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Abstract: A convolution system can have a frequency response
which is small for all frequencies, yet still greatly amplify the
peaks of signals passing though it. For finite-dimensional
systems, however, we establish the simple bound | k|, <(2n
+ 1} | A lly=, where {lh]||; is the peak gain of the system,
|| 2]l is the maximum frequency response of the system, and
n its dimension. The same result for continuous-time systems
is due to Gohberg and Doyle and it is mentioned in [6).

The bound implies that H*-optimal controllers, which
minimize the maximum of some disturbance-to-error transfer
function, cannot have very large peak gains from the dis-
turbance to error.

Keywords: Peak gain, RMS gain, H_-norm, §;-norm, Hankel
singular values.

1. Introduction

We consider the discrete-time convolution sys-
tem y=h*u where u (the input), y (the output)
and h (the impulse response) are real-valued se-
quences on the nonnegative integers Z, £
{0,1,2...}, and A*u is defined by

By ;. (1.0.1)

it

Y=

i
We now examine several different measures of the
‘size’ of a signal or the ‘gain’ of the convolution
system (1.0.1).
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1.1. BIBO stability and peak gain

The peak or 1°-norm of a signal u is defined by

[l 21l 2 sup |1y ].
k=0
The set of bounded sequences, that is, those
with finite peak, will be denoted 1, as usual. The
system (1.0.1) will have the property that its out-
put y is bounded whenever its input u is bounded
if and only if

| B[ 2 (1Al < oo (11.1)

it

i

in which case we can bound the peak of the
output by

Ny llos < M2 1l el oo (1.1.2)

This last property (1.1.2) 1s called bounded input
bounded output (BIBO) stability; a convolution
system satisfying (1.1.1) is called BIBO stable. The
bound (1.1.2) is in fact sharp, since there is a
nonzero 4 €1 with

A% el = 1l #llo 11y

Thus || k||, is the peak gain of the convolution
operator (1.0.1); it is the maximum factor by
which the convolution operator can increase the
peak of its input.

1.2. ¥ or RMS gain

Another useful norm on signals is the 1%-norm

0 12
l|ull, ( N u?)
i=0

which may be interpreted as the square root of the
total normalized energy in the signal . 1° will
denote the set of signals with finite 1>-norm. The
convolution operator (1.0.1) will map 1*signals
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into 1%-signals if and only if the power series

H(M) 2 f AN (1.2.1)
i=0

is analytic and bounded for (complex) |A| <1,
that is,

Y hX

i=0

A
| 1 llyg~ = sup
1Al =<1

< o0, (1.2.2)

in which case the following bound holds:

[P PR R (] PR

Such systems are called 1*-stable.

The bound (1.2.3) is also sharp; there are u € 1°
with || ¥ ||,/ |l 4], as close as we want to || A ||y~
{(but not equal, as in peak case, unless H has
constant modulus on the unit circle). Hence
|| A= may be interpreted as the 1°-gain of the
convolution operator (1.0.1).

We remark here that the power series (1.2.1)
need not converge for |A| =1, and that the re-
quirement (1.2.2) is strictly weaker than (1), since
1A= < ik, Thus every BIBO convolution
operator is 12-stable, but not vice versa. Examples
of 1%-stable but not BIBO stable convolution oper-
ators are quite contrived; one is given by

(12.3)

he 2 (kD) THR0), H(A)=¢/?0 (124

When the convolution operator is also BIBO

stable, the power series (1.2.1) does converge for
[A] =1 and

172l = Sl;pIH(ejg)L

Thus the I*-gain ||/ ||;;= can be interpreted as the
maximum frequency response of (1.0.1), that is, the
maximum steady state response to sinusoidal in-
puts bounded by one. We note for later reference
that the frequency response | H(e'?)| of a BIBO
stable convolution system is in fact a continuous
function of 4.

Another interpretation of || &]||y~, perhaps
more often appropriate, 1s as the RMS gain of
(1.0.1). Let us define the RMS value of a signal u
to be

_ 1,2
_ 1 k-1

”uHRMSéthup(E E ”:2) .
i=0

K— oo

Then we have || ¥ ||ams < | # |l || 4 || gas»> and this

bound is sharp, indeed there is a nonzero u» with
Il ¥ Tems = 1A = |l %]l Rs-

Note that | -||gms iS 70t a norm, but only a
seminorm, since we can have nonzero signals with
zero RMS value. For example, any ‘transient’ or
decaying u (u(k)—0 as k — o) has zero RMS
value.

1.3. RMS response to white inputs

We say that a signal u is white if

K—-1

.1 _f1 m=40,
,35“me§0“’”'+'"_{0 m>0.

Thus white signals have an RMS value of 1.

While ||/ |y= is the maximum RMS value of
the output of (1.0.1) when the input signal has
RMS value 1, if we restrict our attention to white
input signals the RMS value of the output is
always || A ],, that is,

lA*u|lgms = || All; for u white.

1.4. Relations among peak and RMS gains, RMS
response to white inputs

We have seen three measures of the ‘size’ of the
system (1.0.1): its peak and RMS gains, and its
RMS response to white inputs. Intuition suggests
that these measures are related. For example, it is
tempting to conclude that if (1.0.1) has small RMS
gain, it should have small peak gain, but this is
simply not true.

In general nothing can be said other than

IAl < N2l < 1AL

Convolution systems with small RMS gain can
have arbitrarily large peak gains, indeed infinite
peak gain. The system (1.2.4) described in Section
1.2 has finite RMS gain

Iy = sup |e/A7D) =712
A <1

but infinite peak gain, since as noted in Section
1.2, BIBO stable convolution systems have con-
tinuous frequency responses, yet for this example,
H(e'y is not continuous at § =0.

Similarly a convolution system can have small
RMS response to white inputs but infinite RMS
gain; an example is given by H(A)=(1 —A)"1/3,
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that is,

4-7---- -(3k-12)
3k +1 :

he & (k1) HO(0) = 2

This H is inbounded near A = 1, hence || k]| y= =
o0, and so this convolution system can have in-
finite RMS response to an input with RMS value
finite, say, 1. However, its RMS response to white
inputs is finite, since

112 =(2m)" [*" H(e) |2 ab
0
=-n~12*1/3f“(1 ~cos 8) 1% dg
0
=1r‘12*]/3f]u'5/6(2~u)_1/2 du
0

<o 12233,

2. Controller and filter design

Many problems in controller and filter design
can be cast in terms of making some ‘error’ con-
volution operator ‘small’ (see, e.g., [9]). Usually
the error operator can be interpreted as mapping
an input or disturbance to an error or output.
Depending on our notion of size of a convolution
operator, the goal of minimizing the error oper-
ator yields different controller or filter design
schemes.

The linear quadratic Gaussian (LQG) con-
troller minimizes the RMS response to white in-
puts of a certain (usually multi-input multi-out-
put) error convolution operator. In [11], Zems
pointed out that controller design schemes which
minimize a gain (‘multiplicative seminorm’) have
more desirable robustness properties than those
which minimize a measure of the error operator
which is not a gain, e.g. the RMS response to
white inputs. He proposed to design controllers
which minimize the RMS gain of the error oper-
ator, that is, the H* norm of the error impulse
response.

Implicit in such frequency-response methods is
the assumption that in practice, an error operator
small in the sense of maximum frequency response
should be small in other sense, e.g. peak gain. The
examples given in Section 1.4 show that this as-
sumption does not hold generally, but we will

show that a weak form of this assumption does
hold in practice.

Recently Vidyasagar [10] proposed to design
controllers which minimize the peak gain of an
error operator, that is, the I'-norm of the error
impulse response; Dahleh and Pearson [1] gave a
solution to the I'-optimal controller design prob-
lem for discrete-time systems in 1985. A question
which arises immediately is, how different can
systems designed with LQG, H*- and I'-optimal
controllers be? The examples of Section 1.4 sug-
gest that they can be radically different.

3. Bounds for finite-dimensional systems

In most cases of practical interest, the impulse
response A is that of a finite-dimensional dynami-
cal system (A4, b, ¢, d}:

X1 =Ax, + bu,,
xo=0,
Yi=cx, +du,,

(3.1)
where A€ R"™" b, ¢cT€R”", and d=R. Thus
ho=4d, and for k >0, h, = cA* 'b. For such im-
pulse responses it is possible to bound the peak
gain in terms of the RMS gain and n, the dimen-
sion of the state space.

Theorem 1. If h comes from the dynamical system
(3.1), then

N7l < (2n+1) 1Ay (3.2a)
If in addition d =0, then
Al <2n A llge. (3.2b)

The continuous-time version of Theorem 1,
which is identical, is a recent (unpublished) result
of Gohberg and Doyle [6].

We will assume that the system is 1%-stable,
since otherwise the bounds above are vacuous. We
will also assume that the system (4, B, ¢, d) is
minimal; this implies that the eigenvalues of A
have magnitude less than one.

We mention that the bounds (3.2) are sharp,
that is, for each n, there are dynamical systems
with the ratios of peak to RMS gain as close as
desired to 2n+ 1. Allpass systems with widely
spread dynamics have this property; for example
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consider

_ A= (1-a¥)
H(M_kl:[l (1-a*)A—1

where 0 <a<1. Of course ||A|y=-=1, and as
a—{, || h]|; = 2r+ 1. This last fact can be seen
as follows: h consists of a sum of 2n + 1 decaying
exponentials, alternating in sign, each of area one.
As o becomes small, the exponentials have widely
separated time scales, so that ‘neighboring’ ex-
ponentials do not cancel very much, thus || & ||, is
nearly 2n + 1.

We now turn to establishing Theorem 1. In fact
the results (3.2) are implied by a sharper bound
involving the Hankel singular values of the impul-
sive response h. Recall that the Hankel singular
values oy, ..., 0,4, of (3.1) are the square roots of
the eigenvalues of W_W,_, where W, and W, are the
observability and controllability Gramians of (3.1),
1.€.

0 0
u/oé Z ATkCTCAk, n/cé z AkbbTATk
k=0 k=0

(these sums make sense because the eigenvalues of
A have magnitude less than one). We order the
Hankel singular values as usual:

0[{]2 fre ZUHH>O'

The o,,,’s depend only on the impulse response A
and not on the particular realization { 4, b, ¢, d}
of 4, and so may be unambiguously called the
Hankel singular values of A.

Theorem 2.

Bl < |d]|+2oy + - +oy,). (3.3)

We postpone the proof of Theorem 2.

Lemma 1.

1A= = 0gq-

Lemma 1 is well known; it follows immediately
from the characterizations

[+7s)
||h||.iw=sup{ P

i=0

o0
Yui=1, y=h*u},
=0

i

oo

0}211 = SUP{ Z y,'2

i=k

oo
ru=1,
=0

i
u,=u, .= =0, kZO,y=h*u}

(see e.g. [2] for the first and [5] for the second).
Thus || k|5 = 07

~ Theorem 1 follows immediately from Theorem
2 and Lemma 1:

Bl < |d]+2) oy,
<|d|+2n0, < |d|+2n| h|ge.

Setting d = 0 yields (3.2b). Noting that || h||g= =
| H(O}| = | d | yields (3.2a).

We mention here that the sharper bound (3.3)
shows that the order of n appearing in the bounds
(3.2) can really be taken to be the effective order
of the system, meaning the number of significant
Hankel singular values, as opposed to the number
of nonzero Hankel singular values.

Proof of Theorem 2, We have

NAll=1d|+ ) [cd*D|
k=0

[+ <] o0

=|d|+ Y |cA* b+ Y |cA*** b,
k=0 k=0

(3.4)

Let us first consider the second term in (3.4). By
the Cauchy-Schwarz inequality in R”,

[cA™b| < || AT5T ||, || A*B ]|,

8O

o0 o0
2 led¥ b < X AT 11| 44 ),
k=0 k=0

) 152, o
s( XA IIzZ) ( > ||A"b||§)
k=0 k=0

1,2
=(Tr W, Tr W) ",

12

using the Cauchy-Schwarz inequality in 12, Simi-
larly the third term in (3.4) can be bounded above
as

o0

[s o)
2ol < Y| AT, ) A5,

k=0 k=0
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12

o 1/2, o
s( P AT“cTuf) ( > ||A"”bn§)
k=0 k=0

00 1/2
=(Tr Wo)l/z(Tr ¥ A"bbTAT")
k=1

= (Tr W) *(Tew, — (16113)"”
<(Tr W, Tr W),
Thus from (3.4),
Ihlh < d]+2(Te W, Tr W), (33)

Now (3.5) is true for any realization { 4, b, c, d}
of h; in particular for a balanced realization
{ Ay, by, ¢,, d} of h, we have

Wy = W= diagloy,.... 04n] & 3,
Thus we have
Al <1d|+2(0; + -+ +oy,)

which establishes Theorem 2.

It is interesting to note that expressions similar
to Tr W, Tr W, have appeared in recent work on
sensitivity and overflow analysis of realizations of
h [7.8].

It is worth mentioning that the balanced reali-
zation used above yields the best bound for || 4 ||,
based on the inequality (3.5). We will now show
that among all realizations of 4, Tr W, Tr W, has
minimum value Xo,,, which is achieved by and
only by any realization with W, a multiple of W,,
the balanced realization a special case of this.

For any matrices F and G we have the
inequality

1,2
Tr(F'G) = ZF;'J‘GU =< (ZE?ZG&,)
i k1

= (Te(FTF) Tr(G7G))'

with equality if and only if F and G are multiples
of each other. Now if W, and W, are the Gramians
of any (order n) realization of A, then they can be
expressed as

W,=T'2,T, W.=T"'2,TT

where T is some nonsingular matrix (in fact, the
coordinate transformation taking the balanced
realization into the given realization). Applying

the inequality above with F=3Y2T and G =
2T 7 yields

1,2

(Tr W, Te W) "> Te(TT2,T7T)

=Tr 24,=Y oy. (3.6)

Moreover equality obtains only when Z}°7T is a
multiple of 33277, which is equivalent to TT7T
= af for some constant a. This implies that a?W¥,
= W,; conversely if W, is a multiple of W,, then
TTT =al for some constant a, and equality ob-
tains in (3.6). Thus the claim above is established.

Finally, we note that it is not possible to bound
the RMS gain of a finite-dimensional system in
terms of its RMS response to white inputs and its
order. Let 0 <r <1, and consider the first-order
system

Xppd =X+ gy =Xy
Thus hy=0 and for k>0, h, =r*"1, 5o

I Alla==(=r)"" and |[&],=(1-r3)""

For r near one, the ratio || h|/y=/| %], is un-
bounded, establishing the impossibility of bound-
ing this ratio in terms of the system order (here,
one).
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