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Abstract
In recent work Simkin shows that bounds on an exponent occurring in the famous 
n-queens problem can be evaluated by solving convex optimization problems, allow-
ing him to find bounds far tighter than previously known. In this note we use Sim-
kin’s formulation, a sharper bound developed by Knuth, and a Newton method that 
scales to large problem instances, to find even sharper bounds.

Keywords  n-queens constant · Combinatorial optimization · Convex optimization · 
Newton’s method

1  Introduction

Let Q(n) denote the number of ways that n queens can be arranged on an n × n 
chessboard in such a way that none is threatening another, i.e., no two queens are in 
the same row, column, or diagonal. Recent work by Simkin [1] has shown that

where � is a constant, that we refer to as the n-queens constant, characterized as 
the optimal value of an infinite dimensional convex optimization problem. For back-
ground on the problem and previously derived bounds on Q(n), see [2].

In [1], Simkin establishes that � ∈ [1.94, 1.9449] , a strong tightening of the best 
previously known bounds � ∈ [1.58, 3] [3, 4]. His method finds lower and upper 
bounds by solving two convex optimization problems. Knuth later formulated 
another convex optimization problem which also gives an upper bound on � [5].

lim
n→∞

Q(n)1∕n

n
= e−� ,
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In this note we solve the convex optimization problems associated with Simkin’s 
lower bound and Knuth’s upper bound, using a version of Newton’s method that 
scales to large problem instances, to establish that

This agrees with previous conjectures that � ≈ 1.944 [6]. In terms of the gap, i.e., 
difference of known upper and lower bounds, Simkin improved it from the pre-
vious value around 1.4 to around 5 × 10−3 , and we have improved that to around 
3.3 × 10−7.

Simkin’s numerical lower bound is found as a lower bound on the optimal value 
of a convex optimization problem whose optimal value is a lower bound on the 
n-queens constant. This problem is parameterized by n, the size of the chessboard 
used to interpret the problem. We let Ln denote the optimal objective value of this 
problem. In [5], Knuth introduces a convex optimization problem whose optimal 
value is an upper bound on the n-queens constant. It is also parameterized by n, and 
we let Un denote its optimal value. Simkin’s numerical upper bound is found by solv-
ing a related convex optimization problem which upper bounds Knuth’s problem.

Simkin’s numerical bounds are a lower bound on L17 and an upper bound on U12 , 
obtained by approximately solving these two problems. These problems involve 
a few hundred variables and constraints. In contrast, we use Newton’s method to 
solve the problems, which has two advantages. First, we solve the problem to high 
accuracy, so almost nothing is lost when we move from an approximate solution to 
a lower or upper bound on the optimal value. Second, our method scales to much 
larger n, which gives us tighter bounds on the n-queens constant.

Our numerical bounds are L2048 and U1024 , obtained by solving the two problems 
to high accuracy. The lower bound problem contains almost 17 million variables 
and over 12000 constraints; the upper bound problem contains over 4 million vari-
ables and over 14000 constraints. In this note we explain how a version of New-
ton’s method can be used to solve such large problems. (The numbers n = 1024 and 
n = 2048 are chosen as the largest powers of two that we can evaluate on the desk-
top computer we used to carry out the computations).

2 � The convex problems

The bounds Ln and Un are the optimal values of convex optimization problems of the 
form

where x ∈ �
p is the variable, A ∈ �

q×p , b ∈ �
q specify the constraints, and the 

objective function f ∶ �
p

++ → � is smooth and strictly convex. ( �++ denotes the set 
of positive numbers). These problems are feasible, and so have a unique solution.

� ∈ [1.944000752, 1.944001082].

(1)
minimize f (x)

subject to Ax = b,
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In these optimization problems, f, A, and b are parametrized by n, but to lighten 
the notation we suppress this dependence in our description of the method. Full 
descriptions of f, A, and b for the lower bound and upper bound problems are given 
in the appendix. Here, we summarize some of their attributes.

Lower bound problem. For the lower bound problem, we have p = 4n2 + 4n vari-
ables and q = 6n − 1 constraints. The objective f is separable, i.e., a sum of functions 
of xi , so its Hessian ∇2f (x) is diagonal. The constraint coefficient matrix A is full 
rank and sparse, with at most 4n nonzero entries in each row, and at most 4 nonzero 
entries in each column. The entries of A are all 0 or 1.

Upper bound problem. For the upper bound problem, we have p = 4n2 + 8n − 4 
variables and q = 14n − 6 constraints. The objective f is block separable, a sum of 
functions of pairs of variables, where the pairs are disjoint, so its Hessian ∇2f (x) is 
block diagonal, with 1 × 1 and 2 × 2 blocks. Here too A is full rank and sparse, with 
at most 4 nonzero entries per column, and at most 2n + 1 nonzero entries per row. Its 
entries are all either 0 or 1 or 2n.

3 � Infeasible start Newton method

In this section we summarize the infeasible start Newton method described in [7, 
§10.3.2] (which also contains a convergence proof), and explain how to compute 
the search directions in a scalable way. We also discuss how to compute appropriate 
bounds on optimal values of the problems.

3.1 � Optimality condition and residuals

The necessary and sufficient optimality conditions for (1) are

where � ∈ �
q is a dual variable or Lagrange multiplier. For x ∈ �

p

++ and � ∈ �
q we 

define the dual and primal residuals as

and the (primal-dual) residual r(x, �) = (rd(x, �), rp(x, �)) . Thus the optimality condi-
tion can be expressed as r(x, �) = 0.

3.2 � Infeasible start Newton method

The method is iterative, with iterates denoted as (x(k), �(k)) , where k is the itera-
tion number. The iterates will satisfy x(k) ∈ �

p

++ , so the residual r(k) = r(x(k), �(k)) 
is defined (and will converge to zero as k → ∞ ). We initialize our algorithm with 
x(0) ∈ �

p

++ , which need not satisfy Ax(0) = b.
Newton step For the kth iterate the Newton step (Δx(k),Δ�(k)) ∈ �

p × �
q is the 

solution of the linear equations

∇f (x) + AT� = 0, Ax − b = 0,

(2)rd(x, �) = ∇f (x) + AT�, rp(x, �) = Ax − b,
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where Dr is the derivative or Jacobian of the residual. (We will show later that these 
equations always have a unique solution.) The lefthand side is the first order Taylor 
approximation of r(x(k) + Δx(k), �(k) + Δ�(k)) , so if the Newton step is added to the 
current iterate, we obtain primal and dual variables for which the Taylor approxima-
tion is zero.

We write the equations defining the Newton step as

The coefficient matrix is invertible, since its top left block is invertible and its bot-
tom left block is wide and full rank; see, e.g., [8, §16.2] or [7, §10.1.1].

From the top block equations in (3) we have

Substituting this into the bottom block of equations we obtain the set of equations

with positive definite coefficient matrix S = A∇2f (x(k))−1AT . To find the Newton 
step, we first solve the set of equations (5) to obtain Δ�(k) , and then evaluate Δx(k) 
using (4).

Line search and update. The next iterate has the form

where t(k) is a positive step length. Choosing t(k) is referred to as a line search. Our 
line search is one specifically for the infeasible start Newton method, described in [7, 
§10.3.2]; for more general discussion of line search methods, see, e.g., [9, Chap. 3].

To find t(k) we first find t̃ = min(0.95tmax, 1) , where

is the largest possible step for which x(k) + tΔx(k) ∈ �
p

+ . We take t(k) = 𝛽� t̃ , where 
� ∈ (0, 1) is a parameter and � is the smallest positive integer for which

holds, where � ∈ (0, 1∕2) is a parameter. (It can be shown that such an integer exists 
[7, §10.3.1].) If ‖r(x(k+1), 𝜈(k+1))‖2 < 𝜖 , we terminate, where � is a positive tolerance.

We use the common line search parameter values � = 0.01 and � = 0.9 , and the 
tolerance � = 10−9 , which is far smaller than would be needed in any engineering or 
statistics application.

r(x(k), �(k)) + Dr(x(k), �(k))(Δx(k),Δ�(k)) = 0,

(3)
[
∇2f (x(k)) AT

A 0

][
Δx(k)

Δ�(k)

]
= −

[
rd(x

(k), �(k))

rp(x
(k), �(k))

]
.

(4)Δx(k) = −∇2f (x(k))−1
(
rd(x

(k), �(k)) + ATΔ�(k)
)
.

(5)
(
A∇2f (x(k))−1AT

)
Δ�(k) = rp(x

(k), �(k)) − A∇2f (x(k))−1rd(x
(k), �(k)),

x(k+1) = x(k) + t(k)Δx(k), �(k+1) = �(k) + t(k)Δ�(k),

tmax = min

{
x
(k)

i

−Δx
(k)

i

||||||
Δx

(k)

i
< 0

}

‖r(x(k) + 𝛽� t̃Δx(k), 𝜈(k) + 𝛽� t̃Δ𝜈(k))‖2 ≤ (1 − 𝛼𝛽� t̃)‖r(x(k), 𝜈(k))‖2
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Efficient computation. The computational effort in each step is, predominantly, solv-
ing the linear equations (5). Since we intend to use our algorithm on problem instances 
where forming and storing the q × q matrix S = A∇2f (x(k))−1AT is not practical, we use 
an indirect iterative method to solve these equations [10]. There are many such meth-
ods, mostly based on Krylov subspaces, such as conjugate gradients [11]. The particu-
lar method we use is MINRES [12]. Like other indirect methods, it requires only a 
method to evaluate the mapping y ↦ Sy for a vector y. We evaluate this mapping as

i.e., successive multiplications by AT , ∇2f (x(k))−1 , and A, without forming or storing 
the matrix S. (Simply storing S for the specific problems we will solve would require 
many terabytes of memory.)

3.3 � Bounds on optimal values

To bound the n-queens constant � , we need a lower bound on Ln and an upper bound 
on Un . Newton’s method is able to solve the lower bound and upper bound problems to 
high accuracy, so the optimal values we compute could simply be rounded down or up 
to obtain these bounds. Here we discuss ways to more carefully compute these bounds 
on the optimal values. To find an upper bound on Un , it suffices to find a feasible x and 
evaluate the objective at that point.

Lower bounds on Ln . We follow Simkin and use standard Lagrangian duality to find 
a lower bound on Ln . The dual function of (1) is

where f ∗ is the conjugate function of f [7, §3.3]. For any � , h(�) is a lower bound on 
the optimal value of the problem (1). For the lower bound problem we can explicitly 
find f ∗ as

via considering the structure of f as given in §A.2 and a straightforward application 
of results given in [7, §3.3.1]. To obtain a lower bound on Ln , we solve the problem 
using Newton’s method and then evaluate h(�) for the � found. (Since we solve these 
problems to high accuracy, the lower bound on Ln obtained is very close to the upper 
bound on Ln found, which is f(x).)

Rational approximation. The bounds described above are found using floating point 
computations. To make the upper bound fully precise, we find a rational approximation 
of x that is exactly feasible and evaluate the objective, carefully using an upper bound 
on the (transcendental) objective function. For the lower bound, we find a rational 
approximation of � and evaluate a lower bound on the dual function. We have not taken 
these steps, because our floating point solutions are so accurate that it would have a 
negligible effect on our final numerical bounds.

Sy = A
(
∇2f (x(k))−1

(
ATy

))
,

h(�) = �Tb − f ∗(AT�),

f ∗(y) =

p∑

i=1

exp
(
yi − 1

)
− 4 log n − 2 log 2 − 3
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4 � Results

Lower bound. We computed L2048 by solving a problem with p = 16785408 vari-
ables and q = 12288 constraints. This required 21 iterations, with a total time of 
around 517 seconds on a M1 Mac Mini. We obtained the lower bound

Upper bound. We computed U1024 by solving a problem with p = 4202492 variables 
and q = 14332 constraints. To speed up finding the solution, we started Newton’s 
method from (x, �) that solve the approximate upper bound problem (§A.4), which 
has a simpler objective and so was faster to compute. This required 6 iterations to 
solve the approximate problem, and a further 7 iterations to solve the exact problem. 
The total time was around 56 seconds on a M1 Mac Mini. We obtained the upper 
bound

Our code is available at https://​github.​com/​cvxgrp/​n-​queens.

Appendix

A Details of convex problems

In this appendix we give the details of the lower and upper bound problems, as well 
as an approximate upper bound problem. We define the variables in their natural 
notation, leaving it to the reader to re-arrange these into a single vector variable x. In 
a similar way, we describe the linear constraints in their natural notation, leaving it 
to the reader to translate these into Ax = b.

A.1 Common notation

In this section we describe variables and notation that are shared by the lower and 
upper bound problems.

Chessboard triangle variables. In both problems, the variable x consists of 4 
n × n matrices N, E, S, W, and some additional slack variables. The i,  jth entry in 
N, E, S, W is interpreted as a value associated with the North, East, South, or West 
triangle, respectively, formed by dividing each square of an n × n chessboard into 4 
right triangles. We index these matrices starting at 0, diverging from the notation 
used in [1, 5] which use indexing that begins at 1. Figure 1 shows the n = 8 case.

Diagonal sum operators. We introduce operators Dk ∶ �
n×n

→ � and 
Ak ∶ �

n×n
→ � defined for k ∈ {−n,−n + 1,−n + 2,… ,−1, 0, 1,… , n − 2, n − 1, n} , 

where Dk(Z) is the sum of the kth diagonal of Z, and Ak(Z) is the sum of the kth 
anti-diagonal of Z. For example D0Z =

∑n−1

i=0
Z
ii
= ��Z , D1Z =

∑n−1

i=1
Zi,i−1 , and 

A−1Z =
∑n−1

i=1
Zn−i,i . Note that DnZ = D−nZ = 0 . These are illustrated in Fig.  1: 

1.944000752019729 = L2048.

1.9440010813092217 = U1024.

https://github.com/cvxgrp/n-queens


1235

1 3

Computing tighter bounds on the n‑queens constant via Newton’s…

D−2N is the sum of the entries in the North triangles the red line passes through, and 
A1E is the sum of the entries in the East triangles the blue line passes through.

Negative entropy. Following [5], we define the function g ∶ �+ → � as 
g(x) = x log x for x > 0 , and g(0) = 0 . (This is the negative entropy function [7, 
p.72].)

A.2 Lower bound problem

This problem formulation is taken from [1, Claim 6.3], except that Simkin maxi-
mizes a concave function and we minimize its negative, a convex function.

Fig. 1   A chessboard with all of its triangles labeled. This chessboard is used to interpret the n = 8 prob-
lem. The red line represents one of the diagonals of the chessboard. The blue line represents one of the 
anti-diagonals of the chessboard
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Slack variables We introduce the following slack variables,

and

The quantities dk and ak are the sums along the diagonals and anti-diagonals, respec-
tively, of the chessboard. In Fig. 1, d−1 includes contributions from all triangles the 
red line passes through and a0 includes contributions from triangles the blue line 
passes through.

These equations form 4n entries in A, b.
Objective. The objective function is

Constraints. Simkin also introduces the constraints

and

These constraints are linearly dependent, with co-rank one, so we delete the first 
constraint with i = 0 to obtain a total of 2n − 1 constraints that we include in A, b.

Properties. This problem has n2 entries in each of N, E, S, W and 2n entries in 
each of d, a. Accordingly, the total number of variables is p = 4n2 + 4n . We have 
4n constraints affecting the slack variables, and 2n − 1 constraints affecting only 
N, E, S, W for a total of q = 6n − 1 constraints.

The objective is a sum of the negative entropy of individual optimization var-
iables, making it separable and strictly convex.

The constraint with the most variables are the row and column constraints, 
which involve 4n variables. Each triangle is in at most 1 column constraint, 1 
row constraint, 1 diagonal constraint, and 1 anti-diagonal constraint. Therefore, 
each column of A can have at most 4 entries.

dk =
1

n
−Dk(S +W) −Dk+1(N + E), k ∈ {−n,−n + 1,… , n − 1},

ak =
1

n
−Ak(S + E) −Ak+1(N +W), k ∈ {−n,−n + 1,… , n − 1}.

n−1∑

i=0

n−1∑

j=0

(
g(Ni,j) + g(Ei,j) + g(Si,j) + g(Wi,j)

)

+

n−1∑

k=−n

(
g(dk) + g(ak)

)
+ 4 log n + 2 log 2 + 3.

n−1∑

j=0

Ni,j + Ei,j + Si,j +Wi,j =
1

n
, i ∈ {0, 1,… , n − 1},

n−1∑

i=0

Ni,j + Ei,j + Si,j +Wi,j =
1

n
, j ∈ {0, 1,… , n − 1}.
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A.3 Upper bound problem

We use Knuth’s formulation of the Xqueenon problem [5], except that he maxi-
mizes a concave function and we minimize its negative, a convex function.

Slack variables. We introduce the slack variables

and

These equations form 8n − 4 entries in A, b.
Objective. For ease of notation, let

Our objective function is

where

and

Using a symbolic solver, we were able to generate closed-form expressions for the 
integrals and their partial derivatives [13].

In order to make the matrix block-diagonal, dSW
k

 and dNE
k

 must be interleaved in 
x. Similar interleaving applies to aSE

k
 and aNW

k
.

dSW
k

=1 −
1

2n
Dk(S +W), k ∈ {−n + 1,−n + 2,… , n − 1},

dNE
k

=1 −
1

2n
Dk(N + E), k ∈ {−n + 1,−n + 2,… , n − 1},

aSE
k

=1 −
1

2n
Ak(S + E), k ∈ {−n + 1,−n + 2,… , n − 1},

aNW
k

= 1 −
1

2n
Ak(N +W), k ∈ {−n + 1,−n + 2,… , n − 1}.

dSW
−n

= dNE
n

= aSE
−n

= aNW
n

= 1.

3 + L0(N,E, S,W) + L−(d
SW , dNE) + L+(a

SE, aNW ),

L0(N,E, S,W) =
1

4n2

n−1∑

i=0

n−1∑

j=0
(
g(Ni,j) + g(Ei,j) + g(Si,j) + g(Wi,j)

)
,

L−(d
SW , dNE) =

1

n

n∑

k=−n+1
∫

1

0

g
(
(1 − y)dSW

k−1
+ ydNE

k

)
dy,

L+(a
SE, aNW ) =

1

n

n∑

k=−n+1
∫

1

0

g
(
(1 − y)aSE

k−1
+ yaNW

k

)
dy.
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Constraints. In addition to the 8n − 4 equations involving the slack variables, 
Knuth requires the following conditions on N and S,

and

As any of these equations are linearly dependent on all the others, we choose to 
eliminate the first column constraint on N.

On E and W, Knuth requires

and

As with N and S, one of these equations is linearly dependent, and we choose to 
eliminate the first row constraint on E.

Properties. This problem has n2 entries in each of N, E, S, W and 2n − 1 entries 
in each of dSW

k
, dNE

k
, aSE

k
, aNW

k
 . This forms a total of p = 4n2 + 8n − 4 variables. 

We also have the 8n − 4 constraints involving the slack variables and 6n − 2 of 
the other constraints for a total of q = 14n − 6 constraints. The objective is block 
separable as each variable appears in only one term of the objective function 
and no term has more than two variables. The rows of A with the most entries 
are the entries along the diagonal and anti-diagonal, which contain 2n entries of 
N, E, S, W and 1 slack variable. Each column of A has at most 4 non-zero entries: 
1 from its row constraint, 1 from its column constraints, 1 from its diagonal term, 
and 1 from its anti-diagonal term. Columns associated with slack variables have 
one non-zero entry.

n−1∑

j=0

Ni,j =n, i ∈ {0, 1,… , n − 1},

n−1∑

j=0

Si,j =n, i ∈ {0, 1,… , n − 1},

n−1∑

i=0

Ni,j + Si,j = 2n, j ∈ {0, 1,… , n − 1}.

n−1∑

i=0

Ei,j =n, j ∈ {0, 1,… , n − 1},

n−1∑

i=0

Wi,j =n, j ∈ {0, 1,… , n − 1},

n−1∑

j=0

Ei,j +Wi,j = 2n, i ∈ {0, 1,… , n − 1}.
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A.4 Approximate upper bound problem

In the initial phase of computing Un we solve a problem with a diagonal Hessian that 
approximates the upper bound problem. We do this by applying Jensen’s inequality 
to the integrals in the diagonal and anti-diagonal terms of the objective.

After applying this approximation, the integral terms of the objective function 
become

and

We introduce new slack variables dk =
1

2
dSW
k−1

+
1

2
dNE
k

 and ak =
1

2
aSE
k−1

+
1

2
aNW
k

 and 
then replace the integral terms with g(dk) and g(ak) appropriately.

All other constraints and terms of the objective function are the same.
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