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A PRIMER ON MONOTONE OPERATOR METHODS

SURVEY

ERNEST K. RYU1, STEPHEN BOYD2

Abstract. This tutorial paper presents the basic notation and results of monotone operators
and operator splitting methods, with a focus on convex optimization. A very wide variety of
algorithms, ranging from classical to recently developed, can be derived in a uniform way. The
approach is to pose the original problem to be solved as one of finding a zero of an appropriate
monotone operator; this problem in turn is then posed as one of finding a fixed point of a related
operator, which is done using the fixed point iteration. A few basic convergence results then tell
us conditions under which the method converges, and, in some cases, how fast. This approach
can be traced back to the 1960s and 1970s, and is still an active area of research. This primer
is a self-contained gentle introduction to the topic.
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1. Introduction

In the field of convex optimization, there are a myriad of seemingly disparate algorithms
each with its specific setting and convergence properties. It is possible to understand, derive,
and analyze many of these methods in a unified manner, using the abstraction of monotone
operators and a single approach. First, the problem at hand is expressed as finding a zero of a
monotone operator. This problem is in turn transformed into finding a fixed point of a related
function. The fixed point is then found by the fixed point iteration, yielding an algorithm
for the original problem. This single approach yields many different algorithms, with different
convergence conditions, depending on how the first and second steps are done (i.e., the selection
of the monotone operator and fixed point function). It recovers many classical and modern
algorithms along with conditions under which they converge.

The idea of this basic approach is not new, and several surveys based on it have already been
written, e.g., by [7, 33, 34, 36, 44]. Several surveys that rigorously develop the theory behind
monotone operators also have been written, e.g., by [3, 7, 17,103].

In fact, the ideas can be further traced back to the 1960s and 1970s. In the 1960s, the notion
of monotone operators was first formulated and studied [71,87,88]. Much of the initial work was
done in the context of functional analysis and partial differential equations [24–26], but it was
soon noticed that the theory is relevant to convex functions and convex optimization [71,90,110].
In the 1970s, iterative algorithms constructed from monotone operators and fixed point functions
were itroduced [81,85,86,117]. Since then, this field has grown considerably and is still an active
area of research.

This paper is not meant to be a survey of the huge literature in these and related areas.
Rather, this paper is a gentle and self-contained introduction and tutorial, for the reader whose
main interest is in understanding convex optimization algorithms, or even developing her own.
We do not focus on the mathematical details. When a result is simple to show, we do so;
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but in other cases we do not. We will often merely state certain regularity conditions without
fully explaining how they exclude pathologies; the reader can consult the references listed for
the mathematical details. These same references can also be consulted for details of individual
contributions to the field; in the sequel, we cite only a few earliest contributions.

We first review the basic tools that lay the foundation for later sections. In §2, we introduce
relations and functions, and in §3, we introduce the ideas of Lipschitz constant, and nonexpansive
and contractive operators. In §4, we introduce the concept of a monotone operator, which
generalizes the idea of a monotone increasing function in several ways, and give some important
examples, such as the subdifferential mapping. We then introduce the fixed point iteration
and discuss its convergence properties in §5. In fact, all algorithms presented in this paper are
instances of the fixed point iteration.

After this background, we present several approaches to transform the problem of finding a
zero of a monotone operator into a fixed point equation. In §6, we introduce the resolvent and
Cayley relations and describe the proximal point method. In §7, we describe operator splitting
methods, and using them we derive a wide variety of algorithms, including the gradient method,
the method of multipliers, and the alternating diections method of multipliers, using the basic
approach.

We assume that the reader has had some exposure to convex optimization and convex analysis,
such as the subdifferential of a function, and optimality conditions. Standard references on
convex optimization and convex analysis (which contain far more than the reader needs) include
[4, 13–18, 20, 94, 111, 120]. Other than this basic background, this tutorial is more or less self-
contained.

2. Relations

We define the notation of relations and functions here. A relation, point-to-set mapping,
set-valued mapping, multi-valued function, correspondence, or operator R on Rn is a subset of
Rn ×Rn. We will overload function and matrix notation and write R(x) and Rx to mean the
set {y | (x, y) ∈ R}.

If R(x) is a singleton or empty for any x, then R is a function or single-valued with a domain
{x | R(x) ̸= ∅}. In this case, we may mix functions and relations and write (with some abuse of
notation) R(x) = y (function notation) although R(x) = {y} (relation or multi-valued function
notation) would be strictly correct.

Also, we extend the familiar set-image notation for functions to relations: for S ⊆ Rn, we
define R(S) = ∪s∈SR(s).

Simple examples. The empty relation is R = ∅; the full relation is R = Rn×Rn. More useful
examples include the zero relation (function) 0 = {(x, 0) | x ∈ Rn} and the identity relation
(function) I = {(x, x) | x ∈ Rn}.

Subdifferential. A more interesting relation is the subdifferential relation ∂f of a function
f : R → R ∪ {∞}, defined by

∂f = {(x, g) | x ∈ C, ∀z ∈ Rn f(z) ≥ f(x) + gT (z − x)}.

The set ∂f(x) is the subdifferential of f at x. Any g ∈ ∂f(x) is called a subgradient of f at x.
The subdifferential ∂f(x) is always a well-defined closed convex set for any function f at any
point x ∈ Rn, but it can be empty. When f is convex, ∂f(x) ̸= ∅ for any x ∈ relintC, where
relint denotes the relative interior.
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Operations on relations. We extend many notions for functions to relations. For example,
the domain of a relation R is defined as

domR = {x | R(x) ̸= ∅}.
If R and S are relations, we define the composition RS as

RS = {(x, z) | ∃y (x, y) ∈ S, (y, z) ∈ R},
and their sum as

R+ S = {(x, y + z) | (x, y) ∈ R, (x, z) ∈ S}.
We overload addition and scalar multiplication and inequality operations to handle sets (as well
as mixtures of sets and points) in the standard way.

Inverse relation. The inverse relation of R is defined as

R−1 = {(x, y) | (y, x) ∈ R}.
This always exists, even when R is a function that is not one-to-one. As a note of caution, the
inverse relation is not quite an inverse in the usual sense, as we can have R−1R ̸= I. The zero
relation is such an example.

However, we do have R−1Rx = x when R−1 is a function and x ∈ domR. To see this, first
note that R−1y = {x} if and only if y ∈ Rx̃ holds only for x̃ = x. Clearly if x ∈ domR, then
x ∈ R−1Rx. Now assuming R−1 is a function, we get

R−1Rx ∋ x̃ ⇔ R−1y = x̃, y ∈ Rx for some y

⇔ y ∈ Rx̃, y ∈ Rx for some y

⇒ x̃ = x.

Zeros of a relation. When R(x) ∋ 0, we say that x is a zero of R. The zero set of a relation
R is {x | (x, 0) ∈ R} = R−1({0}), which we also write (slightly confusingly) as R−1(0). We will
see that many interesting problems can be posed as finding zeros of a relation.

Inverse of subdifferential. As another example, consider (∂f)−1, the inverse of the subdif-
ferential. We have

(u, v) ∈ (∂f)−1 ⇔ (v, u) ∈ ∂f

⇔ u ∈ ∂f(v)

⇔ 0 ∈ ∂f(v)− u

⇔ v ∈ argmin
x

(f(x)− uTx).

So we can write (∂f)−1(u) = argminx(f(x)−uTx). (The righthand side is the set of minimizers.)
We can relate this to f∗, the conjugate function of f , defined as

f∗(y) = sup
x
(yTx− f(x)).

The last line in the equivalences given above for (u, v) ∈ (∂f)−1 says that v maximizes (uTx−
f(x)) over x, i.e., f∗(u) = uT v − f(v). Thus we have

(u, v) ∈ (∂f)−1 ⇔ f(v) + f∗(u) = vTu.

A function f : Rn → R ∪ {∞} is said to be closed if its epigraph

epi f = {(x, t) ∈ Rn+1 | x ∈ dom f, f(x) ≤ t}
is closed; it is called proper if its domain is nonempty. When f is convex closed proper (CCP),
f∗ is CCP and f∗∗ = f ; i.e., the conjugate is CCP and the conjugate of the conjugate function
is the original function [111, Theorem 12.2]. So when f is CCP we have

vTu = f(v) + f∗(u) = f∗∗(v) + f∗(u) ⇔ (v, u) ∈ (∂f∗)−1 ⇔ (u, v) ∈ ∂f∗,
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and we can write the simple formula (∂f)−1 = ∂f∗.

3. Nonexpansive mappings and contractions

A relation F on Rn has Lipschitz constant L if for all u ∈ F (x) and v ∈ F (y) we have

∥u− v∥2 ≤ L∥x− y∥2.

This implies that F is a function, since if x = y we must have u = v. When L < 1, F is called a
contraction; when L = 1, F is called nonexpansive. Mapping a pair of points by a contraction
reduces the distance between them; mapping them by a nonexpansive operator does not increase
the distance between them. See Fig. 1.

Figure 1. Examples of a nonexpansive and a contractive mapping. The dotted lines denote the distances

between x and y and F (x) and F (y).

Basic properties. If F has Lipschitz constant L and F̃ has Lipschitz constant L̃, then com-
position FF̃ has Lipschitz constant LL̃. Thus, the composition of nonexpansive operators is
nonexpansive; the composition of a contraction and a nonexpansive operator is a contraction.

If F has Lipschitz constant L and F̃ has Lipschitz constant L̃, and α, α̃ ∈ R, then αF + α̃F̃
has Lipschitz constant |α|L+ |α̃|L̃. Thus a weighted average of nonexpansive operators F and

F̃ , i.e., θF + (1 − θ)F̃ with θ ∈ [0, 1], is also nonexpansive. If in addition one of them is a
contraction, and θ ∈ (0, 1), the weighted average is a contraction.

Fixed points. We say x is a fixed point of F if x = F (x). If F is nonexpansive and domF =
Rn, then its set of fixed points

{x ∈ domF | x = F (x)} = (I − F )−1(0),

is closed and convex. Certainly, the fixed point set X = {x | F (x) = x} can be empty (for
example, F (x) = x + 1 on R) or contain many points (for example, F (x) = x). If F is a
contraction and domF = Rn, its has exactly one fixed point.

Let us show this. Suppose F : Rn → Rn is nonexpansive. That X is closed follows from the
fact that F − I is a continuous function. Now suppose that x, y ∈ X, i.e., F (x) = x, F (y) = y,
and θ ∈ [0, 1]. We’ll show that z = θx+ (1− θ)y ∈ X. Since F is nonexpansive we have

∥Fz − x∥2 ≤ ∥z − x∥2 = (1− θ)∥y − x∥2,

and similarly, we have

∥Fz − y∥2 ≤ θ∥y − x∥2.
So the triangle inequality

∥x− y∥2 ≤ ∥Fz − x∥2 + ∥Fz − y∥2
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holds with equality, which means the inequalities above hold with equality and Fz is on the line
segment between x and y. From ∥Fz−y∥2 = θ∥y−x∥2, we conclude that Fz = θx+(1−θ)y = z.
Thus z ∈ X.

Next suppose F : Rn → Rn is a contraction with contraction factor L. Let x and x̃ be fixed
points. Then

∥x− x̃∥2 = ∥Fx− Fx̃∥2 ≤ L∥x− x̃∥2,
a contradiction unless x = x̃. We show the existence of a fixed point later.

Averaged operators. We say an operator F is averaged if F = (1−θ)I+θG for some θ ∈ (0, 1),
where the implicitly defined G is nonexpansive. In other words, taking a weighted average of I
and a nonexpansive operator G gives an averaged operator F . Clearly, F is nonexpansive and
has the same fixed points as G.

When operators F and F̃ are averaged operators, so is FF̃ . Interested readers can find a
proof in [33,37].

3.1. Examples

Affine functions. An affine function F (x) = Ax + b has (smallest) Lipschitz constant L =
∥A∥2, the spectral norm or maximum singular value of A.

Differentiable functions. A differentiable function F : Rn → Rn is Lipschitz with parameter
L if and only if ∥DF (x)∥2 ≤ L for all x.

To see this, first assume ∥Df(x)∥2 ≤ L and define

g(t) = (Fx− Fy)TF (tx+ (1− t)y).

By the mean value theorem and Cauchy-Schwartz inequality we have

∥Fx− Fy∥22 = g(1)− g(0) = g′(ξ) =

= (Fx− Fy)TDF (ξx+ (1− ξ)y)(x− y) ≤
≤ ∥Fx− Fy∥2∥DF (ξx+ (1− ξ)y)(x− y)∥2 ≤
≤ ∥Fx− Fy∥2∥DF (ξx+ (1− ξ)y)∥2∥x− y∥2 ≤
≤ L∥Fx− Fy∥2∥x− y∥2

for some ξ ∈ [0, 1], and we conclude F has Lipschitz parameter L.
On the other hand, if we assume F has Lipschitz parameter L. Then

∥DF (x)v∥2 = lim
h→0

1

h
∥F (x+ hv)− F (x)∥2 ≤ L∥v∥2

and we conclude that ∥DF (x)∥2 ≤ L for all x.

Projections. The projection of x onto a nonempty closed convex set C is defined as

ΠC(x) = argmin
z∈C

∥z − x∥2,

which always exists and is unique. We can interpret ΠC as the point in C closest to x. Let
us show that ΠC is nonexpansive. (We will later derive the same result using the idea of a
resolvent.)

Reorganizing the optimality condition for the projection [20, p. 139], we get that for any
u ∈ Rn and v ∈ C we have

(v −ΠCu)
T (ΠCu− u) ≥ 0. (1)

Now for any x, y ∈ Rn, we get

(ΠCy −ΠCx)
T (ΠCx− x) ≥ 0

(ΠCx−ΠCy)
T (ΠCy − y) ≥ 0
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using (1), and by adding these two we get

(ΠCx−ΠCy)
T (x− y) ≥ ∥ΠCx−ΠCy∥22. (2)

Finally, we apply the Cauchy-Schwartz inequality to conclude

∥ΠCx−ΠCy∥2 ≤ ∥x− y∥2.

Overprojection with respect to a nonempty closed convex C is defined as

QC = 2ΠC − I.

Let us show that QC is also nonexpansive:

∥QCx−QCy∥22 = ∥2(ΠCx−ΠCy)− (x− y)∥22 =
= 4∥ΠCx−ΠCy∥22 − 4(ΠCx−ΠCy)

T (x− y) + ∥x− y∥22 ≤
≤ ∥x− y∥22,

where the last line follows from (2). This implies that ΠC = 1/2I + 1/2QC is an averaged
operator. See Fig. 2. (We will later derive this result as well, using the idea of the Cayley
operator.)

Figure 2. Illustration of projection and overprojection of points x and y onto C, respectively.

4. Monotone operators

A relation F on Rn is called monotone if it satisfies

(u− v)T (x− y) ≥ 0

for all (x, u), (y, v) ∈ F . In circuit theory, such a relation is called incrementally passive [87,132].
In multi-valued function notation, monotonicity can be expressed as

(Fx− Fy)T (x− y) ≥ 0

for all x, y ∈ domF . (The left-hand side is a subset of R, so the inequality means that this
subset lies in R+.)

Maximality. The relation F is maximal monotone if there is no monotone operator that prop-
erly contains it (as a relation, i.e., subset of Rn×Rn). In other words, if the monotone operator
F is not maximal, then there is (x, u) /∈ F such that F ∪ {(x, u)} is still monotone.

Maximality looks like a technical detail, but it turns out to be quite critical for the things
we will do. In careful treatments of the topics of this paper, much effort goes into showing
that various relations of interest are not just monotone but also maximal, under appropriate
conditions.



E.K. RYU, S. BOYD: A PRIMER ON MONOTONE OPERATOR ... 9

Strong monotonicity. A relation F is said to be strongly monotone or coercive with parameter
m > 0 if

(Fx− Fy)T (x− y) ≥ m∥x− y∥22
for all x, y ∈ domF .

When F is strongly monotone with parameter m and also Lipschitz with constant L, we have
the lower and upper bounds

m∥x− y∥22 ≤ (Fx− Fy)T (x− y) ≤ L∥x− y∥22.
(The right hand inequality follows immediately from the Cauchy-Schwarz inequality.) We will
refer to κ = L/m ≥ 1 as a condition number of F .

4.1. Basic properties

Sum and scalar multiple. If F and G are monotone, so is F +G. If F and G are maximal
monotone and if domF ∩ int domG ̸= ∅, then F +G is maximal monotone [114]. If in addition
F is strongly monotone with parameter m and G with parameter m̃ (which we can take to be
zero if G is merely monotone), then F + G is strongly monotone with parameter m + m̃. For
α > 0, αF is strongly monotone with parameter αm.

Inverse. If F is (maximal) monotone, then F−1 is (maximal) monotone.
If F is strongly monotone with parameter m, then F−1 is a function with Lipschitz constant

L = 1/m. To see this, suppose u ∈ F (x) and v ∈ F (y). Then we have

∥u− v∥2∥x− y∥2 ≥ (u− v)T (x− y) ≥ m∥x− y∥22,
where the left hand inequality is the Cauchy-Schwarz inequality, and the right hand inequality
is the definition of strong monotonicity. We see immediately that if u = v we must have x = y,
which means that F−1 is a function and we can write x = F−1u, y = F−1v. Dividing the
inequality above by ∥x− y∥2 (when x ̸= y) we get

∥u− v∥2 ≥ m∥x− y∥2 = m∥F−1u− F−1v∥2,
which shows that F−1 has Lipschitz constant 1/m.

In general, however, that F is Lipschitz with parameter L does not necessarily imply that
F−1 is strongly monotone with parameter 1/L.

Congruence. If the relation F on Rs is monotone and M ∈ Rs×t, then so is the relation G
on Rt given by

G(x) = MTF (Mx).

If F is strongly monotone with parameter m, and M has rank t (so s ≥ t), then G is strongly
monotone with parameter mσ2

min, where σmin is the smallest singular value of M . If F has
Lipschitz constant L, then G has Lipschitz constant Lσ2

max, where σmax = ∥M∥2 is the largest
singular value of M .

Concatenation. Let A and B be operators on Rn and Rm, respectively. Then the operator
on Rn+m

C(x, y) = {(u, v) |u ∈ Ax, v ∈ By}
is monotone if A and B are and maximal monotone if A and B are. We call C a concatenated
operator and use the notation

C(x, y) =

[
Ax
By

]
and

C =

[
A
B

]
to denote this concatenation.
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4.2. Subdifferential operator

Suppose f : Rn → R ∪ {∞}. Then ∂f(x) is a monotone operator. If f is CCP then ∂f is
maximal monotone. See Fig. 3 for an example.

To prove monotonicity, add the inequalities

f(y) ≥ f(x) + ∂f(x)T (y − x), f(x) ≥ f(y) + ∂f(y)T (x− y),

which hold by definition of subdifferentials, to get

(∂f(x)− ∂f(y))T (x− y) ≥ 0.

This holds even when f is not convex.
To establish that ∂f is maximal, we show that for any (x̃, g̃) /∈ ∂f there is (x, g) ∈ ∂f such

that

(g − g̃)T (x− x̃) < 0,

i.e., ∂f ∪ {(x̃, g̃)} is not monotone. Let

x = argmin
z

(
f(z) + (1/2)∥z − (x̃+ g̃)∥22

)
.

Then

0 ∈ ∂f(x) + x− x̃− g̃

−(x− x̃) = g − g̃, g ∈ ∂f(x).

Since we assumed (x̃, g̃) /∈ ∂f , either x ̸= x̃ or g ̸= g̃. So we have

(g − g̃)T (x− x̃) = −∥x− x̃∥22 = −∥g − g̃∥22 < 0.

This result was first presented in [113] and [111, p. 340].
As we will see a few times throughout this paper, subdifferential operators of CCP functions,

a subclass, enjoy certain properties general maximal monotone operators do not.

Figure 3. Plot of ∂f for f(x) = |x|.

Differentiability. A convex function f is differentiable at x if and only if ∂f(x) is a singleton
[111, Theorem 25.1]. When f is known or assumed to be differentiable, we write ∇f instead of
∂f .

Strong convexity and strong smoothness. We say a CCP f is strongly convex with pa-
rameter m if f(x)−m∥x∥22 is convex, or equivalently if ∂f is strongly monotone with parameter
m. When f is twice continuously differentiable, strong convexity is equivalent to ∇2f(x) ≽ mI
for all x.

On the other hand, We say a CCP f is strongly smooth with parameter L if f(x)−L∥x∥22 is
concave or equivalently if f is differentiable and ∇f is Lipschitz with parameter L. When f is
twice continuously differentiable, strong smoothness is equivalent to ∇2f(x) ≼ LI for all x.
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For a CCP functions, strong convexity and strong smoothness are dual properties; a CCP f is
strongly convex with parameter m if and only if f⋆ is strongly smooth with parameter L = 1/m,
and vice versa. We discuss these claims in the appendix.

For example, f(x) = x2/2 + |x|, where x ∈ R, is strongly convex with parameter 1 but not
strongly smooth. Its conjugate is f∗(x) = ((|x| − 1)+)

2/2, where (·)+ denotes the positive part,
and is strongly smooth with parameter 1 but not strongly convex. See Fig. 4.

Figure 4. Example of f and its conjugate f⋆.

4.3. Examples

Relations on R. We describe this informally. A relation on R is monotone if it is a curve in
R2 that is always nondecreasing; it can have horizontal (flat) portions and also vertical (infinite
slope) portions. If it is a continuous curve with no end points, then it is maximal monotone. It
is strongly monotone with parameter m if it maintains a minimum slope m everywhere; it has
Lipschitz constant L if its slope is never more than L. See Fig. 5.

Figure 5. Examples of operators on R.

Continuous functions. A continuous monotone function F : Rn → Rn (with domF = Rn)
is maximal.

Let us show this. Assume for contradiction that there is a pair (x̃, ũ) /∈ F , such that

(ũ− F (x))T (x̃− x) ≥ 0
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for all x ∈ Rn, i.e., F ∪ {(x̃, ũ)} is monotone. Into x we plug in x̃ − t(z − x̃), where z ∈ Rn is
not yet specified, to get

(ũ− F (x̃− t(z − x̃)))T (z − x̃) ≥ 0

for all t > 0. We take the limit t → 0+ and use the continuity of F to get

(ũ− F (x̃))T (z − x̃) ≥ 0

for all z. Since z is arbitrary, it must be that ũ = F (x̃). This is a contradiction, and we conclude
F is maximal.

Affine functions. An affine function F (x) = Ax + b is maximal monotone if and only if
A+AT ≽ 0. It is a subdifferential operator of a CCP function if and only if A = AT and A ≽ 0.
It is strongly monotone with parameter m = λmin(A+AT )/2.

Differentiable function. A differentiable function F : Rn → Rn is monotone if and only if
DF (x) + DF (x)T ≽ 0 for all x. It is strongly monotone with parameter m when DF (x) +
DF (x)T ≽ 2mI for all x.

To see this, first assume DF (x)+DF (x)T ≽ 0 for all x and define g(t) = (x− y)TF (tx+(1−
t)y). Then by the mean value theorem

(x− y)T (Fx− Fy) = g(1)− g(0) = g′(ξ) =

= (x− y)TDF (ξx+ (1− ξ)y)(x− y) =

=
1

2
(x− y)T (DF (ξx+ (1− ξ)y) +DF (ξx+ (1− ξ)y)T )(x− y) ≥ 0

for some ξ ∈ [0, 1], and we conclude monotonicity. The claim regarding strong monotonicity
follows from the same argument.

On the other hand, assume F is monotone. Then

1

2
vT (DF (x) +DF (x)T )v = vTDF (x)v =

= lim
h→0

1

h2
(x+ hv − x)T (F (x+ hv)− F (x)) ≥ 0,

and we conclude that DF (x) +DF (x)T ≽ 0 for all x.
A continuously differentiable monotone function F : Rn → Rn is a subdifferential operator of

a CCP function if and only if DF (x) is symmetric for all x ∈ Rn. When n = 3, this condition
is equivalent to the so-called curl-less condition discussed in the context of electromagnetic
potentials [1, §10.21 and §12.14].

Projections. Monotonicity of projections follow immediately from (2):

(ΠCx−ΠCy)
T (x− y) ≥ ∥ΠCx−ΠCy∥22 ≥ 0.

Normal cone operator. Let C ⊆ Rn be a closed convex set. Its normal cone operator NC is
defined as

NC(x) =

{
∅ x ̸∈ C
{y | yT (z − x) ≤ 0 ∀z ∈ C} x ∈ C.

For x ∈ intC, NC(x) = {0}; NC(x) is nontrivial only when x is on the boundary of C. As it
turns out, NC(x) is the subdifferential mapping of the (convex) indicator function of C, defined
by IC(x) = 0, dom IC = C. In other words, NC = ∂IC .
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Figure 6. Roughly speaking, NC(x) is the collection of outward pointing directions with respect to C at point x.

At x1, there is only one such direction, which can be scaled by any nonnegative value. At x2, there are many

such directions.

Saddle subdifferential. Suppose that f : Rm×Rn → R∪{±∞}. The saddle subdifferential
relation is defined as

F (x, y) =

[
∂xf(x, y)

∂y(−f(x, y))

]
,

nonempty for (x, y) for which ∂xf(x, y) and ∂y(−f(x, y)) are nonempty. The zero set of F is
the set of saddle points of f , i.e.,

(x, y) ∈ F−1(0) ⇔ f(x, ỹ) ≤ f(x, y) ≤ f(x̃, y) for all (x, ỹ), (x̃, y) ∈ Rm ×Rn.

When f is convex in x for each y, concave in y for each x, and satisfies certain regularity
conditions, F is maximal [112].

KKT operator. Consider the problem

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p,

where x is the optimization variable, fi is CCP for i = 0, . . . ,m, and hi is affine for i = 1, . . . , p.
The associated Lagrangian

L(x, λ, ν) =

{
f0(x) +

∑m
i=1 λifi(x) +

∑p
i=1 νihi(x) for λ ≽ 0

−∞ otherwise

is a saddle function, and we define the KKT operator as

T (x, λ, ν) =

 ∂xL(x, λ)
−F (x) +N{λ≥0}

−H(x)

 ,

where

F (x) =

 f1(x)
...

fm(x)

 , H(x) =

 h1(x)
...

hp(x)

 .

The operator T , a special case of the saddle subdifferential, is monotone. Furthermore, 0 ∈
T (x⋆, λ⋆, ν⋆) if and only if the primal dual pair solves the optimization problem (i.e., the zero
set is the set of optimal primal dual pairs).
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Subdifferential of the dual function. Consider the problem

minimize f(x)
subject to Ax = b,

where f is a strictly convex function, x ∈ Rn is the optimization variable, A ∈ Rm×n, and
b ∈ Rm.

Its dual problem is

maximize g(y) = −(f∗(−AT y)− yT b),

where y ∈ Rm is the optimization variable.
The subdifferential of the dual function, ∂(−g), can be interpreted as the multiplier to residual

mapping. Let

F (y) = b−Ax, x = argmin
z

L(z, y),

where L(x, y) = f(x) + yT (Ax − b) is the Lagrangian. In other words, F maps the dual or
multiplier vector y into the associated primal residual b − Ax, where x is found by minimizing
the Lagrangian. Since x minimizes L(x, y), we have

0 ∈ ∂f(x) +AT y ⇔ x = (∂f)−1(−AT y),

and we plug this back into F and get

F (y) = b−A(∂f)−1(−AT y) = ∂y(b
T y + f⋆(−AT y)) = ∂(−g).

5. Fixed point iteration

In this section we discuss the main (meta) algorithm of this paper. Recall that x is a fixed
point of F : Rn → Rn if x = Fx. The algorithm fixed point iteration is

xk+1 = Fxk,

where x0 ∈ Rn is some starting point, and is used to find a fixed point of F . This algorithm,
also called the Picard iteration, dates back to [6, 80,104].

Using the fixed point iteration involves two steps. The first is to find a suitable F whose fixed
points are solutions to the problem at hand. We will see examples of this in §6 and §7. The
second is to show that the iteration actually converges to a fixed point. (Clearly, the algorithm
stays at a fixed point if it starts at a fixed point.) In this section, we will show two simple
conditions that guarantee convergence, although these two are not the only possible approaches.

5.1. Contractive operators

Suppose that F : Rn → Rn is a contraction with Lipschitz constant L (with L < 1) for some
norm ∥·∥ (which need not be the Euclidean norm). In this setting, the fixed point iteration, also
called the contraction mapping algorithm in this context, converges to the unique fixed point of
F .

Let us show this. The sequence xk is Cauchy. To see this, we note that

∥xk+l − xk∥ = ∥(xk+l − xk+l−1) + · · ·+ (xk+1 − xk)∥ ≤

≤ ∥xk+l − xk+l−1∥2 + · · ·+ ∥xk+1 − xk∥ ≤

≤ (Ll−1 + · · ·+ 1)∥xk+1 − xk∥ ≤

≤ 1

1− L
∥xk+1 − xk∥,

for l ≥ 1. In the third line we use

∥xk+1 − xk∥ = ∥Fxk − Fxk−1∥ ≤ L∥xk − xk−1∥.
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Therefore xk converges to a point x⋆. It follows that x⋆ is the fixed point of F (which we already
know is unique) since

∥Fx⋆ − x⋆∥ ≤ ∥xk+1 − Fx⋆∥+ ∥xk+1 − x⋆∥ ≤

≤ L∥xk − x⋆∥+ ∥xk+1 − x⋆∥ → 0.

So a fixed point exists. Note that we can also conclude

∥xk − x⋆∥ ≤ 1

1− L
∥xk+1 − xk∥,

so we have a nonheuristic stopping criterion for the contraction mapping algorithm.
Furthermore, the distance to the fixed point x⋆ decreases at each step. (An algorithm with

this property is called Fejér monotone.) To see this, we simply note that

∥xk+1 − x⋆∥ = ∥Fxk − Fx⋆∥ ≤ L∥xk − x⋆∥.
This also shows that ∥xk−x⋆∥ ≤ Lk∥x0−x⋆∥, i.e., convergence is at least geometric, with factor
L.

Gradient method. Consider the problem

minimize f(x),

where x ∈ Rn is the optimization variable, and f is a CCP function on Rn.
Assume f is differentiable. Then x is a solution if and only if

0 = ∇f(x) ⇔ x = (I − α∇f)(x)

for any nonzero α ∈ R. In other words, x is a solution if and only if it is a fixed point of the
mapping I − α∇f .

The fixed point iteration for this setup is

xk+1 = xk − α∇f(xk).

This algorithm, which dates back to [27], is called the gradient method or gradient descent, and
α is called the step size in this context.

Now assume f is strongly convex and strongly smooth with parameters m and L, respectively.
Then I − α∇f is Lipschitz with parameter LGM = max{|1− αm|, |1− αL|}. Let us prove this
assuming f is twice continuously differentiable (although it is still true without this assumption).
Then D(I − α∇f) = I − α∇2f , and therefore

(1− αL)I ≼ D(I − αF ) ≼ (1− αm)I,

where (somewhat confusingly) I also denotes the identity matrix here. So ∥D(I −α∇f)(x)∥2 ≤
max{|1− αm|, |1− αL|} for all x, and we conclude I − α∇f is Lipschitz with parameter LGM.

So under these assumptions, I−α∇f is a contractive operator for α ∈ (0, 2/L). Consequently,
the solution x⋆ exists, and gradient method converges geometrically with rate

∥xk − x⋆∥ ≤ Lk
GM∥x0 − x⋆∥.

The value of α that minimizes LGM is 2/(L + m), and the corresponding optimal contraction
factor is (κ− 1)/(κ+ 1) = 1− 2/κ+O(1/κ2).

Forward step method. Consider the problem of finding an x ∈ Rn that satisfies

0 = F (x),

where F : Rn → Rn.
By the same argument, x is a solution if and only if it is a fixed point of I − αF for any

nonzero α ∈ R. The fixed point iteration for this setup is

xk+1 = xk − αFxk,

which we call the forward step method.
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Now assume F is strongly monotone and Lipschitz with parameters m and L, respectively.
Also assume α > 0. Then

∥(I − αF )x− (I − αF )y∥22 = ∥x− y + αFx− αFy∥22 =
= ∥x− y∥22 − 2α(Fx− Fy)T (x− y) + α2∥Fx− Fy∥22 ≤
≤ (1− 2αm+ α2L2)∥x− y∥22.

So for α ∈ (0, 2m/L2) the iteration is a contraction. Consequently, the solution exist and the
method converges geometrically to the solution.

This result is, however, weaker than what we had for the gradient method: the values of α for
which the iteration converges is more restrictive, the contraction factor is worse for all values of
α > 0, and the optimal contraction factor 1−m2/L2 = 1− 1/κ2, given by α = m/L2, is worse.

Furthermore, the forward step method in general will not converge without the strong mono-
tonicity assumption. (We will soon see that the gradient method converges without strong
convexity, albeit slowly.) For example,

F (x, y) =

[
0 1
−1 0

] [
x
y

]
,

which is the KKT operator of the problem of minimizing x subject to x = 0, is monotone but
not strongly monotone and has Lipschitz constant 1. By computing the singular values, we can
verify that I − αF is an expansion for any α ̸= 0, i.e., all singular values are greater than 1.
Therefore the iterates of the forward step method on F diverge away from the solution (unless
we start at the solution).

5.2. Averaged operators

Suppose that F : Rn → Rn is averaged. Then the fixed point iteration, also called the
damped, averaged, or Mann-Krasnosel’skii iteration in this context [77,83], converges to a solu-
tion if one exists.

Let us be specific. Assume the set of fixed points X is nonempty. Then we can conclude
that xk → x⋆ for some x⋆ ∈ X. Moreover, the algorithm is Fejér monotone, i.e., dist(xk, X) =
infz∈X ∥x− z∥2 → 0 monotonically. We also have

∥Fxk − xk∥2 → 0

with rate

min
j=0,...,k

∥Fxj − xj∥22 = O(1/k). (3)

In other words, the algorithm produces points for which the fixed point condition x = F (x)
holds arbitrarily closely with rate O(1/k). (The quantity in (3) is what we care about since our
stopping criterion will be ∥Fxk − xk∥2 ≤ ϵ.)

When F : Rn → Rn is nonexpansive but not averaged, the fixed point iteration need not
converge to X, even when X is nonempty. Simple examples: F is a rotation about some line, or a
reflection through a plane. In this case, then we can use the averaged operator G = (1−θ)I+θF
with θ ∈ (0, 1) in the fixed point iteration to find a fixed point of F .

Gradient method. Again consider the problem

minimize f(x),

where x ∈ Rn is the optimization variable, and f is a CCP function on Rn.
Assume f is differentiable. Then as discussed before, the gradient method

xk+1 = xk − α∇f(xk)

is a fixed point iteration for this problem for a nonzero α ∈ R.
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Now assume f is strongly smooth with parameter L. By the same argument as before,
I −α∇f is Lipschitz with parameter LGM = max{1, |1−αL|} and therefore is nonexpansive for
α ∈ (0, 2/L]. So it is averaged for α ∈ (0, 2/L) since

(I − α∇f) = (1− θ)I + θ(I − 2/L∇f),

where θ = αL/2 < 1. Consequently, xk → x⋆ for some solution x⋆, if one exists, with rate

min
j=0,...,k

∥∇f(xj)∥22 = O(1/k),

for any α ∈ (0, 2/L). Of course, this rate is worse than what we had when we also assumed
strong convexity.

The (sub)gradient method with constant step size, in general, does not converge if ∂f is not
Lipschitz. For example, if the (sub)gradient method is applied to the function ∥x∥1 and some
starting point x0 ̸= 0, then the method fails to converge for almost all values of α.

Convergence proof. We will use the identity

∥(1− θ)a+ θb∥22 = (1− θ)∥a∥22 + θ∥b∥22 − θ(1− θ)∥a− b∥22, (4)

which holds for any θ ∈ R, a, b ∈ Rn. (It can be verified by expanding both sides as a quadratic
function of θ.) For θ ∈ (0, 1), the first two terms on the righthand side correspond to Jensen’s
inequality, applied to the convex function ∥ · ∥22. The third term on the righthand side improves
the basic Jensen inequality.

Now let F = (1− θ)I + θG be an averaged operator, where θ ∈ (0, 1) and G is nonexpansive.
Consider the fixed point iteration

xk+1 = F (xk) = (1− θ)xk + θG(xk),

and let x⋆ ∈ X. Using our identity (4), we have

∥xk+1 − x⋆∥22 = (1− θ)∥xk − x⋆∥22 + θ∥G(xk)− x⋆∥22 − θ(1− θ)∥G(xk)− xk∥22 ≤

≤ (1− θ)∥xk − x⋆∥22 + θ∥xk − x⋆∥22 − θ(1− θ)∥G(xk)− xk∥22 =

= ∥xk − x⋆∥22 − θ(1− θ)∥G(xk)− xk∥22, (5)

where we use ∥G(xk) − x⋆∥2 ≤ ∥xk − x⋆∥2 in the second line. This shows that the fixed point
ieration with an averaged operator is Fejér monotone, i.e., dist(xk, X) decreases at each step.

Iterating the inequality above, we have

∥xk+1 − x⋆∥22 ≤ ∥x0 − x⋆∥22 − θ(1− θ)
k∑

j=0

∥G(xj)− xj∥22,

so
k∑

j=0

∥G(xj)− xj∥22 ≤
∥x0 − x⋆∥22
θ(1− θ)

,

and thus

∥G(xk)− xk∥2 → 0.

This also implies

min
j=0,...,k

∥G(xj)− xj∥22 ≤
∥x0 − x⋆∥22

(k + 1)θ(1− θ)
. (6)

As convergence rates go, this is pretty bad; it corresponds to the subgradient method.
Let’s show that xk → x⋆ for some x⋆ ∈ X. By picking a point in x ∈ X and applying (5)

we see that the iterates xk lie within the compact set {z | ∥z − x∥2 ≤ ∥x0 − x∥2} and therefore
must have a limit point. This limit point x⋆ must be in X, i.e., must satisfy F (x⋆)− x⋆ = 0, as
F (xk) − xk → 0 and F − I is continuous. Finally, applying (5) to this limit point x⋆ ∈ X, we
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conclude that ∥xk − x⋆∥ monotonically decreases to 0, i.e., the entire sequence converges to x⋆.
So dist(xk, X) ≤ ∥xk − x⋆∥2 → 0.

The choice θ = 1/2 maximizes θ(1− θ), and therefore minimizes the righthand side of (6). To
the extent that the proof predicts actual convergence rates (which it does not in general), this
would be the optimal choice of θ. So when we construct a averaged operator from a nonexpansive
one, we can expect the choice θ = 1/2, which corresponds to the simple iteration

xk+1 = (1/2)xk + (1/2)G(xk)

to come up.

5.3. Examples

Dual ascent. Consider the problem

minimize f(x)
subject to Ax = b,

where x ∈ Rn is the optimization variable, f is a CCP function on Rn, A ∈ Rm×n, and b ∈ Rm.
Its dual is

maximize g(y),

where g(y) = −(f∗(−AT y)− yT b) and y ∈ Rm is the optimization variable.
Assume that f is strongly convex with parameter m and that σmax, the maximum singular

value of A, is positive. Then ∂f∗ = (∂f)−1 is Lipschitz with parameter 1/m and ∂(−g) is
Lipschitz with parameter σ2

max/m.
The gradient method applied to −g (which is the fixed point iteration on I + α∇g) becomes

xk+1 = argmin
x

L(x, yk)

yk+1 = yk + α(Axk+1 − b),

where L(x, y) denotes the Lagrangian. This method is called the Uzawa method [2] or dual
ascent [125, 127]. Assume strong duality holds and optimal primal and dual solutions exist.
Then dual ascent converges for α ∈ (0, 2σ2

max/m).
Furthermore, if we assume f is strongly smooth with parameter L and σmin, the smallest

singular value of A, is positive then −g(y) is strongly convex with parameter σ2
min/L, and we

get geometric convergence.

Projections onto convex sets. Consider the problem of finding an x ∈ C ∩D, where C and
D are nonempty closed convex sets. This is also called the convex feasibility problem.

Recall that dist(x,X) is the distance of x to the set X, i.e.,

dist(x,X) = inf
z∈X

∥x− z∥2.

If X is a nonempty closed convex set, then f(x) = 1/2dist2(x,X) is CCP and strongly smooth
with parameter 1, and we have ∇f(x) = (I −ΠX)(x). See [7, §12.4] for a proof.

Let θ ∈ (0, 1). Then x ∈ C ∩D if and only if x is the solution to the optimization problem

minimize (θ/2)dist2(x,C) + ((1− θ)/2)dist2(x,D)

with optimal value 0.
The objective of the optimization problem is CCP and strongly smooth with parameter 1. So

we can use the gradient method with step size 1 to get (parallel) projections onto convex sets:

xk+1
C = ΠCx

k

xk+1
D = ΠDx

k

xk+1 = θxk+1
C + (1− θ)xk+1

D .
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If C ∩D ̸= ∅, then xk → x⋆ for some x⋆ ∈ C ∩D. This method dates back to [32]. See [9,10,47]
for an overview of projection methods for the convex feasibility problem.

6. Resolvent and Cayley operator

The resolvent of a relation A on Rn is defined as

R = (I + αA)−1,

where α ∈ R. The Cayley operator, reflection operator, or reflected resolvent of A is defined as

C = 2R− I.

When we are considering the resolvents or Cayley operators of multiple relations, we denote
them with a subscript, as in RA or CA.

When α > 0, we have the following.

• If A is monotone, then R and C are nonexpansive functions.
• If A is maximal monotone, then domR = domC = Rn.
• 0 ∈ A(x) if and only if x = RA(x) = CA(x).

Let’s first show that R is nonexpansive. Suppose (x, u) ∈ R and (y, v) ∈ R. By definition of
R, we have

u+ αA(u) ∋ x, v + αA(v) ∋ y.

Subtract these to get

u− v + α(Au−Av) ∋ x− y. (7)

Multiply by (u− v)T , and use monotonicity of A to get

∥u− v∥22 ≤ (x− y)T (u− v). (8)

Now we apply Cauchy-Schwarz and divide by ∥u− v∥2 to get

∥u− v∥2 ≤ ∥x− y∥2,
i.e., R is nonexpansive.

Next, let’s show that C = 2R− I is nonexpansive. Using the inequality (8), we get

∥Cx− Cy∥22 = ∥2(u− v)− (x− y)∥22 =
= 4∥u− v∥22 − 4(x− y)T (u− v) + ∥x− y∥22 ≤
≤ ∥x− y∥22,

i.e., C is nonexpansive. Since R and C are nonexpansive, they are single-valued.
That domR = domC = Rn, called the Minty surjectivity theorem [89], is harder to show,

and we skip the proof. Interested readers can refer to [4, §6.2], [7, §21], or [3, §4.1].
Finally, we prove the third claim:

0 ∈ A(x) ⇔ x ∈ (I +A)(x)

⇔ (I +A)−1(x) ∋ x

⇔ x = RA(x),

where the last line uses the fact that RA is a function. The statement about CA follows simply
by definition.

When the resolvent is a contraction. If A is strongly monotone with parameter m, then R
is Lipschitz with parameter L = 1/(1 + αm). To show this, we observe that I + αA is strongly
monotone with parameter 1+αm. Therefore its inverse, R, has Lipschitz constant 1/(1+αm):

∥Rx−Ry∥2 ≤
1

1 + αm
∥x− y∥2.
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When the Cayley operator is a contraction. When A is merely strongly monotone, C need
not be a contraction. But if A is strongly monotone with parameter m and also has Lipschitz
constant L, then C is a contraction with Lipschitz constant

LC =

(
1− 4αm

(1 + αL)2

)1/2

.

To prove this, let (x, u) ∈ R and (y, v) ∈ R. Then

u− v + α(Au−Av) = x− y (9)

and multiply by (u− v)T to get

∥u− v∥22 + α(u− v)T (Au−Av) = (u− v)T (x− y).

Using strong monotonicity, we get

(1 + αm)∥u− v∥22 ≤ (u− v)T (x− y), (10)

which is a strengthened form of (8). Expanding ∥Cx − Cy∥22 as before, but using the sharper
inequality (10), we get

∥Cx− Cy∥22 ≤ ∥x− y∥22 − 4αm∥u− v∥22.
Now take the norm of (9) to get

∥u− v∥2 + α∥Au−Av∥2 ≥ ∥x− y∥2.

Using the Lipschitz inequality we get

∥u− v∥2 ≥
1

1 + αL
∥x− y∥2.

Combined with our inequality above we get

∥Cx− Cy∥22 ≤ ∥x− y∥22 −
4αm

(1 + αL)2
∥x− y∥22 =

(
1− 4αm

(1 + αL)2

)
∥x− y∥22,

which is a strict contraction for all positive values of m, L, and α. The choice α = 1/L is optimal
and yields a contraction factor of√

1− 1/κ = 1− 1/2κ+O(1/κ2).

On the other hand, when A is a subdifferential operator of a CCP function that is strongly
convex and strongly smooth with parameters m and L, respectively, the contraction factor can
be further improved to

LC = max

{∣∣∣∣1− αL

1 + αL

∣∣∣∣ , ∣∣∣∣1− αm

1 + αm

∣∣∣∣} ,

which is strictly smaller than the previous one [58]. The optimal choice α = 1/
√
mL yields a

contraction factor of

(
√
κ− 1)/(

√
κ+ 1) = 1− 2/

√
κ+O(1/κ),

which, again, is better than the previous one.
The difference between the contraction factors, the first for general monotone operators and

the second specifically for subdifferential operators, is not an artifact of the proof. See [58] for
further details.

Zero set of a maximal monotone operator. If A is maximal monotone, then RA is non-
expansive with domRA = Rn for any α > 0. Since the set of fixed points of RA is closed and
convex, the zero set of A is closed and convex.

If A is maximal and strongly monotone, then there is exactly one fixed point of A, as RA is
a contraction.



E.K. RYU, S. BOYD: A PRIMER ON MONOTONE OPERATOR ... 21

Cayley operator identities. When a monotone operator A is maximal and single-valued and
α ≥ 0, we have

CA = (I − αA)(I + αA)−1.

This follows simply from

CA = 2(I + αA)−1 − I =

= 2(I + αA)−1 − (I + αA)(I + αA)−1 =

= (I − αA)(I + αA)−1.

When a monotone operator A is maximal (but not necessarily single-valued) and α > 0, we
have

CA(I + αA) = I − αA. (11)

To see this, first note the assumptions make (I + αA)−1 a function. So for any x ∈ domA, we
have

CA(I + αA)(x) = 2(I + αA)−1(I + αA)(x)− (I + αA)(x) =

= 2I(x)− (I + αA)(x) =

= (I − αA)(x).

For any x /∈ domA, both sides are empty sets.

6.1. Examples

Matrices. It is easier to see why R and C are nonexpansive when the operator is linear. If
F is a symmetric matrix and F ≥ 0, its eivenvalues are positive. If α ≥ 0, then (the inverse
defining) R = (I + αF )−1 exists, and has eigenvalues in (0, 1]. It follows that the matrix

C = 2R− I = (I − αF )(I + αF )−1 = (I + αF )−1(I − αF ),

which is called the Cayley transform of F , has eigenvalues in (−1, 1].

Subdifferential mapping. Suppose f is convex and α > 0. Let us work out what (I+α∂f)−1

is:

z = (I + α∂f)−1(x) ⇔ z + α∂f(z) ∋ x

⇔ 0 ∈ ∂z
(
αf(z) + (1/2)∥z − x∥22

)
⇔ z = argmin

u

(
f(u) + (1/2α)∥u− x∥22

)
.

(Another way to see that the argmin is unique is to note that the function on the righthand side
is strictly convex.) The resolvent R = (I + α∂f)−1 is called the proximal operator or proximity
operator associated with f , with parameter α. When f is CCP, domR = Rn, even if f takes
on infinite values, i.e., R(x) is defined for all x ∈ Rn even when dom f ̸= Rn.

Normal cone operator. Suppose C is closed, convex, and with the normal cone operator NC .
Then by noting that NC(x) = ∂IC(x) we conclude

(I + αNC)
−1 = ΠC

for any α > 0. Of course, the overprojection operator, QC = 2ΠC − I, is the Cayley operator of
NC .
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Subdifferential of the dual function. Consider the problem

minimize f(x)
subject to Ax = b,

where f is a CCP function on Rn, x ∈ Rn is the optimization variable, A ∈ Rm×n, and b ∈ Rm.
Its dual is

maximize g(y),

where g(y) = −(f∗(−AT y)− yT b) and y ∈ Rm is the optimization variable.
Assume f is strictly convex, and let α > 0. Let us examine R∂(−g)(y) = v. Remember that

∂(−g)(v) = b−Ax, ∂f(x) +AT v ∋ 0.

So we have

v = R∂(−g)(y) ⇔ v + α∂(−g)(v) = y

⇔ v + α(b−Ax) = y, ∂f(x) +AT v ∋ 0.

Reorganizing, we see that x satisfies

∂f(x) +AT (y + α(Ax− b)) ∋ 0,

and we get

x = argmin
z

Lα(z, y)

v = y + α(Ax− b),

where
Lα(x, y) = f(x) + yT (Ax− b) + (α/2)∥Ax− b∥22

is the augmented Lagrangian. The first step above is minimizing the augmented Lagrangian;
the second is a multiplier update.

KKT operator for linearly constrained problems. Consider the problem

minimize f(x)
subject to Ax = b,

where f is a CCP function on Rn, x ∈ Rn is the optimization variable, A ∈ Rm×n, and b ∈ Rm.
Consider the KKT operator

T (x, y) =

[
∂f(x) +AT y

b−Ax

]
,

which corresponds to the Lagrangian

L(x, y) = f(x) + yT (Ax− b).

Let α > 0. Then

RT (x, y) = (u, v) ⇔
[
x
y

]
∈
[
u
v

]
+ α

[
∂f(u) +AT v

b−Au

]
.

The second line gives us
v = y + α(Au− b),

and with substitution the first line gives us

0 ∈ ∂f(u) +AT y + αAT (Au− b) +
1

α
(u− x).

Reorganizing, we get

u = argmin
z

(
Lα(z, y) + (1/2α)∥z − x∥22

)
v = y + α(Au− b).
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This is quite similar to the resolvent of the subdifferential of the dual function. The first
step above is minimizing the augmented Lagrangian with an additional regularization term; the
second is a multiplier update.

6.2. Proximal point method

Consider the problem of finding an x that satisfies

0 ∈ A(x),

where A is maximal monotone.
Let α > 0. As discussed before, 0 ∈ A(x) if and only if x = C(x). The fixed point iteration

for this setup is

xk+1 = C(xk),

which we call the Cayley method. This, however, may not converge when C is merely nonex-
pansive. A simple example is when A = N{0} and C = Q{0}.

Likewise, 0 ∈ A(x) if and only if x = R(x), when α > 0. The associated fixed point iteration
is

xk+1 = R(xk),

which is called the proximal point method or proximal minimization and was first presented
in [22, 85, 86, 117]. The proximal point method, on the other hand, always converges to a
solution if one exists, as R is an averaged operator.

Role of maximality. A fixed point iteration xk+1 = F (xk) becomes undefined if its iterates
ever escapes the domain of F . (This is why we assumed domF = Rn in §5.) When A is
maximal and α > 0, the Cayley iteration and the proximal point method does not have this
problem.

So we assume maximality out of theoretical necessity, but in practice the non-maximal mono-
tone operators, such as the subdifferential operator of a nonconvex function, are usually ones
we cannot efficiently compute the resolvent for anyways. In other words, there is little need
to consider resolvents or Cayley operators of non-maximal monotone operators, theoretically or
practically.

Method of multipliers. Consider the problem

minimize f(x)
subject to Ax = b,

where f is a CCP function on Rn, x ∈ Rn is the optimization variable, A ∈ Rm×n, and b ∈ Rn.
Write g for the dual function of the dual optimization problem.

Assume f is strictly convex. Then a dual variable y is optimal if and only if 0 ∈ −∇g. Writing
out the proximal point method yk+1 = R−∇g(y

k), we get

xk+1 = argmin
x

Lα(x, y
k)

yk+1 = yk + α(Axk+1 − b).

This method is called the method of multipliers and was first presented in [67,106,115].
Assume strong duality holds and a primal and dual solution exists. Then yk → y⋆ for some

optimal dual variable y⋆, as the method is an instance of the proximal point method. Using
standard arguments from convex analysis, one can also show that xk → x⋆.

When f is not strictly convex, the minimizer of the augmented Lagrangian may not be unique.
If so, choose any minimizer, i.e., let

xk+1 ∈ argmin
x

Lα(x, y
k)

yk+1 = yk + α(Axk+1 − b),
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and we retain all the desirable convergence properties. (However, making this statement precise
goes beyond the scope of this paper.)

Proximal method of multipliers. Consider the problem

minimize f(x)
subject to Ax = b,

where f is a CCP function on Rn, x ∈ Rn is the optimization variable, A ∈ Rm×n, and b ∈ Rn.
Write T (x, y) for the associated KKT operator, where y ∈ Rm.

A primal-dual pair (x, y) is optimal if and only if 0 ∈ T (x, y). Writing out the proximal point
method (xk+1, yk+1) = RT (x

k, yk), we get

xk+1 = argmin
x

(
Lα(x, y

k) + (1/2α)∥x− xk∥22
)

yk+1 = yk + α(Axk+1 − b).

We then scale the equality constraint Ax = b and re-parameterize to get the algorithm

xk+1 = argmin
x

(
Lα1(x, y

k) + (α2/2)∥x− xk∥22
)

yk+1 = yk + α1(Ax
k+1 − b),

where α1 > 0 and α2 > 0. Assume strong duality holds and primal and dual solutions exist.
Then xk → x⋆ and yk → y⋆ for some optimal x⋆ and y⋆. This method, called the proximal
method of multipliers, was first presented in [116,118].

The proximal method of multipliers has two advantages over the method of multipliers. The
first is that the primal iterates xk are uniquely defined and converge to a solution, regardless
of whether f is strictly convex or the solution is unique. The second is that the subproblem of
minimizing the Lagrangian is better conditioned due to the additional regularizing term.

Iterative refinement. Consider the problem of finding an x ∈ Rn that solves the linear system
Ax = b, where A ∈ Rn×n and b ∈ Rn. Of course, this is equivalent to finding a zero of the
operator

F (x) = Ax− b.

Assume AT + A ≽ 0. Then F is maximal monotone, and we can apply the proximal point
method with RF = (I + 1/εF )−1 to get

rk = Axk − b

xk+1 = xk − (A+ εI)−1rk,

an instance of iterative refinement [64,84,130]. We can interpret each iteration to be refining the
iterate xk by correcting for its residual rk. If a solution exists, then xk → x⋆ for some solution
x⋆ for any ε > 0,

Iterative refinement is useful when A is either singular or has a large condition number. In
such a case, approximately solving Ax = b using (A + εI)−1 may be easier than directly using
A−1. In particular, A + εI will always have well-defined LU factorization as all its leading
principal minors are nonsingular [63, Theorem 3.2.1]. The factorization can be computed once
and reused every iteration.

Generalized proximal point method. Let F be a maximal monotone operator on Rn, and
L ∈ Rn×n be invertible. Then L−TFL−1 is monotone and maximal [7, Theorem 24.5]. The
proximal point method

yk+1 = (I + αL−TFL−1)−1yk

with α > 0 converges to a zero of L−TFL−1 if one exists, and for any zero y⋆ of L−TFL−1

∥yk − y⋆∥2
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decreases monotonically.
Let us re-parameterize the iteration with

Lxk = yk.

Then we have

yk+1 + αL−TFL−1yk+1 ∋ yk

(A+ αF )xk+1 ∋ Axk,

where A = LTL. Of course, A ≻ 0. Conversely, we can start with a positive definite A ∈ Rn×n,
and let L = A1/2. We call the iteration

xk+1 = (A+ αF )−1Axk,

the generalized proximal point method, and its iterates xk inherit the convergence properties of
yk. In particular, xk converges to a zero of F if one exists, and for any zero x⋆ of F

∥xk − x⋆∥A =
√

(xk − x⋆)TA(xk − x⋆) = ∥yk − Lx⋆∥2
decreases monotonically, where ∥ · ∥A is the A-norm (cf. [69, Theorem 5.3.2] or [63, p. 626]).

7. Operator splitting

In this section, we consider the problem of finding a zero of a monotone operator that admits
a splitting into two or three maximal monotone operators. In other words, we wish to find an x
that satisfies 0 ∈ (A+B)(x) or 0 ∈ (A+B+C)(x), where A, B, and C are maximal monotone.

The idea is to transform this problem into a fixed-point equation with operators constructed
from A, B, C, their resolvents, and Cayley operators. We then apply the fixed point iteration
and discuss its convergence. In practice, these methods will be useful when the operators used
are efficient to compute.

7.1. Forward-backward splitting

Consider the problem of finding an x that satisfies

0 ∈ (A+B)(x),

where A and B are maximal monotone.
Assume A is single-valued and α > 0. Then we have

0 ∈ (A+B)(x) ⇔ 0 ∈ (I + αB)(x)− (I − αA)(x)

⇔ (I + αB)(x) ∋ (I − αA)(x)

⇔ x = (I + αB)−1(I − αA)(x).

So x is a solution if and only if it is a fixed point of RB(I − αA).
The fixed point iteration for this setup is

xk+1 = RB(x
k − αAxk).

This method, first presented in [100], is called forward-backward splitting.
Assume that A is a subdifferential operator with Lipschitz parameter L and that α ∈ (0, 2/L).

Or assume that A is respectively strongly monotone and Lipschitz with parameters m and L
and that α ∈ (0, 2m/L2). Then the forward step I − αA is averaged, as discussed in §5. The
backward step (I+αB)−1 is averaged for any α > 0. So when I−αA is averaged, the composition
(I+αB)−1(I−αA) is an averaged operator, and the iterates converge to a solution if one exists.

The steps I − αA and (I + αB)−1 are respectively called forward and backward steps in
analogy to the forward and backward Euler methods used to solve differential equations. See
§3.2.2 of [44] or §4.1.1 of [99] for a discussion on this interpretation.
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Proximal gradient method. Consider the problem

minimize f(x) + g(x),

where x ∈ Rn is the optimization variable and f and g are CCP functions on Rn. Of course, x
is a solution if and only if x satisfies

0 ∈ (∂f + ∂g)(x),

assuming relintdom f ∩ relintdom g ̸= ∅.
Assume f is differentiable. Then forward-backward splitting applied to ∇f + ∂g is

xk+1 = argmin
x

(
f(xk) +∇f(xk)T (x− xk) + g(x) +

1

2α
∥x− xk∥22

)
,

which is called called the proximal gradient method [12, 36, 42]. Unlike the proximal point
method, we use the first-order approximation of f about xk in the minimization. When a
solution exists, f is strongly smooth with parameter L, and α ∈ (0, 2/L), the proximal gradient
method converges.

7.2. Forward-backward-forward splitting

Again, consider the problem of finding an x that satisfies

0 ∈ (A+B)(x),

where A and B are maximal monotone.
Assume A is Lipschitz with parameter L (and therefore single-valued) and let α ∈ (0, 1/L).

Then the function I − αA is a one-to-one mapping. To see this, consider any distinct x and y
and we have

∥(I − αA)x− (I − αA)y∥2 = ∥x− y − α(Ax−Ay)∥2 ≥
≥ ∥x− y∥2 − α∥(Ax−Ay)∥2 ≥
≥ (1− αL)∥x− y∥2 > 0.

We used the reverse triangle inequality and Lipschitz continuity of A on the second and third
lines, respectively. So (I − αA)x ̸= (I − αA)y, and we conclude I − αA is one-to-one.

As discussed in §7.1, x is a solution if and only if it is a fixed point of RB(I − αA). Since
I − αA is one-to-one, we have

0 ∈ (A+B)(x) ⇔ x = RB(I − αA)(x)

⇔ (I − αA)x = (I − αA)RB(I − αA)(x)

⇔ x = ((I − αA)RB(I − αA) + αA)(x).

So x is a solution if and only if it is a fixed point of (I − αA)RB(I − αA) + αA.
The fixed point iteration for this setup is

xk+1/2 = RB(x
k − αAxk)

xk+1 = xk+1/2 − α(Axk+1/2 −Axk).

This method, developed by Tseng [126], is called forward-backward-forward splitting.
The mapping (I−αA)RB(I−αA)+αA is not nonexpansive, so the convergence results of §5 do

not apply. (It is, however, nonexpansive towards any solution.) Nevertheless, forward-backward-
forward splitting converges when A is Lipschitz with parameter L and α ∈ (0, 1/L). (This is a
weaker assumption than what was necessary for forward-backward splitting to converge.)

Let us be specific. Assume the set of fixed points X is nonempty. Then xk → x⋆ for
some x⋆ ∈ X. Moreover, the iteration is Fejér monotone, i.e., dist(xk, X) → 0 monotonically.
Furthermore,

∥xk+1/2 − xk∥2 → 0
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with rate

min
j=0,...,k

∥xk+1/2 − xk∥22 = O(1/k).

Convergence proof. Assume a solution x⋆ exists. Since A+B is monotone and 0 ∈ A(x⋆) +
B(x⋆), we have

(xk+1/2 − x⋆)T (Axk+1/2 +Bxk+1/2) ∈ (xk+1/2 − x⋆)T (Axk+1/2 +Bxk+1/2 −Ax⋆ −Bx⋆) ≥ 0.

Using this inequality, we get

∥xk+1 − x⋆∥22 = ∥xk − x⋆∥22 + α2∥Axk+1/2 −Axk∥22 − ∥xk+1/2 − xk∥22
− 2α(xk+1/2 − x⋆)T (Axk+1/2 +Bxk+1/2) ≤

≤ ∥xk − x⋆∥22 − (1− α2L2)∥xk+1/2 − xk∥22,

where we use Lipschitz continuity of A and the preliminary inequality we proved. Using the
same argument as in §5.2, we get the desired results.

Extragradient method. Consider the problem of finding an x that satisfies

0 = A(x),

where A is maximal monotone and single-valued.
The extragradient method,

xk+1/2 = xk − αAxk

xk+1 = xk − αAxk+1/2,

a special case of forward-backward-forward splitting with B = 0, converges to a solution if A is
Lipschitz with parameter L and α ∈ (0, 1/L). This method was first presented in [76].

Combettes-Pesquet. Consider the problem of solving

0 ∈ (A+B + C)(x),

where A, B, and C are maximal monotone.
Then x is a solution if and only if

0 ∈ Ax+ u+ Cx

u ∈ Bx

for some u. In turn, x is a solution if and only if

0 ∈
[

Ax
B−1u

]
+

[
u+ Cx
−x

]
for some u.

Forward-backward-forward splitting on this setup is

xk+1/2 = RA(x
k − αuk − αCxk)

uk+1/2 = RB−1(uk + αxk)

xk+1 = xk+1/2 − α(uk+1/2 − uk + Cxk+1/2 − Cxk)

uk+1 = uk+1/2 + α(xk+1/2 − xk),

which we call the Combettes-Pesquet method [35]. If C is Lipschitz with parameter L and if a
solution exists, this method converges for 0 < α < 1/(1 + L).
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7.3. Peaceman-Rachford and Douglas-Rachford splitting

Again, consider the problem of finding an x that satisfies

0 ∈ (A+B)(x),

where A and B are maximal monotone.

Peaceman-Rachford splitting. The key fixed point result is

0 ∈ (A+B)(x) ⇔ CACB(z) = z, x = RB(z)

for any α > 0. Let us show this:

0 ∈ Ax+Bx ⇔ 0 ∈ (I + αA)x− (I − αB)x

⇔ 0 ∈ (I + αA)x− CB(I + αB)x

⇔ 0 ∈ (I + αA)x− CBz, z ∈ (I + αB)x

⇔ CBz ∈ (I + αA)RBz, x = RBz

⇔ RACBz = RBz, x = RBz

⇔ CACBz = z, x = RBz,

where we have used (11).
The fixed point iteration for this setup is

xk+1/2 = RB(z
k)

zk+1/2 = 2xk+1/2 − zk

xk+1 = RA(z
k+1/2)

zk+1 = 2xk+1 − zk+1/2.

This method, first presented in [74,81,101], is called Peaceman-Rachford splitting.
Without further assumptions, the mapping CACB is only guaranteed to be nonexpansive for

α ≥ 0. So the iteration need not converge.

Douglas-Rachford splitting. To ensure convergence, we average the nonexpansive mapping.
Clearly, for any α > 0 we have

x ∈ (A+B)(x) ⇔ (1/2I + 1/2CACB)(z) = z, x = RB(z).

The fixed point iteration for this setup is

xk+1/2 = RB(z
k)

zk+1/2 = 2xk+1/2 − zk

xk+1 = RA(z
k+1/2)

zk+1 = zk + xk+1 − xk+1/2.

This method, first presented in [41, 81], is called Douglas-Rachford splitting. For α > 0, the
mapping is averaged and the iterates converge to a solution, if one exists.

We can think of xk+1/2 and xk+1 as estimates of a solution, with slightly different properties.
For example, if RB is a projection onto a constraint set, then the estimate xk+1/2 satisfies these
constraints exactly.
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Geometric convergence. As discussed before, CA and CB are always nonexpansive. So
Peaceman-Rachford and Douglas-Rachford converge geometrically when either CA or CB is
contractive. This, for example, happens if A is strongly monotone and Lipschitz.

With a more refined analysis, one can find other conditions that ensure geometric convergence.
For example, if f is a strongly convex CCP function, g is a strongly smooth CCP function,
A = ∂f , and B = ∂g, then 1/2I + 1/2CACB is a contraction, and Douglas-Rachford converges
geometrically [39,57].

Consensus optimization. Consider the problem

minimize
∑m

i=1 fi(x),

where x ∈ Rn is the optimization variable and f1, f2, . . . , fm are CCP functions on Rn. This
problem is equivalent to

minimize
∑m

i=1 fi(xi)
subject to x1 = x2 = · · · = xm,

where x1, x2, . . . , xm ∈ Rn are the optimization variables. In turn, this problem is equivalent to
finding x1, x2, . . . , xm ∈ Rn that satisfies

0 ∈


∂f1(x1)
∂f2(x2)

...
∂fm(xm)

+N{x1=x2=···=xm}(x1, x2, . . . , xm),

assuming
∩m

i=1 relintdom fi ̸= ∅.
The constraint x1 = x2 = · · · = xm is called the consensus constraint, and the projection onto

it is simple averaging:

Π(x1, x2, . . . , xm) = (x, x, . . . , x), x =
1

m

m∑
i=1

xi.

So when we apply Douglas-Rachford splitting to this setup,

xk+1
i = argmin

x

(
fi(x) + (1/2α)∥x− zki ∥22

)
, i = 1, 2, . . . ,m

zk+1
i = zki + 2xk+1 − zk − xk+1

i , i = 1, 2, . . . ,m,

where xk is the average of xk1, x
k
2, . . . , x

k
m, and zk is defined similarly. If a solution exists, this

method converges for α > 0. An advantage of this method is that it is conducive to parallelization
since minimization step splits. See [19,98,99] for further discussions.

More generally, one can solve

0 ∈
n∑

i=1

Aix,

where A1, . . . , An are maximal monotone, with this approach.

7.4. Davis-Yin three-operator splitting

So far we have looked at splitting schemes with two operators. Finding a splitting scheme
with three or more operators that cannot be reduced to a splitting of two has been a major open
problem for a while. Here, we briefly present Davis and Yin’s recent breakthrough [40].

Consider the problem of solving

0 ∈ (A+B + C)(x),

where A, B, and C are maximal monotone.
Assume C is single-valued and let α > 0. Then we have

0 ∈ (A+B + C)(x) ⇔ Tz = z, x = RB(z),
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where

T = CA(CB − αCRB)− αCRB.

Let us show this:

0 ∈ Ax+Bx+ Cx ⇔ 0 ∈ (I + αA)x− (I − αB)x+ αCx

⇔ 0 ∈ (I + αA)x− CB(I + αB)x+ αCx

⇔ 0 ∈ (I + αA)x− CBz + αCx, z ∈ (I + αB)x

⇔ (CB − αCRB)z ∈ (I + αA)RBz, x = RBz

⇔ RA(CB − αCRB)z = RBz, x = RBz

⇔ (CA(CB − αCRB)− αCRB)z = z, x = RBz,

where we have used (11).
Of course, this also means x is a solution if and only if z is a fixed point of 1/2I +1/2T with

x = RBz. The fixed point iteration for this setup is

xk+1/2 = RB(z
k)

zk+1/2 = 2xk+1/2 − zk

xk+1 = RA(z
k+1/2 − αCxk+1/2)

zk+1 = zk + xk+1 − xk+1/2.

This splitting scheme reduces to Douglas-Rachford when C = 0 and to forward-backward when
B = 0.

Assume that C is a subdifferential operator with Lipschitz parameter L and that α ∈ (0, 2/L).
Or assume that C is respectively strongly monotone and Lipschitz with parameters m and L
and that α ∈ (0, 2m/L2). Davis and Yin showed that under these assumptions 1/2I + 1/2T
is averaged, which implies convergence. (However, T itself may not be nonexpansive without
further assumptions.)

7.5. Examples

Iterative shrinkage-thresholding algorithm. Consider the problem

minimize f(x) + λ∥x∥1,

where x ∈ Rn is the optimization variable, f is a CCP function on Rn, and λ > 0.
Assume f is differentiable. Then the proximal gradient method applied to this problem is

xk+1 = Sαλ(x
k − α∇f(xk)),

which is called the Iterative Shrinkage-Thresholding Algorithm (ISTA) [12,36]. Here, Sκ is called
the soft thresholding operator or shrinkage operator and defined element-wise as

Sκ(x)i = sign(xi)(|xi| − κ)+

for i = 1, 2, . . . , n. See Fig. 6. If a solution exists, f is strongly smooth with parameter L, and
α ∈ (0, 2/L), then ISTA converges.
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Figure 7. The soft thresholding operator.

Projected gradient method. Consider the problem

minimize f(x)
subject to x ∈ C,

where x ∈ Rn is the optimization variable, C ⊆ Rn is a nonempty closed convex set, and f is a
CCP function on Rn.

Assume f is differentiable. Then the proximal gradient method applied to this setup is

xk+1 = ΠC(x
k − α∇f(xk)).

This algorithm, first presented in [62, 79], is also called the projected gradient method. If a
solution exists, f is strongly smooth with parameter L, and α ∈ (0, 2/L), then this method
converges.

Projections onto convex sets. Consider the problem of finding an x ∈ C ∩D, where C and
D are nonempty closed convex sets, i.e., the convex feasibility problem. Note that x ∈ C ∩D if
and only if x is the solution to the optimization problem

minimize (1/2)dist2(x,D)
subject to x ∈ C

with optimal value 0.
Since the objective of the optimization problem is CCP and strongly smooth with parameter 1,

we can use the proximal gradient method with step size 1 to get serial or alternating projections
onto convex sets:

xk+1 = ΠCΠDx
k.

If C ∩D ̸= ∅, then xk → x⋆ for some x⋆ ∈ C ∩D. This method dates back to [129, Theorem
13.7] and [30,66].

Another alternating projections method. Again, consider the convex feasibility problem
of finding an x ∈ C ∩ D, where C and D are nonempty closed convex sets. This problem is
equivalent to finding an x satisfying

0 ∈ (NC +ND)(x).

Applying Douglas-Rachford splitting to this setup gives us

xk+1/2 = ΠD(z
k)

xk+1 = ΠC(2x
k+1/2 − zk)

zk+1 = zk + xk+1 − xk+1/2,

which resembles but is not the same as Dykstra’s method of alternating projections [8, 11, 21].
This method converges if a solution exists and is generally faster than classical alternating
projections (although the analysis doesn’t tell us why).
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Chambolle-Pock. Consider the optimization problem

minimize f(x) + g(Mx),

where x ∈ Rn is the optimization variable, M ∈ Rm×n, and f and g are CCP functions
on Rn and Rm, respectively. This setup has been studied in several contexts such as image
processing [23,48,133].

The optimality condition for this problem is

0 ∈ ∂f(x) +MT∂g(Mx),

assuming relintdom f ∩ relintdom g(M ·) ̸= ∅. This holds if and only if

0 ∈ ∂f(x) +MTu

Mx ∈ (∂g)−1(u)

for some u ∈ Rm. So x is a solution if and only if

0 ∈
[
∂f(x)
∂g∗(u)

]
+

[
0 MT

−M 0

] [
x
u

]
for some u ∈ Rm.

We now apply the generalized proximal point method with

A =

[
I −αMT

−αM I

]
,

where α satisfies 0 < α < 1/∥M∥2. (One can show A is positive definite using its Schur
complement [69, Theorem 7.7.6].) Writing out the iteration we get

α

[
∂f(xk+1)
∂g∗(uk+1)

]
+

[
xk+1

uk+1 − 2αMxk+1

]
∋
[
xk − αMTuk

uk − αMxk

]
.

This simplifies to

xk+1 = R∂f (x
k − αMTuk)

uk+1 = R∂g∗(u
k + αM(2xk+1 − xk)),

which we call the Chambolle-Pock method [28]. This method converges for 0 < α < 1/∥M∥2, if
a solution exists and relintdom f ∩ relintdom g(M ·) ̸= ∅.

Sometimes, it may be computationally easier to evaluate the resolvent of ∂g∗ than to evaluate
the resolvent of MT∂gM . For a simple example, think of g(x) = ∥x∥1. This algorithm can be
useful in such a setting.

A first-order method for LPs. Consider the problem

minimize cTx
subject to Ax = b

x ≽ 0,

where x ∈ Rn is the optimization variable, A ∈ Rm×n, b ∈ Rm, and c ∈ Rn.
The KKT operator associated with this problem is T = T1 + T2, where

T1(x, ν, λ) =

c+AT ν − λ
−(Ax− b)

x

 T2(x, ν, λ) =

 0
0

N{λ≽0}

 ,

and (x, ν, λ) is primal-dual optimal if and only if 0 ∈ (T1 + T2)(x, ν, λ).
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When we apply forward-backward-forward splitting to this setup we get

xk+1/2 = xk − α(c+AT νk − λk)

νk+1/2 = νk + α(Axk − b)

λk+1/2 = (λk − αxk)+

xk+1 = xk − α(c+AT νk+1/2 − λk+1/2)

νk+1 = νk + α(Axk+1/2 − b)

λk+1 = (λk − αxk+1/2)+ + α2(c+AT νk − λk),

where (·)+ takes the positive part, element-wise.
If a primal solution exists, a dual solution exists due to standard LP duality [14, 82]. Then

this method converges for α ∈
(
0, 1/

√
σ2
max + 1

)
, where σmax is the largest singular value of A,

and has rate of convergence

min
j=0,...,k

{
∥Axj − b∥22 + ∥c+AT νj − λj∥22 + ∥min{λj/α, xj}∥22

}
= O(1/k).

The first term enforces primal feasibility, the second term dual feasibility, and the third term
complementary slackness and x ≽ 0.

Convex-concave games. A (zero-sum, two-player) game on Rm×Rn is defined by its payoff
function f : Rm ×Rn → R ∪ {±∞}. The meaning is that player 1 chooses a value (or move)
x ∈ Rm, and player 2 chooses a value (or move) v ∈ Rn; based on these choices, player 1 makes
a payment to player 2, in the amount f(x, y). The goal of player 1 is to minimize this payment,
while the goal of player 2 is to maximize it. See [20,55] for further discussions.

We say that (x, y) is a solution of the game if it is a saddle point of f . Let

F (x, y) =

[
∂xf(x, y)

∂y(−f(x, y))

]
be the saddle subdifferential of f . Then (x, y) is a solution of the game if and only if 0 ∈ F (x, y).

Assume that f(x, y) is CCP and strongly smooth with parameter L1 for each y as a function of
x and that −f(x, y) is CCP and strongly smooth with parameter L2 for each x as a function of y.
Then F is Liptschitz with parameter L1+L2, and we can find a solution with the extragradient
method (or equivalently with forward-backward-forward splitting):

xk+1/2 = xk − α∇xf(x
k, yk)

yk+1/2 = yk + α∇yf(x
k, yk)

xk+1 = xk − α∇xf(x
k+1/2, yk+1/2)

yk+1 = yk + α∇yf(x
k+1/2, yk+1/2),

which converges for α ∈ (0, 1/(L1 + L2)), if a solution exists.

Complementarity problem. Consider the problem of finding an x ∈ Rn that satisfies

x ∈ K

F (x) ∈ K⋆

xTF (x) = 0,

where K is a nonempty closed convex cone, and F is an operator that is single-valued on K.
This problem is called the complementarity problem, and is sometimes written more concisely
as finding an x ∈ Rn that satisfies

x ∈ K ⊥ F (x) ∈ K⋆.
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It is not too hard to show that this is equivalent to finding an x that satisfies

0 ∈ (F +NK)(x),

where NK is the normal cone operator. Many problems in mechanics, economics, and game
theory are naturally posed as complementarity problems. See [38,49,50] for more details.

Assume F is maximal monotone and Lipschitz with parameter L. Then we can use forward-
backward-forward splitting to solve the complementarity problem:

xk+1/2 = ΠK(xk − αFxk)

xk+1 = xk+1/2 − α(Fxk+1/2 − Fxk),

which converges for α ∈ (0, 1/L), if a solution exists. (When F is not maximal monotone,
complementarity problems are hard; there are no known polynomial time algorithms to solve
them [31].)

Quasidefinite systems. Consider the problem of finding an x ∈ Rn that solves the linear
system

Kx = b,

where b ∈ Rn. The matrix K ∈ Rn×n is (symmetric) quasidefinite, i.e.,

K =

[
−A C
CT B

]
,

where A ∈ Rm×m and B ∈ R(n−m)×(n−m) are positive definite and C ∈ Rm×(n−m). For further
discussions on quasidefinite matrices, see [56,128].

Define

J =

[
−Im 0
0 I(n−m)

]
,

where Im and I(n−m) are the m×m and (n−m)× (n−m) identity matrices, respectively. Now
consider the operator

F (x) = J(Kx− b),

which is monotone since JK + (JK)T ≻ 0. Since J is invertible, x is a solution if and only if
F (x) = 0.

Write

K1 =

[
−A 0
0 B

]
, K2 =

[
0 C
CT 0

]
(so that K = K1 + K2). Now we have the splitting F = F1 + F2 with F1(x) = JK1x and
F2(x) = JK2x− Jb, and we can apply Peaceman-Rachford splitting to get

xk+1 = b̃+ (J + αK2)
−1(J − αK1)(J + αK1)

−1(J − αK2)x
k,

where

b̃ = α(J + αK2)
−1(I + (J − αK1)(J + αK1)

−1)b.

This method converges to the solution for all α > 0.

ADMM. Consider the problem

minimize f(x) + g(z)
subject to Ax+Bz = c,

where x ∈ Rm and z ∈ Rn are the optimization variables, A ∈ Rl×m, B ∈ Rl×n, c ∈ Rl, and f
and g are respectively CCP functions on Rm and Rn. Its dual problem is

maximize −f∗(−AT ν)− g∗(−BT ν) + cT ν,

where ν ∈ Rl is the optimization variable.
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The subdifferential operator of the dual function

F (ν) = −A∂f∗(−AT ν)−B∂g∗(BT ν)− c

admits the splitting F = F1 + F2, where

F1(ν) = −A∂f∗(−AT ν)− c F2(ν) = −B∂g∗(BT ν).

Assume that f and g are strictly convex, so that the argmin are well-defined. Applying
Douglas-Rachford splitting to F = F1 + F2, we get

ζk+1 = RF2(y
k)

ξk+1 = RF1(2ζ
k+1 − yk)

yk+1 = yk + ξk+1 − ζk+1.

Evaluating the resolvents involves a minimization step, as discussed in §6.1. Making these
explicit we get

z̃k+1 = argmin
z

(
g(z) + (yk)TBz +

α

2
∥Bz∥22

)
ζk+1 = yk + αBz̃k+1

x̃k+1 = argmin
x

(
f(x) + (yk + 2αBz̃k+1)T (Ax− c) +

α

2
∥Ax− c∥22

)
ξk+1 = yk + α(Ax̃k+1 − c) + 2αBz̃k+1

yk+1 = yk + α(Ax̃k+1 +Bz̃k+1 − c).

Since ζk and ξk iterates no longer have any explicit dependence, they can be removed. Next
substitute yk = αuk + α(Ax̃k − c)

z̃k+1 = argmin
z

(
g(z) +

α

2
∥Ax̃k +Bz − c+ uk∥22

)
x̃k+1 = argmin

x

(
f(x) +

α

2
∥Ax+Bz̃k+1 − c+ uk+1∥22

)
uk+1 = uk +Ax̃k +Bz̃k+1 − c.

Finally, we swap the order of the uk+1 and x̃k+1 update to get the correct dependency and sub-
stitute x̃k = xk+1 and z̃k = zk to get the alternating direction method of multipliers (ADMM):

xk+1 = argmin
x

(
f(x) +

α

2
∥Ax+Bzk − c+ uk∥22

)
zk+1 = argmin

z

(
g(z) +

α

2
∥Axk+1 +Bz − c+ uk∥22

)
uk+1 = uk +Axk+1 +Bzk+1 − c,

which was first presented in [54,61]. Assume strong duality holds and primal and dual solutions
exist. Then for any α > 0 we have xk → x⋆, zk → z⋆, and uk → u⋆, where (x⋆, z⋆) is primal
optimal and αu⋆ is dual optimal.

Recently, ADMM has gained a wide popularity. For an overview, interested readers can
refer to [19, 45, 46, 99]. It is worth noting that there are other ways to analyze ADMM. One
approach avoids discussing monotone operators and relies on first principles [19,54,61]. Another
views ADMM as the proximal point method applied to the so called splitting operator [43].
Another obtains ADMM by applying Douglas-Rachford splitting to the primal optimization
problem [131]. Here, we followed the approach of [53], to derive ADMM by applying Douglas-
Rachford splitting to the dual problem.
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8. Further topics

In this primer we have covered the basic ideas of monotone operators, convergence of fixed
point iteration, and applications to a solving variety of convex optimization problems. The same
basic components that we have described can be assembled in other ways to derive still more
algorithms.

We conclude by listing here some further topics that are closely related to, or an extension
of, the material we have covered.

Inexact solves. When evaluating the operators (especially the resolvents) it may be useful to
do so approximately. Say we perform the (approximate) proximal point method

xk+1 = R(xk) + εk,

where εk denotes the error. Under certain assumptions on ∥εk∥ one can prove convergence
results. Analysis of algorithms using monotone operators is more amenable to this type of error
analysis than analysis using first principles [46,117].

Varying averaging factors and step sizes. To find a fixed point of a nonexpansive mapping
F , one can use the iteration

xk+1 = (1− θk)xk + θkF (xk),

where θk varies each iteration. Likewise, to find a zero of a maximal monotone operator A, one
can use the iteration

xk+1 = (I + αkA)−1(xk),

where αk varies each iteration. One could analyze these approaches by making a few modifica-
tion to our proofs. Alternatively, one can view these as applications of different (but related)
operators with common fixed points [117].

Preconditioning. The convergence speed of all of the algorithms developed in this paper
can be improved by transforming the variables with an appropriate linear operator, called a
preconditioner. For example, the optimization problem

minimize f(x)
subject to Ax = b,

where f is a function on Rn, x ∈ Rn is the optimization variable, A ∈ Rm×n, and b ∈ Rm, is
equivalent to the problem

minimize f(Ex)
subject to AEx = b,

where E ∈ Rn×n is nonsingular. Choosing E well and applying the algorithm to the transformed
problem can improve the performance [51,58,59,96,97,105].

Cutting plane methods. If F is a monotone operator 0 ∈ F (x⋆), then for any y ∈ F (x), we
have

yTx⋆ ≥ yTx.

In other words, every evaluation of F gives a cutting plane for x⋆, which eliminates a half-space
from our search for x⋆. By judiciously choosing points to evaluate and accumulating the cutting
planes, one can localize a small set in which x⋆ must lie in [29,65,68,73,78,91,92,95,107,108].

Hilbert spaces. Often the theory of monotone operators is developed in the broader setting
of Hilbert spaces, and a new set of challenges arise in these infinite dimensional settings. For
example, all fixed points iterations we discussed only converge to a solution weakly unless we
make additional assumptions. When an iteration is a strict contraction, we get strong conver-
gence [3, 7, 33,34,36,44,103].
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Variational inequalities. Given a set C ⊆ Rn and a function F : C → Rn, a variational
inequality problem is to find a solution x⋆ that satisfies

(y − x⋆)TF (x⋆) ≥ 0

for all y ∈ C. When C is convex and F is monotone, this problem reduces to solving 0 ∈
F (x) + NC(x). However, some interesting problems can be posed with variational inequalities
but not with monotone operators [49,60,70,75,122].

Partial inverse. Let an operator T on Rn be monotone, A a subspace of Rn, and A⊥ the
orthogonal complement of A. Then we call

TA = {(ΠAx+ΠA⊥y,ΠAy +ΠA⊥x) | (x, y) ∈ T},

also a monotone operator, the partial inverse of T with respect to A. If A = {0} then TA = T−1,
and if A = Rn then TA = T ; hence the name. The partial inverse is not only central in the
study of dualities of monotone operators [102, 109] (another topic we missed) but is also useful
in generating many optimization algorithms [123,124].

Existence of solutions. In §5.1, we did prove a contraction mapping has a fixed point, but
for the most part we assumed a solution exists and focused on finding it. It is, however, possible
to prove the existence of solutions in more general settings, and this is one of the main uses of
monotone operator theory in differential equations [52,121].

9. Appendix

In this section, we discuss the equivalent definitions of strong convexity and strong smoothness.
Interested readers can refer to [7, 15,72,93,94,119] for further details.

Strong convexity. A CCP function f on Rn is strongly convex with parameter m if any of
the following equivalent conditions are satisfied:

(1) f(x)−m/2∥x∥22 is convex.
(2) f(x)−m/2∥x− x0∥22 is convex for all x0 ∈ Rn.
(3) f(θx + (1 − θ)y) ≤ θf(x) + (1 − θ)f(y) − θ(1 − θ)m/2∥x − y∥22 for all x, y ∈ Rn and

θ ∈ [0, 1].
(4) f(y) ≥ f(x) + ∂f(x)T (y − x) +m/2∥y − x∥22 for all x, y ∈ Rn.
(5) ∂f is strongly monotone with parameter m, i.e., (∂f(x)− ∂f(y))T (x− y) ≥ m∥x− y∥22

for all x, y ∈ Rn.
(6) ∇2f(x) ≽ mI for all x ∈ Rn, if f is twice continuously differentiable.

Let’s prove this. Conditions (1) and (2) are equivalent as the two functions only differ by an
affine function. Equivalence of conditions (1) and (3) follow simply from algebra. Equivalence
of conditions (1) and (6) follow from the fact that twice continuously differentiable functions are
convex if and only if its Hessian is positive semidefinite everywhere.

Assume condition (1) and (3). For any ε > 0 and x, y ∈ Rn, the definition of subdifferentials
gives us

f(y) + ε∂f(y)T (x− y) = f(y) + ∂f(y)T (εx+ (1− εy)− y) ≤
≤ f(εx+ (1− ε)y).

Now we divide by ε and apply condition (3) to get

∂f(y)T (x− y) ≤ 1

ε
f(εx+ (1− ε)y)− 1

ε
f(y) ≤

≤ f(x)− f(y)− (1− ε)
m

2
∥x− y∥22.

Finally we take the limit ε → 0+ to get condition (4).
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Assuming condition (4), we have

f(x) ≥ f(y) + ∂f(y)T (x− y) +
m

2
∥x− y∥22

f(y) ≥ f(x) + ∂f(x)T (y − x) +
m

2
∥y − x∥22.

Adding these two lines we get

(∂f(x)− ∂f(y))T (x− y) ≥ m∥x− y∥22,
and we conclude condition (5).

Assume condition (5), and assume dom f is not a singleton as otherwise condition (1) holds
trivially. Consider two points x, y ∈ relintdom f and the function g(θ) = f(θx+ (1− θ)y) for
θ ∈ [0, 1].

Then we have

(θ2 − θ1)m∥x− y∥22 ≤ (∂f(θ2x+ (1− θ2)y)− ∂f(θ1x+ (1− θ1)y))
T (x− y) =

= (∂g(θ2)− ∂g(θ1))

for all θ1, θ2 ∈ [0, 1] and θ2 ≥ θ1 [111, Theorem 23.9]. Note that g′+(θ) ⊆ ∂g(θ), where g′+ is the
right derivative of g [111, p. 299]. So

g′+(θ2)− g′+(θ1) ≥ (θ2 − θ1)m∥x− y∥22. (12)

We integrate (12) with respect to θ2 on [θ, 1] and let θ1 = θ to get

g(1) ≥ g(θ) + g′+(θ)(1− θ) + (1− θ)2
m

2
∥x− y∥22. (13)

(This is justified by Corollary 24.2.1 of [111].) Likewise, we can integrate (12) with respect to
θ1 on [0, θ] and set θ2 = θ to get

g(0) ≥ g(θ)− g′+(θ)θ + θ2
m

2
∥x− y∥22. (14)

We multiply the (13) by θ and (14) by 1− θ and add the results to get

θg(1) + (1− θ)g(0) ≥ g(θ) + θ(1− θ)
m

2
∥x− y∥22.

Finally, plugging f back in gives condition (3). So condition (3) holds for any x, y ∈ relintdom f .
Finally, we extend this result to all of dom f . Consider any two points x, y ∈ dom f . Pick

an arbitrary point z ∈ relintdom f (which exists by [111, Theorem 6.2]) and define

xε = (1− ε)x+ εz

yε = (1− ε)y + εz.

Clearly, we have xε → x as ε → 0 and xε ∈ relintdom f for ε ∈ (0, 1] [111, Theorem 6.1] and
the same can be said for yε. So the condition (3) holds for xε and yε for ε ∈ (0, 1]. We take the
limit ε → 0+ and conclude condition (3) for x and y (where we use continuity of CCP functions
restricted to a line [111, Corollary 7.5.1]).

Strong smoothness. A CCP function f on Rn is strongly smooth with parameter L if any
of the following equivalent conditions are satisfied:

(1) f(x)− L/2∥x∥22 is concave.
(2) f(x)− L/2∥x− x0∥22 is concave for all x0 ∈ Rn.
(3) f(θx + (1 − θ)y) ≥ θf(x) + (1 − θ)f(y) − θ(1 − θ)L/2∥x − y∥22 for all x, y ∈ Rn and

θ ∈ [0, 1].
(4) f is differentiable and f(y) ≤ f(x) +∇f(x)T (y − x) + L/2∥x− y∥22 for all x, y ∈ Rn.
(5) f is differentiable and (∇f(x)−∇f(y))T (x− y) ≤ L∥x− y∥22 for all x, y ∈ Rn.
(6) ∂f is Lipschitz with parameter L.
(7) f is differentiable and ∇f is Lipschitz with parameter L.
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(8) f is differentiable and 1/L∥∇f(x)−∇f(y)∥22 ≤ (∇f(x)−∇f(y))T (x−y) for all x, y ∈ Rn.
(9) ∇2f ≼ LI for all x ∈ Rn, if f is twice continuously differentiable.

Parts of this equivalence can be found in [119, Proposition 12.60], [94, Theorem 2.1.5], and [15, p.
433]. The full set of equivalence follows from [7, Theorem 18.15].

Duality of strong monotonicity and strong smoothness. Condition (8) of strong smooth-
ness is called cocoercivity or inverse strong monotonicity. For general monotone operators, co-
coercivity is by definition the dual property of strong monotonicity; a monotone operator F
is cocoercive if and only if F−1 is strongly monotone. In general, cocoercivity is a stronger
assumption than Lipschitz continuity, i.e., strong monotonicity and cocoercivity are not dual
properties in general.

For subdifferential operators of CCP functions, however, cocoercivity and Lipschitz continuity
are equivalent, i.e., conditions (6) and (8) are equivalent. This result is referred to as the Baillon-
Haddad theorem [5].

Let f is a CCP function. Then using the identity (∂f)−1 = ∂f∗, we see that ∂f is strongly
monotone with parameter m (i.e., satisfies condition (5) of strong convexity) if and only if
∂f⋆ satisfies condition (8) of strong smoothness with L = 1/m. So f is strongly convex with
parameter m if and only if f⋆ is strongly smooth with parameter L = 1/m.
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