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Abstract 

We present a heuristic for minimizing the rank of a 
positive semidefinite matrix over a convex set. We use 
the logarithm of the determinant as a smooth approx- 
imation for rank, and locally minimize this function to 
obtain a sequence of trace minimization problems. We 
then present a lemma that relates the rank of any gen- 
eral matrix to that of a corresponding positive semidef- 
inite one. Using this, we readily extend the proposed 
heuristic to handle general matrices. We examine the 
vector case as a special case, where the heuristic re- 
duces to an iterative el-norm minimization technique. 

As practical applications of the rank minimization 
problem and our heuristic, we consider two examples: 
minimum-order system realization with time-domain 
constraints, and finding lowest-dimension embedding of 
points in a Euclidean space from noisy distance data. 

1 Introduction 

We consider the general matrix Rank Minimization 
Problem (RMP) expressed as 

(1) 
minimize Rank X 
subject to X E C, 

where X E Rmxn is the optimization variable and C is 
a convex set, e.g., described by LMIs. It is well known 
that in general this problem is computationally hard 
to solve [VB96, $7.31. The RMP arises in diverse areas 
such as control, system identification, statistics, signal 
processing, and computational geometry (many appli- 
cations are cataloged in [FazOa]). Various heuristics 
have been developed to handle problems of this type, 
specially in the context of low-order controller design; 
see, e.g., [BG96, SIG98, Dav941. 

In this paper we describe a new heuristic for rank mini- 
mization that unlike the existing methods, handles any 
general matrix and does not require a user-specified ini- 
tial point. In practice, it is observed to yield low-rank 
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solutions, and to require only a small number of convex 
(semidefinite) programs to be solved. 

The outline of the paper is as follows. Section 2 states 
the semidefinite embedding lemma and its implications 
for the general RMP. Proofs are given in the appen- 
dices. Section 3 presents the log-det heuristic for the 
positive-semidefinite case, the general case, , and the 
vector case. The last section discusses the applications 
and gives numerical examples. 

2 The semidefinite embedding lemma 

Consider the case where the matrix variable X in the 
RMP (1) is constrained to be positive semidefinite 
(PSD). The PSD cone has properties that aid us in 
finding a low-rank matrix; for example, such a matrix 
will always lie on the boundary of the cone. In fact, 
this is the basis of the analytical anti-centering and 
potential reduction methods discussed in [Dav94]. 

However, there are many applications where X is not 
necessarily PSD, or even square, making it important 
to find a way to deal with the general RMP in (1). We 
resolve this issue by showing that it is possible to asso- 
ciate with any nonsquare matrix X, a positive semidef- 
inite matrix whose rank is exactly twice the rank of 
X. Thus, any general RMP can be embedded in a 
larger, positive semidefinite RMP. We refer to this as 
the semidefinite embedding lemma. 

Lemma 1 Let X E Rmxn be a given matrix. Then 
RankX 5 r if and only zf there exist matrices Y = 
YT E Rmxm and 2 = ZT E Rnxn such that 

Rank Y + Rank Z 5 2r, 

For the proof, see appendix A. This result means that 
minimizing the rank of a general nonsquare matrix X, 
problem (l), is equivalent to minimizing the rank of 
the semidefinite, block diagonal matrix diag(Y, 2): 

minimize f Rank diag(Y, 2) 
Y X  

subject to [ xT ] 2 0 
(3) 

X E C ,  

with variables X, Y and 2. The equivalence is in 
the following sense: the tuple (X", Y*, 2") is optimal 
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for (3) if and only if X* is optimal for problem (I), 
and the objective values in both problems are the same 
(which is why we keep the factor $ in the objective). 

It is possible to refine the result of Lemma 1 when X 
is known to have some structure: 

Corollary 1 If X has a block diagonal structure X = 
diag(X1, . . . , XN), where Xi E R"' 'Izt , then without 
loss of generality, we may assume that the slack vari- 
ables have the structure Y = diag(Y1,. . . , YN) ,  where 
Y ,  = y,' > - 0 E Rmixmi,  and Z = diag(Z1,. . . , ZN), 
where Zi = 2: 1 0 E Rni ' " a .  

To see this, note that R a n k X  = xi R a n k X i  and 
apply Lemma 1 to each block to get 

Corollary 2 If X is symmetric, then without loss of 
generality, we can take Y = 2. 

See appendix B for the proof of the second corollary. 

3 Log-det heurist ic 

We first state the log-det heuristic for the case of posi- 
tive semidefinite matrices and propose an iterative lin- 
earization and minimization scheme for finding a local 
minimum. We then apply the log-det heuristic to the 
general (nonsquare) case using the semidefinite embed- 
ding lemma. We also consider the cardinality mini- 
mization problem as a special case of the RMP when 
the variable is a vector instead of a matrix, and discuss 
the log-det heuristic for this problem. 

3.1 Positive semidefinite case 
Consider the RMP with X E R"'", X 2 0. The log- 
det heuristic can be described as follows: rather than 
solving the RMP, use the function logdet(X + 61) as 
a smooth surrogate for R a n k X  and instead solve the 
problem 

(5) 
minimize log det(X + 6 1 )  
subject to X E C ,  

where 6 > 0 can be interpreted as a small regularization 
constant (in practice we choose S to be very small; see 
section 4 for numerical examples). The idea of using 
a log-det type function to obtain low-rank solutions to 
LMI problems is not entirely new-a similar idea also 
appears in the potential reduction method of [Dav94] 
for positive semidefinite matrices. However, we take a 
different approach to finding a local minimum of this 
function over the constraint set C. 

Note that the surrogate function log det(X + 61)  is not 
convex (in fact, it is concave). However, since it is 
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smooth on the positive definite cone, it can be mini- 
mized (locally) using a local minimization method. We 
use iterative linearization to find a local minimum. Let 
XI, denote the kth iterate of the optimization vari- 
able x .  The first-order Taylor series expansion of 
log det(X + 61)  about Xk is given by 

logdet(X + SI) M logdet(Xk + SI)+ 
n ( x k  + 6I)-l(X - Xk). 

(6)  
Here we have used the fact that when X > 0, the gra- 
dient of logdet(X + S I )  with respect to X is given by 
OX logdet(X+SI) = (X+SI)-'. Hence, one could at- 
tempt to minimize logdet(X + SI)  over the constraint 
set C by iteratively minimizing the local linearization 
(6). This leads to 

The new optimal point is Xk+l, and we have ignored 
the constants in (6) because they do not affect the 
minimization. Note that at  each iteration we solve 
a weighted trace minimization problem, with weights 
wk = ( x k  + SI)-'. This is a semidefinite program 
in the variable X .  If we choose XO = I ,  the first it- 
eration of (7) is equivalent to minimizing the trace of 
X. It is shown in [FHBOl] that the trace function is 
the convex envelope of the rank function over the set 
matrices with norm less than one. This result lends 
a theoretical support to  the use of trace heuristic as 
an effective heuristic for the RMP. Therefore, we al- 
ways pick XO = I ,  so that XI is the result of the trace 
heuristic, and the iterations that follow try to  reduce 
the rank of X1 further. In this sense, we can view this 
heuristic as a refinement of the trace heuristic. 

Since the function logdet(X + SI)  is concave in X ,  at 
each iteration its value decreases by an amount more 
than the decrease in the value of the linearized ob- 
jective function. Based on this observation, it can 
be shown (e.g., using the global convergence theorem 
in [Lue84, p.1871) that the sequence { f ( X k ) }  converges 
to a local minimum of f (X) = logdet(X + SI). 

3.2 General case 
In order to extend the log-det heuristic to the general 
case, we use the semidefinite embedding lemma. Re- 
call the equivalence between the RMP (1) and its PSD 
form (3). Since the matrix diag(Y, 2) is semidefinite, 
the log-det heuristic (5) can be directly applied to ob- 
tain 

minimize logdet(diag(Y, 2) + SI)  

Y X  subject to 

x E c. 
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Figure 1: The rank, trace, and log-det objectives in the scalar 
case. 

Linearizing as before, we obtain the following iterations 
for solving (8) locally: 

diag(Yk+l, Zk+d = 

argmin Tr[(diag(Yk, Zk) + SI)-ldiag(Y, Z)] 

Y X  subject to  

x E c, 
(9) 

where each iteration is an SDP in the variables X ,  Y 
and 2. 

Figure 1 provides an intuitive interpretation for the 
heuristic. It shows the basic idea behind the T r X  and 
log det(X + 61)  approximations of R a n k  X .  Suppose 
121 5 M .  The objective functions for the trace and log- 
det heuristics are shown for the scalar case, i.e., when 
X = z E R .  Then, Rankz is simply equal to zero if 
2 = 0 and is equal to  1 otherwise. After normalizing 
1x1 to  one, the trace heuristic minimizes the sum of the 
singular values of the matrix [FHBOl], which in this 
case will be a(.) = $ 1 ~ 1 .  

3.3 Vector case: i terat ive Cl-norm minimizat ion 
A useful special case of the RMP is the problem of 
minimizing the cardinality, i.e., the number of non-zero 
entries, of a vector over a convex set: 

minimize Card z 
subject to z E C, 

where z E R" and C is a convex set. This is the same as 
finding the sparsest vector in C .  This problem comes up 
in many application areas. For example, in engineer- 
ing design problems, z might represent some design 
variables and C the constraints and specifications. If 
xi = 0 corresponds to an element or degree of freedom 
not used, then a sparse 17: corresponds to an efficient 
design, i.e., one that uses a small number of elements. 
The problem (10) is then to find the most efficient (or 
least complex) design that meets all the specifications. 

This problem is a special case of the RMP where the 
matrix X is diagonal, i.e., X = d iagz .  Therefore, 

(10) 
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we can specialize results about the rank problem to 
the cardinality problem. This is useful since it au- 
tomatically provides us with heuristic solution meth- 
ods for problem (10). To examine the log-det heuris- 
tic in the vector case, consider the special case of the 
diagonal rank minimization problem. We can show 
(see [FazO2]) that applying the log-det heuristic to this 
problem yields 

minimize xi log(yi + 6) 
subject to lzil 5 yi 

5 E c, 
, i = 1,. . . , n 

or, equivalently, 

minimize xi log(lzi1 + 6 )  
subject to z E C, 

where z E R" is the optimization variable. Similar 
to the matrix case, iterative linearization of the con- 
cave objective function gives the following heuristic for 
vector cardinality minimization: 

Note that if the initial point is chosen as do) = 
[l, 1,. . . , 11, the first iteration will minimize E:=, Izil, 
which is the C1-norm of z, denoted by IIzlI1. 

A closer look at  this iterative procedure shows that 
in each step, a weighted Cl-norm of the vector x is 
minimized, i.e., the objective function at  each iteration 
is Ciw,!k)lzil, with = (Iz:k)l+6)-1. This yields an 
intuitive interpretation of the method: if x ik )  is small, 
its weighting factor in the next minimization step, wik), 
is large. So the small entries in z are generally pushed 
toward zero as far as the constraints on z allow, and 
thus yield a sparse solution. 

The iterative C1  minimization procedure as a heuristic 
for obtaining sparse solutions, and its application to 
the problem of portfolio optimization with fixed trans- 
action costs, is given in [LFBOO]. Here we derived the 
same method as a special case of our log-det heuristic. 

4 Applicat ions 

4.1 System realization wi th  t ime-domain con- 
straints 
In this section, we discuss the problem of designing 
a low-order, discrete-time, linear time-invariant (LTI) 
dynamical system, directly from convex specifications 
on the first n time samples of its impulse response. 
Some typical specifications are bounds on the rise-time, 
settling-time, slew-rate, overshoot, etc. We show this 
problem can be posed as one of minimizing the rank of 
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a Hankel matrix over a convex set. Denote by H, the 
Hankel matrix with parameters h l ,  ha,. . . , h2,-1 E R, 

hi  h2 h3 . . .  hn - 
h2 h3 h4 . . .  hn+l 

. .  

hn hn+l hn+2 . . .  h2n-1 - 
(12) 

Results on system realization from partial impulse re- 
sponse exist (e.g., [Che84, SonSO]), but are not directly 
applicable to our problem. We therefore begin by de- 
riving the following result. 

Fact 1 Let h l ,  h2,. . . , h, E R be given. Then there ex- 
ists a minimum-order LTI system of order r with state 
space matrices A E R"', b E RTxl and c E RlXT,  
such that 

b = h i  i = l ,  . . . ,  n, cAZ- 1 

if and only if 

r =  min RankH, ,  (13) 
h,+i, . . . , h z n - i ~ R  

where H ,  is a Hankel matrix whose first n parameters 
are the given h l ,  h2,. . . , h,, and whose last n - 1 pa- 
rameters, hn+l , . .  . , h2,-1 E R, are free variables. 

Proof: To prove the condition is necessary, let HA 
be the minimum rank Hankel matrix in (13); we will 
construct A ,  b, c with the desired properties. 

Suppose r < n. Since RankHA = T ,  there are at 
most r linearly independent rows in H;t. So within the 
first r + 1 rows, there must be at  least one row that is 
linearly dependent on the rows above it. Suppose row 
r' + 1 is the first such row, we show that the Hankel 
matrix in problem (13) will then have rank r'. To see 
this, let H:t+l,n denote the top r' + 1 rows, and solve 
[(U1 .. . a,/ - l]H:,+l,, = 0 for the ai. Then let 

O 1  
r 0 1 . . .  

b = [hl . . . h , ~ ] ~ ,  and c = [I 0 . . . 01. By direct compu- 
tation we see that cAi-'b = hi for i = 1 , .  . . , n+r'. De- 
fine hi = cAi-'b for i = n+r'+l,. . . , 212-1, then from 
linear system theory (e.g., theorem 5.5.7 in [Son90]) we 
know that the resulting n x n Hankel matrix will have 
rank r'. Now since r is the minimum rank H, can have, 
it follows that r' = r ,  and the above A, b, c satisfy the 
desired properties. (If r = n, all rows are linearly inde- 
pendent, and a1, . . . , (U, can be chosen arbitrarily.) 

To show the condition is also sufficient, note that given 
A ,  b, and c, letting hi = cAZ-lb for i = n + l , .  . . ,2n-1 
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Figure 2: Step response specifications (dashed) and actual step 
response obtained after 5 iterations of the log-det heuristic. 

yields R a n k  H, = R a n k  H, = r .  No other assignment 
to h,+l,. . . , h2,-1 can give a lower rank for H,, since 
this would contradict that A ,  b, c gives the minimum- 
order system realizing h l ,  . . . , h,. 0 

In other words, Fact 1 states that there exists a lin- 
ear time invariant system of order r whose first n im- 
pulse response samples are h l ,  . . . , h,, if and only if 
the minimal-rank Hankel matrix has rank r .  Note that 
the constraints are only on the first n samples, even 
though h,+l,. . . , hzn-1 also appear in the Hankel ma- 
trix. These extra variables are left free in the optimiza- 
tion. Thus, they are chosen in a way so as to minimize 
the overall rank of the Hankel matrix. 

To see how the result above can be used to  design 
low-order systems directly from time-domain specifica- 
tions, consider the specifications on the step response 
shown in Figure 2. The goal is to find the minimum- 
order system whose step response fits in the region de- 
fined by the dashed lines, up to the 16th sample. The 
dashed lines are meant to capture a typical set of time- 
domain step response specifications: certain rise-time, 
slew-rate, overshoot, and settling characteristics and 
an approximate delay of four samples. The problem 
can be expressed as 

minimize R a n k  H ,  
subject to Zi 5 si I ui, i = 1 , .  . . , n (14) 

hn+l ,* . .  h2n-1 E R, 

where sk = hi denote the terms in the step re- 
sponse, and l i  and ui are, respectively, samples of the 
lower and upper time domain specifications (shown by 
the dashed lines). In this example n = 16. 

This problem is an RMP with no analytical solution. 
Note also that the optimization variable H, is not pos- 
itive semidefinite. We apply the generalized log-det 
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iteration number 
Figure 3: Log of the singular values (TI , .  . . ,os of Hn at each 
iteration 

heuristic we described to this problem. Because of the 
approximate four-sample delay specification, we do not 
expect that the specifications can be met by a system of 
order less than four. After five iterations of the log-det 
heuristic, a fourth-order system is obtained with the 
step response shown in Figure 2. Thus, all the specifi- 
cations can be met by a linear time-invariant system of 
order exactly four. In this example, we set b = 
Figure 3 shows the logarithm of the nonzero Hankel 
singular values. We see that the rank of the 16 x 16 
matrix H,  drops to 5 after the first iteration, and the 
next four iterations bring the rank to 4, which in this 
case appears to be the global minimum. 

4.2 Euclidean distance matrix problems 
Euclidean distance matrix (EDM) problems deal with 
constructing configurations of points from information 
about interpoint (Euclidean) distances. A simple ex- 
ample is reconstruction of the geographical map of a 
set of cities given pairwise inter-city distances [BG97, 
p. 161. 

A matrix D E Rnxn is called a Euclidean distance ma- 
trix if there exist points 21,. . . , x, in R' such that 
Dij = 1l.i - xj.j1I2. We refer to the dimension of the 
space in which the points lie, r ,  as the embedding di- 
mension. Let X E R"" denote the matrix containing 
the zi as columns, i.e., X = [x1 . . . z,]. The relation 
between the matrix of inner products B = X T X  and 
the distance matrix D is then 

D = diagB lT + 1 (diagB)T - 2B, 

where 

Dij = l l ~ ~ 1 1 ~  + 1 1 ~ ~ 1 1 ~  - 2xTxj = Bii + Bjj - 2Bi,. 

Let V = 1-i1lT be the projection matrix onto the hy- 
perplane lTz = 0. Multiplying a vector by V "centers" 
the vector by subtracting the mean of all coordinates 
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from each coordinate, i.e., by shifting the origin to the 
centroid of the points. Multiplying D by V on both 
sides yields 

V D V  = V ( d i a g  B lT + 1 (diag B)T - 2B)V 
= -2VBV 
= - 2 j p - 2 ,  

where = X V ,  and columns of X are the centered xis. 
The matrix - i V D V  is sometimes called the double- 
centered distance matrix. 

Schoenberg in 1935 [Sch35] gave the necessary and suf- 
ficient conditions for a matrix to be an EDM with 
given embedding dimension. In our notation, this re- 
sult shows that D = DT E Rnxn is an EDM with em- 
bedding dimension T if and only if the following hold: 

Dii = 0, (15) 
V D V  5 0, (16) 

R a n k ( V D V )  5 T .  (17) 

Problems involving EDMs arise in a variety of fields, 
In Multi-Dimensional Scaling (MDS) in statistics, such 
problems occur in extracting the underlying geometric 
structure of distance data. In computational chemistry, 
they come up in inferring the 3-dimensional structure of 
a molecule (molecular conformation) from information 
about its interatomic distances (see, e.g., [TroOO]). 

If the EDM D is known exactly, the corresponding con- 
figuration of points (up to a unitary transform) can be 
obtained by finding a square-root of -+VDV.  How- 
ever, in practice, typically only partial data, noisy mea- 
surements or incomplete information on D are avail- 
able. I t  is often desired to find an EDM that not only is 
consistent with the measurements, but also requires the 
smallest number of coordinates to represent the data, 
i.e., has the smallest embedding dimension. This prob- 
lem can be expressed as the RMP 

minimize R a n k ( - V D V )  
subject to Dii = 0 

D E C ,  
(18) -VDV 2 0 

where C is a convex set denoting the prior information 
on D. For example, we may have interval constraints 
on the distances, i.e., 

where matrices L and U denote the lower and upper 
bounds. Another common constraint is for D to be 
close to the measured distance matrix D (e.g., in matrix 
2-norm or Frobenius norm), 

llD - hll2,F I E ,  
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where E is a given tolerance. The measure of closeness 
can also be the Lipschitz distance, which is defined as 

Bounding the Lipschitz distance by some E results in 
the following set of linear constraints on D: 

Dkl D . .  
7 5 (expE)&, 
Dkl Daj 

for all i , j , k , l .  

Another type of constraint comes up when only the 
"order" of the measured distances is considered, rather 
than the absolute distances themselves. This hap- 
pens, for example, in non-metric MDS in psychomet- 
rics, where the data are human judgments on a pair 
of stimuli. The human mind may distort distances in 
a monotonic fashion; therefore only the information on 
the order of distances is reliable. The order information 
translates simply to linear inequality constraints on the 
entries of D ,  which is convex. Thus, many useful con- 
straints on D are convex and can be easily handled. 

The log-det heuristic can be applied to the RMP (18). 
Our numerical experiments show that they work well, 
yielding EDMs with very low embedding dimensions. 

As a numerical example, we consider 30 randomly gen- 
erated points in R5 , with all coordinates distributed 
uniformly over the interval [0,1]. Let h be the matrix 
of squared distances corrupted by additive Gaussian 
noise, with zero mean and covariance 0.01. This ma- 
trix has full rank (with probability one) because of the 
additive noise, which obscures the underlying geomet- 
ric structure. We would like to  find the D close to D in 
Frobenuis norm, with the smallest embedding dimen- 
sion. This can be expressed as the RMP 

minimize Rank(-VDV) 
subject to Dii = 0, 

-VDV 2 0 
llD - QlF I E ,  

where we assume the tolerance E to be O.O511b)11~ .  Ap- 
plying the log-det heuristic to this problem results in a 
D with an embedding dimension of 5 after 2 iterations, 
which is exactly the dimension of the underlying space 
in this case. In this example we set 6 = 

5 Conclusions 

We presented the log-det heuristic for matrix rank min- 
imization, and showed it can be applied to any general 
matrix using the embedding lemma in section 2. In 
the vector case, where the RMP reduces to finding the 
sparsest vector in a convex set, we showed the heuristic 
reduces to iterative el-norm minimization. 
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We showed how to express two problems involving Han- 
kel and Euclidean distance matrices as RMPs. One 
of our goals here is to point out how several central 
problems in different fields can be cast as an RMP. We 
then applied the heuristic to some numerical examples. 
In these (and other applications given in [FazO2]), the 
heuristic has been observed to converge in a few iter- 
ations (typically 5 or 6), and to  yield very low rank 
solutions. 

A Proof of lemma 1 

We show each direction separately: 

(+) Suppose that RankX = rg 5 r.  Then X can 
be factored as X = L RI where L E RmXTo and R E 
RTox", and RankL = RankR = rg. Set Y and 2 to 
be the rank rg matrices L LT and RT RI respectively. 
Then we have 

(e) To prove the other direction, we begin with the 
following lemma [BEFB94, p.281, which is a general- 
ization of the well known Schur complement condition 
for positive semidefiniteness [GL89]: 

Let X, Y, and 2 be real matrices of appropriate di- 
mensions. Then we have the following equivalence: 

(i) Y 2 0 
(ii) X T ( I  - Y Y ~ )  = o , 
(iii) - X T y t x  > o 

Y X  

- 
(19) 

where Yt denotes the Moore-Penrose psuedoinverse of 
Y. Also recall that for any X E RmX", 

RankX = n - d imN(X)  = m - dimN(XT).  (20) 

Now given that conditions (i), (ii) and (iii) hold, our 
goal is to show that they imply RankY 2 RankX 
and Rank2 2 RankX. 

Assume, without loss of generality, that RankY 5 
Rank2 (if this were not the case, we could write the 
conditions in (19) with Y and 2 interchanged). From 
condition (ii) of (19), since ( I  - YYt) is a projection 
operator for N ( Y ) ,  it follows that 

n/(XT) 2 N ( Y )  + dimN(XT) 2 dimN(Y). 

Using (20), we conclude that Rank Y 2 Rank XT = 
Rank X . 0  

B Proof of corollary 2 

To prove that when X is symmetric we can take Y = Z 
in (3), we will show that given any feasible Y and 2, we 
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can construct a matrix W that is feasible when inserted 
in place of Y and 2 in (3) and yields an equal or smaller 
objective value. 

Again assume, without loss of generality, that 
R a n k Y  5 R a n k Z .  Now let a be a positive real 
number and consider the matrix ay. Then for any 
a > 0, R a n k a Y  = R a n k Y  and cry satisfies condi- 
tions (i) and (ii) of (19). If we can show that for some 
a0 > 0 condition (iii) is also satisfied, then we can take 
W = a0Y and we are done. 

Toward that end, consider the expression for condition 
(iii), with aY in place of Y and 2. Noting that ( a Y ) t  = 
AYt, we can be write this as 

a2Y - X Y t X  2 0.  (21) 

Recall that Y t  can be decomposed as 

where C contains the nonzero eigenvalues of Y ,  U1 and 
U2 are orthonormal matrices that span the range space 
of Y, R(Y),  and the nullspace of Y, N(Y) ,  respectively, 
and satisfy the identity: 

u2u; -k UlUT = I .  (23) 

Note that when X is symmetric, condition (ii) in (19) 
is equivalent to  XU2 = 0. Using this relation, and pre- 
and post-multiplying (21) by [U1 U2IT and [U1 U Z ] ,  re- 
spectively, we see that (21) holds if and only if the 
following equivalent condition holds: 

a2c - U,TXY+Xr/; 2 0. 

a2 2 X,,,(C-1/2UTXYtXU1C-1/2). U 
This condition can be satisfied by any 
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