Optimization and Engineering (2024) 25:1685-1718
https://doi.org/10.1007/s11081-023-09859-z

RESEARCH ARTICLE

®

Check for
updates

Implementation of an oracle-structured bundle method for
distributed optimization

Tetiana Parshakova' - Fangzhao Zhang? - Stephen Boyd?

Received: 30 January 2023 / Revised: 20 July 2023 / Accepted: 2 October 2023 /
Published online: 30 November 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract

We consider the problem of minimizing a function that is a sum of convex agent func-
tions plus a convex common public function that couples them. The agent functions can
only be accessed via a subgradient oracle; the public function is assumed to be struc-
tured and expressible in a domain specific language (DSL) for convex optimization.
We focus on the case when the evaluation of the agent oracles can require significant
effort, which justifies the use of solution methods that carry out significant computa-
tion in each iteration. To solve this problem we integrate multiple known techniques
(or adaptations of known techniques) for bundle-type algorithms, obtaining a method
which has a number of practical advantages over other methods that are compatible
with our access methods, such as proximal subgradient methods. First, it is reliable,
and works well across a number of applications. Second, it has very few parameters
that need to be tuned, and works well with sensible default values. Third, it typically
produces a reasonable approximate solution in just a few tens of iterations. This paper
is accompanied by an open-source implementation of the proposed solver, available
at https://github.com/cvxgrp/OSBDO.

Keywords Convex optimization - Distributed optimization - Bundle-type method -
Cutting-plane method - Finite memory

B Tetiana Parshakova
tetianap @stanford.edu

Institute for Computational and Mathematical Engineering, Stanford University, 475 Via Ortega,
Stanford, CA 94305, USA

Department of Electrical Engineering, Stanford University, 350 Jane Stanford Way, Stanford, CA
94305, USA

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s11081-023-09859-z&domain=pdf
https://github.com/cvxgrp/OSBDO

1686 T. Parshakova et al.

1 Oracle-structured distributed optimization
1.1 Oracle-structured optimization problem
We consider the optimization problem
minimize h(x) = f(x) + g(x), (1)

with variable x € R”, where f, g : R" — R U {oo} are the oracle and structured
objective functions, respectively. We assume the problem has an optimal point x*, and
we denote the optimal value of the problem (1) as 2* = h(x*). We use infinite values of
f and g to encode constraints or the domains, with dom f = {x € R" | f(x) < oo}
and similarly for g. We assume that dom f © dom g # 0, i.e., every point in the
domain of g is in the domain of f, and g has at least one point in its domain.

1.1.1 The oracle objective function

We assume that the oracle function f is block separable,

M
f) =) filk), x=(x1,....xm),
i=1

with f; : R" — RU {00} closed convex, where n| + - - - +ny; = n. We refer to x; as
the variable and f; as the objective function of agent i. Our access to f; is only via an
oracle that evaluates f;(x;) and a subgradient ¢; € 9 f;(x;) at any point x; € dom f;.

1.1.2 The structured objective function

We assume the structured function g is closed convex. While f is block separable, g
(presumably) couples the block variables x1, ..., xj;. We assume that g is given in
a structured form, using the language of Nesterov, which means we have a complete
description of it. We assume that we can minimize g plus some additional structured
function of x. As a practical matter this might mean that g is expressed in a domain-
specific language (DSL) for convex optimization, such as CVXPY (Diamond and
Boyd 2016; Agrawal et al. 2018), based on disciplined convex programming (DCP)
(Grant et al. 2006).

1.1.3 Example
Problem (1) is very general, and includes as special cases many convex optimization

problems arising in applications. To give a simple and specific example, it includes
the so-called consensus problem (Boyd et al. 2011, Ch. 7),

minimize Y, fi(x;)
subject to x| = -+ = xp,

@ Springer

Implementation of an oracle-structured... 1687

where x; € R” are the variables, and f; are given convex functions. We put this in the
form (1) withn; = p,n = Mp, x = (x1,...,xpm), and

O x1 = =23
g(x) = { oo otherwise,

the indicator function of the consensus constraint x; = - - - = xpy.

1.1.4 Optimality condition
The optimality condition for problem (1) is: x is optimal if and only if
dh(x) =0 f(x)+dg(x) >0,)

where 0h(x) denotes the subdifferential of /# at x. In some applications we may be
interested in finding a subgradient ¢* € 9 f(x*) for which —g¢* € dg(x*). Such a
subgradient can sometimes be interpreted as a vector of optimal prices. The method
we describe in this paper will also compute (an estimate of) g*.

1.1.5 Our focus

We seek an algorithm that solves the distributed oracle-structured problem (1), respect-
ing our access assumptions. Several generic methods can be used, such as proximal
subgradient methods or their accelerated extensions, described below. Most research
on methods for the composite minimization problem focus on the case where f is
differentiable and g has a simple, typically analytically computable, proximal opera-
tor, and algorithms that involve very minimal computation beyond evaluation of the
gradient of f and the proximal operator of g, such as a few vector-vector operations.
Our focus here, however, is on the case where the agent oracles can be expensive to
evaluate, which has several implications. First, it means that we focus on algorithms
that in practice find good suboptimal points in relatively few iterations. Second, it
justifies algorithms that solve an optimization problem involving g in each iteration,
instead of carrying out just a few vector-vector operations.

1.1.6 Our contribution

Our contribution is to assemble a number of known methods, such as diagonal pre-
conditioning, level bundle methods, and others into an algorithm that works well on
a variety of practical problems, with no parameter tuning. By working well, we mean
that modest accuracy, say on the order of 1%, is achieved typically in tens of iterations.
In the language of the bundle method literature, our final algorithm is a disaggregate
partially exact bundle method.

Our open-source implementation, along with all data to reproduce all of our numer-
ical experiments, is available at https://github.com/cvxgrp/OSBDO. OSBDO stands
for oracle-structured bundle distributed optimization.

@ Springer

https://github.com/cvxgrp/OSBDO

1688 T. Parshakova et al.

1.2 Previous and related work

There is a vast literature on general distributed optimization, but fewer authors consider
the specific subgradient oracle plus structured function access we consider here. Sev-
eral general methods can be used to solve the problem (1) using our access methods,
including subgradient, cutting-plane, and bundle-type methods.

1.2.1 Subgradient methods

Subgradient methods were originally developed by Shor and others in the 1970s
(Shor 2012). Early work that describes subgradients and convex optimization includes
(Rockafellar 1981). (To use a subgradient-type method for our problem, we would
need to compute a subgradient of g, which is readily done.) Subgradient methods typ-
ically require a large number of iterations, and are employed when the computational
cost of each iteration is low, which is not the case in our setting. Subgradient meth-
ods also involve many algorithm parameters that must be tuned, such as a step-size
sequence. Modern variations include AdaGrad (Duchi et al. 2011), an adaptive sub-
gradient method which shows good practical results in the online learning setting, but
for our setting still requires far too many iterations to achieve even modest accuracy.

1.2.2 Proximal subgradient methods

A closely related method that is better matched to our specific access restrictions is
the proximal subgradient method, which in each iteration requires a subgradient of f
and an evaluation of the proximal operator of g. (This proximal step is readily carried
out since g is structured.) Most of the original work on these types of methods focuses
on the case where f is differentiable, and the method is called the proximal gradi-
ent method. The proximal gradient method can be described as an operator-splitting
method (Parikh and Boyd 2014, Ch. 4.2); some early work includes (Bruck 1975;
Chen and Rockafellar 1997). Since then there have been two relevant developments.
The papers (Passty 1979; Lions and Mercier 1979) handle the case where f is nondif-
ferentiable, and the gradient is replaced with a subgradient, so the method is called the
proximal subgradient method. The stochastic case is addressed in Schechtman (2022),
where a stochastic proximal subgradient method is developed. Another advance is the
development of simple generic acceleration methods, originally introduced by Nes-
terov (1983). Other work addresses issues such as inexact computation of the proximal
operator (Birgin et al. 2003), or inexact computation of the subgradient (Burachik et al.
2015). Proximal gradient and subgradient methods are widely used in different appli-
cations; see, e.g., the book (Combettes and Pesquet 2011), which covers proximal
gradient method applications in signal processing.

Compared to the method we propose, proximal subgradient methods fail to take
into account previously evaluated function values and subgradients (other than through
their effect on the current iterate), and our ability to build up a model of each agent
function separately. These are done in the method we propose, which requires only
a modest increase in complexity over evaluating just the proximal operator of g, and
give substantial improvement in practical convergence.

@ Springer

Implementation of an oracle-structured... 1689

1.2.3 Cutting-plane methods

Cutting-plane methods can be traced back to Cheney and Goldstein (1959) and Kel-
ley’s cutting-plane method (Kelley 1960). These methods maintain a piecewise affine
lower bound or minorant on the objective, and improve it in each iteration using the
subgradient and value of the function at the current iterate. Each iteration requires the
solution of a linear program (LP), with size that increases with iterations. Cutting-
plane methods are extended to handle convex mixed-integer problems in Westerlund
and Pettersson (1995). Limited-memory or constraint-dropping versions, that drop
terms in the minorant so the LP solved in each iteration does not grow in size, are
given in Elzinga and Moore (1975); Dem’yanov and Vasil’ev (1985). Constraint drop-
ping for general outer approximation algorithms are also considered in Gonzaga and
Polak (1979). Many other variations on cutting-plane methods have been developed,
including the analytic center cutting-plane method introduced by Atkinson and Vaidya
(1995). A review of cutting-plane methods used in machine learning can be found in
Sra et al. (2012).

1.2.4 Bundle methods

Bundle methods are closely related to cutting-plane methods. The first difference is the
addition of a stabilization term, among which a proximal regularization term is most
common and leads to the so-called proximal bundle method (Kiwiel 1990; Frangioni
2020). Typically in each iteration of the proximal bundle method a quadratic pro-
gram (QP) must be solved. Other stabilization forms include the level bundle method
(Lemaréchal et al. 1995; Frangioni 2020) and the trust-region bundle method (Marsten
etal. 1975; Frangioni 2020). The second difference between cutting-plane and bundle
methods is the logic that updates the current point only if a certain sufficient descent
condition holds.

Bundle methods were first developed as dual methods in Lemaréchal (1975) and
Mifflin (1977); the primal form of bundle methods was mainly studied in the 1990s.
The first convergence proof for the proximal bundle method is given in Lemaréchal
(1978). A comprehensive review of the history and development of bundle methods
can be found in (Hiriart-Urruty and Lemaréchal 1996, Ch. XIV,XV). Later variations
of bundle methods include variable metric bundle methods which accumulate second
order information about function curvature in the proximal regularization term (Mifflin
1996; Chen and Fukushima 1999; Luksan and VI¢ek 1999; Burke and Qian 2000;
Haarala et al. 2004), bundle methods that handle inexact function values or subgradient
values (Hintermiiller 2001; Kiwiel 1985, 1995, 2006; Hare et al. 2016; van Ackooij
et al. 2017; Lv et al. 2018; de Oliveira and Solodov 2020), bundle methods with
semidefinite cutting sets replacing the traditional polyhedral cutting planes (Helmberg
and Rendl 2000), and bundle methods with generalized stabilization (Kiwiel 1999;
Frangioni 2002; Ben Amor et al. 2009; Frangioni and Gorgone 2014b; de Oliveira
and Solodov 2016). Bundle methods are also widely used in non-convex optimization
(Schramm and Zowe 1992; Kiwiel 1996; Luksan and Vicek 1998; Fuduli et al. 2004;
Haarala et al. 2007).

@ Springer

1690 T. Parshakova et al.

Incremental bundle methods (Emiel and Sagastizabal 2010) are based on a princi-
ple of selectively skipping oracle calls for some agents, while replacing them by an
approximation. Essentially, the function is evaluated when lower and upper estimates
on function values are not sufficient (van Ackooij and Frangioni 2018). This setting
was analyzed within a framework of inexact oracles (Emiel and Sagastizabal 2010;
de Oliveira et al. 2014; de Oliveira and Eckstein 2015; van Ackooij et al. 2016), i.e.,
noisy oracles that are “asymptotically exact”. Further, there has been an interest in
asynchronous bundle methods as well (Iutzeler et al. 2020; Fischer 2022), where the
agent oracle calls have varying finite running times.

Our method for parameter discovery relies on a standard level bundle method
(Lemaréchal et al. 1995) for a few initial iterations. We then set the value of the
proximal parameter to a Lagrange multiplier and proceed with the proximal bundle
method. In a separate study, de Oliveira and Solodov (2016) propose an algorithm
that automatically chooses between proximal and level bundle approaches at every
iteration. Another related line of research is based on variable metric bundle methods
(Kiwiel 1990; Lemaréchal et al. 1995; Lemaréchal and Sagastizdbal 1997; Kiwiel
2000; Rey and Sagastizdbal 2002; Frangioni 2002; de Oliveira et al. 2014; van Ack-
ooij and Frangioni 2018). In general, these approaches are not crafted for solving
composite function minimization satisfying our access conditions.

Our setting with difficult-to-evaluate components has been considered in bundle
methods before (Emiel and Sagastizdbal 2010). In those studies, the authors use the
inexact evaluations to skip the “hard” components. We, on the other hand, focus on
exact oracle evaluations or queries for each component f; alongside the structured
function g, which is known as partially exact bundle method (van Ackooij et al.
2017). Our structured function g presents a way to incorporate constraints into bundle
methods, which has also been considered before (Kiwiel 1990).

In our method we disaggregate the minorant of f, an idea which has been exten-
sively studied in the prior literature (Frangioni 2002; Lemaréchal et al. 2009; Frangioni
and Gorgone 2014a, b; Frangioni 2020). When combined with the structured function
g, which is not approximated by a minorant but handled exactly, we arrive at what is
referred to as a disaggregate partially exact bundle method.

1.2.5 Software packages

Despite the large literature on related methods, relatively few open-source software
packages are available. We found only one open-source implementation of a bundle
method that is compatible with our access requirements. BundleMethod. j1 (Kim
etal.2021)is aJulia package with implementations of proximal bundle method (Kiwiel
1990) and trust region bundle method (Kim et al. 2019). We found that in all our
examples OSBDO works substantially better.

We also mention here other existing open-source implementations of bundle meth-
ods that do not meet our access requirements. A Fortran implementation (Mikeld
2003) with Julia interface for multi-objective proximal bundle method (Mikela 2003;
Mikeld et al. 2016), available at Karmitsa (2016), requires the objective function to
have full domain. A Fortran implementation (Teo et al. 2010), uses bundle methods
for unconstrained regularized risk minimization. A limited memory bundle method

@ Springer

Implementation of an oracle-structured... 1691

(Karmitsa 2007; Haarala et al. 2007; Karmitsa and Mikeld 2010) is available as a
Fortran implementation at Karmitsa (2007), solves nonsmooth large-scale minimiza-
tion problems, either unconstrained (Karmitsa 2007; Haarala et al. 2007) or bound
constrained (Karmitsa and Mikeld 2010). An unconstrained proximal bundle method
(Diaz and Grimmer 2023) with Julia implementation is available at Diaz (2021).

1.3 Outline

We describe our assembled bundle method for oracle-structured distributed optimiza-
tion in Sect. 2. In Sect. 3 we take a deeper look at the agent functions f;, which often
involve additional variables that are optimized by the agent, and not used by the algo-
rithm, which we call private variables. We present several numerical examples in Sect.
4. A convergence proof for our algorithm is given in Sect. A.

2 Disaggregate partially exact bundle method

Here we describe our assembled bundle method to solve the oracle-structured dis-

tributed optimization problem (1). We use the superscript k£ to denote a vector or

function at iteration k, as in x{‘ or xk = (x{‘, R x,];), our estimates of xlf and x* at

iteration k. Each iteration involves querying the agent objective functions, i.e., eval-
uating f; ()Ef) and a subgradient q{‘ € af; ()Ef) at a query point)E{‘, fori =1,...,k,
along with some computation that updates the iterates x¥. (We will describe what the
specific query points are later.)

2.1 Minorants

The basic idea in a bundle or cutting-plane method is to maintain and refine a minorant
of each agent function, denoted fik : R" — R. (Minorant means that these functions

satisty fik (x;) < fi(x;) for all x; € R™.) They are constructed from initial (given)
minorants fio, and evaluations of the value and subgradients in previous iterations, as

A () = max (fl-k(x,'), AE + @ (o - if“)) Ci=1.....M.Q3)
Here we use the basic subgradient inequality
LG+ @D =5 < fi)

for all x; € R™, which shows that the lefthand side, which is an affine function of x;,

is a minorant of f;. We also note that the minorant (3) is tight at if“, ie.,

FHGEY = &, =1 M.

@ Springer

1692 T. Parshakova et al.

From these agent objective minorants we obtain a minorant of the oracle objective f,
e = A o+ A o, @)

and in turn, a minorant of /4,
R o = 00 + g (o). (5)

The minorant of f in (4) is referred to as a disaggregated minorant, to distinguish it
from forming a minorant directly of f.

2.1.1 Initial minorant

The simplest initial minorant fio is a constant, a known lower bound on the agent
objective f;(x;). Later we will see how more sophisticated minorants for the agent
objectives can be obtained. With a simple constant initial minorant for each agent, the
minorant f k is also piecewise affine function, since it is a sum of m terms, each the
maximum of k affine functions.

2.1.2 Lower bound on optimal value

Minorants allow us to compute a lower bound on #*, the optimal value of the problem
(1). Since A* is a minorant of 4, we have

Lk = min W*x) < n*. (6)

Evaluating L* involves solving an optimization problem, minimizing g plus the piece-
wise affine function f¥. Of course i (x¥) is an upper bound on 4*, so we have

L* < h* < h(x").
2.1.3 Gap-based stopping criterion

There is a multitude of stopping criteria that have been proposed for bundle methods
(Lemaréchal et al. 1995; Lemaréchal and Sagastizdbal 1997; Lemaréchal et al. 1996;
Frangioni 2020; Lemaréchal 2001; Hiriart-Urruty and Lemaréchal 1996, 2013). Many
of them are based on approximately satisfying the optimality conditions. For example,
we can terminate when the norm of the aggregate subgradient and aggregate lineariza-
tion error are both small (Lemaréchal and Sagastizabal 1997; Lemaréchal et al. 1996;
Frangioni 2020; Hiriart-Urruty and Lemaréchal 1996, Ch. XIV). Stopping can also be
done based on the predicted function decrease (Hiriart-Urruty and Lemaréchal 1996;
Frangioni 2020), which differs depending on the type of stabilization in the bundle
method (Hiriart-Urruty and Lemaréchal 1996, Ch. XV). We refer the reader to the
books (Hiriart-Urruty and Lemaréchal 1996, 2013) for more details on stopping cri-
terion for bundle methods. There are other reasonable choices of stopping criteria, for

@ Springer

Implementation of an oracle-structured... 1693

example based on the minorant error h(xky — fzk(ik“) and a subgradient of h* at
#5*1 see, e.g., (Lemaréchal 2001, Ch. 5.1).

Since we are in the regime where the agents are expensive to evaluate, solving a
minimization problem (6) is not an issue, and especially if it is not done every iteration,
i.e., we compute the lower bound L¥ every few iterations. The lower bound (6) gives
us a gap-based stopping criterion. In particular, this stopping criterion was previously
used in level bundle methods (Lemaréchal et al. 1995; Hiriart-Urruty and Lemaréchal
1996, Ch. XIV). We stop if either the absolute gap is small,

h(xk) _ Lk < Eabs’ 7

N

where €2 > 0 is a given absolute gap tolerance, or the relative gap is small,

h(x¥) — L* < e min{|h ()], |LF|} and h(*)LF > 0, (®)
where €™ > 0 is a given relative gap tolerance. (The sign condition guarantees that
min{|A(x¥)|, |L¥|} < |h*|.) This guarantees that we terminate with a point xk with
objective value that is either within absolute difference €% or within relative distance
€™ of h*.
For later reference, we define the relative gap as

bt
a)k = min{|A(xk)],|LK|} h(x)L >0 (9)
oo otherwise.
We define the true relative gap as
h(xk) —
G w0

true — |h*| ’

for h* # 0. The relative gap is an upper bound on the true relative gap, i.e., we have

w* > wk .. But ¥ is known at iteration k, whereas wf . is not.

2.2 Oracle-structured bundle method

The basic bundle method for (1) is given below. It includes two parameters n and
p (discussed later), and is initialized with an initial guess x9 of x, and the initial
minorants of the agent objective functions fl.o.

Algorithm 2.1 BUNDLE METHOD FOR ORACLE- STRUCTURED DISTRIBUTED OPTIMIZATION

given x0 € domh, h(xo), initial minorants f'io, parameters 1 € (0, 1) and p > 0.
fork=0,1,...
1. Check stopping criterion. Quit if (7) or (8) holds.
2. Tentative update. $¥+! = argmin, (fzk(x) + (p/2)|lx — xk ||§).
Record 7* (ik+l) and g(ik+l).
3. Query agents. Evaluate f; ()"cf“) and qf“ € df (if“), fori=1,..., M.

@ Springer

1694 T. Parshakova et al.

4. Compute h(zk*1) = fl()}k"‘l) 4oy fM(~k+l) T gk,
2
5. Compute 8% = h(xk) — <h" (kﬂ) +(p/2) H ck+1 _ xk”z)'

ckHl ok _h<~k+1) > sk
6. Update iterate. Set k1 = * @) * =1
xk otherwise.

7. Update minorants.
Update f'l.k+1 using (3), fori =1,..., M.
Update f'k"'l and Ak +1 using (4) and (5).

2.2.1 Comments

In step 1 we evaluate L, which involves solving an optimization problem, i.e., min-
imizing h*(x). We recognize step 2 as evaluating the proximal operator of h* at x*
(Parikh and Boyd 2014). This step also involves solving an 0pt1mlzat10n problem,
minimizing hk(x) plus the quadratic (proximal) term (p/2)||x — x ||2 We note that
we always have ¥¥*! € domg C dom f, so h(x¥t!) is always finite. Step 3, the
agent query, can be done in parallel across all agents. Steps 4 and 5 involve only sim-
ple arithmetic using quantities already computed in steps 2 and 3. Steps 1, 5, and 6 use
the quantity 4 (x¥), but that has already been computed, since x* is equal to a previous
%/ for some j < k, and so was computed in step 4 of a previous iteration.

The substantial computation in each iteration of the bundle method is the evaluation
of the lower bound in step 1, evaluating the proximal operator of h in step 2, and
querying each agent oracle in step 3. The computation of L* in step 1 is only used for
the stopping criterion, so this step can be carried out only every few steps, to reduce
the average computational burden.

2.2.2 Descent method

The quantity ¥ computed in step 5 is nonnegative. To see this, we note from step 2
that x = ¥**! minimizes A*(x) + (p/2)|x — xk||§,)

R + o/ 1FF = xH I3 < ARG + (o/2) 1k = XK
= hk(x%) (11)
= h(x"),

from which 8¢ > 0 follows. From step 6 we see that the bundle method is a descent
method, i.e., h(x*1) < h(x¥). More specifically, h(x**t1) < h(x*) if the tentative
step is accepted, i.e., x*T1 = X1 and h(x**1) = h(x¥) if the tentative step is not
accepted, i.e., x¥T1 = xk.

2.2.3 Convergence

In “Appendix A” for completeness we give a proof that the bundle method converges,
ie., h(x*) — h* as k — o0o. Convergence proofs for bundle methods have a long
history, dating back to the 1970s (Lemaréchal 1978).

@ Springer

Implementation of an oracle-structured... 1695

2.2.4 Choice of parameters

The bundle method is not particularly sensitive to the choice of 1; the value n = 0.01
works well. The value of p, however, can have a strong influence on the practical
performance of the algorithm. We discuss choices of p later in §2.4.

2.2.5 Dual variable

An estimate of an optimal dual variable ¢* € 9 f (x*) can be found when we compute
the lower bound LF in step 1. To do this we compute L¥ by solving the modified
problem

minimize fA!(x) 4+ g(¥)
subject to X = x,

with variables x € R"” and X € R”". (This is the consensus form; see, e.g., (Boyd
et al. 2011, Sect. 7).) The optimal dual variable associated with the constraint is our
estimate of g*.

2.3 Diagonal preconditioning

Practical convergence of the bundle method is greatly enhanced by diagonal precon-
ditioning. This means that we choose a diagonal matrix D with positive entries, and
define the (scaled) variable ¥ = D~x. Then we solve the problem (1) with variable
X and functions

f&x) = f(Dx), g&x) = g(Dx).

Note that g is structured, since g is. We recover the solution of the original problem
(1) as x* = DXx™.

The idea of preconditioning has a long-standing history dating back to 1845 (Jacobi
1845) and is a crucial technique in optimization; see, e.g., (Hestenes and Stiefel 1952;
Sinkhorn 1964; Concus et al. 1985; Nocedal and Wright 1999; Bradley 2010; Takapoui
and Javadi 2016). It is also closely related to the idea of variable metric methods, where
essentially a different (not necessarily diagonal) preconditioning is applied each step.
Variable metric bundle methods have been studied in Lemaréchal and Sagastizabal
(1994); Bacaud et al. (2001); Helmberg and Pichler (2017). In contrast to our com-
putationally cheap preconditioning technique, which is computed once before the
algorithm starts, existing variable metric bundle methods are considerably more com-
plex (Kiwiel 1990; Lemaréchal et al. 1995; Lemaréchal and Sagastizdbal 1997; Kiwiel
2000; Rey and Sagastizdbal 2002; Frangioni 2002; de Oliveira et al. 2014; van Ack-
ooij and Frangioni 2018); in addition, most are not compatible with our specific access
conditions.

Given X, we query agent i and the point x; = D;X;, where D; is the submatrix
of D associated with x;. Agent i responds with f;(x;) = ?i (x;) and g; € 9 f;(x;).

@ Springer

1696 T. Parshakova et al.

The algorithm uses the function value without change, since f;(x;) = 7,- (x;), and the
scaled subgradient

g; = Dgi € 3f;(x).

Diagonal scaling can be thought of as a thin layer or interface between the algorithm,
which works with the scaled variable X and functions ?i and g, and the agents, which
work with the original variables x; and the original functions f;. In particular, neither
the algorithm nor the agents need to know that diagonal scaling is being used, provided
the query points and returned subgradients are scaled correctly.

2.3.1 A specific choice for diagonal scaling

The matrix D scales the original variable. Our goal is to scale the variables so they
range over similar intervals, say of width on the order of one. To do this, we assume
that we have known lower and upper bound on the entries of x,

l<x<u, (12)

where [< u. (Presumably these constraints are included in g.) With these variable
bounds we can choose

D = diag(u —). (13)

The new variable bounds have the form I < z < u, with @ — [= 1, the vector with all
entries one.

2.4 Proximal parameter discovery

While the bundle algorithm converges for any positive value of the parameter p,
fast convergence in practice requires a reasonable choice that is somewhat problem
dependent; see, e.g., Diaz and Grimmer (2023). Several schemes can be used to find
a good value of p. In one common scheme p is updated in each iteration depending
on various quantities computed in the iteration. (As an example of such an adaptive
scheme, see (Boyd et al. 2011, §3.4.1).) Another general scheme is to start with some
steps that are meant to discover a good value of p, as in Rey and Sagastizdbal (2002).
For both such schemes, we fix p after some modest number K of iterations, so our
proof of convergence (which assumes a fixed value of p) still applies. Our experiments
suggest that a natural p-discovery method, described below, works well in practice.
The idea of switching between proximal and level bundle methods has been proposed
in de Oliveira and Solodov (2016). This method is more complex than our proposed
simple approach, which switches just once, after a fixed number of iterations.
For the discovery steps, we modify the update in step 2, where we minimize

R () + (o/2)llx — x* |13, (14)

@ Springer

Implementation of an oracle-structured... 1697

i.e., evaluate the proximal operator of h* at x*, to solving the closely related problem

minimize (1/2)]x — x¥||3 s
subject to h* (x) < ik, (1%
where n* € (L*, h(x*)). (This ensures that the problem is feasible, and that the
constraint is tight.) The problem (15) finds the projection of the point x* onto the
n*-sublevel set of the minorant. The idea of projecting onto the sublevel set instead of
carrying out an explicit proximal step can be found in, e.g., (Frangioni 2020, Sect. 2.3).

It is easy to show that any solution of (15) is also a solution of (14), for some value
of p. Indeed we can find this value as p = 1/A, where A is an optimal dual variable for
the constraint in (15). In other words: When we solve (15), we are actually computing
the proximal operator, i.e., solving (14), for a value of p that we only find after solving
it.

Our p-discovery method uses the update (15) for the first K = 20 steps, with

p h(F)+ LK
=

After K steps, we use the standard update (14) with the value of p chosen as the
geometric mean of the last 5 values found during the discovery steps.

2.5 Finite memory

Evidently the optimization problems that must be solved to compute L¥ in step 1 and
#5+1in step 2 grow in size as k increases. A standard method in bundle or cutting-plane
type methods is to use a finite memory or constraint dropping version, also known as
bundle compression (Correa and Lemaréchal 1993; de Oliveira and Eckstein 2015).
The essential element that underpins theoretical convergence in compressed bundle
methods is aggregate linearization (Kiwiel 1983; Correa and Lemaréchal 1993). It is
given by the linearization of the minorant,

lf"l‘] (xi) — f;k(ilk"r]) + (él(("r])T(xl_ _ il(('f'])’

where c}lk ey fik ()Ef *1). As a result, a finite memory version replaces the minorant
(3) with

FEH (i) = max (lf“(xi), max (A& + @™ —f{'“))) :

j=max{0,k—m~+2},....k

foralli = 1,..., M. Thus we use only the last m — 1 subgradients and values in
the minorant, instead of all previous ones with an additional affine term for aggregate
linearization. This results in a total of m affine functions. For further information on
bundle compression, we refer the reader to Correa and Lemaréchal (1993); Lemaréchal
(2001); de Oliveira and Eckstein (2015); Frangioni (2020). Interestingly, the minorant

@ Springer

1698 T. Parshakova et al.

fikH (x;) can be reduced to just two affine pieces. However, in practical applications,
a smaller bundle size leads to slower convergence rates (de Oliveira and Eckstein
2015). (Finite-memory should not be confused with limited-memory, which can refer
to a quasi-Newton algorithm that approximates the Hessian using a finite number of
function and gradient evaluations.)

With finite memory it is possible that the lower bounds L¥ are not monotone non-
decreasing. In this case we can keep track of the best (i.e., largest) lower bound found
so far, for use in our stopping criterion.

3 Agents

In this section we discuss some details of the agent objective functions, and how to
compute the value and a subgradient. For simplicity we drop the subscript i that was
used denote agent 7, so in this section, we denote x; as x, f; as f, g; as ¢, and so on.

3.1 Private variables and partial minimization

In many cases the agent function f is defined via partial minimization, as the optimal
value of a problem with variable x and additional variables z. Specifically, f (x) is the
optimal value of the problem

minimize Fy(x, z)
subjectto Fi(x,z) <0, i=1,...,m,
Hi(x,z)=0, i=1,...,p,

with variable z. (In this optimization problem, x is a parameter.) Here F; are jointly
convex in (x, z), and H; are jointly affine in (x, z). This is called partial minimization
(Boyd and Vandenberghe 2004, §4.1), and defines f that is convex. To evaluate f we
must solve a convex optimization problem. We refer to x as the public variable for the
agent, and z as its private variable, since its value (or even its existence) is not known
outside the agent.

We now explain how to find a subgradient ¢ € 9 f(x). We solve the equivalent
convex problem

minimize Fy(X, z)

subjectto F;(¥,2) <0, i=1,...,m,
Hi(x,2) =0, i=1,...,p,
X =x,

with variables z and X. (As in the problem above, x is a parameter in this optimization
problem.) We assume that strong duality holds for this problem (which is guaranteed if
the stronger form of Slater’s condition holds), with v denoting an optimal dual variable
for the constraint X = x. Then it is easy to show that ¢ = —v is a subgradient of f
(Boyd et al. 2022) assuming strong duality holds.

@ Springer

Implementation of an oracle-structured... 1699

3.2 Soft constraints and slack variables

We assume that the domain of the agent objective function includes the domain of
g. This is critical since the agents will always be queried at a point X € dom g, and
we need the agent objective function to be finite for any such x. In some cases this
property does not hold for the natural definition of the agent objective function. Here
we explain how to modify an original definition of an agent objective function f so
that it does.

Let f be the original agent objective function, which does not satisfy dom f C
dom g. It is often possible to replace constraints that appear in the original definition
of f with soft constraints, that ensure that dom f C dom g holds.

There is also a generic method that uses slack variables to ensure that f has full
domain (which implies the domain condition). We define

£ @) = min (F®) + 215 = x11).

where 2 > 0 is a parameter. This f is convex and has full domain. For A large enough
and x € dom f, we have X = x. We can think of X — x as a slack variable, used to
guarantee that f(x) is defined for all x. We interpret A as a penalty for using the slack
variable.

4 Examples

In this section we present a number of examples to illustrate our method. There are
better methods to solve each of these examples, which exploit the custom structure
of the particular problem. Our purpose here is to show that OSBDO, with default
parameters, achieves good practical performance, i.e., attains modest accuracy in some
tens of iterations, on a variety of large-scale practical problems.

We use the default parameters for the first four examples, except that we continue
iterations after the algorithm would have terminated with the default tolerances €* =
1073 and €™ = 1072, to show the continued progress. The final subsection gives

experimental results for the bundle method with finite memory (described in §2.5).

4.1 Supply chain

Supply chain problems involve the placement and movement of inventory, including
sourcing from a supplier and distribution to an end customer. A comprehensive review
can be found in Trisna et al. (2016). Here we consider a single commodity network
composed of a series of M trans-shipment components. Each of these has a vector a;
of (nonnegative) flows into it, and a vector b; of (nonnegative) flows out of it. These
are connected in series, with the first trans-shipment component’s output connected
to the second component’s input, and so on, so

by=as, ..., by_1 =ay. (16)

@ Springer

1700 T. Parshakova et al.

ain bi1 ap bara
—
— | Trans- Trans- .
Source : . : : : . : Sink
shipment 1 : : : shipment M —
a1,q1 b
bLPl AM,q Mipam

Fig. 1 Supply chain consisting of a source (left), a sequence of M trans-shipment components (middle),
and a sink (right)

The vector a; gives the flows into the first trans-shipment component, and by is the
vector of flows out of the last trans-shipment component. This is illustrated in Fig. 1.
We assume the trans-shipment components are lossless, which means that

1Ta; =1"p;, i=1,..., M, (17)

i.e., the total flow of the commodity into each trans-shipment component equals the
total flow leaving it.

Each trans-shipment component has a nonnegative objective function f;(a;, b;)
which we interpret as the cost of shipping the commodity from the input flows to the
output flows. In addition there is a source (purchase) objective term 1 (ay), the cost
of purchasing the commodity, and a sink (delivery) objective term %™ (b,/), which
we interpret as the negative revenue derived from delivering the commodity. (So we
expect that /5 (a) is nonnegative, and ¥*"%(b,) is nonpositive.)

The overall objective is the total of the trans-shipment costs and the source and sink
costs,

S (ar) + filar, br) + -+ fau(am, b)) + S (bay).

Our goal is to choose the input and output flows ¢; and b;, subject to the flow conser-
vation constraints (16), so as to minimize this total objective. We assume ', wsmk,
and all f; are convex, and that {%"° and f; are nonnegative.

4.1.1 Oracle-structured form

We put the supply chain problem into the form (1) as follows. We take x; = (a;, b;)
fori =1,..., M, with variable range 0 < x < u, where u is an upper bound on the
flows. We take g to be the source and sink objective terms, plus the indicator function
of the flow conservation constraints (16), variable ranges, and flow balance (17):

Y + ¢ by) (16), (17), 0 <x <u,
800 = 00 otherwi
wise.
Roughly speaking, g(x) is the gross negative profit, and f(x) is the total shipping
cost.
Our initial minorant is the indicator function of the flow conservation constraint
(17), i.e., 0 if (17) holds and oo otherwise. Note that this includes the lower bound

0 =< fi(xi).

@ Springer

Implementation of an oracle-structured... 1701

4.1.2 Trans-shipment cost

The trans-shipment cost for agent i is based on a fully bipartite graph, with flow along
each edge connecting one of ¢g; inputs to each of p; outputs. We represent the edge
flows as X; € RPi*9 where q; € R% and b; € R, and (X;) jx is the flow from input
k to output j.

We assume that each edge has a convex quadratic cost of the form

(D) jr(Xi) jk + (E) jk (X5,

with (D;)jx > 0, and in addition is capacitated, i.e., 0 < (X;)jx < (C})jk, with
(Ci) jk = 0. Due to the capacity constraints, the domain condition dom f; © dom g
need not hold, so in addition we include a slack variable. We define f;(x;) as the
optimal value of the trans-shipment problem

minimize 3, (D) (Xi)ji + (B0 je(X0%,) + 217l
subject to 0 < (X,')jk < (Ci)jk, j=1...,pi, k=1,...,q;
X =@k, k=1,....qi
Xk =By, j=1,....pi
@i, bi) —r =x;,

with variables (X;) jx, a;, b;, and r. Here A is a large positive parameter that penalizes
using slack variables, i.e., having a; # a; or 15,- # b;.
To evaluate f;(x;) we solve the problem above, which is a convex QP. To obtain a

subgradient of f; at x; we use the negative optimal dual variables associated with the
last constraint as ¢;.

4.1.3 Source and sink costs
We take simple linear source and sink costs,
va) =alar, ™ by) = B bu,
with @ > 0 and B < 0. We can interpret o as the price of acquiring the commodity

at input k of the first trans-shipment component, and — g as the price of selling the
commodity at output k of the last trans-shipment component.

4.1.4 Problem instance

We consider a problem instance with M = 5 trans-shipment components, and dimen-
sions of a;, b; given by

(20,30), (30,40), (40,25), (25,35), (35,20).

@ Springer

1702 T. Parshakova et al.

0 20 40 60 80 100 120 140
k

Fig.2 Relative gap and true relative gap versus iterations for supply chain example

We choose the edge capacities (C;) jx from a log normal distribution, with log(C;) jx ~
N(0, 1). From these edge capacities we construct an upper bound on each component
of x;, as the maximum of the sum of the capacities of all edges that feed the flow
variable, and the sum of the capacities of all edges that flow out of it. This gives us our
upper bound u. The linear cost coefficients (E;) j; are log normal, with log(E;) jx ~
N(0.07,0.7). The quadratic cost coefficients (D;) jx are obtained from the capacity
and linear cost coefficients as

(Di) jk = (E) ji/2(Ci) jx)-

The sale prices « are uniform on [8, 10] and retail prices —p are chosen uniformly
on [10, 12]. The total problem size is n = 300 public variables (the input and output
flows of the trans-shipment components), with an additional 4975 private variables in
the agents (the specific flows along all edges of the trans-shipment components). The
overall problem is a QP with 5275 variables.

4.1.5 Results

Figure 2 shows the relative gap w* and true relative gap w{‘rue, versus iterations. With
the default stopping criterion parameters the algorithm would have terminated after
80 iterations, when it can guarantee that it is no more than 1% suboptimal. In fact, it is
around 0.3% suboptimal at that point. This is shown as the vertical dashed line in the
plot. We can also see that the relative accuracy was in fact better than 1% after only
59 iterations, but, roughly speaking, we did not know it then.

@ Springer

Implementation of an oracle-structured... 1703

4.2 Resource allocation

Resource allocation problems consider how to allocate a limited amount of several
resources to a number of participants in order to optimize some overall objective. This
kind of problem arises in communication networks (Han and Liu 2008), urban devel-
opment (Wei et al. 2020), cloud computing (Choi and Lim 2016), and many others.
Various algorithms have been proposed to solve this problem, with interesting ones
including ant colony algorithm (Yin and Wang 2006), a genetic algorithm (Liu et al.
2005), and a graph-based approach (Zhou et al. 2021). In this section, we demonstrate
how bundle method can be exploited to address a distributed version of the generic
resource allocation problem.

4.2.1 Resource allocation problem

We consider the optimal allocation of n resources to N participants. We let r; € R}
denote the amounts of the resources allocated to participant i, fori = 1,..., N.
The utility derived by participant i is U;(r;), where U; : R’jr — R is a concave
nondecreasing utility function. The resource allocation problem is to allocate resources
to maximize the total utility subject to a limit on the total resources allocated:

maximize ZzN=1 U;(ry)

subjectto r; >0, i=1,...,N
YiLiri <R
with variables rq, ..., ry, where R € R’J’r is the total resources to be allocated, i.e.,

the budget. We denote the optimal value, i.e., the maximum total utility, as a function
of R as U*(R). It is also concave and nondecreasing. When we solve this problem, an
optimal dual variable associated with the last (budget) constraint can be interpreted as
the prices of the resources.

4.2.2 Distributed resource allocation problem

We have M groups of participants, each with its own set of participants, resource
budget R; € R”, and utility U} (R;). The distributed resource allocation problem is

maximize Zlﬁil Ul (R;)
subjectto R; >0, i=1,....,.M
Z?il Ri < R,

with variables Ry, ..., Ry, where R is the total budget of resources. This problem
has exactly the same form as the resource allocation problem, but here U(R;) is the
optimal total utility for group i of participants, whereas in the resource allocation
problem, Uj (r;) is the utility of the single participant i.

@ Springer

1704 T. Parshakova et al.

4.2.3 Oracle-structured form

Each agent is associated with a group in the distributed resource allocation problem.
We take x; = R;, the total resource allocated to the participants in group i. We take
agent objective functions

fitxi)==Ur(xi), i=1,...., M,

the optimal (negative) total utility for its group of participants, given resources x;. We
take the structured objective function to be

2(x) = {0 X1+ +xy <R, x>0, i=1,....M
oo otherwise.

With these agent and structured objectives, the problem (1) is equivalent to the
distributed resource allocation problem. The resource allocations to the individual
participants within each group are private variables; the public variables are the total
resources allocated to each group.

To evaluate f;(X;), we solve the resource allocation problem for group i. To find
a subgradient g € 9 f;(x;), we take the negative of an optimal dual variable in the
resource allocation problem, i.e., the negative of the optimal prices. To obtain a range
on each variable, we use 0 < x; < R.

4.2.4 Problem instance
Our example uses participant utility functions of the form
U;(r;) = geomean (A;r; + b;),

where geomean(u) = ([]/_, u,-)l/ P for u € RY is the geometric mean function. The
entries of A; are nonnegative, so U; is concave and nondecreasing. We choose A; to be
column sparse, with around % columns chosen at random to be nonzero. The nonzero
entries in these columns are chosen as uniform on [0, 1]. We choose entries of b; to be
uniform on [0, %]. The resource budgets R; are chosen from log R; ~ A (log %, 1).
The initial minorant is given by

M N;

f0=>""" —geomean(A;;R + b)),

i=1 j=1

the negative of the utility if all agents were given the full budget of resources.

For the specific instance we consider, we take n = 50 resources and M = 50 agents,
each of which allocates resources to N; = 10 participants. (As a single resource
allocation problem we would have 50 resources and 500 participants.) The utility
functions use p = 3, i.e., each is the geometric mean of 5 affine functions.

@ Springer

Implementation of an oracle-structured... 1705

k
Wirye

102 5 Wk

101 4

1073 4

0 20 40 60 80 100

Fig.3 Relative gap and true relative gap versus iterations for resource allocation example

4.2.5 Results

Figure 3 shows the relative gap «* and true relative gap w{‘rue versus iterations. With
the default stopping criterion the algorithm would have terminated after 47 iterations
(shown as the vertical dashed line), when it can guarantee that it is no more than 1%
suboptimal. In fact, it is around 0.5% suboptimal at that point. We can also see that
the relative accuracy was better than 1% after only 33 iterations.

4.3 Multi-commodity flow

Multi-commodity flow problems involve shipping different commodities on the same
network in a way such that the total utility is maximized, while the total flow on
each edge stays below its capacity. In Ouorou et al. (2000) authors give a survey of
algorithms for this problem. We consider a network defined by a graph with p vertices
or nodes and ¢ directed edges, defined by the incidence matrix A € R”*9. The network
supports the flow of M different commodities. Each commodity has a source node,
denoted r; € {I1,..., p}, and a sink or destination node, denoted s; € {1,..., p}.
The flow of commodity i from the source to destination is given by d; > 0. We let
Zi € R‘i be the vector of flows of commodity i on the edges. Flow conservation is the
constraint

AZ[+dj(€rl-_€Si):O, izl,...,M,

where e denotes the kth unit vector, with (ex)x = 1 and (ex); = O for j # k. Flow
conservation requires that the flow is conserved at all nodes, with d; injected at the
source node, and d; removed at the sink node. The utility of flow i is U;(d;), where

@ Springer

1706 T. Parshakova et al.

U, is a concave nondecreasing function. Our objective is to maximize the total utility
Ui(di) + -+ Um(dp).

The total flow on the edges must not exceed the capacities on the edges, given by
cE Rz_, Le.,

21+ +zm Zc.

(This capacity constraint couples the variables associated with the different commodi-
ties.)

The variables in this multi-commodity flow problemare z1, . . ., zps anddy, . . ., dy.
The data are the incidence matrix A, the edge capacities ¢, the commodity source and
sink nodes (7;, s;), and the flow utility functions U;.

It will be convenient to work with a form of the problem where we split the capacity
on each edge into M different capacities for the different commodities. We take

zi<c¢, i=1,..., M,

where ¢i + -4+ cy = candc¢; > 0fori = 1,..., M. We interpret ¢; as the
edge capacity assigned to, or reserved for, commodity i. Our multi-commodity flow
problem then has the form

maximize Uy(dy) + - - -+ Uy (dy)
subjectto 0 <z; <¢;, i=1,....M
Azi +di(ey, —e5;) =0, i=1,....M
ci+--F+ey=c, ¢>0, i=1,....M,

with variables z;, d;, and ¢;. This is evidently equivalent to the original multi-
commodity flow problem.

4.3.1 Oracle-structured form

We can put the multi-commodity flow problem into oracle-structured form as follows.
We take x; = c;, the edge capacity assigned to commodity i. We take the range of x;
as 0 < x; < c. We take the agent cost function f;(x;) to be the optimal value of the
single commodity flow problem (expressed as a minimization problem)

minimize —U,(d;)
subjectto 0 < z; < x;
Az +d; (er,- - es,-) =0,

with variables z; and d;. (Here x; = c¢; is a parameter.) These functions f;(x;) are
convex and nonincreasing in x;, the capacity assigned to commodity i. To evaluate f;
we solve the single commodity flow problem above; a subgradient g; is obtained as
the negative optimal dual variable associated with the capacity constraint z; < x;.

@ Springer

Implementation of an oracle-structured... 1707

We take g(x) to be the indicator function of
x1+--4+xy=c, x>0, i=1,....M

(which includes the ranges of x;).

All together there are n = M ¢ variables, representing the allocation of edge capac-
ity to the commodities. There are also M (¢ + 1) private variables, which are the flows
for each commodity on each edge and the values of the flows of each commodity.

4.3.2 Problem instance

We consider an example with M = 10 commodities, and a graph with p = 100
nodes and ¢ = 1000 edges. Edges are generated randomly from pairs of nodes, with
an additional cycle passing through all vertices (to ensure that the graph is strongly
connected, i.e., there is a directed path from any node to any other). We choose the
source-destination pairs (r;, s;) randomly. We choose capacities ¢; from a uniform
distribution on [0.2, 2]. The flow utilities U; are linear, i.e., U;(d;) = b;d;, with b;
chosen uniformly on [0.5, 1.5]. This problem instance has n = 10000 variables, with
an additional 10010 private variables.

4.3.3 Results

Figure4 shows the relative gap o and true relative gap w{‘ruc versus iterations. With
the default stopping criterion the algorithm would have terminated after 14 iterations
(shown as the vertical dashed line), when it can guarantee that it is no more than 1%
suboptimal. In fact, it is around 0.6% suboptimal at that point. We can also see that
the relative accuracy was better than 1% after only 13 iterations.

4.4 Federated learning

Federated learning refers to distributed machine learning, where agents keep their local
data and collaboratively train a model using a distributed algorithm. An overview of
the development of federated learning is given in Li et al. (2020). In this section we
consider the federated learning problem.

We are to fit a model parameter & € RY to data that is stored in M locations.
Associated with each location is a function L; : RY — R, where L; () is the loss for
parameter value 0 for the data held at location i. We seek 0 that minimizes

M

> Li®) + RO).

i=1
where R : RY - RU {oo}isa regularization function. We assume that L; and R are
convex, so this fitting problem is convex. In federated learning (Kairouz et al. 2021),
we solve the fitting problem in a distributed manner, with each location handling its
own data.

@ Springer

1708 T. Parshakova et al.

0 5 10 15 20
k

Fig.4 Relative gap and true relative gap for multi-commodity flow example

4.4.1 Oracle-structured form

We can put the federated learning problem into oracle-structured form by taking x;
to be the parameter estimate at location i, f; = L;, and g the indicator function for
consensus plus the regularization,

Rx)xy=---=xpy
o0 otherwise.

gx) = {

4.4.2 Problem instance

We consider a classification problem with logistic loss function,

nj
Li@ = log (1 + exp(—v,'juiTjO)) ,
j=1

where v;; € {—1, 1} is the label and u;; € R is the feature value for data point j in
location i, and n; is the number of data points at location i. We use £ regularization,
i.e., R(6) = A||0]1, where A > 0.

Our example takes parameter dimension d = 500, M = 10 locations, and n; =
1000 data points at each location. In this problem there are no private variables, and
the total dimension of x is n = Md = 5000.

We generate the data points as follows. The entries of u;; are N(0, 1), and we take

vij = sign (uiTjGtr”e + Zij) ,

@ Springer

Implementation of an oracle-structured... 1709

102 4

101 4

100 4

10-1 4

10-2 4

1073 4

1074 4

0 20 40 60 80 100
k

Fig.5 Relative gap and true relative gap versus iterations for federated learning example

where z;; ~ N0, 10_2) and 6'™° is a true value of the parameter, chosen as sparse
with around 50 nonzero entries, each A/(0, 1). We choose A = 5.

4.4.3 Results

Figure 5 shows the relative gap o and true relative gap a){‘rue versus iterations. With
the default stopping criterion the algorithm would have terminated after 53 iterations
(shown as the vertical dashed line), when it can guarantee that it is no more than 1%
suboptimal. In fact, it is around 0.3% suboptimal at that point. We can also see that
the relative accuracy was better than 1% after only 39 iterations.

4.5 Finite-memory experiments

In this subsection we present results showing how limiting the memory to various
values affects convergence. In many cases, limiting the value to m = 20 or more has
negligible effect. As an example, Fig. 6 shows the effect on convergence of memory
with values m = 20, m = 30, m = 50, and m = oo for the federated learning
problem described above. In this example finite memory has essentially small effect
on the convergence.

As an example of a case where finite memory does affect the convergence, Fig. 7
shows the effect of finite memory with values m = 20, m = 30, m = 50, and m = oo.
With m = 20, the algorithm shows minimal improvement beyond double the number
of iterations required for a method with m = oo to achieve the default tolerance level,
with m = 30 there is a modest increase; with m = 50 there is a small increase.

@ Springer

1710 T. Parshakova et al.

102 4

101 4

100 4

10-1 4

10-2 4

1073 4

1074 4

0 20 40 60 80 100
k

Fig.6 Relative gap (solid) and true relative gap (dashed) versus iterations for federated learning example,
with finite memory values m = 20, m = 30, m = 50, and m = oo

L — m=20
10! - m = 30
m = 50
e M=o
100 4
10-1 4
10—2 i
10-3 4
1074 4 %
0 20 40 60 80 100 120 140

k

Fig. 7 Relative gap (solid) and true relative gap (dashed) versus iterations for supply chain example, with
finite memory values m = 20, m = 30, m = 50, and m = oo

5 Conclusions

We focus on developing a good practical method for distributed convex optimiza-
tion in a setting where the agents support a value/subgradient oracle, which can take
substantial effort to evaluate, and the coupling among the agent variables is given
explicitly and exactly as a structured convex problem, possibly including constraints.

@ Springer

Implementation of an oracle-structured... 1711

(This differs from the more typical setting, where the agent functions are differentiable
and can be evaluated quickly, and the coupling function has an analytical proximal
operator.) Our assumptions allow us to consider methods that carry out more compu-
tation in each iteration, such as cutting-plane or bundle methods, that typically involve
the solution of a QP. We have found that a basic bundle-type method, when combined
with diagonal scaling and a good algorithm parameter discovery method, gives good
practical convergence across a number of problems types and sizes. Here by good
practical convergence we mean that with default algorithm parameters, a reasonable
approximate solution can be found in a few tens of iterations, and a higher accuracy
solution (which is generally not needed in applications) can be obtained in perhaps
a hundred or fewer iterations. (Theoretical convergence of the algorithm is always
guaranteed.)

Our methods combines multiple variations of known techniques for bundle-type
methods into a solver has a number of attractive features. First, it has essentially no
algorithm parameters, and works well with the few parameters set to default values.
Second, it achieves good practical convergence across a number of problems types and
sizes. Third, it can warm start when the coupling changes, by saving the information
obtained in previous agent evaluations.

Acknowledgements We thank Parth Nobel, Nikhil Devanathan, Garrett van Ryzin, Dominique Perrault-
Joncas, Lee Dicker, and Manan Chopra for very helpful discussions about the problem and formulation.
The supply chain example was suggested by van Ryzin, Perrault-Joncas, and Dicker. The communication
layer for the implementation with structured variables, to be described in a future paper, was designed by
Parth Nobel and Manan Chopra. We thank Mateo Diaz for pointing us to some very relevant literature that
we had missed in an early version of this paper. We thank three anonymous reviewers who gave extensive
and helpful feedback on an early version of this paper. We gratefully acknowledge support from Amazon,
Stanford Graduate Fellowship, Office of Naval Research, and the Oliger Memorial Fellowship. This research
was partially supported by ACCESS — AI Chip Center for Emerging Smart Systems, sponsored by InnoHK
funding, Hong Kong SAR.

Appendix A: Convergence proof

In this section we give a proof of convergence of the bundle method for oracle-
structured optimization. Our proof uses well known ideas, and borrows heavily from
Belloni (2005). We will make one additional (and traditional) assumption, that f and
g are Lipschitz continuous on dom g.

We say that the update was accepted in iteration k if x¥*1 = ¥%+1. Suppose this
occurs initerations k| < kp < ---. Welet K = {ky, k>, ...} denote the set of iterations
where the update was accepted. We distinguish two cases: |K| = oo and | K| < oo.

Infinite updates

We assume |K | = oo. First we establish that 8 — 0 as s — oo. Since k = k is an
accepted step, from step 6 of the algorithm we have

nsks < h(xk) — RSty = h(xh) — h(xb),

@ Springer

1712 T. Parshakova et al.

Summing this inequality from s = 1 to s = [and dividing by n gives

’

Xl:aks _hGR) — k) a0 — at
= n a n

which implies that 8% is summable, and so converges to zero as s — 0.
Since ¥%*! minimizes A% (x) + (p/2)[|lx — x*s]|3, we have

o (F1) + p @ — x5 0.
Using 5+ = xk+1 = xks+1 we have
,o(xkY — ka“) € ahks (xks“> .
It follows that
= h) 2 i) 2 AR 4 p (s — e T - b,

We first rewrite this as

h* —]/Alks (xks+1)
1Y

> (b — xkorn)T (% — ko) 4 (ks — ko) T (ks — kst
e e e
and then in the form we will use below,

2k — k)T (et = k) < @/p) (= bR) = 26— 3,
Now we use a standard subgradient algorithm argument. We have

[e e e R .

< I = X IE /) (= iR) — e — 3

= lx* —x*13 + 2/p) (h* — h(x") + 5"") -

Summing this inequality from s = 1 to s = [and re-arranging yields
l !
@/0) Y () = 7)< Ikt = 13 = e — 13+ 2/0) Y 8%
s=1 s=1

< Ikt — x*)13 + 2(h(x%) — B*) /np.

It follows that the nonnegative series & (xks)—h* is summable, and therefore, i (x*s) —
h* as s — oo.

@ Springer

Implementation of an oracle-structured... 1713

Finite updates

We assume |K| < oo, with p = max K its largest entry. It follows that for any k > p,
we have h(x¥) — h ()Ek“) < n8k. Note that x* = x? for all k > p + 1. Moreover,
using

2 T
142 P2 = R 2 ij+1 _ poZ) (xp _ik+1) (G2 _ ghty
with p(x? — #F1) € ah* (K1) and A+ (F442) > AR (#442), we get

Sk — skH1 > phtl gh+2) _ pk (ik—i-l) —0 (xp _)Ek—i-l)T (FFH2 gkt

p/2) ka+2 _ gkt Hi
> (p/2) HJZHZ _ ik+1Hi_

Therefore, 88 > 851 4 (p/2) H)Zk+2 — gkl ||§ for all k > p + 1. Then from

ilk(xp) 2 ilk (ik-‘rl) + p(xp _ik-‘rl)T(xp _ik+l)
2
= h(x*) — 8" + (p/2) pr _ gkl H2
it follows that || x? — &1 < 26%/p < 257 /p.
Now we use the assumption that f and g are Lipschitz continuous with Lipschitz

constant L for all x € dom g. Every g € Bfk(x) has the form g =), _; 6;¢4", with
6, > 0and Z, 6; = 1, a convex combination of normal vectors of active constraints at

x, where g' € 3 f (x"). Therefore, h* (x) = f¥(x) + g(x) is 2L-Lipschitz continuous.
Combining this with

<y B (), nst < () e

we have

(1—ms* <h (ik+1) —h <x~k> 1k (ik) _jk <ik+l> <4L Hik _ gkt ”2

Therefore, from
(1—n)?p % k k+1 p
3012 2(5) SZ(‘S =9)58 ’
k>p k>p

@ Springer

1714 T. Parshakova et al.

we can establish that 8% converges to zero as k — oco. This implies

k— 00

. 2
lim <hk ()zk“) +(p/2) H)E"“ _ poZ) = h(xP).
- Py — jp (k1)) = p_ gkl o 28
Also from kli>nolo (h(xP) — h (Z**1)) =0and |x” — % ”2 < 2 it follows that

N 2
lim A% (2"“) —h(xP), lim pr _ gkt H —0.
k—00 k—00 2

Hence, we get 0 € dh(x?), which implies h(x?) = h*.

References

Agrawal A, Verschueren R, Diamond S, Boyd S (2018) A rewriting system for convex optimization prob-
lems. J Control Decis 5(1):42-60

Atkinson D, Vaidya P (1995) A cutting plane algorithm for convex programming that uses analytic centers.
Math Program 69:1-43

Bacaud L, Lemaréchal C, Renaud A, Sagastizabal C (2001) Bundle methods in stochastic optimal power
management: a disaggregated approach using preconditioners. Comput Optim Appl 20:227-244

Belloni A (2005) Lecture notes for IAP 2005 course introduction to bundle methods. Operation Research
Center, MIT, Version of February, 11

Ben Amor H, Desrosiers J, Frangioni A (2009) On the choice of explicit stabilizing terms in column
generation. Discret Appl Math 157(6):1167-1184

Birgin E, Martinez J, Raydan M (2003) Inexact spectral projected gradient methods on convex sets. IMA J
Numer Anal 23(4):539-559

Boyd, S, Duchi J, Pilanci M, Vandenberghe L (2022) Stanford EE 364b, lecture notes on subgradients.
URL: https://web.stanford.edu/class/ee364b/lectures/subgradients_notes.pdf

Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press, Cambridge

Boyd S, Parikh N, Chu E (2011) Distributed optimization and statistical learning via the alternating direction
method of multipliers. Found Trends Mach Learn 3(1):1-122

Bradley A (2010) Algorithms for the equilibration of matrices and their application to limited-memory
Quasi-Newton methods. PhD thesis, Stanford University, CA

Bruck R (1975) An iterative solution of a variational inequality for certain monotone operators in Hilbert
space. Bull Am Math Soc 81:890-892

Burachik R, Martinez-Legaz J, Rezaie M, Théra M (2015) An additive subfamily of enlargements of a
maximally monotone operator. Set-Valued Variat Anal 23:643-665

Burke J, Qian M (2000) On the superlinear convergence of the variable metric proximal point algorithm
using Broyden and BFGS matrix secant updating. Math Program 88:157-181

Chen X, Fukushima M (1999) Proximal quasi-Newton methods for nondifferentiable convex optimization.
Math Program 85(2):313-334

Chen G, Rockafellar R (1997) Convergence rates in forward-backward splitting. SIAM J Optim 7(2):421—
444

Cheney E, Goldstein A (1959) Newton’s method for convex programming and Tchebycheff approximation.
Numer Math 1:253-268

Choi Y, Lim Y (2016) Optimization approach for resource allocation on cloud computing for IoT. Int J
Distrib Sens Netw 12(3):3479247

Combettes P, Pesquet J-C (2011) Proximal splitting methods in signal processing. Fixed-point algorithms
for inverse problems in science and engineering. Springer, Berlin, pp 185-212

Concus P, Golub G, Meurant G (1985) Block preconditioning for the conjugate gradient method. SIAM J
Sci Stat Comput 6(1):220-252

Correa R, Lemaréchal C (1993) Convergence of some algorithms for convex minimization. Math Program
62:261-275

@ Springer

https://web.stanford.edu/class/ee364b/lectures/subgradients_notes.pdf

Implementation of an oracle-structured... 1715

de Oliveira W, Solodov M (2016) A doubly stabilized bundle method for nonsmooth convex optimization.
Math Program 156(1):125-159

de Oliveira W, Solodov M (2020) Bundle methods for inexact data. Numerical nonsmooth optimization.
Springer, Berlin, pp 417-459

de Oliveira W, Sagastizabal C, Lemaréchal C (2014) Convex proximal bundle methods in depth: a unified
analysis for inexact oracles. Math Program 148:241-277

de Oliveira W, Eckstein J (2015) A bundle method for exploiting additive structure in difficult optimization
problems. Optimization Online

Dem’yanov V, Vasil’ev L (1985) Nondifferentiable optimization. Translations series in mathematics and
engineering. Springer, New York

Diamond S, Boyd S (2016) CVXPY: a Python-embedded modeling language for convex optimization. J
Mach Learn Res 17(83):1-5

Diaz M (2021) proximal-bundle-method. Julia software package available at https://github.com/mateodd25/
proximal-bundle-method

Diaz M, Grimmer B (2023) Optimal convergence rates for the proximal bundle method. SIAM J Optim
33(2):424-454

Duchi J, Hazan E, Singer Y (2011) Adaptive subgradient methods for online learning and stochastic opti-
mization. J] Mach Learn Res 12(7):2121-2159

Elzinga J, Moore T (1975) A central cutting plane algorithm for the convex programming problem. Math
Program 8:134-145

Emiel G, Sagastizdbal C (2010) Incremental-like bundle methods with application to energy planning.
Comput Optim Appl 46(2):305-332

Fischer F (2022) An asynchronous proximal bundle method. Optimization Online

Frangioni A (2002) Generalized bundle methods. SIAM J Optim 13(1):117-156

Frangioni A (2020) Standard bundle methods: untrusted models and duality. Numerical nonsmooth opti-
mization. Springer, Berlin, pp 61-116

Frangioni A, Gorgone E (2014) Bundle methods for sum-functions with “easy” components: applications
to multicommodity network design. Math Program 145:133-161

Frangioni A, Gorgone E (2014) Generalized bundle methods for sum-functions with “easy” components:
applications to multicommodity network design. Math Program 145:133-161

Fuduli A, Gaudioso M, Giallombardo G (2004) Minimizing nonconvex nonsmooth functions via cutting
planes and proximity control. SIAM J Optim 14(3):743-756

Gonzaga C, Polak E (1979) On constraint dropping schemes and optimality functions for a class of outer
approximations algorithms. SIAM J Control Optim 17(4):477-493

Grant M, Boyd S, Ye Y (2006) Disciplined convex programming. Global optimization. Springer, Berlin, pp
155-210

Haarala M, Miettinen K, Mikeld M (2004) New limited memory bundle method for large-scale nonsmooth
optimization. Optim Methods Softw 19(6):673—-692

Haarala N, Miettinen K, Mikeld M (2007) Globally convergent limited memory bundle method for large-
scale nonsmooth optimization. Math Program 109:181-205

Han Z, Liu K (2008) Resource allocation for wireless networks: basics, techniques, and applications.
Cambridge University Press, Cambridge

Hare W, Sagastizdbal C, Solodov M (2016) A proximal bundle method for nonsmooth nonconvex functions
with inexact information. Comput Optim Appl 63(1):1-28

Helmberg C, Rendl F (2000) A spectral bundle method for semidefinite programming. SIAM J Optim
10(3):673-696

Helmberg C, Pichler A (2017) Dynamic scaling and submodel selection in bundle methods for convex
optimization. https://www.tu-chemnitz.de/mathematik/preprint/2017/PREPRINT_04.pdf

Hestenes M, Stiefel E et al (1952) Methods of conjugate gradients for solving linear systems. J Res Natl
Bur Stand 49(6):409-436

Hintermiiller M (2001) A proximal bundle method based on approximate subgradients. Comput Optim
Appl 20(3):245-266

Hiriart-Urruty J-B, Lemaréchal C (1996) Convex analysis and minimization algorithms II: advanced theory
and bundle methods. Grundlehren der mathematischen Wissenschaften. Springer, Berlin Heidelberg

Hiriart-Urruty J-B, Lemaréchal C (2013) Convex analysis and minimization algorithms I: fundamentals,
vol 305. Springer Science & Business Media, Berlin

Tutzeler F, Malick J, de Oliveira W (2020) Asynchronous level bundle methods. Math Program 184:319-348

@ Springer

https://github.com/mateodd25/proximal-bundle-method
https://github.com/mateodd25/proximal-bundle-method
https://www.tu-chemnitz.de/mathematik/preprint/2017/PREPRINT_04.pdf

1716 T. Parshakova et al.

Jacobi C (1845) Ueber eine neue auflosungsart der bei der methode der kleinsten quadrate vorkommenden
linedren gleichungen. Astron Nachr 22(20):297-306

Kairouz P, McMahan H, Avent B, Bellet A, Bennis M, Bhagoji A, Bonawitz K, Charles Z, Cormode G,
Cummings R et al (2021) Advances and open problems in federated learning. Found Trends Mach
Learn 14(1-2):1-210

Karmitsa N (2016) Proximal bundle method. http://napsu.karmitsa.fi/proxbundle/

Karmitsa N (2007) LMBM—FORTRAN subroutines for large-scale nonsmooth minimization: user’s man-
ual. TUCS Tech Rep 77:856

Karmitsa N, Mikeld M (2010) Limited memory bundle method for large bound constrained nonsmooth
optimization: convergence analysis. Optim Methods Softw 25(6):895-916

Kelley J (1960) The cutting-plane method for solving convex programs. J Soc Ind Appl Math 8(4):703-712

Kim K, Petra C, Zavala V (2019) An asynchronous bundle-trust-region method for dual decomposition of
stochastic mixed-integer programming. SIAM J Optim 29(1):318-342

Kim K, Zhang W, Nakao H, Schanen M (2021) BundleMethod.jl: Implementation of Bundle Methods in
Julia

Kiwiel K (1983) An aggregate subgradient method for nonsmooth convex minimization. Math Program
27:320-341

Kiwiel K (1985) An algorithm for nonsmooth convex minimization with errors. Math Comput 45(171):173—
180

Kiwiel K (1990) Proximity control in bundle methods for convex nondifferentiable minimization. Math
Program 46(1-3):105-122

Kiwiel K (1995) Approximations in proximal bundle methods and decomposition of convex programs. J
Optim Theory Appl 84(3):529-548

Kiwiel K (1996) Restricted step and Levenberg—Marquardt techniques in proximal bundle methods for
nonconvex nondifferentiable optimization. SIAM J Optim 6(1):227-249

Kiwiel K (1999) A bundle Bregman proximal method for convex nondifferentiable minimization. Math
Program 85(2):241-258

Kiwiel K (2000) Efficiency of proximal bundle methods. J Optim Theory Appl 104(3):589-603

Kiwiel K (2006) A proximal bundle method with approximate subgradient linearizations. SIAM J Optim
16(4):1007-1023

Lemaréchal C (1978) Nonsmooth optimization and descent methods. IIASA Research Report, 78-4

Lemaréchal C (1975) An extension of Davidon methods to non differentiable problems. Math Program
Study 3:95-109

Lemaréchal C (2001) Lagrangian relaxation. Computational combinatorial optimization. Springer, Berlin,
pp 112-156

Lemaréchal C, Sagastizdbal C (1994) An approach to variable metric bundle methods. System modelling
and optimization. Springer, Berlin, pp 144-162

Lemaréchal C, Sagastizabal C (1997) Variable metric bundle methods: from conceptual to implementable
forms. Math Program 76:393-410

Lemaréchal C, Nemirovskii A, Nesterov Y (1995) New variants of bundle methods. Math Program
69(1):111-147

Lemaréchal C, Ouorou A, Petrou G (2009) A bundle-type algorithm for routing in telecommunication data
networks. Comput Optim Appl 44:385-409

Lemaréchal C, Sagastizabal C, Pellegrino F, Renaud A (1996) Bundle methods applied to the unit-
commitment problem. In: System modelling and optimization: proceedings of the seventeenth IFIP
TC7 conference on system modelling and optimization, 1995. Springer, Berlin, pp 395-402

Li T, Sahu AK, Talwalkar A, Smith V (2020) Federated learning: challenges, methods, and future directions.
IEEE Signal Process Mag 37(3):50-60

Lions P, Mercier B (1979) Splitting algorithms for the sum of two nonlinear operators. STAM J Numer Anal
16(6):964-979

Liu Y, Zhao S, Du X, Li S (2005) Optimization of resource allocation in construction using genetic algo-
rithms. In: 2005 International conference on machine learning and cybernetics, vol 6, pp 3428-3432.
IEEE

Luksan L, VI¢ek J (1998) A bundle-Newton method for nonsmooth unconstrained minimization. Math
Program 83:373-391

LukSan L, VIcek J (1999) Globally convergent variable metric method for convex nonsmooth unconstrained
minimization. J Optim Theory Appl 102:593-613

@ Springer

http://napsu.karmitsa.fi/proxbundle/

Implementation of an oracle-structured... 1717

LvJ,Pang L, Meng F (2018) A proximal bundle method for constrained nonsmooth nonconvex optimization
with inexact information. J Global Optim 70(3):517-549

Miikeld M (2003) Multiobjective proximal bundle method for nonconvex nonsmooth optimization: Fortran
subroutine MPBNGC 2.0. Reports of the Department of Mathematical Information Technology, Series
B. Sci Comput B 13:2003

Mikeld M, Karmitsa N, Wilppu O (2016) Proximal bundle method for nonsmooth and nonconvex multi-
objective optimization. Math Model Optim Complex Struct, 191-204

Marsten R, Hogan W, Blankenship J (1975) The boxstep method for large-scale optimization. Oper Res
23(3):389-405

Mifflin R (1977) Semismooth and semiconvex functions in constrained optimization. SIAM J Control Optim
15(6):959-972

Mifflin R (1996) A quasi-second-order proximal bundle algorithm. Math Program 73(1):51-72

Nesterov Y (1983) A method for solving the convex programming problem with convergence rate O(1/ k2).
Proc USSR Acad Sci 269:543-547

Nocedal J, Wright S (1999) Numerical Optimization. Springer, Berlin

Ouorou A, Mahey P, Vial J-Ph (2000) A survey of algorithms for convex multicommodity flow problems.
Manage Sci 46(1):126—-147

Parikh N, Boyd S et al (2014) Proximal algorithms. Found Trends Optim 1(3):127-239

Passty G (1979) Ergodic convergence to a zero of the sum of monotone operators in Hilbert space. J Math
Anal Appl 72(2):383-390

Rey P, Sagastizdbal C (2002) Dynamical adjustment of the prox-parameter in bundle methods. Optimization
51(2):423-447

Rey P, Sagastizdbal C (2002) Dynamical adjustment of the prox-parameter in bundle methods. Optimization
51(2):423-447

Rockafellar R (1981) The theory of subgradients and its applications to problems of optimization. Helder-
mann Verlag

Schechtman S (2022) Stochastic proximal subgradient descent oscillates in the vicinity of its accumulation
set. Optim Lett, 1-14

Schramm H, Zowe J (1992) A version of the bundle idea for minimizing a nonsmooth function: conceptual
idea, convergence analysis, numerical results. STAM J Optim 2(1):121-152

Shor N (2012) Minimization methods for non-differentiable functions, vol 3. Springer Science & Business
Media, Berlin

Sinkhorn R (1964) A relationship between arbitrary positive matrices and doubly stochastic matrices. Ann
Math Stat 35(2):876-879

Sra S, Nowozin S, Wright S (2012) Optimization for machine learning. MIT Press, Cambridge

Takapoui R, Javadi H (2016) Preconditioning via diagonal scaling. arXiv preprint arXiv:1610.03871

Teo C, Vishwanathan S, Smola A, Le Q (2010) Bundle methods for regularized risk minimization.] Mach
Learn Res, 11(1)

Trisna T, Marimin M, Arkeman Y, Sunarti T (2016) Multi-objective optimization for supply chain manage-
ment problem: a literature review. Decis Sci Lett 5(2):283-316

van Ackooij W, Frangioni A (2018) Incremental bundle methods using upper models. SIAM J Optim
28:379-410

van Ackooij W, Frangioni A, de Oliveira W (2016) Inexact stabilized Benders’ decomposition approaches
with application to chance-constrained problems with finite support. Comput Optim Appl 65:637-669

van Ackooij W, Berge V, de Oliveira W, Sagastizabal C (2017) Probabilistic optimization via approximate
p-efficient points and bundle methods. Comput Oper Res 77:177-193

Wei F, Zhang X, Xu J, Bing J, Pan G (2020) Simulation of water resource allocation for sustainable urban
development: an integrated optimization approach. J Clean Prod 273:122537

Westerlund T, Pettersson F (1995) An extended cutting plane method for solving convex MINLP problems.
Comput Chem Eng 19:131-136

Yin P, Wang J (2006) Ant colony optimization for the nonlinear resource allocation problem. Appl Math
Comput 174(2):1438-1453

Zhou B, Bao J, Li J, Lu Y, Liu T, Zhang Q (2021) A novel knowledge graph-based optimization approach
for resource allocation in discrete manufacturing workshops. Robot Comput Integr Manuf 71:102160

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer

http://arxiv.org/abs/1610.03871

1718 T. Parshakova et al.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable

law.

@ Springer

	Implementation of an oracle-structured bundle method for distributed optimization
	Abstract
	1 Oracle-structured distributed optimization
	1.1 Oracle-structured optimization problem
	1.1.1 The oracle objective function
	1.1.2 The structured objective function
	1.1.3 Example
	1.1.4 Optimality condition
	1.1.5 Our focus
	1.1.6 Our contribution

	1.2 Previous and related work
	1.2.1 Subgradient methods
	1.2.2 Proximal subgradient methods
	1.2.3 Cutting-plane methods
	1.2.4 Bundle methods
	1.2.5 Software packages

	1.3 Outline

	2 Disaggregate partially exact bundle method
	2.1 Minorants
	2.1.1 Initial minorant
	2.1.2 Lower bound on optimal value
	2.1.3 Gap-based stopping criterion

	2.2 Oracle-structured bundle method
	2.2.1 Comments
	2.2.2 Descent method
	2.2.3 Convergence
	2.2.4 Choice of parameters
	2.2.5 Dual variable

	2.3 Diagonal preconditioning
	2.3.1 A specific choice for diagonal scaling

	2.4 Proximal parameter discovery
	2.5 Finite memory

	3 Agents
	3.1 Private variables and partial minimization
	3.2 Soft constraints and slack variables

	4 Examples
	4.1 Supply chain
	4.1.1 Oracle-structured form
	4.1.2 Trans-shipment cost
	4.1.3 Source and sink costs
	4.1.4 Problem instance
	4.1.5 Results

	4.2 Resource allocation
	4.2.1 Resource allocation problem
	4.2.2 Distributed resource allocation problem
	4.2.3 Oracle-structured form
	4.2.4 Problem instance
	4.2.5 Results

	4.3 Multi-commodity flow
	4.3.1 Oracle-structured form
	4.3.2 Problem instance
	4.3.3 Results

	4.4 Federated learning
	4.4.1 Oracle-structured form
	4.4.2 Problem instance
	4.4.3 Results

	4.5 Finite-memory experiments

	5 Conclusions
	Acknowledgements
	Appendix A: Convergence proof
	Infinite updates
	Finite updates

	References

