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Abstract

More than seventy years ago Harry Markowitz formulated portfolio construction
as an optimization problem that trades off expected return and risk, defined as the
standard deviation of the portfolio returns. Since then the method has been extended
to include many practical constraints and objective terms, such as transaction cost
or leverage limits. Despite several criticisms of Markowitz’s method, for example its
sensitivity to poor forecasts of the return statistics, it has become the dominant quan-
titative method for portfolio construction in practice. In this article we describe an
extension of Markowitz’s method that addresses many practical effects and gracefully
handles the uncertainty inherent in return statistics forecasting. Like Markowitz’s orig-
inal formulation, the extension is also a convex optimization problem, which can be
solved with high reliability and speed.

∗Alphabetical order.
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1 Introduction

Harry Markowitz’s 1952 paper Portfolio Selection [Mar52] was a true breakthrough in our
understanding of and approach to investing. Before Markowitz there was (almost) no math-
ematical approach to investing. As a 25-year-old graduate student, Markowitz founded
modern portfolio theory, and methods inspired by him would become the most widely used
portfolio construction practices over the next 70 years (and counting).

Before Markowitz, diversification and risk were fuzzy concepts. Investors loosely con-
nected risk to the probability of loss, but with no analytical rigor around that connection.
Ben Graham, who along with David Dodd wrote Security Analysis [GD09], once commented
that investors should own “a minimum of ten different issues and a maximum of about
thirty” [Gra73].

There were a few precursors, such as an article by de Finetti, that contained some sim-
ilar ideas before Markowitz; see [dF40, Rub06] for a discussion and more of the history of
mathematical formulation of portfolio construction. Another notable precursor is John Burr
Williams’ 1938 Theory of Investment Value [Wil38]. He argued that the value of a company
was the present value of future dividends. His book is full of mathematics, and Williams pre-
dicted that “mathematical analysis is a new tool of great power, whose use promises to lead
to notable advances in investment analysis”. That prediction came true with Markowitz’s
work. Indeed, Markowitz considered Williams’ book as part of his inspiration. According to
Markowitz, “the basic concepts of portfolio theory came to me one afternoon in the library
while reading John Burr Williams’ Theory of Investment Value”.

For many years, the lack of data and accessible computational power [Mar19] rendered
Markowitz’s ideas impractical, despite his pragmatic approach. In 1963, William Sharpe
published his market model [Sha63], designed to speed up the Markowitz calculations. This
model was a one-factor risk model (the factor was the market return), with the assumption
that all residual returns are uncorrelated. His paper stated that solving a 100-asset problem
on an IBM 7090 computer required 33 minutes, but his simplified risk model reduced it to
30 seconds. He also commented that computers could only handle 249 assets at most with a
full covariance matrix, but 2000 assets with the simplified risk model. Today such a problem
can be solved in microseconds; we can routinely solve problems with tens of thousands of
assets and substantially more factors in well under one second.

Markowitz portfolio construction has thrived for many years in spite of claims of various
alleged deficiencies. These have included the method’s sensitivity to data errors and esti-
mation uncertainty, its single-period nature to handle what is fundamentally a multi-period
problem, its symmetric definition of risk, and its neglect of higher moments like skewness
and kurtosis. We will address these alleged criticisms and show that standard techniques in
modern approaches to optimization effectively deal with them without altering Markowitz’s
vision for portfolio selection.

In 1990 Markowitz was awarded the Nobel Memorial Prize in Economics for his work
on portfolio theory, shared with Merton Miller and William Sharpe. For more light on
the fascinating historic details we recommend an interview with Markowitz [Mar19], his
acceptance speech for the Nobel Prize [Mar23], and his remarks in the introduction to the
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Handbook of Portfolio Construction [Gue10].

1.1 The original Markowitz idea

Markowitz identified two steps in the portfolio selection process. In a first step, the investor
forms beliefs about the expected returns of the assets, expressed as a vector µ, and their
covariances, expressed as a covariance matrix Σ, which gives the volatilities of asset returns
and the correlations among them. These beliefs are the core inputs for the second step,
which is the optimization of the portfolio based on these quantities.

He introduced the expected returns–variance of returns (E–V) rule, which states that an
investor desires to achieve the maximum expected return for a portfolio while keeping its
variance or risk below a given threshold. Convex programming was not a well developed
field at that time, and Markowitz used a geometric interpretation in the space of portfolio
weights [Mar52] to solve the problem we would now express as

maximize µTw
subject to wTΣw ≤ (σtar)2,

1Tw = 1,
(1)

with variable w ∈ Rn, the set of portfolio weights, where 1 is the vector with all entries
one. The data in the problem are µ ∈ Rn, the vector of expected asset returns, and Σ, the
n× n covariance matrix of asset returns. The positive parameter σtar is the target portfolio
return standard deviation or volatility. (We define the weights and describe the problem
more carefully in §2.)

There are many other ways to formulate the trade-off of expected return and risk as an
optimization problem [BV04, ApS23]. One very popular method maximizes the risk-adjusted
return, which is the expected portfolio return minus its variance, scaled by a positive risk-
aversion parameter. This leads to the optimization problem [GK00]

maximize µTw − γwTΣw
subject to 1Tw = 1,

(2)

where γ is the risk-aversion parameter that controls the trade-off between risk and return.
Both problems (1) and (2) give the full trade-off curve of Pareto optimal weights, as σtar or γ
vary from 0 to∞ (although (1) can be infeasible when σtar is too small). One advantage of the
first formulation (1) is that the parameter σtar that controls the volatility is interpretable
as, simply, the target risk level. The risk-aversion parameter γ appearing in (2) is less
interpretable. We will have more to say about the parameters that control trade-offs in
portfolio construction in §4.

Both problems (1) and (2) have analytical solutions. For example the solution of (2) is
given by

w⋆ =
1

2γ
Σ−1(µ+ ν⋆1), ν⋆ =

2γ − 1TΣ−1µ

1TΣ−11
.
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(The scalar ν⋆ is the optimal dual variable [BV04, Chap. 5].) We note here the appearance
of the inverse covariance matrix. To compute w⋆ we would not compute the inverse, but
rather solve two sets of equations to find Σ−1µ and Σ−11 [BV18]. Still, the appearance of
Σ−1 in the expressions for the solutions give us a hint that the method can be sensitive to
the input data when the covariance matrix Σ is nearly singular. These analytical formulas
can also be used to back out so-called implied returns, i.e., the mean µ for which a given
portfolio is optimal. For example the market implied return µmkt is the return for which the
optimal weights are the market weights, i.e., proportional to asset capitalization.

Both formulations (1) and (2) are referred to as the basic Markowitz problem, or mean-
variance optimization, since they both trade off the mean and variance of the portfolio return.
In his original paper Markowitz also noted that additional constraints can be added to the
problem, specifically the constraint that w ≥ 0 (elementwise), which means the portfolio is
long-only, i.e., it does not contain any short positions. With this added constraint, the two
problems above do not have simple analytical solutions. But the formulation (2), with the
additional constraint w ≥ 0, is a quadratic program (QP), a type of convex optimization
problem for which numerical solvers were developed already in the late 1950s [Wol59]. In
that early paper on QP, solving the Markowitz problem (2) with the long-only constraint
w ≥ 0 was listed as a prime application. Today we can solve either formulation reliably,
with essentially any set of convex portfolio constraints.

Since the 1950s we have seen a truly stunning increase in computer power, as well as
the development of convex optimization methods that are fast and reliable, and high-level
languages that allow users to express complex convex optimization problems in a few lines
of clear code. These advances allow us to extend Markowitz’s formulation to include a
large number of practical constraints and additional terms, such as transaction cost or the
cost incurred when holding short positions. In addition to directly handling a number of
practical issues, these generalizations of the basic Markowitz method also address the issue
of sensitivity to the input data µ and Σ. This paper describes one such generalization of the
basic Markowitz problem, that works well in practice.

Out of respect for Markowitz, and because the more generalized formulation we present
here is nothing more than an extension of his original idea, we will refer to these more
complex portfolio construction methods also as Markowitz methods. When we need to
distinguish the extension of Markowitz’s portfolio construction that we recommend from
the basic Markowitz method, we refer to it as Markowitz++. (In computer science, the
post-script ++ denotes the successor.)

1.2 Alleged deficiencies

The frequent criticism of Markowitz’s work is a testament to its importance. These criticisms
usually fall into one or more of the following (related) categories.

It’s sensitive to data errors and estimation uncertainty. The sensitivity of Markowitz
portfolio construction to input data is well documented [Mul93, MM08, SH13, Bra10, CY16],
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and already hinted at by the inverse covariance that appears in the analytical solutions of
the basic Markowitz method. This sensitivity, coupled with the challenge of estimating the
mean and covariance of the return, leads to portfolios that exacerbate errors or deficiencies
in the input data to find unrealistic and poorly performing portfolios. Some authors argue
that choosing a portfolio by optimization, as Markowitz’s method does, is essentially an
estimation-error maximization method. This is still a research topic that draws much atten-
tion. In the recent papers [GPS22, Shk23] the authors quantify how the (basic) Markowitz
portfolio is affected by estimation errors in the covariance matrix.

This criticism is justified, on the surface. Markowitz portfolio construction can perform
poorly when it is näıvely implemented, for example by using empirical estimates of mean and
covariance on a trailing window of past returns. But the critical practical issues of taming
sensitivity and gracefully handling estimation errors are readily addressed using techniques
such as regularization and robust optimization, described in more detail in §1.3.

It implicitly assumes risk symmetry. Markowitz portfolio construction uses variance
of the portfolio return as its risk measure. With this risk measure a portfolio return well
above the mean is just as bad as one that is well below the mean, whereas the former is
clearly a good event, not a bad one. This observation should at least make one suspicious
of the formulation, and has motivated a host of proposed alternatives, such as defining
the risk taking into account only the downside [Mar59, Chap. IX]. This criticism is also
valid, on the surface. But when the parameters are chosen appropriately, and the data are
reasonable, portfolios constructed from mean-variance optimization do not suffer from this
alleged deficiency.

We should maximize expected utility. A more academic version of the previous criti-
cism is that portfolios should be constructed by maximizing the expected value of a concave
increasing utility function of the portfolio return [VNM47]. The utility in mean-variance
optimization (with risk-adjusted return objective) is U(R) = R− γR2, where R is the port-
folio return. This utility function is concave, but only increasing for R < 1/(2γ); above that
value of return, it decreases, putting us in the awkward position of seeming to prefer smaller
returns over larger ones.

This criticism is also valid, taken at face value; the quadratic utility above is indeed not
increasing. Markowitz himself addressed the issue in a 1979 paper with H. Levy that argued
that while mean-variance optimization does not appear to be the same as maximizing an
expected utility, it is a very good approximation; see [LM79] and [MB14, Chap. 2]. But in
fact it turns out that Markowitz portfolio construction does maximize the expected value of a
concave increasing utility function. Specifically if we model the returns as Gaussian, and use
the exponential utility U(R) = 1− exp(−γR), then the expected utility is the risk-adjusted
return, up to an additive constant [LB23]. In other words, Markowitz portfolio construction
does maximize expected utility of portfolio return, for a specific concave increasing utility
function and a specific asset return distribution.
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It considers only the first and second moments of the return. Mean-variance op-
timization naturally only considers the first two moments of the distribution. It would seem
that taking higher moments like skewness and kurtosis into account might better describe
investor preferences [Caj22, ZP21]. This, coupled with the fact that the tails of asset returns
are not well modeled by a Gaussian distribution [Fam65], suggests that portfolio construction
should consider higher moments than the first and second.

While it is possible to construct small academic examples where mean-variance optimiza-
tion does poorly due to its neglect of higher moments, simple mean-variance optimization
does very well on practical problems. In [LB23] the authors extend Markowitz by maximiz-
ing exponential utility, but with a more complex Gaussian mixture model of asset returns.
Such a distribution is general, in that it can approximate any distribution. Their method ev-
idently handles higher moments, but empirically gives no boost in performance on practical
problems.

Markowitz himself addressed the common misconception that he labeled the “Great Con-
fusion” [Mar19, MB14, Mar99, Mar09], stating that Gaussian returns are merely a sufficient
but not a necessary condition on the return distribution for mean-variance optimization to
work well and that mean and variance are good approximations for expected utility.

It’s a greedy method. Portfolios are generally not just set up and then held for one
investment period; they are rebalanced, and sometimes often. Problems in which a sequence
of decisions are made, based on newly available information, are more accurately modeled
not as simple optimization problems, but instead as stochastic control problems, also known
as sequential decision making under uncertainty [Koc15, KWW22, Bel66, Ber12]. In the
context of stochastic control, methods that take into account only the current decision and
not future ones are called greedy, and in some cases can perform very poorly. This criticism
is also, on its face, valid. Using Markowitz portfolio construction repeatedly, as is always
done in practice, is a greedy method.

We can readily counter this criticism. First, in the special case with risk-adjusted return
and quadratic transaction costs, and no additional constraints, the stochastic optimal policy
can be worked out, and coincides with a single-period Markowitz portfolio [GK20, BB21].
This suggests that when other constraints are present, and the transaction cost is not
quadratic, the (greedy) Markowitz method should not be too far from stochastic optimal.

Second, there are extensions of Markowitz portfolio construction, called multi-period
methods, that plan a sequence of trades over a horizon, and then execute only the first
trade; see, e.g., [BBD+17, LUM22]. These multi-period methods can work better than
so-called single-period methods, for example when a portfolio is transitioning between two
managers, or being set up or liquidated over multiple periods. But in almost all other cases,
single-period methods work just as well as multi-period ones.

The third response to this criticism more directly addresses the question. In the paper
Performance Bounds and Suboptimal Policies for Multi-Period Investment [BMOW13], the
authors develop bounds on how well a full stochastic control trading policy can do, and show
empirically that single-period Markowitz trading essentially does as well as a full stochastic
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control policy (which is impractical if there are more than a handful of assets). So while
there are applications where greedy policies do much more poorly than a true stochastic
control policy, it seems that multi-period trading is not one of them.

1.3 Robust optimization and regularization

Here we directly address the question of sensitivity of Markowitz portfolio construction to
the input data µ and Σ. As mentioned above, the basic methods are indeed sensitive to
these parameters. But this sensitivity can be mitigated and tamed using techniques that are
widely used in other applications and fields, robust optimization and regularization.

Robust optimization. Modifying an optimization-based method to make it more ro-
bust to data uncertainty is done in many fields, using techniques that have differing names.
When optimization is used in almost any application, some of the data are not known
exactly, and solving the optimization problem without recognizing this uncertainty, for ex-
ample by using some kind of mean or typical values of the parameters, can lead to very
poor practical performance. Robust optimization is a subfield of optimization that devel-
ops methods to handle or mitigate the adverse effects of parameter uncertainty; see, e.g.,
[BTEGN09, TK04, GMT14, BTN02, BBC11, Lob00]. These methods tend to fall in one of
two approaches: statistical or worst-case deterministic. In a statistical model, the uncertain
parameters are modeled as random variables and the goal is to optimize the expected value of
the objective under this distribution, leading to a stochastic optimization problem [SDR21],
[BV04, Chap. 6.4.1]. A worst-case deterministic uncertainty model posits a set of possi-
ble values for parameters, and the goal is to optimize the worst-case value of the objective
over the possible parameter values [BS07], [BV04, Chap. 6.4.2]. Another name for worst-
case robust optimization is adversarial optimization, since we can model the problem as
our choosing values for the variables to obtain the best objective, after which an adversary
chooses the values of the parameters so as to achieve the worst possible objective. Worst-case
robust optimization has many variations and goes by many names. For example when the
set of possible parameter values is finite, they are called scenarios or regimes, and optimizing
for the worst-case scenario is called worst-case scenario optimization. While these general
approaches sound quite different, they often lead to very similar solutions, and both can
work well in applications. Robust optimization methods work by modifying the objective or
constraints to model the possible variation in the data.

One very successful application of robust optimization is in robust control, where a control
system is designed so that the control performance is not too sensitive to changes in the
system dynamics [ZD98, KDG96]. So-called linear quadratic optimal control was developed
around 1960, and used in many applications. Its occasional sensitivity to the data (in this
case, the dynamic model of the system being controlled) was noted then; by the early 1990s
robust control methods were developed, and are now very widely used.
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Regularization. Regularization is another term for methods that modify an optimiza-
tion problem to mitigate sensitivity to data. It is almost universally used in statistics and
machine learning when fitting models to data. Here we fit the parameters of a model to
some given training data, accounting for the fact that the training data set could have been
different [TA77, HTF09]. This process of regularization can be done explicitly by adding
a penalty term to the objective, and also implicitly by adding constraints to the problem
that prevent extreme outcomes. Regularization can often be interpreted as a form of robust
optimization; see, e.g., [BV04, Chap. 6.3–6.4].

The high level story. Robust optimization and regularization both follow the same high
level story, and both can be applied to the Markowitz problem. The story starts with a
basic optimization-based method that relies on data that are not known precisely. We then
modify the optimization problem, often by adding additional objective terms or constraints.
Doing this worsens the in-sample performance. But if done well, it improves out-of-sample
performance. Roughly speaking, robustification and regularization tell the optimizer to not
fully trust the data, and this serves it well out-of-sample.

In portfolio construction a long-only constraint can be interpreted as a form of regulariza-
tion [JM03]. A less extreme version is to impose a leverage limit, which can help avoid many
of the data sensitivity issues. We will describe below some effective and simple robustification
methods for portfolio construction.

Regularization can (and should) also be applied to the forecasting of the mean and
covariance in Markowitz portfolio construction. The Black-Litterman approach to estimating
the mean returns regularizes the estimate toward the market implied return [BL90]. A
return covariance estimate can be regularized using shrinkage, another term for regularized
estimation in statistics [LW04].

1.4 Convex optimization

Over the same 70-year period since Markowitz’s original work, there has been a parallel
advance in mathematical optimization, and especially convex optimization, not to mention
stunning increases in available computer power. Roughly speaking, convex optimization
problems are mathematical optimization problems that satisfy certain mathematical proper-
ties. They can be solved reliably and efficiently, even when they involve a very large number
of variables and constraints, and involve nonlinear, even nondifferentiable, functions [BV04].

Shortly before Markowitz published his paper on portfolio selection, George Dantzig
developed the simplex method [Dan51], which allowed for the efficient solution of linear
programs. In 1959, Wolfe [Wol59] extended the simplex method to QP problems, citing
Markowitz’s work as a motivating application. This close connection between portfolio con-
struction and optimization was no coincidence, since Dantzig and Markowitz were colleagues
at RAND.

Since then, the field of convex optimization has grown tremendously. Today, convex
optimization is a mature field with a large body of theory, algorithms, software, and appli-
cations [BV04]. Being able to solve optimization problems reliably and efficiently is crucial
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for portfolio construction, especially for back-testing or simulating a proposed method on
historical or synthesized data, where portfolio construction has to be carried many times.
Thus, any extension of the Markowitz objective or additional constraints should be convex
to ensure tractability. As we will see, this is hardly a limitation in practice.

Solvers. The dominant convex optimization problem form is now the cone program, a
generalization of linear programming that handles nonlinear objective terms and constraints
[NN92, BV04, LVBL98a, VB96]. There are now a number of reliable and efficient solvers
for such problems, including open-source ones like ECOS [DCB13], Clarabel [GC24], and
SCS [OCPB16], and commercial solvers such as MOSEK [ApS20], GUROBI [Gur23], and
CPLEX [Cpl09]. A recent open-source solver for QPs is OSQP [SBG+20].

Domain-specific languages. Convex optimization is also now very accessible to practi-
tioners, even those without a strong background in the mathematics or algorithms of convex
optimization, thanks to high-level domain-specific languages (DSLs) for convex optimization,
such as CVXPY [AVDB18, DB16], CVX [GB14], Convex.jl [UMZ+14], CVXR [FNB17], and
YALMIP [Lof04]. These DSLs make it easy to specify complex, but convex, optimization
problems in a natural, human readable way. The DSLs transform the problem from the hu-
man readable form to a lower level form (often a cone program) suitable for a solver. These
DSLs make it easy to develop convex optimization based methods, as well as to modify, up-
date, and maintain existing ones. As a result, CVXPY is used at many quantitative hedge
funds today, as well as in many other applications and industries. The proposed extension
of Markowitz’s portfolio construction method that we describe below is a good example of
the use of CVXPY. It is a complex problem involving nonlinear and nondifferentiable func-
tions, but its specification in CVXPY takes only a few tens of lines of clear readable code,
given in appendix B. The overhead of translating the human readable problem specification
into a cone program is typically small. Additionally, in some DSLs, such as CVXPY, prob-
lems can be parametrized [AAB+19], such that they can be solved for a range of values of
the parameters, making the translation overhead negligible. Related to DSLs are model-
ing layers provided by some solver, such as MOSEK’s Fusion API [ApS20], which provides
a high-level interface to the solver. Less focused on convex optimization, there are other
modeling languages such as JuMP [LDD+23] and Pyomo [HWW11, BHH+21] that do not
verify convexity, but provide flexibility in modeling a wide range of optimization problems,
including nonconvex ones.

Code generators. Code generators like CVXGEN [MB12] and CVXPYgen [SBD+22] are
similar to DSLs. They support high level specification of a problem (family) but instead
of directly solving the problem, they generate custom low level code (typically C) for the
problem that is specified. This code can be compiled to a very fast and totally reliable solver,
suitable for embedded real-time applications. For example, CVXGEN-generated code guides
all of SpaceX’s Falcon 9 and Falcon Heavy first stages to their landings [Bla16].
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1.5 Previous work

The literature on portfolio construction is vast, and focusing on the practical implementation
of Markowitz’s ideas, we do not attempt to survey it here in detail. Instead, we highlight
only a few major developments that are relevant to our work. For a detailed overview see,
e.g., [GK00, Chap. 14], [Nar09, Chap. 6], and [CT06, KTF14].

Building on Markowitz’s framework, the field of portfolio construction has undergone sub-
stantial evolution. Notable contributions include Sharpe’s Capital Asset Pricing Model [Sha63]
and the Black-Litterman model [BL90]. A pivotal figure in bringing the field to the fore-
front of the industry was Barr Rosenberg, whose research evolved to become the Barra risk
model [Ros84, She96], first used for risk modeling and then in portfolio optimization. The
introduction of risk parity models [MRT10] brought a focus on risk distribution. Addition-
ally, hierarchical risk parity, a recent advancement, offers a more intricate approach to risk
allocation, considering the hierarchical structure of asset correlations [DP16]. These devel-
opments reflect the field’s dynamic adaptation to evolving market conditions and analytical
techniques.

Software. Dedicated software helped practitioners access the solvers and DSLs mentioned
earlier, and has facilitated the wide acceptance of Markowitz portfolio construction. A
wealth of software packages have been developed for portfolio optimization, many (if not
most) with Python interfaces, both open-source and commercial. Examples range from
simple web-based visualization tools to complex trading platforms. Here we mention only a
few of these software implementations.

On the simpler end Portfolio Visualizer [Glo23] is a web-based tool that allows users to
back-test and visualize various portfolio strategies. PyPortfolioOpt [Mar21] and Cvxport-
folio [BBD+17] are Python packages offering various portfolio optimization techniques. Py-
PortfolioOpt includes mean-variance optimization, Black-Litterman allocation [BL90], and
more recent alternatives like the Hierarchical Risk Parity algorithm [DP16], while Cvxportfo-
lio [BBD+17] supports multi-period strategies. Another Python implementation is proposed
in [SXD20], where the authors introduce an approach to multicriteria portfolio optimization.
Quantlib [The23] is an alternate open-source software package for modeling, trading, and
risk management.

The list of commercial software is also extensive. MATLAB’s Financial Toolbox [Bra13,
Mat23] includes functions for mathematical modeling and statistical analysis of financial
data, including portfolio optimization. Another example is Axioma, which on top of its
popular risk model offers a portfolio optimizer [Qon23].

Other software packages include Portfolio123 [Por23a], PortfoliosLab [Por23b], and Port-
folioLab by Hudson & Thames [Tha23]. Additionally, many solvers, such as MOSEK [ApS20,
ApS23], provide extensive examples of portfolio optimization problems, making them easy
to use for portfolio optimization.
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1.6 This paper

Our goal is to describe an extension of the basic Markowitz portfolio construction method
that includes a number of additional objective terms and constraints that reflect practical
issues and address the issue of sensitivity to inevitable forecasting errors. We give a mini-
mal formulation that is both simple and practical; we make no attempt to list all possible
extensions that a portfolio manager (PM) might wish to add.

While the resulting optimization problem might appear complex, containing nonlinear
nondifferentiable functions, it is convex, which means it can be solved reliably and efficiently.
It can also be specified in a DSL such as CVXPY in just a few tens of lines of clear simple
code. We can solve even large instances of the optimization problem very quickly, making
it practical to carry out extensive back-testing to predict performance or adjust parameter
values. One additional advantage of our formulation is that parameters that need to be
specified are generally more interpretable than those appearing in basic formulations. For
example a PM specifies a target risk and a target turnover instead of some parameters that
are less directly related to them.

Most of the material in this paper is not new but scattered across many sources, in
different formats, and indeed in different application fields. Some of our recommendations
are widely accepted and industry standard, but others are rarely discussed in the literature
and even less commonly used in practice.

The authors bring a diverse set of backgrounds to this paper. Some of us have applied
Markowitz portfolio construction day-to-day in research, writing, and real portfolios. Others
approach Markowitz’s method from the perspective of optimization and control in engineer-
ing. Control systems engineering has a long history and is widely applied in essentially all
engineering applications. Most applications of control engineering use methods based on
models that are either wrong or heavily simplified. While näıve implementations of these
methods do not work well (or worse), simple sensible modifications, similar to the ones we
describe later in this paper, work very well in practice.

These different backgrounds together can provide a new perspective and bring modern
tools to the endeavor Markowitz began. These techniques have made Markowitz’s method
even more applicable and useful to investors.

Software. We have created two companion software packages. One is designed for peda-
gogical purposes, uses limited parameter testing and checking, and very closely follows the
terminology and notation of the paper. It is available at

https://github.com/cvxgrp/markowitz-reference.

The second package is a robust and flexible implementation, which is better suited for prac-
tical use. It is available at

https://github.com/cvxgrp/cvxmarkowitz.
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Outline. In §2 we set up our notation, define weights and trades, and describe various
objective terms and constraints. Return and risk forecasts are covered in §3. In §4 we
pull together the material of the previous two sections to define the (generalized) Markowitz
trading problem, which we refer to as Markowitz++. In §5 we present some simple numerical
experiments that illustrate how the extra terms robustify the basic Markowitz trading policy,
and how parameters are tuned via back-testing to improve good performance.

2 Portfolio holdings and trades

This section introduces the notation and terminology for portfolio holdings, weights, and
trades, fundamental objects in portfolio construction independent of the trading strategy. We
follow the notation of [BBD+17], with the exceptions of handling the cash weight separately
and dropping the time period subscript.

2.1 Portfolio weights

Universe. We consider a portfolio consisting of investments (possibly short) in n assets,
plus a cash account. We refer to the set of assets we might hold as the universe of assets,
and n as the size of the universe. These assets are assumed to be reasonably liquid, and
could include, for example, stocks, bonds, or currencies.

Asset and cash weights. To describe the portfolio investments, we work with the weights
or fractions of the total portfolio value for each asset, with negative values indicating short
positions. We denote the weights for the assets as wi, i = 1, . . . , n, and collect them into
a portfolio weight vector w = (w1, . . . , wn) ∈ Rn. The weights are readily interpreted:
wi = 0.05 means that 5% of the total portfolio value is held in asset i, and wk = −0.01
means that we hold a short position in asset k, with value 1% of the total portfolio value.
The dollar value of asset i held is V wi, where V is the total portfolio value, assumed to be
positive.

We denote the weight for the cash account, i.e., our cash value divided by the portfolio
value, as c. If c is negative, it represents a loan. When c > 0 we say the portfolio is diluted
with cash; when c < 0, the portfolio is margined. The dollar value of the cash account is V c.

By definition the weights sum to one, so we have

1Tw + c = 1, (3)

where 1 is the vector with all entries one. The first term, 1Tw, is the total weight on the
non-cash assets, and we refer to it as the total asset weight. The cash weight is one minus
the total asset weight, i.e., c = 1− 1Tw.

Several portfolio types can be expressed in terms of the holdings. A long-only portfolio
is one with all asset weights nonnegative, i.e., w ≥ 0 (elementwise). A portfolio with c = 0,
i.e., no cash holdings, is called fully invested. In such a portfolio we have 1Tw = 1, i.e., the
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total asset weight is one. As another example, a cash-neutral portfolio is one with c = 1.
For a cash-neutral portfolio we have 1Tw = 0, i.e., the total (net) asset weight is zero.

Leverage. The leverage of the portfolio, denoted L, is

L =
n∑

i=1

|wi| = ∥w∥1.

(Several other closely related definitions are also used. Our definition is commonly referred
to as the gross leverage [AGv11].) The leverage does not include the cash account.

In a long-only portfolio, the leverage is equal to the total asset weight. The 130-30
portfolio [LEB09] refers to a fully invested portfolio with leverage L = 1.6. For such a
portfolio, the total weight of the short positions (i.e., negative wi) is −0.3 and the total
weight of the long positions (i.e., positive wi) is 1.3.

Benchmark and active weights. In some cases our focus is on portfolio performance
relative to a benchmark portfolio. We let wb ∈ Rn denote the weights of the benchmark.
Typically the benchmark does not include any cash weight, so 1Twb = 1. We refer to w−wb

as the active weights of our portfolio. A positive active weight on asset i, i.e., wi − wb
i > 0,

means our portfolio is over-weight (relative to the benchmark) on asset i; a negative active
weight, wi − wb

i < 0, means our portfolio is under-weight on asset i.

2.2 Holding constraints and costs

Several constraints and costs are associated with the portfolio holdings w and c.

Weight limits. Asset and cash weight limits have the form

wmin
i ≤ wi ≤ wmax

i , i = 1, . . . , n, cmin ≤ c ≤ cmax,

where wmin and wmax are given vectors of lower and upper limits on asset weights, and cmin

and cmax are given lower and upper limits on the cash weight. We write the asset weight
inequalities in vector form as wmin ≤ w ≤ wmax. We have already encountered a simple
example: a long-only portfolio has wmin = 0.

Portfolio weight limits can reflect hard requirements, for example that a portfolio must
(by legal or regulatory requirements) be long-only. Portfolio weight limits can also be used
to avoid excessive concentration of a portfolio, or limit short positions. For example, wmax =
0.15 means that our portfolio cannot hold more than 15% of the total portfolio value in
any one asset. (Here we adopt the convention that in a vector-scalar inequality, the scalar
is implicitly multiplied by 1.) As another example, wmin = −0.05 means that the short
position in any asset can never exceed 5% of the total portfolio value. For large portfolios it
is reasonable to also limit holdings relative to the asset capitalization, e.g., to require that
our portfolio holdings of each asset are no more than 10% of the asset capitalization.
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Weight limits can also be used to capture the portfolio manager’s views on how the
market will evolve. For example, she might insist on a long position for some assets, and a
short position for some others.

When a benchmark is used, we can impose limits on active weights. For example |w −
wb| ≤ 0.10 means that no asset in the portfolio can be more than 10% over-weight or
under-weight.

Leverage limit. In addition to weight limits, we can impose a leverage limit,

L ≤ Ltar, (4)

where Ltar is a specified maximum or target leverage value. (Other authors have suggested
including leverage as a penalty term in the objective, to model leverage aversion [JL13].)

Holding costs. In general a fee is paid to borrow an asset in order to enter a short
position. Analogously we pay a borrow cost fee for a negative cash weight. We will assume
these holding costs are a linear function of the negative weights, i.e., of the form

ϕhold(w, c) = (κshort)T (−w)+ + κborrow(−c)+, (5)

where (a)+ = max{a, 0} denotes the nonnegative part, applied elementwise and in its first
use above. Here κshort ≥ 0 is the vector of borrow cost (rates) for the assets, and κborrow ≥ 0
is the borrow cost for cash.

Other holding constraints. There are many other constraints on weights that might
be imposed, some convex, and others not. A concentration limit is an example of a useful
constraint that is convex. It states that the sum of the K largest absolute weights cannot
exceed some limit. As a specific example, we can require that no collection of five assets can
have a total absolute weight of more than 30% [SR20, ApS23]. A minimum nonzero holding
constraint is an example of a commonly imposed nonconvex constraint. It states that any
nonzero weight must have an absolute value exceeding some given minimum, such as 0.5%.
(This one is easily handled using a heuristic based on convex optimization; see §4.3.)

2.3 Trades

Trade vector. We let wpre and cpre denote the pre-trade portfolio weights, i.e., the portfolio
weights before we carry out the trades to construct the portfolio given by w and c. We need
the pre-trade weights to account for transaction costs. We refer to

z = w − wpre, (6)

the current weights minus the previous ones, as the (vector of) trades or the trade list. These
trades have a simple interpretation: zi = 0.01 means we buy an amount of asset i equal in
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value to 1% of our total portfolio value, and zi = −0.03 means we sell an amount of asset i
equal to 3% of the portfolio value.

Since 1Twpre + cpre = 1, we have

c = cpre − 1T z, (7)

i.e., the post-trade cash weight is the pre-trade cash weight minus the net weight of the
trades. This does not include holding and transaction costs, discussed below.

Turnover. The quantity

T =
1

2

n∑
i=1

|zi| =
1

2
∥z∥1

is the turnover. Here too, several other different but closely related definitions are also
used, for example the minimum of the total weight bought and the total weight sold [GK00,
Chap. 16]. A turnover T = 0.01 means that the average of total amount bought and
total amount sold is 1% of the total portfolio value. The turnover is often annualized, by
multiplying by the number of trading periods per year.

2.4 Trading constraints and costs

We typically have constraints on the trade vector z, as well as a trading cost that depends
on z.

Trade limits. Trade limits impose lower and upper bounds on trades, as

zmin ≤ z ≤ zmax,

where zmin and zmax are given limits. These trade limits can be used to limit market par-
ticipation, defined as the ratio of the magnitude of each trade to the trading volume, using,
e.g.,

|z| ≤ 0.05v, (8)

where v ∈ Rn is the trading volumes of the assets, expressed as multiples of the portfolio
value. This constraint limits our participation for each asset to be less than 5%. (It cor-
responds to trade limits zmax = −zmin = 0.05v.) Since the trading volumes are not known
when z is chosen, we use a forecast instead of the realized trading volumes.

Turnover limit. In addition to trade limits, we can limit the turnover as

T ≤ T tar, (9)

where T tar is a specified turnover limit.
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Trading cost. Trading cost refers to the cost of carrying out a trade. For example, if we
buy a small quantity of an asset, we pay the ask price, while if we sell an asset, we receive
the bid price. Since the nominal price of an asset is the midpoint between the ask and bid
prices, we can think of buying or selling the asset as doing so at the nominal price, plus an
additional positive cost that is the trade amount times one-half the bid-ask spread. This
bid-ask spread transaction cost has the form

n∑
i=1

κspread
i |zi| = (κspread)T |z|,

where κspread ∈ Rn is the vector of one-half the asset bid-ask spreads (which are all positive).
This is the transaction cost expressed as a fraction of the portfolio value. For small trades
this is a reasonable approximation of transaction cost.

For larger trades we ‘eat through’ the order book. To buy a quantity of an asset, we
buy each ask lot, in order from lowest price, until we fill our order. An analogous situation
occurs when selling. This means that we end up paying more per share than the ask price
when buying, or receiving less than the bid price when selling. This phenomenon is called
market impact.

A useful approximation of transaction cost that takes market impact into account is

ϕtrade(z) = (κspread)T |z|+ (κimpact)T |z|3/2, (10)

where the first term is the bid-ask spread component of transaction cost, and the second
models the market impact, i.e., the additional cost incurred as the trade eats through the
order book. The vector κimpact has positive entries and typically takes the form

κimpact
i = asiv

−1/2
i ,

where si is the volatility of asset i over the trading period, vi is the volume of market trading,
expressed as a multiple of the portfolio value, and a is a constant on the order of one; see
[GK00, Loe83, TLD+11] and [BBD+17, §2.3]. Evidently the transaction cost increases with
volatility, and decreases with market volume. Several other approximations of transaction
cost are used [AC00].

Liquidation cost. Suppose we liquidate the portfolio, i.e., close out all asset positions,
which corresponds to the trade vector z = −w. The liquidation cost is

ϕtrade(−w) = (κspread)T |w|+ (κimpact)T |w|3/2.

If the liquidation is carried out over multiple periods, the bid-ask term stays the same,
but the market impact term decreases. For this reason a common approximation of the
liquidation cost ignores the market impact term. A liquidation cost constraint has the form

(κspread)T |w| ≤ ℓmax, (11)
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where ℓmax is a maximum allowable liquidation cost, such as 1%. This is a weight constraint;
it limits our holdings in less liquid assets, which have higher bid-ask spreads. It can be
interpreted as a liquidity-weighted leverage (taking the bid-ask spread as a proxy for liquid-
ity). When all assets have the same bid-ask spread, the liquidation constraint reduces to a
leverage constraint. For example with all bid-ask spreads equal to 0.001 (i.e., 10 basis points
or bps) and a maximum liquidation cost ℓmax = 0.01 (i.e., 1% of the total portfolio value),
the liquidation cost limit (11) reduces to a leverage limit (4) with Ltar = 10.

Transaction cost forecasts. When the trades z are chosen, we do not know the bid-ask
spreads, the volatilities, or the volumes. Instead we use forecasts of these quantities in (8),
(10), and (11). Simple forecasts, such as a trailing average or median of realized values, are
typically used. More sophisticated forecasts take can into account calendar effects such as
seasonality, or the typically low trading volume the day after Thanksgiving.

3 Return and risk forecasts

3.1 Return

Gross portfolio return. We let ri denote the return, adjusted for dividends, splits, and
other corporate actions, of asset i over the investment period. We collect these asset returns
into a return vector r = (r1, . . . , rn) ∈ Rn. The portfolio return from asset i is riwi. We let
rrf denote the risk-free interest rate, so the return in the cash account is rrfc. The (gross)
total portfolio return is then

R = rTw + rrfc.

This gross return does not include holding or trading costs. A closely related quantity is the
excess return, the portfolio return minus the risk-free return, R− rrf = rTw + rrf(c− 1).

Net portfolio return. The net portfolio return is the gross return minus the holding costs
and transaction costs,

Rnet = R− ϕhold(w)− ϕtrade(z). (12)

Active return. The active portfolio return is the return relative to a benchmark portfolio,

rTw + rrfc− rTwb = rT (w − wb) + rrfc.

If we subtract holding and trading costs we obtain the net active portfolio return.

Cash as slack. Since we do not know but only forecast the bid-ask spread, volatility, and
volume, which appear in the transaction cost (10) (which is itself only an approximation)
we should consider the post-trade cash c in (7) as an approximation that uses a forecast of
holding and transaction costs, not the realized holding and transaction costs. We do not
expect the realized post-trade cash weight to be exactly c.
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3.2 Probabilistic asset return model

When we choose the trades z we do not know the asset returns r. Instead, we model r as a
multivariate random variable with mean µ ∈ Rn and covariance matrix Σ ∈ Sn

++ (the set of
symmetric positive definite n× n matrices),

E r = µ, E(r − µ)(r − µ)T = Σ.

The entries of the mean µ are often referred to as trading signals [Isi21]. The asset return
mean and covariance are forecasts, as described below. The asset return volatilities s ∈ Rn

appearing in the transaction cost model (10) can be expressed as s = diag(Σ)1/2, where the
squareroot is elementwise.

Expected return and risk. With this statistical model of r, the portfolio return R is a
random variable with mean R̄ = ER and variance σ2 = varR given by

R̄ = µTw + rrfc, σ2 = wTΣw.

The risk of the portfolio is defined as the standard deviation of the portfolio return, i.e., σ.
Similarly, the active return Ra is a random variable with mean and variance

R̄a = µT (w − wb) + rrfc = R̄− µTwb, (σa)2 = (w − wb)TΣ(w − wb),

and the active risk is σa. The risk and active risk are often given in annualized form, obtained
by multiplying them by the squareroot of the number of periods per year.

The parameters µ and Σ are estimates or forecasts of the statistical model of asset
returns, which is itself an approximation. For this reason the risk σ is called the ex-ante
risk, to distinguish it from the standard deviation of the realized portfolio returns when
trading, the ex-post risk. Similarly we refer to σa as the ex-ante active risk.

Optimizing expected return and risk. We have two objectives, high expected return
and low risk. Perhaps the most common method for combining these objectives is to form a
risk-adjusted return,

R̄− γσ2,

where γ > 0 is the risk aversion parameter. Maximizing risk-adjusted return (possibly with
other objective terms, and subject to constraints) gives the desired portfolio. Increasing
γ gives us a portfolio with lower risk and also lower expected return. The risk aversion
parameter allows us to explore the risk-return trade-off. This risk-adjusted return approach
became popular in part because the resulting optimization problem is typically a quadratic
program (QP), for which reliable solvers were developed even in the 1960s.

Another approach is to maximize expected return (possibly with other objective terms),
subject to a risk budget or risk target constraint

σ ≤ σtar. (13)
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(The corresponding optimization problem is not a QP, but is readily handled by convex
optimization solvers developed in the 1990s [LVBL98b, NN94, Stu99, TTT99].) This for-
mulation seems more natural, since a portfolio manager will often have a target risk in her
mind, e.g., 8% annualized. This is the basic formulation that we recommend.

There are many other ways to combine expected return and risk. For example, we can
maximize the return/risk ratio, called the Sharpe ratio (with no benchmark) or information
ratio (with a benchmark). This problem too can be solved via convex optimization, at least
when the constraints are simple [BV23].

3.3 Factor model

In practice, and especially for large universes, it is common to use a factor model for the
returns. The factor return model, with k factors (typically with k ≪ n), has the form

r = Ff + ϵ, (14)

where F ∈ Rn×k is the factor loading matrix, f ∈ Rk is the vector of factor returns, and
ϵ ∈ Rn is the idiosyncratic return. The term Ff is interpreted as the component of asset
returns explainable or predicted by the factor returns.

At portfolio construction time the factor loading matrix F is known, and the factor return
f and idiosyncratic return ϵ are modeled as uncorrelated random variables with means and
covariance matrices

E f = f̄ , cov f = Σf, E ϵ = ϵ̄, cov ϵ = D,

where D is diagonal (with positive entries). The entries ϵ̄, the means of the idiosyncratic
returns, are also referred to as the alphas, especially when there is only one factor which is
the overall market return. They are the part of the asset returns not explained by the factor
returns.

With the factor model (14) the asset return mean and covariance are

µ = F f̄ + ϵ̄, Σ = FΣfF T +D.

The return covariance matrix in a factor model has a special form, low rank plus diagonal.
The portfolio return mean and variance are

R̄ = (F f̄)Tw + ϵ̄Tw + rrfc, σ2 = (F Tw)TΣf(F Tw) + wTDw.

The factor returns are constructed to have explanatory power for the returns of assets
in our universe. For equities, they are typically the returns of other portfolios, such as the
overall market (with weights proportional to capitalization), industries, and style portfolios
like the celebrated Fama-French factors [FF92, FF93]. For bonds, the factors are typically
constructed from yield curves, interest rates, and spreads. These traditional factors are
interpretable.

Factors can also can be constructed directly from previous realized asset returns using
methods such as principal component analysis (PCA) [BN08, Bai03, LP20a, LP20b, PX22b,
PX22a]. Aside from the first principal component, which typically is close to the market
return, these factors are less interpretable.

20



Factor and idiosyncratic returns. A factor model gives an alternative method to specify
the expected return as µ = F f̄ + ϵ̄, where f̄ is a forecast of the factor returns and ϵ̄ is a
forecast of the idiosyncratic returns, i.e., the asset alphas. One common method uses only
a forecast of the factor returns, with ϵ̄ = 0, so µ = F f̄ . A complementary method assumes
zero factor returns, so we have µ = ϵ̄, i.e., the mean asset returns are the same as the
idiosyncratic asset mean returns.

Factor betas and neutrality. Under the factor model (14), the covariance of the portfolio
return R with the factor returns f is the k-vector

cov(R, f) = ΣfF Tw.

The betas of the portfolio with respect to the factors divide these covariances by the variance
of the factors,

β = diag(sf)−2ΣfF Tw,

where sf = diag(Σf)−1/2 is the vector of factor return volatilities.
The constraint that our portfolio return is uncorrelated (or has zero beta) with the ith

factor return fi, under the factor model (14), is

cov(R, f)i = (ΣfF Tw)i = 0. (15)

This is referred to as factor neutrality (with respect to the ith factor). It is a simple linear
equality constraint, which can be expressed as aTw = 0, where a is the ith column of FΣf.
Factor neutrality constraints are typically used with active weights. In this case, factor
neutrality means that the portfolio beta matches the benchmark beta for that factor.

Advantages of a factor model. Especially with large universes, the factor model (spec-
ified by F , Σf, and D) can give a better estimate of the return covariance, compared to
methods that directly estimate the n × n matrix Σ [JOP+23]. Another substantial advan-
tage is computational. By exploiting the low-rank plus diagonal structure of the return
covariance with a factor model, we can reduce the computational complexity of solving the
Markowitz optimization problem from O(n3) flops (without exploiting the factor model) to
O(nk2) flops (exploiting the factor form). These computational savings can be dramatic,
e.g., for a whole world portfolio with n = 10000 and k = 100, where we obtain a 10000 fold
decrease in solve time; see §5.6.

3.4 Return and risk forecasts

Here we briefly discuss the forecasting of µ and Σ (or F , Σf, and D in a factor model).
Markowitz himself did not address the question of estimating µ and Σ; when asked by
practitioners how one should choose these forecasts, his reply was [SS23]

“That’s your job, not mine.”
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It is well documented that poor or näıve estimates of these, e.g., the sample mean and
covariance, can yield poor portfolio performance [Mic89]. But even reasonable forecasts
will have errors, which can degrade performance. We show some methods to mitigate this
forecast uncertainty in §3.5.

Asset returns estimate. The expected returns vector µ is by far the most important
parameter in the portfolio construction process, and methods for estimating it, or the factor
and idiosyncratic return means are for obvious reasons in general proprietary. It is also the
most challenging data to estimate. There is no consensus on how to estimate the mean
returns, and the literature is vast.

Regularization methods can improve mean estimates. As an example, the Black-Litterman
model [BL90] allows a portfolio manager to incorporate her views on how the expected re-
turns differ from the market consensus, and in essence acts as a form of regularization of the
portfolio toward the market portfolio. Another method that serves implicitly as regulariza-
tion is winsorization, where the mean estimates are clipped when they go outside a specified
range [WZ07], [GK00, Chap. 14]. Yet another method is cross-sectionalization, where the
preliminary estimate of returns µ is replaced with µ̃, the same values monotonically mapped
to (approximately) a Gaussian distribution [GK00, Chap. 14].

Return covariance estimate. There are many ways to estimate the covariance ma-
trix, with or without a factor model. Approaches that work well in practice include the
exponentially weighted moving average (EWMA) [OS96], dynamic conditional correlation
(DCC) [Eng02], and iterated EWMA [BB22]. For a detailed discussion on how to estimate
a covariance matrix for financial return data, see [JOP+23] and the references therein.

3.5 Making return and risk forecasts robust

In this section we address methods to mitigate the impact of forecast errors in return and
covariance estimation, which can lead to poor performance. This directly addresses one of
the main criticisms of the Markowitz method, that it is too sensitive to estimation errors.
Here, we briefly review how to address robust return mean and covariance estimation, and
refer the reader to [BBD+17, §4.3] and [FKPF07, TK04] for more detailed discussions.

Robust return forecast. We model our uncertainty in the mean return vector by giving
an interval of possible values for each return mean. We let µ ∈ Rn denote our nominal
estimate of the return means, and we take the nonnegative vector ρ ∈ Rn

+ to describe the
half-width or radius of the uncertainty intervals. Thus we imagine that the return can be
any vector of the form µ + δ, where |δi| ≤ ρi. For example µi = −0.0010 and ρi = 0.0005
means that the mean return for asset i lies in the range [−15,−5] bps.

We define the worst-case mean portfolio return as the minimum possible mean portfolio
return consistent with the given ranges of asset return means:

Rwc = min{(µ+ δ)Tw | |δ| ≤ ρ}.
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We can think of this as an adversarial game. The portfolio manager (PM) chooses the
portfolio w, and an adversary then chooses the worst mean return consistent with the given
uncertainty intervals. This second step has an obvious solution: We choose µi − δi when
wi ≥ 0, and we choose µi + δi when wi < 0. In words: For long positions the worst return is
the minimum possible; for short positions the worst return is the maximum possible. With
this observation, we obtain a simple formula for the worst-case portfolio mean return,

Rwc = R̄− ρT |w|. (16)

The first term is the nominal mean return; the second term, which is nonpositive, gives the
degradation of return induced by the uncertainty. We refer to ρT |w| as the portfolio return
forecast error penalty in our return forecast. The return forecast error penalty has a nice
interpretation as an uncertainty-weighted leverage.

When the portfolio is long-only, so w ≥ 0, the worst-case asset returns are obvious:
they simply take their minimum values, µ − ρ. In this case the worst-case portfolio mean
return (16) is the usual mean portfolio return, with each nominal asset return reduced by
its uncertainty.

The return forecast uncertainties ρ can be chosen by several methods. One simple method
is to set all entries the same, and equal to some quantile of the entries of |µ|, such as the
20th percentile. A more sophisticated method relies on multiple forecasts of the returns, and
sets µ as the mean or median forecast, and ρ as some measure of spread, such as standard
deviation, of the forecasts.

Robust covariance forecast. We can also consider uncertainty in the covariance matrix.
We let Σ denote our nominal estimate of the covariance matrix. We imagine that the
covariance matrix has the form Σ +∆ where ∆ ∈ Sn (the set of symmetric n× n matrices)
where the perturbation ∆ satisfies

|∆ij| ≤ ϱ(ΣiiΣjj)
1/2,

where ϱ ∈ [0, 1) defines the level of uncertainty. For example, ϱ = 0.04 means that the
diagonal elements of the covariance matrix can change by up to 4% (so the volatilites can
change by around 2%), and the asset return correlations can change by up to around 4%.
(You should not trust anyone who claims that his asset return covariance matrix estimate is
more accurate than this.)

We define the worst-case portfolio risk as the maximum possible risk over covariance
matrices consistent with our uncertainty set,

(σwc)2 = max{wT (Σ + ∆)w | |∆ij| ≤ ϱ(ΣiiΣjj)
1/2}.

This can be expressed analytically as [BBD+17, §4.3]

(σwc)2 = σ2 + ϱ

(
n∑

i=1

Σ
1/2
ii |wi|

)2

. (17)
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The second term is the covariance forecast error penalty. It has a nice interpretation as an
additive regularization term, the square of a volatility-weighted leverage. The worst-case
risk can be expressed using Euclidean norms as

σwc =
∥∥(σ,√ϱ(diag(Σ)1/2)T |wi|

)∥∥
2
. (18)

When the portfolio is long-only, the worst-case risk (17) can be simplified. In this case,
the worst-case risk is the risk using the covariance matrix Σ + ϱssT , where s = diag(Σ)1/2

is vector of asset volatilities, under the nominal covariance.

4 Convex optimization formulation

4.1 Markowitz problem

In this section we assemble the objective terms and constraints described in §2 and §3 into
one convex optimization problem. We obtain the Markowitz problem

maximize Rwc − γholdϕhold(w)− γtradeϕtrade(z)
subject to 1Tw + c = 1, z = w − wpre,

wmin ≤ w ≤ wmax, L ≤ Ltar, cmin ≤ c ≤ cmax,
zmin ≤ z ≤ zmax, T ≤ T tar,
σwc ≤ σtar,

(19)

with variables w ∈ Rn and c ∈ R, and positive parameters γhold and γtrade that allow us to
scale the holding and transaction costs, respectively. Despite the nonlinear and nondiffer-
entiable functions appearing in the objective and constraints, this is a convex optimization
problem, which can be very reliably and efficiently solved. We can add other convex objec-
tive terms to this problem, such as factor neutrality or liquidation cost limit, or work with
active risk and return with a benchmark.

The objective is our forecast of the (robustified, worst-case) net portfolio return, with
the holding and transaction costs scaled by the parameters γhold and γtrade, respectively.
The first line of constraints relate the pre-trade portfolio, which is given, and the post-trade
portfolio, which is to be chosen. The second line of constraints are weight limits, and the
third line contains the trading constraints. The last line of constraints is the (robustified,
worst-case) risk limit.

Data. We divide the constants that need to be specified in the problem (19) into two
groups, data and parameters, although the distinction is not sharp. Data are quantities we
observe (such as the previous portfolio weights) or forecast (such as return means, market
volumes, or bid-ask spreads):

• Pre-trade portfolio weights wpre and cpre.

• Asset return forecast µ.
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• Risk model Σ, or for a factor model, F , Σf, and D.

• Holding cost parameters κshort and κborrow.

• Trading cost parameters κspread and κimpact (which in turn depend on the forecast bid-
ask spreads, asset volatilities, and market volume).

Parameters. Parameters are quantities that we choose in order to obtain good investment
performance, or to reflect portfolio manager preferences, or to comply with legal requirements
or regulations. These are

• Target risk σtar.

• Holding and trading scale factors γhold and γtrade.

• Weight and leverage limits wmin, wmax, cmin, cmax, and Ltar.

• Trade and turnover limits zmin, zmax, and T tar.

• Mean and covariance forecast uncertainties ρ and ϱ.

We list the mean and covariance forecast uncertainties as parameters since they are closer to
being chosen than measured or estimated. When the mean return uncertainties are chosen
as described above from a collection of return forecasts, they would be closer to data.

Initial default choices for parameters. The target risk, and the weight, leverage, trade,
and turnover limits are interpretable and can be assigned reasonable values by the PM. The
return and risk uncertainty parameters ρ and ϱ can be chosen as described above. The hold
and trade scale factors can be chosen to be around one.

To improve performance the PM will want to adjust or tune these parameter values
around their natural or default values, as discussed in §5.4.

4.2 Softening constraints

The Markowitz problem (19) includes a number of constraints. This can present two chal-
lenges in practice. First, it can lead to substantial trading, for example to satisfy our lever-
age or ex-ante worst-case risk limits, even when they would have been violated only slightly,
which can lead to poor performance due to excessive trading. Second, the problem can be
infeasible, meaning there is no choice of the variables that satisfy all the constraints. This
can complicate back-tests or simulations, as well as running the trading policy in production,
where such infeasiblilities naturally occur most frequently during periods of market stress,
putting the PM under additional pressure.
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Soft constraints. Here we explain a standard method in optimization, in which some of
the constraints can be softened, which means we allow them to be somewhat violated, if
needed. In optimization, softness refers to how much we care about different values of an
objective. We can think of the objective as infinitely soft: We will accept any objective value,
but we prefer larger values (if we are maximizing). We can think of constraints as infinitely
hard: We will not accept any violation of them, even if it is only by a small amount. Soft
constraints, described below, are in between. They should normally act as constraints, but
when needed, they can be violated. When a soft constraint is violated, and by how much,
depends on our priorities, with high priority meaning that the constraint should be violated
only when absolutely necessary.

Consider a (hard) constraint such as f ≤ fmax. This means that we will not accept any
choice of the variables for which f > fmax. To make it a soft constraint, we remove the
constraint from the problem and form a penalty term

γ(f − fmax)+

which we subtract from the objective, when we are maximizing. The number (f − fmax)+
is the violation of the original constraint f ≤ fmax. The positive parameter γ is called the
priority parameter associated with the softened constraint. In this context, we refer to the
parameter fmax as a target for the value of f , not a limit. With the softened constraint, we
can accept variable choices for which f > fmax, but the optimizer tries to avoid this given the
penalty paid (in the objective) when this occurs. Softening constraints preserves convexity
of a problem.

Markowitz problem with soft constraints. A number of constraints in (19) should be
left as (hard) constraints. These include the constraints relating the proposed and previ-
ous weights, i.e., the first line of constraints in (19). When the portfolio is long-only, the
constraint w ≥ 0 should be left as a hard constraint, and similarly for a constraint such as
c ≥ 0, i.e., that we do not borrow cash. When a leverage limit is strict or imposed by a
mandate, it should be left as a hard constraint; when it is imposed by the portfolio manager
to improve performance, or more likely, to help her avoid poor outcomes, it can be softened.

The other constraints in (19) are candidates for softening. Weight and trade limits,
including leverage and turnover limits, should be softened (except in the cases described
above). The worst-case risk limit σ ≤ σtar should be softened, with a risk penalty term

γrisk(σ − σtar)+

subtracted from the objective. When the associated priority parameter γrisk is chosen ap-
propriately, this allows us to occasionally violate our risk limit a bit when the violation is
small. We refer to the softened Markowitz problem as the Markowitz++ problem.

One nice attribute of the Markowitz++ problem is that it is always feasible; the choice
z = 0, i.e., no trading, is always feasible, even when it is a poor choice. This means that the
softened Markowitz problem can be used to define a trading policy that runs with little or no
human intervention (with, however, any soft constraints that exceed their targets reported
to the portfolio manager).
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Priority parameters. When we soften the worst-case risk, leverage, and turnover con-
straints, we gain several more parameters,

γrisk, γlev, γturn.

Evidently the larger each of these priority parameters is, the more reluctant the optimizer
is to violate it. (Here we anthropomorphize the optimization problem solver.) When the
priority parameters are large, the associated soft constraints are effectively hard. Beyond
these observations, however, it is hard to know what values should be used.

Choosing priority parameters. Here we describe a simple method to obtain a reasonable
useful initial values for the priority parameters associated with softened constraints. Our
method is based on Lagrange multipliers or dual variables. Suppose we solve a problem
with hard constraints, and obtain optimal Lagrange multipliers for each of the constraints.
If we use these Lagrange multipliers as priorities in a softened version of the problem, all
the original constraints will be satisfied. Roughly speaking, the Lagrange multipliers give us
values of priorities for which the soft constraints are effectively hard. We would want to use
priority values a bit smaller, so that the original constraints can occasionally be violated.

Now we describe the method in detail. We start by solving multiple instances of the
problem with hard constraints, for example in a back-test, recording the values of the La-
grange multipliers for each problem instance (when the problem is feasible). We then set the
priority parameters to some quantile, such as the 80th percentile, of the Lagrange multipliers.
With this choice of priority parameters, we expect (very roughly) the original constraints
to hold around 80% of the time. For hard constraints that are only occasionally tight, an-
other method for choosing the priority parameters is as a fraction of the maximum Lagrange
multiplier observed.

Using this method we can obtain reasonable starting values of the priority parameters.
The final choice of priority parameters is done by back-testing and parameter tuning, starting
from these reasonable values, as discussed in §4.4.

4.3 Nonconvex constraints and objectives

All objective terms and constraints discussed so far are convex, and the Markowitz problem
(19), and its softened version, are convex optimization problems. They can be reliably and
efficiently solved.

Some other constraints and objective terms are not convex. The most obvious one is that
the trades must ultimately involve an integer number of shares. As a few other practical
examples, we might limit the number of nonzero weights, or insist on a minimum nonzero
weight absolute value. When these constraints are added to (19), the problem becomes
nonconvex. Great advances have been made in solvers that handle so-called mixed-integer
convex problems [KBLG18], and these can be used to solve these portfolio construction
problems. The disadvantage is longer solve time, compared to a similar convex problem,
and sometimes, dramatically longer solve time if we insist on solving the problem to global
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optimality. A convex portfolio construction problem that can be solved in a small fraction
of a second can take many seconds, or even minutes or more, to solve when nonconvex
constraints are added.

For production, where the problem is solved daily, or even hourly, this is fine. The
slowdown incurred with nonconvex optimization is however very bad for back-testing and
validation, where many thousands, or hundreds of thousands, of portfolio construction prob-
lems are to be solved. One sensible approach is to carry out back-testing using a convex
formulation, so as to retain the speed and reliability of a convex optimization, and run a
nonconvex version in production. As a variant on this, back-tests using convex optimization
can be used for parameter search, and one final back-test with a nonconvex formulation can
be used to be sure the results are close. Running backtests using only convex constraints
works because the nonconvex constraints typically only have a small impact on the portfolio
and its performance.

Heuristics based on convex optimization. Essentially all solvers for nonconvex prob-
lems that attempt to find a global solution rely on convex optimization under the hood
[HT13]. The issue is that a very large number of convex optimization problems might need
to be solved to find a global solution.

But many nonconvex constraints can be handled heuristically by solving just a few convex
optimization problem. As a simple example we might simply round the numbers of shares
in a trade list to an integer. This rounding should have little effect unless the portfolio value
is very small.

Other nonconvex constraints are readily handled by heuristics that involve solving just a
handful of convex problems. One general method is called relax-round-solve [DTB18]. We
illustrate this method to handle the constraint that the minimum nonzero weight absolute
value is 0.001 (10 bps). First we solve the problem ignoring this constraint. If the weights
satisfy the constraint, we are done (and the choice is optimal). If not, we set a threshold
and divide the assets into those with absolute weight smaller than the threshold, those with
weights larger than the threshold, and those which are less than minus the threshold. We
then add constraints to the original problem, setting the weights to zero, more than 0.001,
and less than −0.001, depending on the weights found in the first problem. These are convex
constraints, and when we solve the second time we are guaranteed to satisfy the nonconvex
constraint. We thus solve two convex problems. In the first one, we essentially decide which
weights will be zero, which will be more than the minimum nonzero long weight, and which
will be short more than the minimum. In the second one we adjust all the weights, ensuring
that the minimum absolute nonzero weight constraint holds.

4.4 Back-testing and parameter tuning

Back-testing. Back-testing refers to simulating a trading strategy using historical data.
To do this we provide the forecasts for all quantities needed, including the mean return
and covariance, for Markowitz portfolio construction in each period. In each period these
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forecasts, together with the parameters, are sent in to the Markowitz portfolio construction
method, which determines a set of trades. We then use the realized values of return, volatility,
bid-ask spread, and market volume to compute the (simulated) realized net return Rnet

t ,
where the subscript gives the time period. Note that while the Markowitz trading engine uses
forecasts of various quantities, the simulation uses the realized historical values. This gives
a reasonably realistic approximation of what the result would have been, had we actually
carried out this trading. (It is still only an approximation, since it uses our particular
trading cost model. Of course a more complex or realistic trading cost model could be used
for simulation.) The back-test simulation can also include practical aspects like trading only
an integer number of shares or blocks of shares. The simulation can also include external
cash entering or leaving the portfolio, such as liabilities that must be paid each period.

In the simulation we log the trajectory of the portfolio. We can compute various quantities
of interest such as the realized return, volatility, Sharpe or information ratio, turnover,
and leverage, all potentially over multiple time periods such as quarters or years. We can
determine the portfolio value versus periods, given by

Vt = V1

t−1∏
τ=1

(1 +Rnet
τ ),

where V1 is the portfolio value at period t = 1. From this we can evaluate quantities like the
average or maximum value of drawdown over quarters or years.

Variations. The idea of back-testing or simulating portfolio performance can be used for
several other tasks. In one variation on a back-test called a stress test, we use historical data
modified to be more challenging, e.g., lower returns or higher costs than actually occurred.

Another variation called performance forecasting uses data that are simulated or gen-
erated, starting from the current portfolio out to some horizon like one year in the future,
or the end of current fiscal year. We generate some number of possible future values of
quantities such as returns, along with the corresponding forecasts of them, and simulate
the performance for each of these. This gives us an idea of what we can expect our future
performance to be, for example as a range of values or quantiles.

Yet another variation is a retrospective what-if simulation. Here we take a live portfolio
and go back, say, three months. Starting from the portfolio holdings at that time, we simulate
forward to the present, after making some changes to our trading method, e.g., modifying
some parameters. The fact that the current portfolio value would be higher (according to
our simulation) if the PM had reduced the target risk three months ago is of course not
directly actionable. But it still very useful information for the PM.

Parameter tuning. Perhaps the most important use of back-testing is to help the PM
choose parameter values in the Markowitz portfolio construction problem. While some pa-
rameters, like the target risk, are given, others are less obvious. For example, how should we
choose γtrade? The default value of one is our best guess of what the single period transaction
cost will be. But perhaps we get better performance with γtrade = 2, which means, roughly
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speaking, that we are exaggerating trading cost by a factor of two. The result, of course, is
a reduction in trading compared to the default value one. This will result in smaller realized
transaction costs, but also, possibly, higher return, or smaller drawdown. The back-test will
reveal what would happen in this case (to the limits of the back-test accuracy).

To choose among a set of choices for parameters, we carry out a back-test with each
set, and evaluate multiple metrics, such as realized returns, volatility, and turnover. Our
optimization problem contains target values for these, based on our forecasts and models; in
a back-test we obtain the ex-post or realized values of these metrics.

To make a final choice of parameters, we must scalarize our metrics, i.e., create one scalar
metric from them, so we can choose among different sets of parameter values. For example
we might choose to maximize Sharpe ratio, subject to other metrics being within specified
bounds. Or we could form some kind of weighted combination of the individual metrics.

At the very minimum, a PM should always carry out back-tests in which all of her chosen
parameters are, one by one, increased or decreased by, say, 20%. Even with 10 parameters,
this requires only 20 back-tests. If any of these back-tests results in substantially improved
performance, she will need to explain or defend her choices.

This simple method of changing one parameter at a time can be extended to carry out
a crude but often effective parameter search. We cycle over the parameters, increasing or
decreasing each and carrying out a back-test. When we find a new set of parameter values
that has better performance than the current set of values, we take it as our new values. This
continues until increasing or decreasing each parameter value does not improve performance.

Another traditional method of parameter tuning is gridding. We choose a small number
of candidate values for each parameter, and then carry out a back-test for each combina-
tion, evaluating multiple performance metrics. Of course this is practical only when we are
choosing just a few parameters, and we consider only a few candidate values for each one.
Gridding is often carried out with a first crude parameter gridding, with the candidate values
spaced by a factor of ten or so; then, when good values of these parameters are found, a
more refined grid search is used to focus in on parameters near the good ones found in the
first crude search. In any case there is no reason to find or specify parameter values very
accurately; specifying them to even 10% is not needed. For one thing, the back-test itself
is only an approximation. To put in a negative light, if a back-test reveals that γtrade = 2.1
works well, but that γtrade = 1.9 and γtrade = 2.3 work poorly, it is very unlikely that our
trading method will work well in practice. Similar to the way we want our trading policy
to be robust to variations in the input data, we also want it to be robust to variation in the
parameters.

More sophisticated parameter search methods can also be used. Many such methods
build a statistical model of the good parameter values found so far, and obtain new values
to try by sampling from the distribution; see, e.g., [MBK+22] for more discussion. Another
option is to obtain not just the value of some composite metric, but also its gradient with
respect to the parameters. This very daunting computation can be carried out by automatic
differentiation systems that can differentiate through the solution of a convex optimization
problem, such as CVXPYlayers [AAB+19, BAB20].
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5 Numerical experiments

In this section we present numerical experiments that illustrate the ideas and methods dis-
cussed above. In the first set of experiments, described in §5.2, we show the effect of several
constraints and objective terms that serve as effective regularizers and improve performance.
In §5.4 we illustrate how parameter tuning via back-tests can improve performance, and in
§5.6 we show how the methods we describe scale with problem size.

5.1 Data and back-tests

Data. Throughout the experiments we use the same data set, which is based on the stocks
in the S&P 100 index. We use daily adjusted close price data from 2000-01-04 to 2023-09-22.
We exclude stocks without data for the entire period, and acknowledge that this inherent
survivorship bias in the data set would make it unsuitable for a real portfolio construction
method, but it is sufficient for our experiment, which is only concerned with the relative
performance of the different methods. We end up with a universe of n = 74 assets. In
addition to the price data, we use bid-ask spread data to estimate the trading costs, as well
as the effective federal funds rate [Fed23] for short term borrowing and lending. We make
the data set available with the code for reproducibility and experimentation at

https://github.com/cvxgrp/markowitz-reference.

Mean prediction. Simple estimates of the means work poorly, so in the spirit of [BBD+17],
we use synthetic return predictions to simulate a proprietary mean prediction method. For
each asset, the synthetic returns for each day are given by

r̂t = α(rt + ϵt),

where ϵt is a zero-mean Gaussian noise term with variance chosen to obtain a specified
information coefficient and rt is the mean return of the asset in the week starting on day
t. We take the noise variance to be σ2(1/α − 1), where α is the square of the information
coefficient, and σ2 is the variance of the return. (These mean predictions are done for
each asset separately.) We choose an information coefficient of

√
α = 0.15. Using this

parameterization, the sign of the return is predicted correctly in 52.1% of all observations,
with this number ranging from 50.3% to 54.1% for the individual assets.

Covariance prediction. For the covariance prediction, we use a simple EWMA estimator,
i.e., the covariance matrix at time t is estimated as

Σ̂t = αt

t∑
τ=1

βt−τrτr
T
τ ,

where

αt =

(
t∑

τ=1

βt−τ

)−1

=
1− β

1− βt
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is the normalization constant, and β ∈ (0, 1) is the decay factor. (We use the second moment
as the covariance, since the contribution from the mean term is negligible.) We use a half-life
of 125 trading days, which corresponds to a decay factor of β ≈ 0.994. We note that the
specific choice of the half-life does not change the results of the experiments qualitatively.

Spread. Our simulations include the transaction cost associated with bid-ask spread. In
simulation we use the realized bid-ask spread; for the Markowitz problems we use a simple
forecast of spread, the average realized bid-ask spread over the previous five trading days.

Shorting and leverage costs. We use the effective federal funds rate as a proxy for
interest on cash for both borrowing and lending. When shorting an asset we add a 5%
annualized spread over the effective federal funds rate to approximate the shorting cost in
our simulation. For forecasting, we set κshort to 7.5% annualized, and κborrow to the effective
federal funds rate.

Back-tests. We use a simple back-test to evaluate the performance of the different meth-
ods. We start with a warm-up period of 500 trading days for our estimators leaving us with
5,686 trading days, or approximately 22 years of data. The first 1,250 trading days (five
years) are used to initialize the priority parameters. This leaves us with 4,436 out-of-sample
trading days, approximately 17 years. Starting with an initial cash allocation of $1,000,000,
we call the portfolio construction method each day to obtain the target weights. We then
execute the trades at the closing price, rebalancing the portfolio to the new target weights,
taking into account the weight changes due to the returns from the previous day. Buy and sell
orders are executed at the ask and bid prices, respectively, and interest is paid on borrowed
cash and short stocks, and received on cash holdings.

5.2 Taming Markowitz

In this first experiment we show how a basic Markowitz portfolio construction method can
lead to the undesirable behavior that would prompt the alleged deficiencies described in §1.2.
We then show how adding just one more reasonable constraint or objective term improves
the performance, taming the basic Markowitz method.

Basic Markowitz. We start by solving the basic Markowitz problem (1) for each day in
the data set, with the risk target set to 10% annualized volatility. Unsurprisingly the basic
Markowitz problem results in poor performance, as seen in the second line of table 1. It
has low mean return, high volatility (well above the target 10%), a low Sharpe ratio, high
leverage and turnover, and a maximum drawdown of almost 80%. This basic Markowitz
portfolio performs considerably worse than an equal-weighted portfolio, which we give as a
baseline on the top line of table 1.
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Return Volatility Sharpe Turnover Leverage Drawdown
Equal weight 14.1% 20.1% 0.66 1.2 1.0 50.5%
Basic Markowitz 3.7% 14.5% 0.19 1145.2 9.3 78.9%
Weight-limited 20.2% 11.5% 1.69 638.4 5.1 30.0%
Leverage-limited 22.9% 11.9% 1.86 383.6 1.6 14.9%
Turnover-limited 19.0% 11.8% 1.54 26.1 6.5 25.0%
Robust 15.7% 9.0% 1.64 458.8 3.2 24.7%
Markowitz++ 38.6% 8.7% 4.32 28.0 1.8 7.0%
Tuned Markowitz++ 41.8% 8.8% 4.65 38.6 1.6 6.4%

Table 1: Back-test results for different trading policies.

Markowitz with regularization. In a series of four experiments we show how adding
just one more reasonable constraint or objective term to the basic Markowitz method can
greatly improve the performance.

In the first experiment we add portfolio weight limits of 10% for long positions and -5%
for short positions. We limit the cash weight to lie between −5% and 100% (which guarantees
feasibility). Adding these asset and cash weight limits leads to a significant improvement in
the performance of the portfolio shown in the third row of table 1, with the Sharpe ratio
increasing to 1.69 (from 0.19), and the maximum drawdown decreasing to 30%. In addition
the realized volatility, 11.5%, is closer to the target value 10% than the basic Markowitz
trading policy. The turnover is still very high, however, and the maximum leverage is still
large at above 5.

In the second experiment we add a leverage limit to the basic Markowitz problem, with
Ltar = 1.6. This one additional constraint also greatly improves performance, as seen in the
fourth row of table 1, but with a lower turnover and (not surprisingly) a lower maximum
leverage, which is at our target value 1.6.

Our third experiment adds a turnover limit of T tar = 25 to the basic Markowitz problem.
This additional constraint drops the turnover considerably, to a value near the target, but
still achieves high return, Sharpe ratio, and even lower maximum drawdown.

Our fourth experiment adds robustness to the return and risk forecasts. As simple choices
we set all entries of ρ to the 20th percentile of the absolute value of the return forecast at
each time step, and use ϱ = 0.02. This robustification also improves performance. Not
surprisingly the realized risk comes in under our target, since we use the robust risk ex-ante;
we could achieve realized risk closer to our desired target 10% by increasing the target to
something like 11.5% (which we didn’t do).

5.3 Markowitz++

In the four experiments described above, we see that adding just one reasonable additional
constraint or objective term to the basic Markowitz problem greatly improves the perfor-
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mance. In our last experiment, we include all of these constraints and terms, with parameters

γhold = 1, γtrade = 1, σtar = 0.10

cmin = −0.05, cmax = 1.00, wmin = −0.05, wmax = 0.10, Ltar = 1.6

zmin = −0.10, zmax = 0.10, T tar = 25.

The mean uncertainty parameter ρ is chosen as the 20th percentile of the absolute value of
the return forecast, and ϱ = 0.02. We soften the risk target, leverage limit, and turnover
limit, using the priority parameters

γrisk = 5× 10−2, γlev = 5× 10−4, γturn = 2.5× 10−3.

These were chosen as the 70th percentiles for the corresponding Lagrange multipliers of the
hard constraints in the basic Markowitz problem for the risk and turnover limits, and as 25%
of the maximum Lagrange multiplier for the leverage limit, over the five years leading up to
the out-of-sample study. (We selected γlev this way since the corresponding constraint was
active very rarely in the basic Markowitz problem.)

With this Markowitz++ method, we obtain the performance listed in the second from
bottom row of table 1. It is considerably better than the performance achieved by adding just
one additional constraint, as in the four previous experiments, and very much better than
the basic Markowitz method. Not surprisingly it achieves good performance on all metrics,
with a high Sharpe ratio, reasonable tracking of our volatility target, modest turnover and
leverage, and very small maximum drawdown. When the parameters are tuned annually, as
detailed in the next section, we see even more improvement, as shown in the bottom row of
table 1.

The Sharpe ratios on the bottom two rows are high. We remind the reader that our
data has survivorship bias and uses synthetic (but realistic) mean return forecasts, so the
performance should not be thought of as implementable. But the differences in performance
of the different trading methods is significant.

5.4 Parameter tuning

In this section we show how parameter tuning can be used to improve the performance of
the portfolio construction method. We will tune the parameters γhold, γtrade, γlev, γrisk, and
γturn, keeping the other parameters fixed. We start from the values used in Markowitz++.

Experimental setup. We tune the parameters at the start of every year, on the previous
two years of data, and then fix the tuned parameters for the following year. To tune the
parameters we use the simple cyclic tuning method described in §4.4. We cycle through the
parameters one by one. Each time a parameter is encountered in the loop, we increase it
by 25%; if this yields an improvement in the performance (defined below), we keep the new
value and continue with the next parameter; if not, we decrease the parameter by 20% and
check if this yields an improvement. We continue this process until a full loop through all
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parameters does not yield any improvement. By improvement in performance we mean that
all the following are satisfied:

• The in-sample Sharpe ratio increases.

• The in-sample annualized turnover is no more than 50.

• The in-sample maximum leverage is no more than 2.

• The in-sample annualized volatility is no more than 15%.

Results. Tuning the parameters every year yields the performance given in the last row of
table 1. We see a modest but significant boost in performance over untuned Markowitz++.

The tuned parameters over time are shown in figure 1. We can note several intuitive
patterns in the parameter values. For example, γrisk increases during 2008 to account for the
high uncertainty in the market during this period. Similarly, γturn decreases during the same
period, likely to allow us to trade more freely to satisfy the other constraints; interestingly
γtrade increases during the same period, likely to push us toward more liquid stocks when
trading increases. During the same period γlev increases to reduce leverage. Similar patterns
can be observed in 2020.

Tuning evolution. Here we show an example of the evolution of tuning, showing both in-
and out-of-sample values of Sharpe ratio, turnover, leverage, and volatility. The in-sample
period is April 19, 2016 to March 19, 2018, and the out-of-sample period March 20, 2018
to March 4, 2019. These are shown in figure 2. This tuning process converged after 45
back-tests to the parameter values

γrisk = 4× 10−2, γhold = 0.64, γtrade = 0.64, γlev = 5× 10−4, γturn = 1.6× 10−3.

We can see that tuning increases the Sharpe ratio both in- and out-of-sample, while keeping
the leverage, turnover, and volatility reasonable. In this example we end up changing 4
of our 5 adjustable parameters, although not by much, which shows that our initial default
parameter values were already quite good. Still, we obtain a significant boost in performance.

5.5 Annual performance

The performance analyses described above and summarized in table 1 give aggregate metrics
over a 17 year out-of-sample period, long enough to include multiple distinct market regimes
as a well as a few market crashes. For such a long back-test, it is interesting to see how the
performance in individual years varies with different market regimes. The realized annual
return, volatility, and Sharpe ratio are shown in figure 3, for basic Markowitz, equal weights,
and tuned Markowitz++. Here we see that Markowitz++ not only gives the performance
improvements seen in table 1, but in addition has less variability in performance across
different market regimes.
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Figure 1: Tuned parameters over time.
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Figure 2: Parameter tuning results.
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Figure 4: Timing results for the Markowitz problem with a single backtest setting.

5.6 Scaling

We now turn from the performance of the portfolios to the algorithmic performance of the
portfolio construction method itself.

Small problems. We start with the small problem used in the previous section, with
n = 74 assets, and without a factor risk model. Figure 4 shows the time required for each
of the 4,436 days in the back-test, broken down into updating and logging (shown in green),
CVXPY overhead (shown in blue, negligible), and solver time, the time required to solve the
resulting cone program. (We do not count factorizing the covariance matrix, or computing
the mean forecasts, since these are done ahead of time, and the time is amortized across all
back-tests.)

The 17 year back-test, which involve solving 4,436 problems, takes around 104 seconds on
a MacBook Pro with an M1 Pro processor, or about 23ms per day on average. About 63%
of the time is spent in the solver, which in this case is MOSEK [ApS20], with other solvers
giving similar results, including open-source solvers such as ECOS [DCB13], Clarabel [GC24],
and SCS [OCPB16]. Only 3% of the time is spent in the compilation step using CVXPY.
The averages for each component of the timings are indicated by the horizontal lines in the
figure.

39



Assets n Factors k Solve time (s)
100 10 0.01
500 20 0.07
500 50 0.10

2,000 50 0.23
2,000 100 0.22
10,000 50 0.65
10,000 100 0.89
50,000 200 9.00
50,000 500 17.77

Table 2: Average solve times for Markowitz++ problem for MOSEK, for different
problem sizes.

For a small problem like this one, we can carry out a one-year back-test (around 250
trading days) in around six seconds, on a single thread. A single processor with 32 threads
can carry out round 20,000 one-year back-tests in an hour. There is little excuse for a PM
who does not carry out many back-tests, even if only to vary the parameters around their
chosen values.

Large problems. We now investigate the scaling of the method with problem size. As
outlined in §3.3, a factor model improves the scaling from O(n3) to O(nk2). To illustrate this,
we solve the Markowitz problem for different values of n and k using randomly generated
but realistic data. Table 2 shows the average solve time for each problem size across 30
instances using MOSEK. (Solve times with open-source solvers such as Clarabel were a bit
longer.) We can see that even very large problems can be solved with stunning speed.

We solved many more problems than those shown in table 2, and used the solve times
to fit a log-log model, approximating the solve time as anbkc, with parameters a, b, c. We
obtained coefficients b = 0.79 and c = 1.72, consistent with the theoretical scaling of O(nk2).

When the problems are even larger, generic software reaches its limits. In such cases,
users may consider switching to first-order methods like the Alternating Direction Method
of Multipliers (ADMM) [MGBK22, Fou23, FB18, PB13, BPC+11], which can offer better
scalability and efficiency for very large problems.
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6 Conclusions

It was Markowitz’s great insight to formulate the choice of an investment portfolio as an
optimization problem that trades off multiple objectives, originally just expected return and
risk, taken to be the standard deviation of the portfolio return. His original proposal yielded
an optimization problem with an analytical solution for the long-short case, and a QP for
the long-only case, both of which were tractable to solve (for very small problems) even in
the 1950s. Since then, stunning advances in computer power, together with advances in
optimization, now allow us to formulate and solve much more complex optimization prob-
lems, that directly handle various practical constraints and mitigate the effects of forecasting
errors. We can solve these problems fast enough that very large numbers of back-tests can
be carried out, to give us a good idea of the performance we can expect, and to help choose
good values of the parameters. It is hardly surprising that these methods are widely used in
quantitative trading today.

While we have vastly more powerful computers, far better software, and easier access to
data, than Markowitz did in 1952, we feel that the more complex Markowitz++ optimization
problem simply realizes his original idea of an optimization-based portfolio construction
method that takes multiple objectives into account.
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A Coding tricks

The problem described in §4.1 can essentially be typed directly into a DSL such as CVXPY,
with very few changes. In this section we mention a few simple tricks in formulating the
problem (for a DSL) that lead to better performance.

Quadratic forms versus Euclidean norms. Traditional portfolio construction opti-
mization formulations use quadratic forms such as wTΣw. Modern convex optimization
solvers can directly handle the Euclidean norm without squaring to obtain a quadratic form.
Using norm expressions instead of quadratic forms is often more natural, and has better
numerical properties. For example a risk limit, traditionally expressed using a quadratic
form as

wTΣw ≤ (σtar)2,

is better expressed using a Euclidean norm as

∥LTw∥2 ≤ σtar,

where L is the Cholesky factor of Σ, i.e., LLT = Σ, with L lower triangular with positive
diagonal entries.

Exploiting the factor model. To exploit the factor model, it is critical to never form
the covariance matrix Σ = FΣfF T +D. The first disadvantage of doing this is that we have
to (needlessly) store an n × n matrix, which can be a challenge when n is on the order of
tens of thousands. In addition, the solver will be slowed by a dramatic factor as mentioned
in §3.3.

To exploit the factor model, we introduce the data matrix F̃ = FL, where L is the
Cholesky factor of Σf, so F̃ F̃ T = FΣfF T . The portfolio variance is

σ2 = wT F̃ F̃ Tw + wTDw = ∥F̃ Tw∥22 + ∥D1/2w∥22,

so the risk can be expressed using Euclidean norms as

σ =
∥∥∥(∥F̃ Tw∥2, ∥D1/2w∥2

)∥∥∥
2
.

In this expression, the outer norm is of a 2-vector; the inner lefthand norm is of a k-vector,
and the inner righthand norm is of an n-vector. Here we should be careful to express D
as a diagonal matrix, or to express D1/2w as the elementwise (Hadamard) product of two
vectors.
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B CVXPY code listing

We provide a reference implementation for the problem described in §4. This implementation
is not optimized for performance, contains no error checking, and is provided for illustrative
purposes only. For a more performant and robust implementation, we refer the reader
to the cvxmarkowitz package [Gro23]. Below, we assume that the data and parameters
are already defined in corresponding data structures. The complete code for the reference
implementation is available at

https://github.com/cvxgrp/markowitz-reference.

1 import cvxpy as cp

2

3 w, c = cp.Variable(data.n_assets), cp.Variable()

4

5 z = w - data.w_prev

6 T = cp.norm1(z) / 2

7 L = cp.norm1(w)

8

9 # worst-case (robust) return

10 factor_return = (data.F @ data.factor_mean).T @ w

11 idio_return = data.idio_mean @ w

12 mean_return = factor_return + idio_return + data.risk_free * c

13 return_uncertainty = param.rho_mean @ cp.abs(w)

14 return_wc = mean_return - return_uncertainty

15

16 # worst-case (robust) risk

17 factor_risk = cp.norm2((data.F @ data.factor_covariance_chol).T @ w)

18 idio_risk = cp.norm2(cp.multiply(data.idio_volas, w))

19 risk = cp.norm2(cp.hstack([factor_risk, idio_risk]))

20 risk_uncertainty = param.rho_covariance**0.5 * data.volas @ cp.abs(w)

21 risk_wc = cp.norm2(cp.hstack([risk, risk_uncertainty]))

22

23 asset_holding_cost = data.kappa_short @ cp.pos(-w)

24 cash_holding_cost = data.kappa_borrow * cp.pos(-c)

25 holding_cost = asset_holding_cost + cash_holding_cost

26

27 spread_cost = data.kappa_spread @ cp.abs(z)

28 impact_cost = data.kappa_impact @ cp.power(cp.abs(z), 3 / 2)

29 trading_cost = spread_cost + impact_cost

30

31 objective = (

32 return_wc
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33 - param.gamma_hold * holding_cost

34 - param.gamma_trade * trading_cost

35 )

36

37 constraints = [

38 cp.sum(w) + c == 1,

39 param.w_min <= w, w <= param.w_max,

40 L <= param.L_tar,

41 param.c_min <= c, c <= param.c_max,

42 param.z_min <= z, z <= param.z_max,

43 T <= param.T_tar,

44 risk_wc <= param.risk_target,

45 ]

46

47 problem = cp.Problem(cp.Maximize(objective), constraints)

48 problem.solve()

We start by importing the CVXPY package in line 1 and define the variables of the
problem in line 3. The variable w is the vector of asset weights, and c is the cash weight.
We then define the trade vector z, turnover T, and leverage L in lines 5–7 to simplify the
notation in the remainder of the code.

In the next block we first define the mean return in lines 10–12, taking into account the
factor and idiosyncratic returns, as well as the risk-free rate. We then define the uncertainty
in the mean return in line 13, which then reduces the mean return to the worst-case return
in line 14.

Similarly, the robust risk is obtained in lines 17–21 by first defining the factor and id-
iosyncratic risk components, which are combined to the portfolio risk. The uncertainty in
the risk, which depends on the asset volatilities, is combined with the portfolio risk to obtain
the worst-case risk in line 21. The holding cost is defined in lines 23–25, followed by the
trading cost in lines 27–29.

We form the objective function in lines 31–35 by combining the worst-case return with
the holding and trading costs, weighted by the corresponding parameters. The constraints
are collected in lines 37–45, starting with the budget constraint, followed by the holding and
trading constraints, and ending with the risk constraint.

Finally, the problem is defined in line 47, combining the objective and constraints. It is
solved in line 48 by simply calling the .solve() method on the problem instance, with a
suitable solver being chosen automatically.

In only 48 lines of code we have defined and solved the Markowitz problem with all
the constraints and objectives described in §4. This underlines the power of using a DSL
such as CVXPY to specify convex optimization problems in a way that closely follows the
mathematical formulation.

52



Parameters. Using parameters can provide both a convenient way to specify the problem,
as well as a way to reduce the overhead of CVXPY when solving multiple instances. To
obtain this speedup requires some restrictions on the problem formulation. For a precise
definition we refer the reader to [AAB+19]. Here we only mention that we require expressions
to additionally be linear, or affine, in the parameters. For example, we can use CVXPY
parameters to easily and quickly change the mean return by writing to the the .value

attribute of the mean and risk_free parameters.

1 mean = cp.Parameter(n_assets)

2 risk_free = cp.Parameter()

3

4 mean_return = w @ mean + risk_free * c

In some cases, it is necessary to reformulate the problem to satisfy the additional re-
strictions required to obtain the speedup, e.g., by introducing auxiliary variables. For con-
venience, we provide a parametrized implementation of the Markowitz problem in the code
repository, where these reformulations have already been carried out.

53


	Introduction
	The original Markowitz idea
	Alleged deficiencies
	Robust optimization and regularization
	Convex optimization
	Previous work
	This paper

	Portfolio holdings and trades
	Portfolio weights
	Holding constraints and costs
	Trades
	Trading constraints and costs

	Return and risk forecasts
	Return
	Probabilistic asset return model
	Factor model
	Return and risk forecasts
	Making return and risk forecasts robust

	Convex optimization formulation
	Markowitz problem
	Softening constraints
	Nonconvex constraints and objectives
	Back-testing and parameter tuning

	Numerical experiments
	Data and back-tests
	Taming Markowitz
	Markowitz++
	Parameter tuning
	Annual performance
	Scaling

	Conclusions
	Coding tricks
	CVXPY code listing

