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1 Introduction
1.1 Positive-definite programming

We consider the problem of minimizing a linear function of a variable € R™ subject
1o a linear matrix inequality:

minimize Tz,

subjectto  F(z) > 0, )
where
A m
F(z) 2 Fo+ ) xiFe. (2)
i=1
The problem data are the vector c € R™ and m + 1 symmetric matrices Fo,...,Fnh €

:sz. The inequality sign in F'(x) > 0 means that F(z) is positive-semidefinite, i.e.,
z* F(x)z > Ofor all z € R". This problem is called a positive-definite program (PDP),
following Nesterov and Nemirovsky [43).

Problem (2} is a canvex optimization problem since its objective and constraint
are convex: if F(z) > 0and F(y) > 0, then, forall A, 0 < A < 1,

F(Az + {1~ Ay)) = AF(z) + (1 ~ \)F(y) > 0.

Although the PDP (1} may appear quite specialized, we will see that it inctudes

-.=m=< important optimization problems as special cases. For instance, consider the
linear program

minimize 7z,
subjectto Az > b, (3)
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where the inequality denotes componentwise inequality. Since a vector v > 0 {(com-
ponentwise) if and only if the matrix dieg(v) (i.e., the diagonal matrix with the com-
ponents of v on its diagonal) is positive-semidefinite, we can express the LP (3) as a
PDP with F(z) = diag(Az + b), i.e.,

Fy = —diag(b), F;=diag(a;), i=1,...,m,

where A = [a;...am,} € AP,

Positive-definite programming can therefore be regarded as an extension of linear
programming where the componentwise inequalities between vectors are replaced
by matrix inequalities, or, equivalently, the first orthant is replaced by the cone of
positive-semidefinite matrices. We can also view the PDP (1) as a semi-infinite linear
program, since the matrix inequality F'(z) > 0 is equivalent to an infinite set of linear
constraints on z, i.e., zT F(z)z > 0 for each z € R". It is therefore not surprising that
the theory of positive-definite programming closely parallels linear programming the-
ory, or that many algorithms for solving linear programs should have generalizations
that handle PDPs. There are many important differences, however. For instance, the
duality results are weaker for PDPs than for LPs. As another important difference,
there is no simple or obvious analog of the simplex method for PDPs.

Before proceeding further we give a simple example of a nonlinear (convex) op-
timization problem that can be cast as a PDP, but not as a linear program. Consider
the problem

s (c"z)?
minimize 152 9

subjectto Azr+b2>0,

where we assume that d7z > O whenever Az +b > 0. We start with the standard trick
of introducing an auxiliary variable ¢ that serves as an upper bound on the objective:

minimize ¢ (5)
subjectto Az +b6>0
T,.\2
(G
dTz ~

Inthis formulation, the objective is a finear function of the variables x and ¢; the nonlin-
ear (convex) objective in (4) shows up as a nonlinear (convex) constraint in {5}. These
constraints, in turn, can be expressed as a linear matrix inequality in the variables x
and t:

minimize ¢ {6)
diag(Az +b) O 0
subject to 0 t ¢z |>o0
0 T dTx

{Here, again, diag(v) represents the diagonal matrix with the elements of v on its
diagonal.) Thus we have reformulated the nonlinear {convex) problem (4) as the
PDP (6). More examples and applications will be given in the next section.
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There are good reasons for studying positive-definite programming problems,
First, positive-definiteness constraints arise directly in a number of important appli-
cations. Secondly, many convex optimization problems, e.g., linear programming
and (convex) quadratically constrained quadratic programming, can be cast as PDPs.
Positive-definite programming therefore offers a unified way to study the properties
of and derive algorithms for a wide variety of convex optimization problems. Most
importantly, however, PDPs can be solved very efficiently, both in theory and in prac-
tice.

Theoretical tractability follows from convexity, along with the observation that
we can construct, in polynomial time, a cutting plane for the constraint set through
any given infeasible point (see, e.g., [8, §2.3]). One can therefore apply the ellipsoid
method of Yudin and Nemirovsky, and Shor (see |64, 56]} to solve problem (1) in
polynomial time. In practice, however, the ellipsoid method is slow.

In this paper we concentrate on recentty developed interior-point methods for
positive-definite programming. Of course general-purpose nonlinear optimization
methods (trust region methods, sequential quadratic optimization, . . . ) could be used,
possibly after modification, to solve PDPs. Interior-point methods, however, enjoy
several properties that make them especially interesting.

¢ Itis now generally accepted that interior-point methods for linear programming
are competitive with the simplex method and even faster for problems with
more than 10, 000 variables or constraints (see, e.g., [32]). One can expect to
see the same trend more generally, especially since the very efficient simplex
method has no counterpart in positive-definite programming. Inour experience
with positive-definite programming for control applications, we have found
interior-point methods to be very efficient.

¢ Interior-point methods have a polynomial worst-case complexity.

* Interior-point methods are ideally suited for structured problems. We will see
that every iteration of an interior-point method involves the solution of a least-
squares problem with the same structure as F(x) in {1). These matrices are of-
ten highly structured but not necessarily sparse. The structure can be exploited
by combining interior-point methods with iterative least-squares methods such
as conjugate-gradients [21] or LSQR [49]. This is not possible in the simplex
method, for instance, nor in many other classical methods.

1.2 Examples and Applications

In this section we list a few examples and applications. The list is not exhaustive, and
the purpose is more to give an idea of the generality of the problem. More examples
are described in [43] and [8].

Quadratically Constrained Quadratic Programming

A convex quadratic constraint (Az + b)T(Az + b) - ¢Tz — d < 0 can be written as

Az + b

1
Tmisq Te+d |20
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The left-hand side depends affinely on the vector z: it can be expressed as Fy +
nFL+ -+ zmFm 2 0, with

I b 0 a; .
muon &u: d 1’ ﬁ.—.” QM., ¢ .NHH.....S_

where A = [0)...a,]. Therefore, a general quadratically constrained quadratic
program

minimize  fo(z)

subjectto  fi(x) <0, i=1,...,L,

. . T )
where each f; is a convex quadratic function f;{z) = (4;z+b)T(Aiz +b) —cTz —d;,
can be written as

minimize {
biect t I Agz + bo >0
mc_mooEca+€anm§+§+ﬁ|.

I .&_.H + ?.

>0, i=1,..,L
(Aiz +b)T Tz+d; | ="

This is a PDP in z and ¢, since ane can think of the L + 1 matrix inequalities as diagonal
blocks of one block diagonal matrix inequality F(z,t) > 0.

Matrix Norm and Maximum Eigenvalue Minimization

Suppose A(z) is a {possibly rectangular) matrix that depends affinely on x: b.ﬁ..nv =
Ap + 1Ay + +++ + 2 Ay, The problem of minimizing the (spectral, or maximum
singular value) norm {| A(z)|| over z is a PDP:

minimize ¢ (7}

tI A(x
subject to — b?&ﬂ s@v % > 0.

If A(x) is a symmetric matrix, a related problem is to minimize the maximum eigen-
value of A:

minimize t

subjectto tI — A(x) > 0.
Note that both ||A(x)}{| and the maximum eigenvalue A, (A(z)) are nondifferen-
tiable functions of r.
Logarithmic Chebychev Approximation

Suppose we wish to solve Az =~ b approximately, where A = [a; - H .P._ﬂ c ptxm
and b € R". In Chebychev approximation we minimize the infinity norm of the

residual, i.e., we solve
minimize max,|alz — b;|.
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This can be cast as a linear program, with x and an auxiliary variable t as variables:

minimize ¢
subjectto —t<afz-b;<t, i=1,...,n.

In some applications b; has the dimension of a power or intensity, and is typi-
cally expressed on a logarithmic scale. In such cases the more natural optimization
problem is

minimize max;| log(al x) — log(b;)| (8)

(assuming b; > 0, and interpreting log{a! z) as —oo when a7z < 0).
This logarithmic Chebychev approximation problem can be cast as a PDP. To see
this, note that

|log(al ) — log(b;)| = log max(al z/b;,b;/aT z)
(assuming al'z > 0). Problem (B) is therefore equivalent to

minimize ¢
subjectto 1/t <alz/b; <t i=1,...,n,
or,
minimize ¢
t—alz/b, 0 0
subiject to 0 alz/b; 1|20, i=1,...,n,
0 1 t

s}mnz is a PDF. This example illustrates two important points. It shows that positive-
definite programming includes many optimization problems that do not loak like (n
at first sight. And secondly, it shows that the problem is much more general than
finear pragramming, despite the close analogy.
Control and System Theory
Positive-definite programming problems arise frequently in control and system the-
ory. Boyd, El Ghaoui, Feron and Balakrishnan catalog many examples in (8). We will
describe one simple example here.

Consider the differential inclusion

dx
pr € Co{Ay,...,AL}x(?), (9}
where z(t) € R™ and the matrices A, ..., A are given, and Co{A,,..., AL} denotes

the convex hull of Ay, ..., Ar. We seek an ellipsoidal invariant set, i.e., an ellipsoid
€ such that for any z that satisfies (3), (T) € £ implies z(t) € £ forall ¢ > T. The
existence of such an ellipsoid implies, for example, that alt solutions of the aM&S::E
inclusion {9} are bounded.

The effipsoid £ = {z | zT Pz < 1}, where P = PT > 0, is invariant if and only if
the function V' (t) = z(t)” Pz(t) is nonincreasing for any solution z of {9). {(Inthis case
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we say that V is a quadratic Lyapunov function that proves stability of the differential
inclusion (9}.) Thus, £ is invariant if and only if

mEaSv = z(t)T (A(t)TP + PA(t)) z(2) <0,

for any z(t) € R" and A(t) € Co{A,,...,Ar}. This is equivalentto ATP + PA <0
forall A € Co{A,,..., AL}, which in turn is equivalent to the condition

ATP 4+ PA, <0, k=1,...,L.

This is a linear matrix inequality constraint in the matrix PP, considered as the variable.
To find an invariant ellipsoid for the differential inclusion (9} {or verify that none
exists), we need to solve the feasibility problem

P>0, ATP4+PA. <0, k=1,...,L (10)

for the {matrix) variable P. Several standard methods can be used to convert this
teasibility problem into a PDP that has an obvious initial feasible point. For instance,
we can solve the PDP with variables P = PT e R**" and ¢ € R,

minimize ¢

subjectto AT P+ PA, <0, k=1,...,L,
P> -t
P<r

(The last constraint is added, without loss of generality, to normalize the otherwise
homogenecus problem.) This PDP can be initialized with P = 0, { = 1 and then
solved; the optimum value of ¢ is negative if and only if (10) is feasible.
Structural Optimization
Ben-Tal and Bendsge in [11] consider the following problem from structural opti-
mization. A structure of L linear elastic bars connect a set of N nodes. The geometry
{topology and lengths of the bars) and the material (Young’s modulus) are fixed; the
task is to size the bars, i.e., determine appropriate cross-sectional areas for the bars.
In the simplest version of the problem we consider ane fixed set of externally applied
nodal forces f;, i = 1,..., N. {More complicated versions consider mulitple loading
scenarios.) The vector of (small) node displacements resulting from the load forces f
will be denoted d. The objective is the elastic stored energy w.\ﬂ.ﬁ which is a measure
of the inverse of the stiffness of the structure. We alsc need to take into account con-
straints on the total volume {or equivalently, weight), and upper and lower bounds
on the cross-sectional area of each bar.

The design variables are the cross-sectional areas z,. The relation between fand
dis linear: A(x)d = f, where

N
Alz) 83z

i=1




tr
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is called the stiffness matrix. The matrices A, are all symmetric positive-semidefinite
and depend only on fixed parameters {Young’s modulus, length of the bars, and
geometry). The optimization problem then becomes (see [110

minimize fTd
subjectto  A(zx)d = f,

L
Y lLxisv,
i=1

. <r;<T;i=1,...,L,

= — —_

where d and z are the variables, v is maximum volume, l; are the lengths of the w.vm.qm.
and z., T, the upper and lower bounds on the cross-sectional areas. For simplicity,
we me:..:m that z; > 0, and that A(z) is positive-definite for all positive values of ;.
We can then eliminate d and write

minimize fTA(x)"'f
L

Mur,am <,
i=1

H.AH-.MW—., m”u,...‘h:

=i =

subject to

or,
minimize t r
t f
ﬁ : %;Np
L

M ?_H.. m v,
i=1

m_,.AIHu.mulﬁ._... u..II.H....q.HJ

subject to

which is a PDPin z and t.
Pattern Separation by Ellipsoids

The simplest classifiers in pattern recognition use hyperplanes to separate two sets.

A hyperplane aTz + b = 0 separates two sets of paints {x;} and {y;} if

alz; +b<0 for all 1,

aTy; +b>0  forallj.

This is a set of linear inequalitiesina € R™ and b € R, and a solution can be found by
linear programming. If the two sets cannot be separated by a hyperplane, .s..m om:.né
to separate themby a quadratic surface. In other words we seek a quadratic function

f(z) = 2T Pz + b7z + c that satisfies

AH_.V.H,@H—. + O‘HH.. +c<0
(y;)"Py; +bTy; +¢>0

forall i, {1
for all j. (12)
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These inequalities are a set of linear inequalities in the variables P = PT ¢ R",
b € R™, and ¢ € R, and again can be sclved using linear programming.

We can put further restrictions on the quadratic surface separating the two sets.
For instance, for cluster analysis we might try to find an ellipsoid that contains alt
the points z; and none of the y; (see [53]). This constraint imposes the condition
P > 0in addition to the linear inequalities (11) and {12) on the variables P, b, and c.
Thus finding an ellipsoid that contains all the ; variables but none of the y; variables
{or determining that no such ellipsoid exists) can be done by solving a linear matrix
inequality feasibility problem.

We can optimize the shape and the size of the ellipsoid by adding an objective
function and other constraints. For instance, the ratio of the targest to the smallest
semi-axis length is the square raot of the condition number of P. In order to make
the eflipsoid as spherical as possible, one can introduce an additional variable v, add
the constraint

I <P <Al {(13)

and minimize ~y over {11}, {12) and {13). This is a PDP in the variables v, P, band c.
This PDP will be feasible if and only if there is an ellipsoid that contains alt the z; and
none of the y;; its optimum value is one if and only there is a sphere that separates
the two sets of points.

Geometrical Problems Involving Quadratic Forms

Many geometrical problems involving quadratic functions can be expressed as PDPs.
We will give one simple example. Suppose we are given m ellipsoids £;,...,&,,
described as the sublevel sets of the quadratic functions

filz) = T Az + m&.H +c, i=1,...,m,

i.e., & = {z|fi(z) < 0}. The goal is to find the smallest sphere that contains all m of
these ellipsoids {or equivalently, contains the convex hull of their union).

The condition that one ellipsoid contain another can be expressed in terms of a
matrix inequality. Suppose that the ellipsoids £ = {z|f(z) < 0} and £ = {z|f(z) <
0}, with

fx)=zTAz + 2672 +¢, f(z)=zTAx+ 207z +¢,

have nonempty interior. Then it can be shown that £ contains Eifand only if there is
a1 > 0 such that .

A b ﬁ A b
m.ﬁ

b7 ¢ BT ¢

¢
{The ‘if’ part is trivial; the ‘anly if' part is less trivial. See [8, 59]).

Returning to our problem, consider the sphere S represented by f(x) = z7x —
22Tz 45 < 0. S contains the ellipsoids £1, . . ., £ if and only if there are nonnegative
T1y- .., Tm Such that
I —-Te g M T .hw F

-zl v b o
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Note that these conditions can be considered one large linear matrix inequality in the
variables ., v, and 7y, ..., Ty,

Our goal is to minimize the radius of the sphere S, which is r = vzlz, -4 To
do this we express the condition r? < ¢ as the matrix inequality

I I
>
— wF t+v _ 20
and minimize the variable t.
Putting it all together we see that we can find the smallest sphere containing the

ellipsoids &1,. .., £,, by solving the PDP

minimize ¢

subject to T

>
' t4y 2 0.

The variables here are z., 11,...,7m, 7, and £.

This example demonstrates once again the breadth of problems that can be re-
formulated as PDPs. It also demonstrates that the task of this reformulation can be
nontrivial.

Other Fields

e PDPs occur in statistics, in minimum trace factor analysis (see Watson [61]),
as the educational testing problem (see [17, 18]}, and in optimum experiment
design (see Pukelsheim [50]).

. _u_u_wm have been used to compute upper or lower bounds for combinatorial
optimization problems. Examples are Lovasz’s famous upper bound on the
Shannon capacity of a graph [33], Shor's bounds for integer programming, and
Alizadeh's work [4, 2, 3].

¢ The problem of minimizing the maximum eigenvalue of a matrix has been
studied extensively by Overton; see [45] for a fist of applications.

1.3 MHistorical Overview

A very early paper on the theorstical properties of PDPs is Bellman and Fan [9]. Other
references discussing optimality conditions are Craven and Mond {13], Shapiro [55],
Fletcher [18), and Allwright [5).

Many researchers have worked on the problem of minimizing the maximum
eigenvalue of a symmetric matrix. See, for instance, Cullum, Donath and Wolfe [12],
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Goh and Feo [24), Panier [48], Allwright [6], Overton [44, 45], Overton and Womersley
147, 48], Ringertz [51], Fan and Nekooie [20], Fan [16], and Hiriart-Urruty and Ye [26].

The history of interior-point methods is relatively young. Interior-pcint methods
for linear programming were introduced by Karmarkar in 1984 {28}, although many
of the underlying principles are older (see, e.g., Fiacco and McCormick {19}, Lieu and
Huard [31], and Dikin [15]). Karmarkar's algarithm, and the interior-point methods
developed afterwards, combine a very low, polynomial, worst-case complexity with
excellent behavior in practice.

Karmarkar's paper has had an enormous impact, and several variants of his
method have been developed (see, e.g., the survey by Gonzaga [23]). Interior-peint
methods have also been extended and generalized to convex quadratic program-
ming, and to certain linear complementarity problems (see Kojima, Megiddo, Noma
and Yoshise [29]).

An important breakthrough was achieved by Nesterov and Nemirovsky in 1988
{38, 40, 39, 41, 41). They showed that the interior-point methods for finear program-
ming can be generalized to all convex optimization problems. The key element is
the knowledge of a barrier function with certain properties (self-concordance). Un-
fortunately, although Nesterov and Nemirovsky prove that a self-concordant barrier
function exists for every convex set, it is not always known how to compute it in
practice.

PDPs are an important class of convex optimization problems for which self-
concordant barrier functions are known, and, therefore, interior-point methods are
applicable. At the same time, they offer a simple conceptual framework and make
possible a self-contained treatment of interior-point methods for many convex opti-
mization problems.

Independently of Nesterov and Nemirovsky, Alizadeh [4] has generalized interior-
point methods from linear programming to positive-definite programming. Other
recent articles are Jarre [27}, Vandenberghe and Boyd {60), Rendl, Vanderbei and
Wolkowicz {54), Yoshise [65], and Alizadeh, Haeberly and Overton [1]. An excellent
reference on interior-point methods for general convex problems is Den Hertog [14].

1.4 Outline

This paper gives a survey of interior-point methods for positive-definite program-
ming. We start with a section on duality theory. In Section 3 we introduce the barrier
function for PDPs, and the concepts of central points and central path. The notion of
central path is heavily used in Section 4, which discusses primal-dual methods.

This survey is not meant to be exhaustive and emphasizes primal-dual methods.
The most important omissions are the projective methods of Karmarkar, and of Nes-
terov and Nemirovsky [43). Our motivation for the restriction to primai-dual methods
is twofold. Primal-dual methods are commonly held to be more efficient in practice,
and, secondly, their behavior is often easier to analyze. Moreover, all interior-point
methods are based on similar principles, and we hope that the material discussed
here is sufficient as a tutorial introduction to the entire field.
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2 Duality
2.1 The Dual PDP
The dual problem associated with the PDP (1) is

maximize -Tri,Z
subjectto TrF,Z =¢;,t=1,...,m, {14)
Z >0

Here the variable is the symmetric matrix Z, which is subject to m equality constraints
and the nonnegativity condition. We write Tr X for the trace of a symmetric matrix,
i.e., TrX = X3 + -+ + Xnn. Note that the objective function in {14} is a linear
function of Z.

The dual problem (14} is also a PDP, i.e., it can be put in the same form as the
primal problem (1). Let us assume for simplicity that the matrices F,... F, are
linearly independent. Then we can express

{Z|Z2=2" R TrFiZ = ¢, }

in the form
{G(y) = Go + y1Gy +- -+ yGp| yERF, }

where p = i:'ntw —mandthe G; are appropriate matrices. We defined € R° by d; =

TrFyG;, sothat dTy = TrFo(Gly) — Go)- Then the dual problem becomes (except
for a constant term in the cbjective and a change of sign to transform maximization
into minimization)
minimize d7y
subjectto  G(y) > 0,

which is a PDP. It is possible to use notation that, unlike ours, emphasizes the com-
plete symmetry between the primal and dual problems (see, e.g., Nesterov and Ne-
mirovsky). Our notation was designed to make the primal problem as “explicit” as
possible, with x denoting a “free” variable.

As an example of the dual PDP, let us apply the definition to the finear program {3),
i.e., take Fy = —diag(h) and F; = diag(a;). In this case, the diagonal structure makes
it possible te simplify the dual problem. The objective function and the equality
constraints only involve the diagonal elements of Z, and, obviously, replacing the off-
diagonal of a positive-definite matrix by zeros does not alter its positive-definiteness
either. Instead of optimizing over all symmetric n x n matrices Z, we can therefore
limit ourselves to diagonal matrices Z = diag(z). Problem (14} then reduces to

maximize b7z {15)
subjectto 2z >0,
alz=¢, i=1,...,m,

which is the familiar dual of the LP (3).
This example demonstrates an important point. In general, it is often the case
that the dual problem can be simplified when the matrices F; are structured. For
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example, if the matrix F'(x) is block diagonal, the dual variables Z can be assumed
to have the same block diagonal structure.

Linear programming duality is very strong owing to the polyhedral character of
the feasible set: The optimum values of {3) and (15) are always equal, except in
the pathological case where both probiems are infeasible. (We adopt the standard
convention that the optimum value of (3} is + o0 if the problem is infeasible, and the
optimum value of (15} is —co if the dual problem is infeasible.) Duality results for
general PDPs are weaker, as we will see below.

Let us return to our discussion of the dual PDP. The key property of the dual FDP is
that it yields bounds on the optimal value of the primal PDP, and vice versa. Suppose
that Z is dual feasible, and x is primat feasible. Then we have:

~TrFyZ < ¢’z {16)

The inequality follows from the simple calculation

Tz +TrZFy =Y TrZFa+ TrZF = TrZF(z) > 0.

=1

{We used the fact that TrAB > Owhen A = AT >0and B= BT >0))
Since (16) holds for any feasible x, we conclude that p* > —TrZ Fp, where p* is
the optimal value of the PDP (1),

ﬁ-wm:\Anﬂa_ﬁnavNcw. an

In other words: Dual feasible matrices yield lower bounds for the primal problem.
Woe can interpret x as a suboptimal point which gives the upper bound p* < cTzand
Z as a certificate that proves the lower bound p* > -TrFyZ.

If z is primal feasible and Z is dual feasible, we refer to the quantity n 2 Ty +
TrFyZ as the duality gap associated with T and Z. The duality gap is the difference
between the upper and lower bound; it is the width of the interval in which we have
localized p*. If we define d* to be the optimal value in the dual problem,

d* L sup( -TrFoZ |Z2=2T>0, TrFZ=ci,i=1,...,m}, (18)

then we can restate the result (16) as p* > d*, i.e., the optimal value of the dual prob-
lem is less than or equal to the optimal value of the primal problem. Note that when
the primal {or dual) problem is infeasible, the right-hand (left-hand) side becomes oo
{-00) so the inequality trivially holds. In fact equality usually obtains, as stated in the
following theorem (see Nesterov and Nemirovsky 1431, or Rockafellar {52]).

Theorem 1 We have p* = d* if any of the following conditions holds.
1. The primal problern (1) is strictiy feasible.

2. The dual problem (14} is strictly feasible.
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3. The primal solution set
Xopt £ {z | F(z) >0andc’z =p°}
is nonempty and bounded.
4. The dual solution set
Zopt 2{Z 1220, TrRZ =c;, and — TrFyZ = d°}
is nonempty and bounded.

Example
Consider the PDP

minimize z;

0 I 0 !
subject to I Iz 0 >0.
0 0 z;+1

The feasible setis {(z;,z2) | z; = 0,22 > 0}, and therefore p* = 0. The dual prob-
lem can be simplified as

maximize —2zo

2 (1—2)/2 0
subject to {1 —22)/2 0 0| >0,
0 0 zo {

and the feasible set is {(21, 22) | z1 2 0, 22 = 1}. The dual problem therefore has op-

timal value d* = —1. This PDP violates all four conditions mentioned in the theorem.

Both problems are feasible, but not strictly feasible, and the optimal sets Xopt and i
Zopt are both unbounded. Note also the contrast with linear programming, where it

is impossible to have a finite nonzero duality gap at the optimum.

Example

We take the matrix norm minimization problem menticned in Section 1.2:

minimize ||A(z)|| (19) '
ze€R™

where A(z) = Ag + £1A; + -+ + TmAm, and we remind the reader that [|A(z)]| is
the maximum singular value of A(z).

The problem {19} is a basic problem in the theory of Banach spaces; its optimum
value is the norm of (the image of} Ag in the quotient space of all px g matrices modulo
the span of A, ..., An. In this theory we encounter the following dual of (19):

maximize TrA%Q (20)
subjectto TrATQ =0, i=1,...,m, ‘
__QZ- m H‘
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where ||Q|l. = Y 0:{Q) is the nuclear norm of Q, which is the norm dual to the
maximum singular value. it is also known that the optimal values of (19} and {20) are

always equal.
Let us verify that this {Banach space} notion of duality coincides with PDP duality.

The dual PDP of problem (7) is

maximize —2TrA3 Z1, (21)
subjectto TrATZ;» =0, i=1,...,m,
TrZy+Trip =1,

N:NG
VOA
_H N.—Hm Nmu _ -

This can be simplified. The positive-definite constraint can be rewritten as

Zy 0 0 —Zp
> . 22
ﬁ 0 Zag H— - _H INM.M 0 {22
The eigenvalues of the matrix on the right are the singular values of Z,,, each singular
value appearing twice. It is well known that if A and B are two symmetric matrices,

then A > B implies Ax(A) > Ax(B), assuming the eigenvalues of A and B are taken
in the same order. As a consequence, inequality (22) implies

MMUQ..ANSV <TrZi1 +TrZyp <1.

Since the matrices Z;; and Z;; do not appear in any other constraint, nor in the
objective, we see that problem (21) reduces to

maximize —2TrA}Zy
subjectto TrATZ;2=0, i=1,...,m,
NMUQ.,ANGV <1,

which is the same as (20} with Q = 2Z;,.

Problem (19) is always strictly feasible; it suffices to choose x = 0 and ¢t > || Agl}.
Applying Theorem 1, we conclude that the optimal duality gap is always zero.
2.2 The Primal-Dual Formulation
Theorem 1 has important consequences for PDP algorithms. It gives conditions under
which the primal-dual optimizaticn problem

minimize Tz + TrFyZ
subjectto F(x) >0,
Z2>0, (23)

TrF,Z =¢;, i=1,...,m,

has optimum value zero. Here we minimize the duality gap Tz + TrFaZ over all
primal and dual feasible points. The duality gap is a linear function of x and Z, and
therefore problem (23) is aPDP in x and Z.
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Primat-dual methods for PDPs solve (23}, assuming the primail and dual problems
are strictly feasible. They generate a sequence of feasible points z(*) and Z*), and
in each step use the dual information in Z*) to find good updates for z(*) and vice-
versa.

This means that at every stage of the algorithm, we have available suboptimal
primal and duai solutions x, Z. The primal solution z proves an upper bound ¢z >
p" on the optimal value; the dual solution proves a lower bound p* > —-TrFyZ. The
iteration continues untii the duality gap is less than a given tolerance .

3 The Barrier Function

In this section, we introduce a barrier function for linear matrix inequality constraints
and discuss its properties. This leads us to the fundamental concept of centrality, and
the definition of central points and central path. From now on we will assume that
the matrices F; are independent.

3.1 Definition

The function

400 otherwise (24)

é(z) 2 A logdet F(z)~! if F(z)>0
is a barrier function for X 2 {z | F(z} > 0}, i.e., ¢(x) is finite if and only if F(z) > 0,
and becomes infinite as = approaches the boundary of X. There are many other
barrier functions for X (for example, trace can be substituted for determinant in (24)),
but this one enjoys many special properties {see [43]). In particular, when F(x) >0,
it is analytic and strictly convex.

In the case of a set of linear inequalities Ax > b, where 4 = [a1...a,}T, we have
F(z) = diag(Ax - b), and the definition reduces to the familiar logarithmic barrier
function
-3, loglaTz — b)) if Az >,

+oo otherwise.

ﬁanﬁ

We first give formulas for the gradient g(z) and Hessian H(z) of ¢. Recall that
TrAB is the standard inner product of two symmetric matrices A and B; the corre-
sponding norm is the Frobenius norm, ||A|| g = (TrA2)1/2,

The gradient and the Hessian of ¢ can be readily derived from the following second
order approximation of the function — logdet X. If X > 0is n x n and symmetric,
then

logdet(X +Y)™' = logdet X' ~ TrX~'Y + 1TrX~'YX"'Y + o A__:_,..v . (25)

From equation {25), one can immediately derive a second order approximation for

¢(z):

Sz +v) ~ §z)-TrFE) (Y wF)+
i=1

»
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m m
iTrF(x)' | D _wFi | F(z)™! M\Hsm
=1 J=

= ¢z} - M_U wTrF(x) 'R+ 130 v, TrF(z) T FF(z) 7 F.

i=1 i=1 j=1

We conclude that the gradient g(z) and the Hessian H(x) of ¢(z) are given by

¢i(z) = —TrF(z)~'F; = —TrF(z)"/2F;F(z)"'/?, (26)
and
H;(z) = Naﬂm.ﬂﬁvluﬁ..muﬁ.ﬁvluﬁu. 27)
! = Tr(F(z)"Y*F.F(z)~'/?) (F(z)~V2F;F(z)~'/%),
fori,j=1,...,m.

From expression (27) we can verify that ¢ is strictly convex for strictly feasible z.
For z,y € R™ with F(z) > 0,

%Sa:u Wss??E-Shziliv ?E-Smii-iv
ij=1
2

™
Tr m.AHvl_\n MUEWE HAHVL.S
i=1

2

m
F(z)~'/? MUSN.J.. F(x)~'% >o0. (28)
=1 F

We see that yTH(z)y = 0 if and only if 37", x:F; = 0. By independence of

F,..., Fm. we conclude that H{z) > 0, i.e., ¢ is strictly convex. . .
Finally, we note that the barrier function ¢ is bounded below if and only if the

feasible set X is bounded.

3.2 Analytic Center

3.2.1 Definition .

We suppose now that the linear matrix inequality F(z) > 0is wion._< *mmm._c._m .m:n.

that its feasible set is bounded. Since ¢ is strictly convex, it has a unigue minimizer,

which we denote

z* & argmin (). (29}
x

We will refer to z* as the analytic center of the finear matrix inequality F(z) > c.. 1t
is important to note that the analytic center is a property of a linear matrix m:mn:m_i
and not of its solution set X. The same set X can be represented by different matrix
inequalities, which have different analytic centers.

i
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From (26) we see that z* is characterized by
u.ﬂﬁﬁa.v;_mno. i=1,...,m. (30)

Thus, F(z*)~! is orthogonal to the span of Fy,. .., Fi,.
Inthe case of a set of linear inequalities, the definition coincides with Sonnevend's
definition [567, 58], i.e.,

n
z* = argmax :Anw,s —by).
Az > b i=1

3.2.2 Computing the Analytic Center

Newton’s method, with appropriate step length selection, can be used to efficiently
compute the analytic center. Starting with a strictly feasible point £(?), the algorithm
follows the iteration:

g+ = k) _ oB) g (ztk)) 1 g (R, (31)

where a(*) is the damping factor at the kth iteration, and g(z) and H(x) are the
gradient and Hessian of the barrier function in z.

Nesterov and Nemirovsky [43] give a simple step length rute appropriate for the
general class of self-concordant barrier functions mentioned earlier. The damping
factor depends on a quantity called the Newton decrement of ¢ at z:

8(2) & | H(z) " 29(a)]).

The name comes from the observation that §(z)?/2 is the difference between ¢(z)
and the minimum value of the quadratic approximation of ¢ at z. Alternatively, é(x)
is the length of the Newton step — H () ~! g(x} measured in the norm induced by the
Hessian H(x).

The damping factor is:

1 if §(z*K)) < 1/4
(k) ._ hS ’
at =
ﬁ /(1 +8(x®)) if 6(z®) > 1/4. 32
Nesterov and Nemirovsky show that this step length always results in F(z*+1) >
0. Moreover, for 8(z(%)) < 1/4, we have §(z(k+1D} < 26(z%))2, i.e., the algorithm
converges quadratically. They also give a complete convergence analysis. The main
results can be summarized as follows.

¢ Until the region of quadratic convergence (5(x) < 1/4) is reached, the objective
logdet F(x)~" decreases at least by the absolute constant 0.3068 at each New-
ton step. (By absolute constant we mean it does not depend on n, the problem
data, or the required accuracy of computing z*.)

L. Vandenberghe. 293

e Once the region of quadratic convergence is reached, at most a constant num-
ber ¢ of Newtcn steps is required to compute z* to a given accuracy. (The
constant ¢ does not depend on n or the problem data, but only on the re-
quired accuracy €. Since the convergence is quadratic in this region, c grows
as log log 1/¢ if ¢ decreases.)

In other words, the number of Newton steps required to compute x* given T can
be bounded in terms of — log det F{(z) + log det F(z*):

#Newton steps < ¢ + 3.26(— log det F(z) + log det F(z*)), (33

where c depends only on the required accuracy of computing z* and grows extremely
slowly.

Therefore, the quantity () a_ logdet F(z) + logdet F(z*) has a very natural
interpretation as the “deviation from centrality’ of a point z. In general, however, ¥(z)
can only be evaluated by computing the center z*.

3.3 The Primal-Dual Central Path
We now return to the primal-dual formulation of Section 2.2,

For a > 0 consider the set of strictly feasible pairs z, Z with duality gap o, i.e.,
Tz + TrFyZ = a. The analytic center of this set is the minimizer of the barrier term
—logdet F(z) — log det Z. We denote the analytic center as z*{a), Z*(a):

(z*(a), Z*(a}) = argmin — logdet F(x) - logdet Z
subjectto F{(z) > 0,
Z 20, {34)

TrEFZ =¢;,i=1,...,m,
T+ TrFpyZ =a.

Thus, among all feasible pairs z, Z with the duality gap «, the pair 2*, Z* maximizes
det(F(z)Z). The pair (z*, Z*) converges to a primal and dual optimal pairasa — 0,
andthecurve givenby (z*, Z*) fora > 0Ois called the central pathfor the problem (23).

The central pair (z*, Z*) has many important properties. For our purposes here
we need:

Theorem 2 F(z*(a))Z*(a) = (a/n)l. Conversely, ifx and Z are a feasible pair and
F(x)Z = (a/n)] thenz = *(a) and Z = £ ().

In other words, centrality is characterized by F(x} and Z being inverses of each other,
up to a constant.

Now consider afeasible pair (z, Z), and definea = TrF(z)Z. Then (z*(a), Z*(a))
is the central pair with the same duality gap as x, Z. Therefore
log det F(z)Z > logdet F(z"(a))Z*(a) = nlogn — nlogTrF(z)Z

with equality holding only when z, Z are central.
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As in Section 3.2.2 we can say that the difference

e

¥(z,Z) —logdet F(2)Z + log det F(z*(a))Z* ()

—logdet F(z)Z + nlogTrF(z)Z — nlogn (35)

is a measure of the deviation of (z, Z) from centrality: ¢(z, Z) is, up to a constant,
an upper bound on the computaticnal effort required to “center” (z, Z) {meaning,
compute the central pair with the same duality gap). From {35), we also note that
¥(z, Z) can be evaluated as a function of z and Z, without knowing z* and Z*.

The function 1) is not convex or quasiconvex {except of course when restricted to
TrF(z)Z constant). We also note that ¥ depends only on the eigenvalues Aly ooy A
of F(x)Z:

n

(221 M) /n
P(x, Z) = nl : .
T, 0

Thus, ¥(x, Z) is n times the logarithm of the ratio of the arithmetic to the geometric
mean of the eigenvalues of F(z)Z. (From which we see again that ¥ is nonnegative,
and zero only when F(z}Z is a multiple of the identity.) We can also think of Yasa
smooth measure of condition number of the matrix F(z)Z since

logk — 2log2 < Y(z,2) < (n - 1)logk, {36}

where & = A2/ Amin is the condition number of F(z)Z,

4 Primal-Dual Potential Reduction Methods

The methods in this section take full advantage of duality theory by updating primal
and dual feasible points in each iteration. The basic idea is the following. We choose
a potential function p(x, Z) such that

¢ o is smooth on the interior of the feasible set
® yis unbounded befow if x and Z approach the optimal solution

® @ increases unboundedly as x or Z approach all other points on the boundary
of the feasible set

The atgorithms minimize the potential function by some modification of Newton’s
method. if the potential function is properly chosen, this leads to algorithms with a
polynomial worst-case complexity.

Theoretically there is a perfect symmetry between primal and dual problems.
In practice, it is important to keep in mind that the dimension of the dual problem
is usually much larger than the dimension of the primal problem. Computations
involving the dual problem will therefore have to be arranged carefully,
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4.1 Primal-Dual Potential Function
Define the primal-dual potential function

ez, 2) & vynlog (cTz + TrFyZ) + ¥(z,Z)

glog Anﬂa + TrFyZ) - logdet F(z) — logdet Z — nlogn, (37)

where g = n+vy/n. The firstterm, v\/nlog Anﬂa + TrFyZ), measures a decrease in
abjective function. The second term, ¥(x, Z), is the deviation from centrality defined
in the previous section. The parameter v controls the relative weight of both terms. To
minimize the worst-case complexity it has to be of O{1}, but in practice a larger value
can be more efficient. Note that along the central path, p(z*(a), Z*(a)) = v/nloga
which decreases to —oo as a converges to zero.

A fixed decrease in the first term corresponds to a fixed fractional reduction of the
duality gap. A fixed decrease in the second term corresponds to a fixed amount of
“centering” in the following sense: up to a constant, it is the reduction in the {bound
on) computational effort required to “center” the current pair.

If ¢ decreases by one, the new pair is 3.26 Newton steps closer to centrality than
the original pair {or more precisely, the upper bound on the number of Newton steps
required to center the new pair is 3.26 smaller than the upper bound for the original
pair). If the other term, v\/ntlog TrF(z)Z, decreases by one, then the duality gap is
reduced by the factor exp(—1/v/n) a2 1 — 1/(v+/n}. In other words,

v/n fewer Newton steps to center ~ 31% duality gap reduction,

where ~ means that the left and right-hand sides result in an equal decrease in .
By minimizing the smooth function , we solve the primal and dual problems.
Indeed since y(x, Z) > 0 for feasible x and Z, we have

A
TrF(z)Z < exp S_Mﬁ|z\mv. (38)

which shows that small potential implies small duality gap.
The basic idea of the primal-dual algorithm is to generate iterations of primal and
dual feasible matrices satisfying

GAH;tﬁ N:ntJ < SAH;V, N;J -8, (39)
for some absolute positive constant é. By (38) we therefore have:

GAHBV, NBJ —ké

TrF(z®)Z® < ezp o /n = codf TrF(z!") 2, (40)
where
GAHAS, NBJ - er -6
g”mHﬂl%u c = H.T#\ﬂm
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We can interpret the result (40) as follows: the duality gap converges to zero at least
exponentially at a rate given by the constant ¢;. The constant cp depends only on the
centrality of the initial pair, and is one if the initial pair is central.

In other words, we have polynomial convergence:

Theorem 3 Assume that (39} holds with some & > 0 that does not depend onn or
€, where 0 < ¢ < 1. Then for

g > vVnlog(l/e) + 9(z?, 2©)
iy Q 1
we have It F(z(®)Z(®) < ¢TrF(z(0)Z@),

Roughly speaking, we have convergence in O(\/n) steps, provided the initial pair is
sufficiently centered.

We conclude this section with a conceptual outline of the potential reduction al-
gorithm.

Potential Reduction Algorithm

given strictly feasible z and Z.

repeat
1. Find primal and dual feasible directions éz and 6 Z.
2. Find p, g € R that minimize ¢(z + péx, Z + q6Z).
3. Update: r:=z + pdrand Z := Z 4 q6Z.

until duality gap <,

The key task, then, is to show how to update (z(¥), Z{k}) into (z(k+1), Z(k+ D)
such that (39) holds.
4.2 Plane Search
In the next sections we will describe several possibilities for computing directions éx
and Z. Here we assume that these search directions are given, and we will show how
the potential function ¢(z + péz, Z + ¢62) can be minimized over the plane defined
by these two directions, We will use the notation F* 2 F(z)and 6F 4 S Fibz,.
The two-dimensional minimization can be done very efficiently if we 1:_.& com-
pute the eigenvalues py, ..., u, of F~1/26 FF~1/2 and the eigenvalues v, . .., v, of
Z~Y2§7Z~-1/2, The potential function can then be written in terms of pand q as

w(p.q) = (n+ vv/n)logler + cap + c39) + f(p,q) - nlogn,

where ¢y = TrFZ, co = TrZ6F, and c3 = TrFé2Z, and [ is the restriction of the
barrier term to the plane, i.e.,

f(p,q)

— log det(F + péF) — logdet(Z + q62)

=D log(1 4 ppi) = Y log(1 + qui) — log det(F Z).

i=1 i=1
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Note that once we have the eigenvalues u; and v;, we can compute ¢(p, ¢} and its
derivatives in O(n) operations.

An efficient way to minimize ¢ is Newton's method with Nesterov and Nemirov
sky’s step length. Although ¢(p, g) is not convex (it is the sum of a concave and a
convex term), it can be replaced by a convex upper bound at every iteration of the
plane search by linearizing the concave term. Newton's method can then be safely
applied to this convex approximation (see next section for more details).

There is no need to calculate the minimum of (p, ¢) very accurately. One can .
take a fixed number of steps, for example, as Ben Tat and Nemirovsky in [10]. 7

The main cost of this scheme is in the initial computation of the eigenvalues y,
and v;. Once these are known, each step in the plane search can be carried out at a
cost of O(n) operations.

4.3 Potential Reduction Method 1 _
The first, and most obvious, method for computing search directions éx and 872, is
by Newton’s method. We need a slight modification to Newton’s method, however,
because the potential function {z, Z) is not convex itself, but the sum of a concave
and a convex function. The modification can be interpreted in several ways.

s We use exactly Newton's method, but apply it to a different potential function
. The modified function ¢ is obtained from y by linearizing the concave term
qlog(cTx + TrFpZ) around the current iterate (¥, Z(*). Therefore, ¢ is a
convex function. It has the property that

¢z, Z) 2 ¢(z, 2),

for all z and Z, and $(z(*), Z) = (z¥), Z(*)), In other words, if a particular
chaice of k+1), Z(+1) redyces ¢ by a certain amount, then the reduction in
 itself will be even bigger.

e It is a quasi-Newton method applied to . A quasi-Newton method uses the
exact gradient of ¢, but replaces the Hessian by an approximation. In this case
the approximation is to drop the second derivatives of the concave term, and
to consider only the barrier term when forming the Hessian.

Following the first interpretation, et us linearize the concave term:

Bz, 2) 2 pz®,Zz®)+p (cT(x—x®)y + TrFy(Z - Z2) - ,
logdet F{z) — logdet Z — nlogn,

where p & Q\ (c'z®) + TrFy Z¢9). Note that the function 3 is separable in z and Z:

@z, Z) = ¢7(z) + $*(Z) + constant,

where

oz — log det F(x), (a1 _
pTrEFyZ — logdet Z. (42)

e

e
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In the derivation of the Newton directions 6z and 829, we can therefore consider
the primal and dual parts separately.
4.3.1 Primal Least-Squares Problem

The Newton direction for 37 is the direction that minimizes the best quadratic approx-
imation to the function. Recall from Section 3 that the best quadratic approximation
to the barrier function — log det V in a given matrix X, is given by

—logdet(X + V) = -TrX "'V 4+ ITrv X -1V X -1,
We therefore have {with F 2 F(z)):

3
mHuHmESm:.cnﬂclﬂﬂmT_ MUN..E + va
veR™ i=1

m m
3Tr Mum,".c.. F1 Mu.uwcu. F-!
i=1 j=1

m
= argmin pcTv — M.J\c_. A‘Hﬂ.ﬁL»ﬂ,v +
veER™ i=1

m m
WMMQ-.CH. ﬁﬂﬂﬁﬁl-ﬁ&ﬁlmv. (44)
i=1j=1

Let f; = F-12Fp-Y2 for i = 1,...,m, and C be an n x n matrix satisfying
TrFC =¢,i=1,...,m(take C = Z, for instance). Then the expression for §zP
can be further simplified to

8z = argmin Muea.ﬂ_%,.. (pC ~ m...;v + (45)
v € R™ =)

W M:UWG-.CMN&. A&UIH\MM,—.%JI—\Mﬁlu\wmﬁ.wl_\nv

i=1 j=1

= argmin Wcmﬂlﬂ. Abm._\uQm;\u - ~v + WM:U Wc..cu.u;ﬂ@mm
i=1 j=1

vER™ i=1
m
= argmin |pFY2CcFV2_|4 Muh,_é_ . {46)
v € R™® i=1 F

This is a least squares problem with m variables and n{n + 1)/2 equations.

Let us consider the LP (3) as an iflustration. In this case, all matrices in (46}
are diagonal, and F' = diag(Az — b). The least-squares probiem then reduces to
minimizing the norm of the diagonal elements

minimize || pXé — e + X 14|,
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where X = diag(Az — b), e is a vector with all components one, and ¢ is any vector
that solves AT = c.

4.3.2 Dual Least-Squares Problem

in a similar way, among all feasible directions, § Z¢ will be the direction that minimizes
the second order approximation of $4(Z):

62% = argmin  pTrFyV —TrZ 'V + 1TrVZ-VZ-L (47)
V:TrF,V =0
1=1,...,m

This involves a least-squares problem with exactly the same dimension as the _u_.:.:m_
problem. The easiest way to see this, is to introduce Lagrange multipliers v;, i =
1,...,m for the constraints on V, and to write the optimality conditions for (47):

m
pFo— 271+ 2726227 + Y _wFi =0,
i=1
TrF62% =0, i=1,...,m,
or, equivalently, if we write I, = Z1/2F,Z1/2 i =1,...,m:
pZ' PRz — I+ 27V%62°Z71 + ) wF; =0, (48)
i=1

TrE,Zz-V2%z24Z2-12 —¢g, i=1,...,m.

Hence the multipliers v;, i = 1,...,m, are the solution of the least squares problem
m -
minimize ||pZ'2FoZ"? — 1+ Fuil (49)
v € R™ i=1 F

which, again, has n(n + 1)/2 equations and m variables. From the least-squares
solution v, one then obtains §Z¢ by substitution in equation (48}.

In the case of an LP where F(z) = diag(Az — b) and Z = diag(z), problem (49)
becomes

minimize | -pZb — e + ZAv||.

4.3.3 Summary
The following outline summarizes the two preceding sections. The method is due to
Vandenberghe and Boyd [60], and is a generalization of Gonzaga and Todd’s method
for linear programming [25].

Potential Reduction Algorithm 1

given strictly feasible z and Z.
repeat
1. Solve the least-squares problem (46) for 617,
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2. Solve the least-squares problem (49}, and compute §Z9 from (48).
3. Find p, ¢ € Rthat minimize (z + pézP, Z + g629).
4. Update: = := z + pbz® and Z := Z + ¢62°.

until duality gap <e.

We refer 10 [60] for a complexity analysis. The basic ideas are summarized in the
following two theorems. Define

\ A Mw-_:mw,_:ﬁw . X2 __N,:Jmlml_s__w.

The first theorem states that it is always possible to reduce the potential as long
as A? and A? are not both small.

Theorem 4 Assume that x and Z are strictly feasible, and that 6x” and 6§29 are the
corresponding Newton directions. Letp = 1/(1 + AP) andq = 1/(1 + A?). Then

ol +pbzP, Z) < p(x,2) — A + log(l + AP),
o{z,Z + q62%) < w(z,2Z) — A% +log(1 + A9).

The second theorem states that A? and A9 never become small at the same time.
Theorem 5 max{\?, A9} > 0.35.

As a consequence of these two theorems, we see that it is always possible to reduce
the potential function by at least log 0.35 — log(1 - 0.35) = 0.78 per iteration. We
have seen in Section 4.1 that this implies convergence of the algarithm in O(/n)
iterations.
4.4 Potential Reduction Method 2
The above algorithm has the disadvantage of requiring the solution of two least-
squares problems per iteration. In this section we will show that a complete primal-
dual algorithm can be based on the primal least-squares problem only. In linear
programming this primal-dual method is called Ye's method [62], but the extension
to PDPs is due to Nesterov and Nemirovsky [43] and Alizadeh [2]).

We first write down the optimality conditions that characterize §z? as the mini-
mizer of {44):

pei —TrF 'F+ Y 622Tr (FF'FF~Y) =0,
F=1

fori=1,...,m, or

m
(1/p)TrF; m.r_IMmem.memT_ =e.
j=1
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In other words, the matrix (1/p) Amf_ -X m..u_mw.mf_mswv satisfies the equality
constraints needed for dual feasibility, and the matrix

m
sz 2 yp){ P! - Y 6alF'RFT ) -2 (50)
i=1

is a dual feasible direction. o
The second potential reduction algorithm takes this 6 Z7 as dual search direction,
and performs a plane search in the plane defined by 2P and 6§ Z*:

Potential Reduction Algorithm 2

given strictly feasible r and Z.
repeat
1. Solve the least-squares problem {48} for 5xP.
2. Find 6 ZP from (50).
3. Find p, q € R that minimize ¢(x + péz®, Z + ¢629).
4, Update: r:= 1 4 pbxP and Z := Z + q62°%.
until duality gap < e.

The effectiveness of this algorithm is a consequence of Theorem 4 and Theorem 6
below. Theorem 4 implies that

1
Pz + 75505 2) < 93, Z2) - W +log(1 + Ap).

Theorem 6 IfAP < 1, then
p(r,Z +82ZP) < p(z, Z) + (AP — 1/2} — AP ~ log(1 — AP).

Hence, again, there is always at least one way to reduce the potential function sub-
stantially. H AP is large, then a primal update only would be enough; when A becomes
too small, the dual update takes over. The plane search guarantees a smooth and
optimal transition between both extreme cases.
4.5 Combined Algorithms
By duality, the considerations of Section 4.4 can be repeated for the dual least-squares
problem {49). Solving the dual least-squares problem, we not cnly find a dual Newton
direction 6Z¢ but also a primal feasible direction §z%, and a complete primal-dual
algorithm can be based on the dual least-squares problem alone.

This means that four search directions are available at each strictly feasible pair
z,2Z:

primal least squares | 67 &62ZP
dual least squares | 6z¢ §24
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inthis table, three pairs of primal and dual directions are known to reduce the potential
function:

e Method 1 uses 2P, §2°.

e Method 2 uses dzP, 6 Z7.

¢ The dual version of method 2 method uses 6x¢, §Z9.

These three methods all have a worst-case complexity of O(\/nL log(1/¢)) iterations, :
and also in practice, it is not clear which one is faster (in terms of iterations). The first _
method has the disadvantage of requiring two least-squares problems per update,
but one can think of combinations, where in each step either the primal or the dual
least-squares probiem {(for instance, alternatingly) is solved.

4.6 Long-Siep Path-Following Methods
A number of recent articles describe path-following linear programming methods
with superlinear or quadratic asymptotic convergence (see Zhang and Tapia [66], Ye,
Giler, Tapia and Zhang [63], Mizuno, Todd and Ye [35}). In this section we discuss a
PDP variant of these methods. We use a conceptual version of an algorithm presented
by Nesterov [37]. For a different approach, see Alizadeh, Haeberly and Overton [1].
The algorithm traces the central path using a predictor-corrector approach. The
predictor phase makes the largest possible step without leaving a pre-determined
neighborhood of the central path. Our discussion in Section 3.3 suggests using
Y(x, Z) as a measure for deviation from the centrai path. The parameter Y5z in
the following algorithm is an upper bound on v and determines how close to the
central path the iterates stay. We assume that the initial points are strictly feasible
and sufficiently centered. 1

Long-Step Path-Following Algorithm

given strictly feasible z and Z with ¥(z, Z) < ¥az.
repeat

1. Corrector step.
{Approximately) center x, Z, keeping the duality gap constant.
2. Predictor step.
Compute directions §z?79, §ZPrd {(approximately) tangent to central path.
Compute p > 0 such that ¥(z + pbzP™d, Z + p6Z7™%) = tfnaz.
Take z = = + p6zP'™4, Z = Z + pb 2™,
until duality gap < e.

4.6.1 Predictor Step

Assume r and Z are central with duality gap o: F(z)Z = (a/n)l. We first derive
expressions for the tangent directions to the central path at =, Z. From the first order
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expansion of the equality F(z + §z)(Z + 6Z) = ((a — éa)/n)I, we find that the
tangent directions 6z”" and § 27" satisfy

—I=F(z)6z" + | Y 61| 2, {51)

i=1

or, using F(z)Z = (a/n)l,

m
—1 = F'Y26ZP4F 2 o (am)F~2 [ 362274 F | FTY2, (52)

i=1

where, as before, F 2 F(z).
This equation, together with the dual feasibility conditions TrF,§ZP™4 = ¢, is
equivalent to the optimality conditions of the least-squares problem,

m
5z7"? = argmin |{(n/a)] + MSML\NE@L\N , (53)
v €R™ i=1

and the dual direction follows from § 27" = —F~!—(a/n)F~! AMNH &Hwamv F-1
Theorem 7 Ifi... is a positive constant, E,ﬁ p > 0 is computed from

._\AH +EH§.&0N +EN3RV = Ymaz,

then
TrF(z + pbz"™¢)(Z + p6274) < (1 — 7/ V)T F(z)Z,

where T is a positive constant less than one.

In other words, every predictor step reduces the duality gap by 1 — 7/\/n. The
number of predictor steps needed to reduce the duality gap by a factor ¢ is at most
p% log(1/¢€). This establishes polynomial convergence. In practice, the steps typi-
cally become larger as the algorithm approaches the solution. This results in fast
(superlinear) asymptotic convergence.

4.6.2 Corrector Step

In the corrector phase one can use Newton's method, possibly combined with a plane
search, to find a primal-dual central pair with a given duality gap a. As explained in
Section 3.3, the number of corrector steps in every outer iteration will be bounded by
an absolute constant. Therefore, the corrector steps do not contribute to the order of
the worst-case complexity.
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5 Conelusions and Extensions

5.1 Solving Structured Problems

A natural question is: What is the computational effort required to solve a PDP using
the methods described above? The answer depends on the amount of structure in
the matrix inequality F(xr). The three methods have the same worst-case complex-
ity: The number of iterations to solve a PDP to a given accuracy grows as O(y/n).
In practice, it has been observed by many researchers that the number grows mare
slowly, as logn or as n!/4, and can often be assumed to be almost constant {see Nes-
terov and Nemirovsky [43], or Gonzaga and Todd {25] for comments on the average
behavior). Typical numbers range from 10 to 50.

The overall cost is therefore determined by the amount of work per iteration, As
we have seen, the dominant part here is the solution of a least-squares problem of
the form

m
minimize ||D — Mc_m , (54)
i=1 F

where mn. = VT F,V. The matrices V and D change from iteration to iteration. Prob-
lem (54) is a least-squares problem with m variables and n(n + 1) /2 equations. Using
direct methods it can be solved in O(m?n?) operations.

Important savings are possible when the matrices Fj are structured. The easiest
type is block-diagonal structure. Assume F(z) consists of L diagonal blocks of size

n;, it = 1,..., L. Then the number of equations in (54) is Mwn_ ni(ni + 1)/2, which
is often an order less than n(n + 1)/2. For instance, in the LP case (diagonal matrix
F(x)), the number of variables is n, and solving the least-squares problem requires
only O(m?n) operations.

In more complicated situations, one can use iterative methods to solve (64). The
LSQR algorithm of Paige and Saunders [49) appears to be very well suited. At a high
level, and in exact arithmetic, it has the following properties. it solves (54) inm + 1

iterations. Every iteration evaluates two linear mappings

m
Vi, 0m) = Y _vFy, and W (TrEW,.. TrF,W) (55)

i=1

on a vector v and a symmetric matrix W = W7, When the matrices F; are unstruc-
tured, these two operations take mn? operations. Hence, the cost of solving (54)
using LSQR is O(n?>m?), and nothing is gained over direct methods.

in most cases, however, the two operations {55) are much cheaper than mn?
because of the special structure of the matrices F;. A well-known example is a sparse
LP. Iterative methods in interior-point algorithms for sparse LPs are addressed by
Mehrotra [34], Kim and Nazareth [30], and Gitl, Murray, Ponceleon and Saunders [22].

Sparsity is not the only example, however. The equations are often dense, but
still highly structured in the sense that the (55) are easy to evaluate. Reference [60]
discusses iterative methods for exploiting structure in PDPs arising in control theory.
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lterative methods have one important drawback. Due to round-off errors, con-
vergence can be sfow unless preconditioning or some type of reorthogonalization is
used. The implementation of iterative methods is therefore very problem-dependent.
5.2 Generalized Eigenvalue Problems
As a final note, we would like to mention that great progress has recently been made
in interior-point methods for generalized linear-fractional problems

minimize
subjectto tB(z) — A{z) >0,
B(x) 2 0,

where B(x) and A(x) are affine in x. This problem is quasiconvex, and generalizes
the PDP

minimize ¢

subjectto tI — A(z) > 0.
See Boyd and El Ghaoui [7], and Nesterov and Nemirovsky [42, 36]) for details.
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