month, or day.

Financial portfolio construction. The goal of financial portfolio construction is to find
a portfolio of financial assets that maximizes the expected return of the portfolio while
limiting the investment risk. The function f(x, θ) might represent a combination of expected
return and risk as a function of x, which describes the portfolio. The parameter θ provides
information about market conditions, or current forecasts.

1.4 Learning a parametrized convex function

This paper concerns learning a PCF f from data, i.e., fitting a PCF to data,

(xk, θk) ∈ Rn ×Θ, yk ∈ Rd, k = 1, . . . , N. (1)

The PCF f is specified by its architecture and a choice of model weights, which we denote
w ∈ Rq. We require our approximation f to be DCP expressible, which implies that it can
be used to construct parametrized convex problems. This fitting method allows us to learn
a DCP expression directly from observed (or generated) data.

Fitting method. We use a standard regularized loss method to choose a set of model
weights. Let ℓ : Rq×Rn×Θ×Rd → R denote a loss function, and r : Rq → R a regularizer
function. The loss function is used to judge how well our approximation fits the data, and
the regularization function is meant to penalize complexity. We choose w to (approximately)
minimize the regularized average loss,

1

N

N∑
k=1

ℓ(w;xk, θk, yk) + λr(w), (2)
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where λ ≥ 0 is a hyper-parameter that scales the regularization. In this context we refer to
the data as training data, since it is used to train or learn the PCF.

As in all data fitting methods we judge a candidate PCF by its accuracy on unseen data.
(The loss used to evaluate the model can differ from the loss ℓ used to train the model.)
To find a PCF that performs well on unseen data we use the standard technique of cross-
validation. We partition the original data into K groups of approximately equal size, called
folds, and for each fold we train the model weights on the data not including that fold,
and evaluate the average loss on the data in that fold. We average the losses for the K
folds to obtain an overall fitting metric. We choose the architecture and the regularization
hyper-parameter λ so as to minimize the overall fitting metric. Once the architecture and
hyper-parameter are chosen, we fit the PCF using all the data.

Special cases. The PCF learning problem, i.e., minimizing (1), reduces to well known
problems in special cases. When n = 0, i.e., there is no variable, it reduces to the very
general problem of fitting a continuous function from Θ into Rd. When p = 0 (or Θ is a
singleton), there is (effectively) no parameter, and the problem reduces to fitting a convex
function to some given data. Several architectures have been developed for this task, such
as input-convex neural networks [AXK17, DW25, LO25], which we build on.

Non-parametric PCF fitting problems. We can solve several more general fitting prob-
lems exactly, with no constraint on the architecture (i.e., non-parametric) and no regular-
ization. When p = 0 and the loss is convex in y, the problem of minimizing the average loss
over all convex functions, which is an infinite-dimensional non-parametric fitting problem,
can be solved exactly using convex optimization, as decribed in [BV04, §5.5.5].

This can be extended to the more general case when p > 0 and r = 0. To do this we
collect the data into groups associated with unique values of θ, and for each one, we fit a
convex function to these data as described above. We can then interpolate these functions
for values of θ not appearing in the data. This solution globally minimizes the loss, but since
it does not include any penalty on complexity of f , it is very likely to perform poorly on
unseen data.

1.5 Contribution

We provide a seamless path from data to a PCF that can be used for parametrized convex
optimization. Our open-source implementation LPCF offers a simple user interface for fitting
a PCF to variable-parameter-output triples and a variety of extensions for PCFs with special
properties and uses. The resulting PCFs can be exported for immediate use in optimization
frameworks like JAX [BFH+18] or CVXPY.

1.6 Outline

In §2 we propose an architecture, which is a generalization of input-convex neural networks
that handles parameters, and describe our specific implementation. In §3 we describe a set
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of extensions that allow for modeling more specialized types of PCFs. In §4 we give some
numerical results for both simple illustrative examples and some practical ones. In §5 we
conclude the paper.

2 Proposed neural network architecture

2.1 Architecture

Let ϕ : R → R be a nondecreasing convex activation function, such as rectified linear unit
(ReLU) with ϕ(a) = max{a, 0} or softplus with ϕ(a) = log(1+ ea), that we will also refer to
as logistic due to its use in formulating logistic regression problems. We have L layers, with
zl ∈ Rnl the activation of layer l, l = 1, . . . , L− 1. We have

z0 = x, zl = ϕ
(
W lzl−1 + V lx+ ωl

)
, l = 1, . . . , L− 1, y = WLzL−1 + V Lx+ ωL, (3)

where ϕ is applied componentwise. Here W l ∈ Rnl×nl−1 is the weight matrix associated with
layer l, V l ∈ Rnl×n is the weight matrix that feeds the input x into layer l, and ωl ∈ Rnl is
the offset for layer l. We can take W 1 = 0 without loss of generality since z0 = x. This is
a standard residual network architecture, with feedforward from the input x into each layer
[HZRS16a, HZRS16b].

We take the weight matrices W l, V l, and offsets ωl to be a function of the parameter θ,

(W 2, . . . ,WL, V 1, . . . , V L, ω1, . . . , ωL) = ψ(θ), (4)

where ψ : Θ → Rm describes a generic neural network architecture with output dimension

m = n2n1 + · · ·+ nLnL−1 + n1n+ · · ·+ nLn+ n1 + · · ·+ nL.

(We will impose one constraint on the function ψ, described below.) We denote the weight
matrices and offsets as W l(θ), V l(θ) and ωl(θ) to emphasize their dependence on the param-
eter θ. The model weights w defining the loss in (2) are the weights defining ψ.

The proposed architecture is given by (3) and (4). It is specified by the layer dimensions
n1, . . . , nL−1 (the final layer width nL is fixed to d) and the architecture for ψ. This archi-
tecture determines a function f : Rn × Θ → Rd, illustrated as a block diagram in figure 1.
The model weights w associated with f are the model weights appearing in the righthand
side of (4).

Convexity. We impose one restriction on the weight matrices: W l(θ) are elementwise
nonnegative, for any θ ∈ Θ. This can be enforced by the architecture of ψ, for example by
having the weight matrices W l(θ) come directly from a nonnegative activation function such
as ReLU or logistic, without any offset.

With this restriction, the function f is a PCF. We argue using recursion that each element
of zl is a convex function of x, for any fixed θ. It is evidently true for l = 1. Assuming that
each element of zl−1 is a convex function of x, we observe that each entry of

W l(θ)zl−1 + V l(θ)x+ ωl(θ)
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Figure 1: Neural network architecture for PCF y = f(x, θ).

is a convex function of x, since it is a nonnegative weighted sum of convex functions, plus
an affine function of x. By the composition rule [BV04, §3.2.4], each entry of zl is a convex
function of x. This argument is exactly the one used in DCP. This means that, assuming
the activation function is an atom, f(x, θ) is DCP.

As in an input convex neural network, our architecture (and the nonnegativity constraint
on W l), was chosen specifically so that it implements a PCF for any valid choice of the
weights.

Loss and regularizer. The loss and regularizer used in the fitting process are arbitrary.
Some conventional choices of loss include quadratic, ℓ1, or Huber [Hub92, HR11]. Conven-
tional choices of regularizer include quadratic, ℓ1, or a combination (known as elastic net
regularization). See, e.g., [ZH05] or [BV04, Chap. 6.3].

2.2 Implementation

Our open-source implementation lpcf is available at

https://github.com/cvxgrp/lpcf.

In lpcf the user can specify the architecture, activation function, and type of regularization.
The generic .fit(data) method fits the PCF to data, using cross-validation to choose the
regularization hyper-parameter, and reports the performance of the fit obtained, for separate
test data. In lpcf, the R2-score [Dra98, Pea05] is the standard validation metric used for
cross-validation and testing. Utilities are provided for the user to evaluate the resulting
PCF, score it on another data set, and to export the function to CVXPY, where it can be
freely used anywhere a convex function can be.

A simple script illustrating this functionality is shown in figure 2. In lines 5–6 we instan-
tiate a pcf object and fit its weights to data. In line 11 we export to the DCP expression f

via the tocvxpy method, which takes a CVXPY variable and a CVXPY parameter as argu-
ments, which are defined in the two lines above. We illustrate the use of f in constructing a
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1 from lpcf.pcf import PCF

2 import cvxpy as cp

3

4 # create default PCF object and fit to data Y, X, Theta

5 pcf = PCF()

6 pcf.fit(Y, X, Theta)

7

8 # export to cvxpy expression

9 x = cp.Variable ((n, 1))

10 theta = cp.Parameter ((p, 1))

11 f = pcf.tocvxpy(x, theta)

12

13 # solve cvxpy problem involving f

14 # g is another function , constraints a list of (in)equalities

15 problem = cp.Problem(cp.Minimize(f + g), constraints)

16 theta.value = ...

17 problem.solve()

18

Figure 2: Using LPCF with CVXPY. The initialization code for dimensions n, p,
data Y, X, Theta, and CVXPY objects g and constraints is omitted for clarity.

CVXPY problem in line 15. In this example we simply add the fitted PCF to the objective,
but we note that it can be used anywhere in CVXPY that a convex function appear, e.g.,
in constraints.

To fit the weights w of the network ψ we use jax-sysid [Bem24], a Python package
based on the auto-differentiation framework JAX, for system identification, neural network
training, and nonlinear regression/classification. The package supports several types of reg-
ularization, simple bounds on w, parallel training from different initial values of w, and
quasi-Newton methods for faster terminal convergence and better model quality than gradi-
ent descent.

Default choices. We make a number of default choices, all of which can be modified by
the user. We take L = 3 layers in the input-convex network, with layer dimensions n1 =
· · · = nL−1 = 2⌊(n+d)/2⌋, and ReLU activation function. We take ψ to be a fully connected
neural network with feedforward terms from θ into each layer, very similar to the architecture
of the input-convex network. The output activation ϕW only affects W 2, . . . ,WL. We use
the ReLU function to make them elementwise nonnegative. The architecture is visualized in
figure 3. By default there areM = 3 layers, of which the two inner ones are ⌊(p+m)/2⌋ wide,
with ReLU activation. By default, we use a quadratic loss (mean squared error) without
regularization, i.e., λ = 0, and the cross-validation procedure is turned off. Otherwise, the
default number of folds for cross-validation is 5. The default optimizer runs 200 iterations
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Figure 3: Neural network architecture for ψ(θ).

of Adam [Kin14] to obtain a good set of network weights, followed by 2000 iterations of
L-BFGS-B [BLNZ95] (a variant of L-BFGS for bound-constrained optimization, to respect
the nonnegativity constraints on W l) to refine the model weights. We run the entire fitting
method on multiple random initial sets of model weights, and take the best one as our
final choice. We parallelize training with multi-core processing, with a default of 4 cores.
By default, we set the number of initializations to 10 or the number of cores, whichever is
greater. All of these settings can be customized by the user.

3 Extensions

We describe a few extensions of the basic model and methods.

3.1 Adding a quadratic term

We can add a (convex) quadratic function to our more general architecture (3),

y = xTQx+WLzL−1 + V Lx+ ωL,

where Q ∈ Sn
+. We use the representation Q = UTU with upper-triangular U ∈ Rn×n, and

emit U from ψ(θ), as in

(W 2, . . . ,WL, V 1, . . . , V L, ω1, . . . , ωL, U) = ψ(θ).

This automatically guarantees positive semidefiniteness of Q, without any additional con-
straints on the parameter network ψ.

A further variation is a low rank plus diagonal quadratic Q = F TF + diag(d21, . . . , d
2
n),

where F ∈ Rm×n is a wide matrix with m ≪ n and d ∈ Rn is a vector of diagonal entries
before they are squared to make Q positive semidefinite. Such a form can be used to capture
the dominant directions of curvature when n is large.
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3.2 Monotonicity

In certain cases we may wish to impose that the PCF f is monotonically nondecreasing or
nonincreasing with respect to some or all the components of x for any θ ∈ Θ, e.g., when
modeling a concave and increasing utility function (that we wish to maximize).

Monotonicity of f can be imposed as follows. Assume that the activation function ϕ is
nondecreasing (e.g., ReLU or softplus). Consider the architecture of the network ψ described
in figure 3. We achieve monotonicity by obtaining V j, j = 1, . . . , L similary to how we obtain
W j, as the output of the nonnegative activation ϕW , j = 2, . . . , L (enforcing convexity in
that case).

We can prove by induction that the resulting function f is monotonically increasing with
respect to each component xi, i = 1, . . . , n, for any θ ∈ Θ. First, z1 = ϕ(W 1x+V 1x+ω1) =
ϕ(V 1x + ω1) is increasing, since ϕ is increasing and its argument is affine and increasing
with respect to each xi; assuming that zl = ϕ(W lzl−1 + V lx + ωl) is increasing in xi, then
W l+1zl + V l+1x+ ωl+1 remains increasing since both W l+1 and V l+1 are nonnegative. Since
ϕ is increasing, it follows that zl+1 is increasing in xi.

By cascading instead V j with a nonpositive activation function ϕ−, such as ϕ− = −ϕ+,
j = 1, . . . , L, by repeating the above argument it is easy to see that the resulting PCF f is
convex and decreasing with respect to each component of x for any θ ∈ Θ.

3.3 Specifying a subgradient

We may wish to specify (or encourage) a PCF to be minimized at a particular point g(θ),
where g : Θ → Rn is given. When f is differentiable this is equivalent to ∇xf(g(θ), θ) = 0,
or, more generally, that 0 ∈ ∂xf(g(θ), θ) (the subdifferential of f with respect to x). This
can be encouraged in the training process by adding a regularization term such as

ℓmin(w) =
ρmin

N

N∑
i=1

∥∥∇xf(g(θ
k), θk)

∥∥2

2
(5)

to the loss (2), where ρmin is a hyper-parameter that scales the regularization. This (sub)gradient
can be computed by automatic differentiation of the PCF f with respect to its first argument.

As a further generalization, we can require (or encourage) f(x, θ)−q(θ)Tx to be minimized
at x = g(θ). This is equivalent to ∇xf(g(θ), θ) = q(θ), and a similar regularization term can
be added to the training objective.

3.4 Fitting a parametrized convex set

The same framework can be used to fit a parametrized convex set C : Θ → 2R
n
, described

as
C(θ) = {x | f(x, θ) ≤ 0},

where f is a PCF. Our data has the form (xk, θk, yk), k = 1, . . . , N , with yk ∈ {−1, 1}, where
yk = −1 means that xk ̸∈ C(θk) and yk = 1 means that xk ∈ C(θk). We use the logistic loss
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function
ℓ(w;xk, θk, yk) = log(1 + e−ykf(xk,θk)).

We can judge the loss on test data using either the same logistic loss function or the actual
error rate,

ℓtest(w;xk, θk, yk) =

{
0 ykf(xk, θk) ≥ 0
1 ykf(xk, θk) < 0.

4 Experiments

We start with two illustrative examples on simple functions, and then give two real ap-
plications, battery aging and control. We conduct the experiments on an Apple M4 Max
machine.

4.1 Piecewise affine function on R

We generate data from a piecewise affine (PWA) function of the form

f true(x, θ) = s+max{0, x−m}+ s−max{0,m− x}+ v,

where x ∈ R and θ = (s+, s−,m, v) ∈ R4. Note that f true is convex (i.e., a PCF) when
s+ ≥ −s−, but we also carry out experiments when this is not the case. We use a quadratic
loss function.

Experimental setup. We sample 2000 values of θ from a uniform distribution on [−1, 1]4.
For each value of θ, we take 50 equally spaced points x on [−1, 1], which givesN = 2000×50 =
105 data points. We divide these data into two sets: Those for which f true is convex, and
those for which it is not. For those that are nonconvex, we find the best affine fit, which is
the (non-parametric) closest convex approximation of the function.

We fit this data using the default values for the network architecture and learning pa-
rameters.

Results. Table 1 contains the root mean squared error (RMSE) values of the learned PCF
f , for 105 random test data points with the true function values on a scale from −3 to 3. The
first three values are with respect to the true data-generating function f true, for all test data
and computed for the convex and nonconvex data separately. The last value is the RMSE
for nonconvex data, computed with the best affine fit as the ground truth. We observe that
the overall RMSE is very small. When only considering the convex examples, the RMSE is
more than an order of magnitude smaller. As expected, the RMSE is considerably larger
when only taking the nonconvex examples. When computed with respect to the best affine
fit f linear, the RMSE for the nonconvex examples is also in the order of the RMSE for the
convex data.

Figure 4 shows the true data-generating function f true and the learned PCF f , for four
random values of θ. For the first two parameter values θ1 and θ2, f true is convex; for the last
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Data RMSE
All 0.054
Convex 0.001
Nonconvex 0.077
Nonconvex (relative to best affine fit) 0.004

Table 1: RMSE values. The value of f true ranges between −3 and 3. The last
entry compares the PCF approximation for nonconvex data to the best affine fit.

two parameter values θ3 and θ4, it is not convex. For the nonconvex pair we also show the
best affine fit. We can see that the approximations are very good in both cases.
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Figure 4: Data-generating function f true and learned PCF f for four parameter
values. Top. Convex f true. Bottom. Non-convex f true.
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4.2 Quadratic function on R3

We generate data from a parametrized quadratic function

f true(x, θ) = xT θx,

where the variable is x ∈ Rn and the parameter is θ ∈ Sn
+ (the set of n × n positive

semidefinite symmetric matrices). The true function f true is convex, i.e., a PCF.

Experimental setup. We take n = 3 and generate 1000 values of θ where each entry is
taken from [−1, 1]. For each value of θ, we sample 100 values of x from a uniform distribution
on the unit ball, which gives N = 105 data points.

We fit the PCF with the softplus activation function and otherwise default settings for
the network architecture and learning algorithm.

Results. For 105 random test data points, where the value of the true data generating
function f true moves between 0 and 2, we attain a low RMSE value of about 0.02.
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4.3 Battery aging

When repeatedly charging and discharging the battery of, e.g., a hybrid electric vehicle or an
industrial energy storage system, the battery capacity degrades over time, a process called
battery aging [SO16, SOS+11, EEG12]. We denote by y the aging rate and generate data
from the battery aging model as introduced in [SO16] and used in [NOBL25] for optimal
battery management,

f true(x, θ) = zAz−1b(αq/Q+ β) exp

(−Ea + ηb/Q

Rg(T0 + T )

)
,

where x = (q, b) ∈ R2
+ is the variable, consisting of the battery’s charge q and the absolute

charge rate b. The parameter is θ = (A,Q, T ) ∈ R3
+ and contains the accumulated charge

throughput A, the battery capacity Q, and temperature T . The remaining symbols are
constants. We use the values in [NOBL25], the physical constants

Ea = 31500, Rg = 8.3145, T0 = 273.15,

and battery parameters

α = 28.966, β = 74.112, z = 0.6, η = 152.5.

Experimental setup. We generate 1000 values of θ, with accumulated charge throughput
A ∈ [0, 50] and temperature T ∈ [10, 50]. We keep the battery capacity fixed at Q = 1, since
it is the slowest changing parameter (especially for a new battery where A moves fast) and
one can re-fit the PCF as Q changes over time. For each value of θ, we sample 100 values
of x with state of charge q ∈ [0.2, 0.8] and charge rate b ∈ [0, 30], which gives N = 105 data
points.

We fit the PCF with the softplus activation function. The input-convex network is 5
wide, the network ψ has a single hidden layer of width 10, and we train with 1000 and 4000
epochs with Adam and L-BFGS-B, respectively.

We compare our fit to the convex approximation used in [NOBL25] for short term battery
management,

f short(x, θ) = µ(1 + νQ/2)b,

where

µ = β exp

( −Ea

Rg(T0 + T )

)
zAz−1, ν =

α

βQ
.

This is a PCF itself, and can be derived as the first-order Taylor expansion of f true around
the point (q, b) = (Q/2, 0) [NOBL25].

Results. For 105 random test points with f true on a scale from 0 to 0.06, the RMSE is
0.001. This is about 7 times better than using the short term approximation f short, which
gives an RMSE of 0.007. Figure 5 shows the true data-generating function f true and the
learned PCF f , for three random values of θ. We observe that the approximations are good
in all cases.
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Figure 5: Data-generating function f true and learned PCF f for three parameter
values.
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4.4 Approximate dynamic programming

We consider a nonlinear dynamical system of the form

zt+1 = F (zt, θ) +G(zt, θ)ut, t = 0, 1, . . . , (6)

where zt ∈ Rn is the state, ut ∈ Rm is the input, θ is a vector of parameters, F : Rn×Θ → Rn

gives the dynamics, and G : Rn × Θ → Rn×m gives the input-to-state matrix. Since zt+1 is
an affine function of ut, this is called input-affine form. We are given the inital state z0, and
seek inputs u0, u1, . . . that minimize the cost function

J(z0) =
∞∑
t=0

H(zt, ut, θ), (7)

where H : Rn × Rm × Θ → R+ is a nonnegative stage cost, assumed convex with respect
to (zt, ut). This is a nonconvex optimal control problem, which is hard to solve globally.
A local method can however be used to approximately solve this problem, typically out to
some large terminal time t = T .

Approximate dynamic programming (ADP) is a heuristic for approximately solving the
optimal control problem, choosing ut one step at a time by solving a convex problem. It has
the form

ut = argmin
u

(
H(zt, u, θ) + V̂ (F (zt, θ) +G(zt, θ)u, θ)

)
, (8)

for t = 0, 1, . . ., where we update zt using the dynamics (6). Here V̂ : Rn × Θ → R is a
PCF, so the minimization over u is a convex optimization problem.

ADP is motivated by the Bellman or recursive form of the optimal input sequence ut,
given by (8) with V̂ replaced by the value or cost-to-go function

V (z0, θ) = min
u0,u1,...

J(z0, θ)

(see, e.g., [Ber05, Ste17, AZB24]).
To find the convex approximate value function, we use a local method to approximately

solve the problem (out to some large time period t = T ) for multiple values of the initial
state z0. Each such optimization in fact gives us a set of (approximate) values of the value
function, one obtained at each state on the trajectory, with value equal to the corresponding
tail cost.

Experimental setup. We consider the problem of swinging up a pendulum to the vertical
position by controlling the applied torque. We start with a nonlinear model of the continuous
time dynamics

ml2δ̈ + bδ̇ +mgl sin δ = u,

where δ is the angular position of the pendulum, m ∈ [0.5, 2] is its mass, l = 1 its length,
b = 0.05 is the damping coefficient, g = 9.81 is the gravitational acceleration, and u is the
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applied torque, all in standard metric units. We obtain an input-affine discrete-time model
as in (6) by setting z = (δ, δ̇) and using a first-order forward Euler integration (with sampling
time 0.02). The stage cost is

H(z, u) = (δ − π)2 + 0.01δ̇2 + 0.001u2.

Our parameter is θ = m, with Θ = [0.5, 2].
We generate N = 1000 data points by sampling uniformly δk ∈ [−π/6, 7π/6], δ̇k ∈ [−1, 1],

and mk ∈ [0.5, 2]. For each combination, we (approximately) solve the optimal control
problem (7) out to t = T = 150, using the L-BFGS-B optimizer.

We fit the PCF with the softplus activation function, width 20 for the input-convex
network, two hidden layers of width 10 for the network ψ, and default architecture otherwise.
We use the elastic net regularization term r(w) = 10−8∥w∥22 +0.1∥w∥1 in (2) and two of the
extensions described in §3: We add a quadratic term (see §3.1) and specify a subgradient
(see §3.3). In particular, we know that V (z, θ) has a minimum at the equilibrium zeq = (π, 0).
We promote that the same holds for f , by using g(θ) = zeq in the regularization term (5).

We train the PCF from 16 different initial values, running 1000 Adam iterations followed
by up to 5000 function evaluations in L-BFGS-B.

Results. Figure 6 compares the input û0 of the ADP controller (obtained by solving the
convex approximation (8), which uses the PCF f) and the input u⋆0 obtained by (approxi-
mately) solving the nonlinear optimal control problem (7) out to t = T = 150, for training
and test data (generated similarly to training data). We further compare the performance of
the ADP controller to that of the nonlinear controller, for swinging up the pendulum from
the initial state z0 = (0, 0), and θ = m = 1. The resulting trajectories are shown on the right
of figure 6. Albeit the simplicity of the ADP controller, it behaves similarly to the nonlinear
controller.
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5 Conclusions

We have shown how to fit a PCF to data, in a simple yet customizable way, with our
open-source Python tool LPCF. Our method allows (parametrized) convex optimization to
be (in part) data driven: while the modeling stage may heavily rely on learning functions
from data, the first-principles structure of convex optimization is retained when solving a
given problem instance. Our experiments exhibit good modeling accuracy (also compared
to alternative convex function approximations), and the use of learned PCFs in convex
optimization problems.
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