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SUMMARY

We consider the use of quadratic approximate value functions for stochastic control problems with input-
affine dynamics and convex stage cost and constraints. Evaluating the approximate dynamic programming
policy in such cases requires the solution of an explicit convex optimization problem, such as a quadratic
program, which can be carried out efficiently. We describe a simple and general method for approximate
value iteration that also relies on our ability to solve convex optimization problems, in this case, typically
a semidefinite program. Although we have no theoretical guarantee on the performance attained using our
method, we observe that very good performance can be obtained in practice. Copyright © 2012 John Wiley
& Sons, Ltd.
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1. INTRODUCTION

We consider stochastic control problems with input-affine dynamics and convex stage costs, which
arise in many applications in nonlinear control, supply chain, and finance. Such problems can be
solved in principle using dynamic programming (DP), which expresses the optimal policy in terms
of an optimization problem involving the value function (or a sequence of value functions in the
time-varying case), which is a function on the state space Rn. The value function (or functions) can
be found, in principle, by an iteration involving the Bellman operator, which maps functions on the
state space into functions on the state space and involves an expectation and a minimization step; see
[1] for an early work on DP and [2–4] for a more detailed overview. For the special case when the
dynamics is linear and the stage cost is convex quadratic, DP gives a complete and explicit solution
of the problem, because in this case, the value function is also quadratic and the expectation and
minimization steps both preserve quadratic functions and can be carried out explicitly.

For other input-affine convex stochastic control problems, DP is difficult to carry out. The basic
problem is that there is no general way to (exactly) represent a function on Rn, much less carry
out the expectation and minimization steps that arise in the Bellman operator. For small state space
dimension, say, n 6 4, the important region of state space can be gridded (or otherwise represented
by a finite number of points), and functions on it can be represented by a finite-dimensional set of
functions, such as piecewise affine. Brute force computation can then be used to find the value func-
tion (or more accurately, a good approximation of it) and also the optimal policy. But this approach
will not scale to larger state space dimensions, because, in general, the number of basis functions
needed to represent a function to a given accuracy grows exponentially in the state space dimension
n (this is the curse of dimensionality).
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For problems with larger dimensions, approximate dynamic programming (ADP) gives a method
for finding a good, if not optimal, policy. In ADP, the control policy uses a surrogate or approximate
value function in place of the true value function. The distinction with the brute force numerical
method described previously is that in ADP, we abandon the goal of approximating the true value
function well and, instead, only hope to capture some of its key attributes. The approximate value
function is also chosen so that the optimization problem that must be solved to evaluate the pol-
icy is tractable. It has been observed that good performance can be obtained with ADP, even when
the approximate value function is not a particularly good approximation of the true value function.
(Of course, this problem depends on how the approximate value function is chosen.)

There are many methods for finding an appropriate approximate value function; for an overview
on ADP, see [3]. The approximate value function can be chosen as the true value function of a sim-
plified version of the stochastic control problem, for which we can easily obtain the value function.
For example, we can form a linear–quadratic approximation of the problem and use the (quadratic)
value function obtained for the approximation as our approximate value function. Another exam-
ple used in model predictive control (MPC) or certainty-equivalent roll out (see, e.g., [5]) is to
replace the stochastic terms in the original problem with constant values, say, their expectations.
This results in an ordinary optimization problem, which (if it is convex) we can solve to obtain the
value function. Recently, Wang et al. have developed a method that uses convex optimization to
compute a quadratic lower bound on the true value function, which provides a good candidate for
an approximate value function and also gives a lower bound on the optimal performance [6,7]. This
was extended in [8] to use as approximate value function the pointwise supremum of a family of
quadratic lower bounds on the value function. These methods, however, cannot be used for general
input-affine convex problems.

Approximate dynamic programming is closely related to inverse optimization, which has been
studied in various fields such as control [9,10], robotics [11,12], and economics [13–15]. In inverse
optimization, the goal is to find (or estimate or impute) the objective function in an underlying opti-
mizing process, given observations of optimal (or nearly optimal) actions. In a stochastic control
problem, the objective is related to the value function, so the goal is to approximate the value func-
tion, given samples of optimal or nearly optimal actions. Watkins et al. introduced an algorithm
called Q-learning [16, 17], which observes the action–state pair at each step and updates a quality
function on the basis of the obtained reward/cost.

Model predictive control, also known as receding-horizon control or rolling-horizon planning
[18–20], is also closely related to ADP. In MPC, at each step, we plan for the next T time steps,
using some estimates or predictions of future unknown values and then execute only the action for
the current time step. At the next step, we solve the same problem again, now using the value of
the current state and updated values of the predictions based on any new information available.
MPC can be interpreted as ADP, where the approximate value function is the optimal value of an
optimization problem.

In this paper, we take a simple approach, by restricting the approximate value functions to be
quadratic. This implies that the expectation step can be carried out exactly and that evaluating the
policy reduces to a tractable convex optimization problem, often a simple quadratic program (QP),
in many practical cases.

To choose a quadratic approximate value function, we use the same Bellman operator iteration
that would result in the true value function (when some technical conditions hold), but we replace
the Bellman operator with an approximation that maps quadratic functions to quadratic functions.
The idea of value iteration, followed by a projection step back to the subset of candidate approxi-
mate value functions, is an old one, explored by many authors [3, Chapter 6; 21, Chapter 12; 22].
In the reinforcement learning community, two closely related methods are fitted value iteration and
fitted Q-iteration [23–27]. Most of these works consider problems with continuous state space and
finite action space, and some of them come with theoretical guarantees on convergence and perfor-
mance bounds. For instance, the authors in [23] proposed a family of tree-based methods for fitting
approximate Q-functions and provided convergence guarantees and performance bounds for some of
the proposed methods. Riedmiller considered the same framework but employed a multilayered per-
ceptron to fit (model-free) Q-functions and provided empirical performance results [24]. Munos and
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Szepesvari developed finite-time bounds for the fitted value iteration for discounted problems with
bounded rewards [26]. Antos et al. extended this work to continuous action space and developed per-
formance bounds for a variant of the fitted Q-iteration by using stationary stochastic policies, where
greedy action selection is replaced with searching on a restricted set of candidate policies [27].

There are also approximate versions of policy iteration and the linear programming formulation
of DPs [28, 29], where the value function is replaced by a linear combination of a set of basis func-
tions. Lagoudakis et al. considered the discounted finite state case and proposed a projected policy
iteration method [30] that minimizes the `2 Bellman residual to obtain an approximate value func-
tion and policy at each step of the algorithm. Tsitsiklis and Van Roy established strong theoretical
bounds on the suboptimality of the ADP policy, for the discounted cost finite state case [31, 32].

Our contribution is to work out the details of a projected ADP method for the case of input-affine
dynamics and convex stage costs, in the relatively new context of availability of extremely fast and
reliable solvers for convex optimization problems.

We rely on our ability to (numerically) solve convex optimization problems with great speed and
reliability. Recent advances have shown that using custom-generated solvers will speed up computa-
tion by orders of magnitude [33–38]. With solvers that are orders of magnitude faster, we can carry
out approximate value iteration for many practical problems and obtain approximate value functions
that are simple yet achieve very good performance.

The method we propose comes with no theoretical guarantees. There is no theoretical guarantee
that the modified Bellman iterations will converge, and when they do (or when we simply terminate
the iterations early), we do not have any bound on how suboptimal the resulting control policy is.
On the other hand, we have found that the methods described in this paper work very well in prac-
tice. In cases in which the performance bounding methods of Wang et al. can be applied, we can
confirm that our quadratic ADP policies are very good and, in many cases, nearly optimal, at least
for specific cases.

Our method has many of the same characteristics as proportional–integral–derivative (PID) con-
trol, widely used in industrial control. There are no theoretical guarantees that PID control will work
well; indeed, it is easy to create a plant for which no PID control results in a stable closed-loop sys-
tem (which means the objective value is infinite). On the other hand, PID control, with some tuning
of the parameters, can usually be made to work very well, or at least well enough, in many (if not
most) practical applications.

Style of the paper. The style of the paper is informal but algorithmic and computationally oriented.
We are very informal and cavalier in our mathematics, occasionally referring the reader to other
work that covers the specific topic more formally and precisely. We do this so as to keep the ideas
simple and clear, without becoming bogged down in technical details, and in any case, we do not
make any mathematical claims about the methods described. The methods presented are offered as
methods that can work very well in practice and not as methods for which we make any more spe-
cific or precise claim. We also do not give the most general formulation possible; instead, we stick
with what we hope gives a good trade-off of clarity, simplicity, and practical utility.

Outline. In Section 2, we describe three variations on the stochastic control problem. In Section 3,
we review the DP solution of the problems, including the special case when the dynamics is linear
and the stage cost functions are convex quadratic, as well as quadratic ADP, which is the method we
propose. We describe a projected value iteration method for obtaining an approximate value function
in Section 4. In the remaining three sections, we describe numerical examples: a traditional control
problem with bounded inputs (Section 5), a multiperiod portfolio optimization problem (Section 6),
and a vehicle control problem (Section 7).

2. INPUT-AFFINE CONVEX STOCHASTIC CONTROL

In this section, we set up three variations on the input-affine convex stochastic control problem: the
finite-horizon case, the discounted infinite-horizon case, and the average-cost case. We start with
the assumptions and definitions that are common to all cases.
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2.1. The common model

Input-affine random dynamics. We consider a dynamical system with state xt 2 Rn, input or action
ut 2 Rm, and input-affine random dynamics

xtC1 D ft .xt /C gt .xt /ut ,

where ft W Rn! Rn�n and gt W Rn! Rn�m. We assume that ft and gt are (possibly) random, that
is, they depend on some random variables, with .ft ,gt / and .f� ,g� / independent for t ¤ � . The ini-
tial state x0 is also a random variable, independent of .ft ,gt /. We say the dynamics is time-invariant
if the random variables .ft ,gt / are identically distributed (and therefore IID).

Linear dynamics. We say the dynamics is linear (or more accurately, affine) if ft is an affine func-
tion of xt and gt does not depend on xt , in which case we can write the dynamics in the more
familiar form

xtC1 D Atxt CBtut C ct .

Here, At 2 Rn�n, Bt 2 Rn�m, and ct 2 Rn are random.

Closed-loop dynamics. We consider state feedback policies, that is,

ut D �t .xt /, t D 0, 1, : : : ,

where �t W Rn! Rm is the policy in time t . The closed-loop dynamics are then

xtC1 D ft .xt /C gt .xt /�t .xt /,

which recursively defines a stochastic process for xt (and ut D �t .xt /). We say the policy is
time-invariant if it does not depend on t , in which case we denote it by �.

Stage cost. The stage cost is given by `t .´, v/, where `t W Rn � Rm ! R [ ¹1º is an extended
valued closed convex function. We use infinite stage cost to denote unallowed state–input pairs, that
is, (joint) constraints on ´ and v. We will assume that for each state ´, there exists an input v with
finite stage cost. The stage cost is time-invariant if `t does not depend on t , in which case we write
it as `.

Convex quadratic stage cost. An important special case is when the stage cost is a (convex)
quadratic function and has the form

`t .´, v/D .1=2/

2
4 ´

v

1

3
5
T
2
64
Qt St qt

STt Rt rt

qTt rTt st

3
75
2
4 ´

v

1

3
5 ,

where "
Qt St

STt Rt

#
� 0,

that is, it is positive semidefinite.

Quadratic program-representable stage cost. A stage cost is QP-representable if `t is a convex
quadratic plus convex piecewise linear function, subject to polyhedral constraint (which can be rep-
resented in the cost function using an indicator function). Minimizing such a function can be carried
out by solving a QP.
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Stochastic control problem. In the problems we consider, the overall objective function, which we
denote by J , is a sum or average of the expected stage costs. The associated stochastic control
problem is to choose the policies �t (or policy � when the policy is time-invariant) so as to min-
imize J . We let J ? denote the optimal (minimal) value of the objective, and we let �?t denote an
optimal policy at time t .

When the dynamics is linear, we call the stochastic control problem a linear–convex stochastic
control problem. When the dynamics is linear and the stage cost is convex quadratic, we call the
stochastic control problem a linear–quadratic stochastic control problem.

2.2. The problems

Finite horizon. In the finite-horizon problem, the objective is the expected value of the sum of the
stage costs up to a horizon T :

J D

TX
tD0

E`t .xt ,ut /.

Discounted infinite horizon. In the discounted infinite-horizon problem, we assume that the
dynamics, stage cost, and policy are time-invariant. The objective in this case is

J D

1X
tD0

E� t`.xt ,ut /,

where � 2 .0, 1/ is a discount factor.

Average cost. In the average-cost problem, we assume that the dynamics, stage cost, and policy are
time-invariant, and take as objective the average stage cost,

J D lim
T!1

1

T C 1

TX
tD0

E`.xt ,ut /.

We will simply assume that the expectation exists in all three objectives, the sum exists in the
discounted average cost, and the limit exists in the average cost.

3. DYNAMIC AND APPROXIMATE DYNAMIC PROGRAMMING

The stochastic control problems described earlier can be solved in principle using DP, which we
sketch here for future reference. See [3, 4, 39] for (much) more details. DP makes use of a function
(time-varying in the finite-horizon case) V W Rn ! R that characterizes the cost of starting from
that state, when an optimal policy is used. The definition of V , its characterization, and methods for
computing it differ (slightly) for the three stochastic control problems we consider.

Finite horizon. In the finite-horizon case, we have a value function Vt for each t D 0, : : : ,T . The
value function Vt .´/ is the minimum cost-to-go starting from state xt D ´ at time t , using an optimal
policy for times t , : : : ,T :

Vt .´/D

TX
�Dt

E.`� .x� ,�?� .x� //
ˇ̌
xt D ´/, t D 0, : : : ,T .

The optimal cost is given by J ? D EV0.x0/, where the expectation is over x0.
Although our definition of Vt refers to an optimal policy �?t , we can find Vt (in principle) using a

backward recursion that does not require knowledge of an optimal policy. We start with

VT .´/Dmin
v
`T .´, v/
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and then find VT�1,VT�2, : : : ,V0 from the recursion

Vt .´/Dmin
v
.`t .´, v/CEVtC1.ft .´/C gt .´/v// ,

for t D T � 1,T � 2, : : : , 0. (The expectation here is over .ft ,gt /.)
Defining the Bellman operator Tt for the finite-horizon problem as

.Tth/.´/Dmin
v
.`t .´, v/CEh.ft .´/C gt .´/v// ,

for h W Rn! R[ ¹1º, we can express the aforementioned recursion compactly as

Vt D TtVtC1, t D T ,T � 1, : : : , 0, (1)

with VTC1 D 0.
We can express an optimal policy in terms of the value functions as

�?t .´/D arg min
v

.`t .´, v/CEVtC1.ft .´/C gt .´/v// , t D 0, : : : ,T .

Discounted infinite horizon. For the discounted infinite-horizon problem, the value function is time-
invariant, that is, it does not depend on t . The value function V.´/ is the minimum cost-to-go from
state x0 D ´ at t D 0, using an optimal policy:

V.´/D

1X
tD0

E
�
� t`.xt ,�

?.xt //
ˇ̌
x0 D ´

�
.

Thus, J ? D EV.x0/.
The value function cannot be constructed using a simple recursion, as in the finite-horizon case,

but it is characterized as the unique solution of the Bellman fixed-point equation T V D V , where
the Bellman operator T for the discounted infinite-horizon case is

.T h/.´/Dmin
v
.`.´, v/C �Eh.f .´/C g.´/v// ,

for h W Rn! R[ ¹1º.
The value function can be found (in principle) by several methods, including iteration of the

Bellman operator,

V kC1 D T V k , k D 1, 2, : : : , (2)

which is called value iteration. Under certain technical conditions, this iteration converges to V [1];
see [39, Chapter 9] for a detailed analysis of the convergence of value iteration.

We can express an optimal policy in terms of the value function as

�?.´/D arg min
v

.`.´, v/C �EV.f .´/C g.´/v// .

Average cost. For the average-cost problem, the value function is not the cost-to-go starting from a
given state (which would have the same value J ? for all states). Instead, it represents the differential
sum of costs, that is,

V.´/D

1X
tD0

E.`.xt ,�?.xt //� J ?
ˇ̌
x0 D ´/.

We can characterize the value function (up to an additive constant) and the optimal average cost
as a solution of the fixed-point equation V C J ? D T V , where T , the Bellman operator T for the
average-cost problem, is defined as

.T h/.´/Dmin
v
.`.´, v/CEh.f .´/C g.´/v//
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for h W Rn ! R[ ¹1º. Notice that if V and J ? satisfy the fixed-point equation, so do V C ˇ and
J ? for any ˇ 2 R. Thus, we can choose a reference state xref and assume V.xref/D 0 without loss
of generality.

Under some technical assumptions [3, 4], the value function V and the optimal cost J ? can be
found (in principle) by several methods, including value iteration, which has the form

J kC1 D T V k
�
xref

�
,

V kC1 D T V k � J kC1,
(3)

for k D 1, : : :. V k converges to V , and J converges to J ? [3, 40].
We can express an optimal policy in terms of V as

�?.´/D arg min
v

.`.´, v/CEV.f .´/C g.´/v// .

3.1. Linear–convex dynamic programming

When the dynamics is linear, the value function (or functions, in the finite-horizon case) is convex.
To see this, we first note that the Bellman operator maps convex functions to convex functions. The
(random) function

ft .´/C gt .´/v D At´CBtvC ct

is an affine function of .´, v/; it follows that when h is convex,

h.ft .´/C gt .´/v/D h.At´CBtvC ct /

is a convex function of .´, v/. Expectation preserves convexity, so

Eh.ft .´/C gt .´/v/D Eh.At´CBtvC ct /

is a convex function of .´, v/. Finally,

min
v
.`.´, v/CEh.At´CBtvC ct //

is convex because ` is convex, and convexity is preserved under partial minimization
[41, Section 3.2.5].

It follows that the value function is convex. In the finite-horizon case, the aforementioned
argument shows that each Vt is convex. In the infinite-horizon and average-cost cases, the afore-
mentioned argument shows that value iteration preserves convexity, so if we start with a convex
initial guess (say, 0), all iterates are convex. The limit of a sequence of convex functions is convex,
so we conclude that V is convex.

Evaluating the optimal policy at xt , that is, minimizing

`t .´, v/C �EVt .ft .´/C gt .´/v/

over v, involves solving a convex optimization problem. In the finite-horizon and average-cost cases,
the discount factor � is 1. In the infinite-horizon cases (discounted and average cost), the stage cost
and value function are time-invariant.

3.2. Linear–quadratic dynamic programming

For linear–quadratic stochastic control problems, we can effectively solve the stochastic control
problem by using DP. The reason is simple: The Bellman operator maps convex quadratic functions
to convex quadratic functions, so the value function is also convex quadratic (and we can compute
it by value iteration). The argument is similar to the convex case: convex quadratic functions are
preserved under expectation and partial minimization.

One big difference, however, is that the Bellman iteration can actually be carried out in the linear–
quadratic case, using an explicit representation of convex quadratic functions, and standard linear
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algebra operations. The optimal policy is affine, with coefficients we can compute. To simplify
notation, we consider the discounted infinite-horizon case; the other two cases are very similar.

We denote the set of convex quadratic functions on Rn, that is, those with the form

h.´/D .1=2/

�
´

1

�T �
H h

hT p

� �
´

1

�
,

where H � 0, by Qn. With linear dynamics, we have

h.At´CBtvC ct /D .1=2/

�
At´CBtvC ct

1

�T �
H h

hT p

� �
At´CBtvC ct

1

�
,

where .At ,Bt , ct / is a random variable. Convex quadratic functions are closed under expectation,
so Eh.At´CBtvC ct / is convex quadratic; the details (including formulas for the coefficients) are
given in the Appendix.

The stage cost ` is convex and quadratic, that is,

`.´, v/D .1=2/

2
4 ´

v

1

3
5
T
2
64

Q S q

ST R r

qT rT s

3
75
2
4 ´

v

1

3
5 ,

where "
Q S

ST R

#
� 0.

Thus, `.´, v/CEh.At´CBtvC ct / is convex and quadratic. We write

`.´, v/CEh.At´CBtvC ct /D .1=2/

2
4 ´

v

1

3
5
T

M

2
4 ´

v

1

3
5 ,

where

M D

2
64
M11 M12 M13

M T
12 M22 M23

M T
13 M T

23 M33

3
75 ,

"
M11 M12

M T
12 M22

#
� 0.

Partial minimization of `.´, v/CEh.At´CBtvC ct / over v results in the quadratic function

.T h/.´/Dmin
v
.`.´, v/CEh.At´CBtvC ct //D .1=2/

�
v

1

�T " S11 S12

ST12 S22

#�
v

1

�
,

where "
S11 S12

ST12 S22

#
D

"
M11 M13

M T
13 M33

#
�

"
M12

M T
23

#
M�122

�
M T
12 M23

�
is the Schur complement of M (with respect to its (2, 2) block); when M22 is singular, we can
replace M�122 with the pseudo-inverse M �

22 [41, Section A5.5]. Furthermore, because"
M11 M12

M T
12 M22

#
� 0,

we can conclude that S11 � 0; thus, .T h/.´/ is a convex quadratic function, that is, T h 2Qn.
This shows that quadratic convex functions are invariant under the Bellman operator T . From

this, it follows that the value function is convex and quadratic. Again, in the finite-horizon case, this
shows that each Vt is convex and quadratic. In the infinite-horizon and average-cost cases, this argu-
ment shows that a convex quadratic function is preserved under value iteration, so if the initial guess
is convex and quadratic, all iterates are convex and quadratic. The limit of a set of convex quadratic
functions is a convex quadratic; thus, we can conclude that V is a convex quadratic function.
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3.3. Approximate dynamic programming

Approximate dynamic programming is a general approach for obtaining a good suboptimal policy.
The basic idea is to replace the true value function V (or Vt in the finite-horizon case) with an
approximation OV ( OVt ), which yields the ADP policies

O�t .x/D arg min
u

�
`t .x,u/CE OVtC1.ft .x/C gt .x/u/

	
for the finite-horizon case,

O�.x/D arg min
u

�
`.x,u/C �E OV .f .x/C g.x/u/

	
for the discounted infinite-horizon case, and

O�.x/D arg min
u

�
`.x,u/CE OV .f .x/C g.x/u/

	
for the average-cost case.

These ADP policies reduce to the optimal policy for the choice OVt D Vt . The goal is to choose
these approximate value functions so that

� the minimizations needed to compute O�.x/ can be efficiently carried out; and
� the objective OJ with the resulting policy is small, which is hoped to be close to J ?.

It has been observed in practice that good policies (i.e., ones with small objective values) can
result even when OV is not a particularly good approximation of V .

3.4. Quadratic approximate dynamic programming

In quadratic ADP, we take OV 2Qn (or OVt 2Qn in the time-varying case), that is,

OV .´/D .1=2/

�
´

1

�T �
P p

pT q

� �
´

1

�
,

where P � 0. With input-affine dynamics, we have

OV .ft .´/C gt .´/v/D .1=2/

�
ft .´/C gt .´/v

1

�T �
P p

pT q

� �
ft .´/C gt .´/v

1

�
,

where .ft ,gt / is a random variable with known mean and covariance matrix. Thus, the expectation
E OV .ft .´/C gt .´/v/ is a convex quadratic function of v, with coefficients that can be computed
using the first and second moments of .ft ,gt /; see the Appendix.

A special case is when the cost function `.´, v/ (and `t .´, v/ for the time-varying case) is
QP-representable. Then, for a given ´, the quadratic ADP policy

O�.´/D arg min
v

�
`.´, v/CE OV .ft .´/C gt .´/v/

	
can be evaluated by solving a QP.

4. PROJECTED VALUE ITERATION

Projected value iteration is a standard method that can be used to obtain an approximate value func-
tion, from a given (finite-dimensional) set of candidate approximate value functions, such as Qn.
The idea is to carry out value iteration but to follow each Bellman operator step with a step that
approximates the result with an element from the given set of candidate approximate value func-
tions. The approximation step is typically called a projection and is denoted …, because it maps
into the set of candidate approximate value functions, but it need not be a projection (i.e., it need

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2012)
DOI: 10.1002/rnc



A. KESHAVARZ AND S. BOYD

not minimize any distance measure). The resulting method for computing an approximate value
function is called projected value iteration.

Projected value iteration has been explored by many authors [3, Chapter 6; 21, Chapter 12; 22;
25; 27]. Here, we consider scenarios in which the state space and action space are continuous and
establish a framework to carry out projected value iteration for those problems.

Projected value iteration has the following form for our three problems. For the finite-horizon
problem, we start from OVTC1 D 0 and compute approximate value functions as

OVt D…Tt OVtC1, t D T � 1,T � 2, : : : , 1.

For the discounted infinite-horizon problem, we have the iteration

OV .kC1/ D…T OV .k/, k D 1, 2, : : : .

There is no reason to believe that this iteration always converges, although as a practical matter,
it typically does. In any case, we terminate after some number of iterations, and we judge the whole
method not in terms of convergence of projected value iteration but in terms of performance of the
policy obtained.

For the average-cost problem, projected value iteration has the form

OJ .kC1/ D…T OV .k/
�
xref

�
OV .kC1/ D…T

�
OV .k/ � OJ .kC1/

	
, k D 1, 2, : : : .

Here too, we cannot guarantee convergence, although it typically does in practice.
In the aforementioned expressions, OV k are elements in the given set of candidate approximate

value functions, but T OV k is usually not; indeed, we have no general way of representing T OV k . The
iterations given previously can be carried out, however, because … only requires the evaluation of�
T OV k

	 �
x.i/

�
(which are numbers) at a finite number of points x.i/.

4.1. Quadratic projected iteration

We now consider the case of quadratic ADP, that is, our subset of candidate approximate Lyapunov
functions is Qn. In this case, the expectation appearing in the Bellman operator can be carried out

exactly. We can evaluate
�
T OV k

	
.x/ for any x, by solving a convex optimization problem; when

the stage cost is QP-representable, we can evaluate
�
T OV k

	
.x/ by solving a QP.

We form …T OV k as follows. We choose a set of sampling points x.1/, : : : , x.N/ 2 Rn and eval-

uate ´.i/ D
�
T OV k

	 �
x.i/

�
, for i D 1, : : : ,N . We take …T OV k as any solution of the least squares

fitting problem

minimize
PN
iD1

�
V
�
x.i/

�
� ´.i/

�2
subject to V 2Qn,

with variable V . In other words, we simply fit a convex quadratic function to the values of the
Bellman operator at the sample points. This requires the solution of a semidefinite program [10,42].

Many variations on this basic projection method are possible. We can use any convex fitting cri-
terion instead of a least squares criterion, for example, the sum of absolute errors. We can also add
additional constraints on V that can represent prior knowledge (beyond convexity). For example,
we may have a quadratic lower bound on the true value function, and we can add this condition as
a stronger constraint on V than simply convexity. (Quadratic lower bounds can be found using the
methods described in [6, 43].)

Another variation on the simple fitting method described earlier adds proximal regularization to
the fitting step. This means that we add a term of the form .�=2/kV �V kk2F to the objective, which
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penalizes deviations of V from the previous value. Here, � > 0 is a parameter, and the norm is the
Frobenius norm of the coefficient matrices,

kV � V kkF D







�
P p

pT q

�
�

"
P k pk�
pk
�T

qk

#





F

.

Choice of sampling points. The choice of the evaluation points affects our projection method, so
it is important to use at least a reasonable choice. An ideal choice would be to sample points from
the state in that period, under the final ADP policy chosen. But this cannot be done: We need to run
projected value iteration to have the ADP policy, and we need the ADP policy to sample the points
to use for ….

A good method is to start with a reasonable choice of sample points and use these to construct an
ADP policy. Then we run this ADP policy to obtain a new sampling of xt for each t . We now repeat
the projected value iteration, using these sample points. This sometimes gives an improvement
in performance.

5. INPUT-CONSTRAINED LINEAR–QUADRATIC CONTROL

Our first example is a traditional time-invariant linear control system, with dynamics

xtC1 D Axt CBtut Cwt ,

which has the form used in this paper with

ft .´/D A´Cwt , gt .´/D B .

Here, A 2 Rn�n and B 2 Rn�m are known, and wt is an IID random variable with zero mean
Ewt D 0 and covariance EwtwTt D W . The stage cost is the traditional quadratic one, plus a
constraint on the input amplitude:

`.xt ,ut /D

²
xTt Qxt C u

T
t Rut kutk1 6 Umax,

1 kutk1 > Umax,

where Q � 0 and R � 0. We consider the average-cost problem.

Numerical instance. We consider a problem with nD 10,mD 2, Umax D 1,QD 10I , and RD I .
The entries of A are chosen from N .0, I /, and the entries of B are chosen from a uniform distri-
bution on Œ�0.5, 0.5�. The matrix A is then scaled so that �max.A/ D 1. The noise distribution is
normal, wt �N .0, I /.

Method parameters. We start from the x0 D 0 at iteration 0, and OV .1/ D V quad, where V quad is the
(true) quadratic value function when the stage cost is replaced with `quad.´, v/ D ´TQ´C vTRv
for all .´, v/.

In each iteration of projected value iteration, we run the ADP policy for N D 1000 time steps
and evaluate T OV .k/ for each of these sample points. We then fit a new quadratic approximate value
function OV .kC1/, enforcing a lower bound V quad and a proximal term with �D 0.1. Here, the prox-
imal term has little effect on the performance of the algorithm, and we could have eliminated the
proximal at not much cost to the performance of the algorithm. We use xN to start the next iteration.
For comparison, we also carry out our method with the more naive initial choice OV .1/ DQ, and we
drop the lower bound V quad.

Results. Figure 1 shows the performance J k of the ADP policy (evaluated by a simulation run of
10,000 steps), after each round of projected value iteration. The performance of the policies obtained
using the naive parameter choices are denoted by J .k/naive. For this problem, we can evaluate a lower
bound Jlb D 785.4 on J � by using the method of [6]. This shows that the performance of our ADP
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Figure 1. J .k/ (solid line) and J .k/naive (dashed line).

policy at termination is at most 24% suboptimal (but likely much closer to optimal). The plots show
that the naive initialization only results in a few more projected value iteration steps. Close exami-
nation of the plots shows that the performance need not improve in each step. For example, the best
performance (but only by a very small amount) with the more sophisticated initialization is obtained
in iteration 9.

Computation timing. The timing results here are reported for a 3.4-GHz Intel Xeon processor
running Linux. Evaluating the ADP policy requires solving a small QP with 10 variables and 8
constraints. We use CVGXEN [38] to generate custom C code for this QP, which executes in around
50 �s. The simulation of 1000 time steps, which we use in each projected value iteration, requires
around 0.05 s. The fitting is carried out using CVX [44] and takes around 1 s (this time could be
speeded up considerably).

6. MULTIPERIOD PORTFOLIO OPTIMIZATION

We consider a discounted infinite-horizon problem of optimizing a portfolio of n assets with dis-
count factor � . The positions at time t is denoted by xt 2 Rn, where .xt /i denotes the dollar value
of asset i at the beginning of time t . At each time t , we can buy and sell assets. We denote the trades
by ut 2 Rn, where .ut /i denotes the trade for asset i . A positive .ut /i means that we buy asset
i , and a negative .ut /i means that we sell asset i at time t . The position evolves according to the
dynamics with

xtC1 D diag.rt /.xt C ut /,

where rt is the vector of asset returns in period t . We express this in our form as

ft .´/D diag.rt /´, gt .´/D diag.rt /.

The return vectors are IID with mean E rt D Nr and covariance E.rt � Nr/.rt � Nr/T D†.
The stage cost consists of the following terms: the total gross cash put in, which is 1T ut ; a risk

penalty (a multiple of the variance of the post-trade portfolio); a quadratic transaction cost; and the
constraint that the portfolio is long-only (which is xt C ut > 0). It is given by

`.x,u/D

²
1T uC �.xC u/T†.xC u/C uT diag.s/u xC u> 0,
1 otherwise,

where � > 0 is the risk aversion parameter and si > 0 models the price-impact cost for asset i . We
assume that the initial portfolio x0 is given.
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Numerical instance. We will consider n D 10 assets, a discount factor of � D 0.99, and an initial
portfolio of x0 D 0. The returns rt are IID and have a lognormal distribution, that is,

log rt �N .�, Q†/.

The means �i are chosen from a N .0, 0.012/ distribution; the diagonal entries of Q† are cho-
sen from a uniform Œ0, 0.01� distribution, and the off-diagonal entries are generated using Q†ij D
Cij .†i i†jj /

1=2, where C is a correlation matrix, generated randomly. Because the returns are
lognormal, we have

Nr D exp.�C .1=2/diag. Q†//, †ij D Nri Nrj .exp Q†ij � 1/.

We take �D 0.5 and choose the entries of s from a uniform Œ0, 1� distribution.

Method parameters. We start with OV .1/ D V quad, where V quad is the (true) quadratic value func-
tion when the long-only constraint is ignored. Furthermore, V quad is a lower bound on the true value
function V .

We choose the evaluation points in each iteration of projected value iteration by starting from x0
and running the policy induced by OV .k/ for 1000 steps. We then fit a quadratic approximate value
function, enforcing a lower bound V quad and a proximal term with � D 0.1. The proximal term in
this problem has a much more significant effect on the performance of projected value iteration—
smaller values of � require many more iterations of projected value iteration to achieve the
same performance.

Results. Figure 2 demonstrates the performance of the ADP policies, where J .k/ corresponds to
the ADP policy at iteration k of projected value iteration. In each case, we run 1000 Monte Carlo
simulations, each for 1000 steps, and report the average total discounted cost across the 1000 time
steps. We also plot a lower bound Jlb obtained using the methods described in [43, 45]. We can see
that after around 80 steps of projected value iteration, we arrive at a policy that is nearly optimal. It
is also interesting to note that it takes around 40 projected value iteration steps before we produce a
policy that is profitable (i.e., that has J 6 0).

Computation timing. Evaluating the ADP policy requires solving a small QP with 10 variables and
10 constraints. We use CVGXEN [38] to generate custom C code for this QP, which executes in
around 22 �s. The simulation of 1000 time steps, which we use in each projected value iteration,
requires around 0.022 s. The fitting is carried out using CVX [44] and takes around 1.2 s (this time
could be speeded up considerably).
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Figure 2. OJ .k/ (solid line) and a lower bound Jlb (dashed line).
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7. VEHICLE CONTROL

We will consider a rigid body vehicle moving in two dimensions, with continuous time state
xc D .p, v, 	 ,!/, where p 2 R2 is the position, v 2 R2 is the velocity, 	 2 R is the angle
(orientation) of the vehicle, and ! is the angular velocity. The vehicle is subject to control forces
uc 2 Rk , which put a net force and torque on the vehicle. The vehicle dynamics in continuous time
is given by

Pxc D Acxc CBc.xc/uc Cwc ,

where wc is a continuous time random noise process and

Ac D

2
666664

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 0 0

3
777775 , Bc.x/D

2
64

0

R.x5/C=m

0

D=I

3
75 ,

with

R.	/D

�
sin.	/ cos.	/
� cos.	/ sin.	/

�
.

The matrices C 2 R2�k and D 2 R1�k depend on where the forces are applied with respect to the
center of mass of the vehicle.

We consider a discretized forward Euler approximation of the vehicle dynamics with discretiza-
tion epoch h. With xc.ht/ D xt , uc.ht/ D ut , and wc.ht/ D wt , the discretized dynamics has
the form

xtC1 D .I C hAc/xt C hBc.xt /ut C hwt ,

which has an input-affine form with

ft .´/D .I C hAc/´C hwt , gt .´/D hBc.´/.

We will assume that wt are IID with mean Nw and covariance matrix W .
We consider a finite-horizon trajectory tracking problem, with desired trajectory given as xdest ,

t D 1, : : : ,T . The stage cost at time t is

`t .´, v/D

²
vTRvC

�
´� xdes

t

�T
Q
�
´� xdest

�
juj6 umax

1 juj> umax,

where R 2 SkC, Q 2 Rn� n, umax 2 RkC, and the inequalities in u are element-wise.

Numerical instance. We consider a vehicle with unit massmD 1 and moment of inertia I D 1=150.
There are k D 4 inputs applied to the vehicle, shown in Figure 3, at distance r D 1=40 to the center
of mass of the vehicle. We consider T D 151 time steps, with a discretization epoch of hD 
=150.
The matrices C and D are

C D

�
1 0 1 0

0 1 0 1

�
, D D

r
p
2

�
0 1 0 �1

�
.

The maximum allowable input is umax D .1.5, 2.5, 1.5, 2.5/, and the input cost matrix is R D
I=1000. The state cost matrix Q is a diagonal matrix, chosen as follows: we first choose the entries
of Q to normalize the range of the state variables, based on xdes. Then we multiply the weight of
the first and second states by 10 to penalize a deviation in the position more than a deviation in the
speed or orientation of the vehicle.
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Figure 3. Vehicle diagram. The forces are applied at two positions, shown with large circles. At each
position, there are two forces applied: a lateral force (u1 and u3) and a longitudinal force (u2 and u4).

Method parameters. We start at the end of the horizon, with VT Dminv `.´, v/, which is quadratic
and convex in ´. At each step of projected value iteration t , we choose N D 1000 evaluation points,
generated using a N .xdest , 0.5I / distribution. We evaluate Tt OVtC1 for each evaluation point and fit
the quadratic approximate value function OVt .

Results. We calculate the average total cost by using Monte Carlo simulation with 1000 samples,
that is, 1000 simulations of 151 steps. We compare the performance of two ADP policies: the ADP
policy resulting from OVt results in J D 106, and the ADP policy resulting from V

quad
t results in

J quad D 245. Here, V quad
t is the quadratic value function obtained by linearizing the dynamics

along the desired trajectory and ignoring the actuator limits. Figure 4 shows two sample trajectories
generated using OVt and V quad

t .

Computation timing. Evaluating the ADP policy requires solving a small QP with four variables
and eight constraints. We use CVGXEN [38] to generate custom C code for this QP, which executes
in around 20 �s. The simulation of 1000 time steps, which we use in each projected value iteration,
requires around 0.02 s. The fitting is carried out using CVX [44] and takes around 0.5 s (this time
could be speeded up considerably).
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Figure 4. Desired trajectory (dashed line), two sample trajectories obtained using OVt , t D 1, : : : ,T (left),
and two sample trajectories obtained using V quad

t (right).
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8. CONCLUSIONS

We have shown how to carry out projected value iteration with quadratic approximate value
functions, for input-affine systems. Unlike value iteration (when the technical conditions hold),
projected value iteration need not converge, but it typically yields a policy with good perfor-
mance in a reasonable number of steps. To evaluate the quadratic ADP policy requires the solution
of a (typically small) convex optimization problem, or more specifically a QP when the stage
cost is QP-representable. Recently developed fast methods, and code generation techniques, allow
such problems to be solved very quickly, which means that quadratic ADP can be carried out at
kilohertz (or faster) rates. Our ability to evaluate the policy very quickly makes projected value iter-
ation practical, because many evaluations can be carried out in reasonable time. Although we offer
no theoretical guarantees on the performance attained, we have observed that the performance is
typically very good.

APPENDIX: EXPECTATION OF QUADRATIC FUNCTION

In this appendix, we will show that when h W Rn ! R is a convex quadratic function, so is
E h.ft .´/C gt .´/v/. We will compute the explicit coefficients A, a, and b in the expression

Eh.ft .´/C gt .´/v/D .1=2/
�
v

1

�T �
A a

aT b

� �
v

1

�
. (4)

These coefficients depend only on the first and second moments of .ft ,gt /. To simplify notation,
we write ft .´/ as f and gt .´/ as g.

Suppose h has the form

h.´/D .1=2/

�
´

1

�T �
P p

pT q

� �
´

1

�
,

with F � 0. With input-affine dynamics, we have

h.f C gv/D .1=2/

�
f C gv
1

�T �
P p

pT q

� �
f C gv
1

�
,

Taking expectation, we see that Eh.f C gv/ takes the form of (4), with coefficients given by

Aij D
X
k,l

Pkl E.gkiglj /, i , j D 1, : : : ,n

ai D
X
j

pj E.gj i /, i D 1, : : : ,n

b D qC
X
ij

Pij E.fifj /C 2
X
i

pi E.fi /.
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