Conic Optimization via Operator Splitting
and Homogeneous Self-Dual Embedding

B. O'Donoghue E. Chu N. Parikh S. Boyd

Convex Optimization and Beyond, Edinburgh, 11/6/2104

Outline

Cone programming

Cone programming

Cone programming

minimize ¢’ x

subjectto Ax+s=b, sek

v

variables x € R" and (slack) s € R™

v

KC is a proper convex cone

» K nonnegative orthant — LP
» KC Lorentz cone —> SOCP
» [C positive semidefinite matrices — SDP

the ‘modern’ canonical form for convex optimization

v

popularized by Nesterov, Nemirovsky, others, in 1990s

v

Cone programming

Cone programming

» parser/solvers like CVX, CVXPY, YALMIP translate or
canonicalize to cone problems

» focus has been on symmetric self-dual cones

» for medium scale problems with enough sparsity, interior-point
methods reliably attain high accuracy

» but they scale superlinearly in problem size

» open source software (SDPT3, SeDuMi, ...) widely used

Cone programming

This talk

a new first order method that

»

>

solves general cone programs

finds primal and dual solutions, or certificate of primal/dual
infeasibility

obtains modest accuracy quickly
scales to large problems and is easy parallelized

is matrix-free: only requires z — Az, w — ATw

Cone programming

Some previous work

v

projected subgradient type methods (Polyak 1980s)

v

primal-dual subgradient methods (Chambelle-Pock 2011)

\4

matrix-free interior-point methods (Gondzio 2012)

» can use iterative linear solver (CG) in any interior-point method

Cone programming

Outline

Homogeneous embedding

Homogeneous embedding

Primal-dual cone problem pair

primal and dual cone problems:

minimize c¢'x maximize —b'y
subjectto Ax+s=0b subject to —ATy+r=c
(x,s) e R" x K (r,y) € {0}" x K*

» primal variables x € R", s € R™; dual variables r € R", y € R™
» K* is dual of closed convex proper cone K

» note that R” x IC and {0}" x KC* are dual cones

Homogeneous embedding

Example cones

KC is typically a Cartesian product of smaller cones, e.g.,

R, {0}, R+

v

v

second-order cone Q = {(x,t) € R | ||x||» < t}

> positive semidefinite cone {X € Sk | X = 0}

v

exponential cone cl{(x,y,z) € R® |y >0, /¥ < z/y}

these cones would handle almost all convex problems that arise in
applications

Homogeneous embedding

Optimality conditions

KKT conditions (necessary and sufficient, assuming strong duality):

» primal feasibility: Ax+s=b, seK
» dual feasibility: ATy +c=r, r=0, yeKk*

» complementary slackness: y7s =0
equivalent to zero duality gap: c'x+ bTy =0

Homogeneous embedding 10

Primal-dual embedding

» KKT conditions as feasibility problem: find
(x,s,r,y) € R" x K x {0}" x K*

that satisfy

r 0 AT c
s|l=1-A 0 [X} + | b
0 c b7 0

» reduces solving cone program to finding point in intersection of
cone and affine set

» no solution if primal or dual problem infeasible/unbounded

Homogeneous embedding

11

Homogeneous self-dual (HSD) embedding
(Ye, Todd, Mizuno, 1994)

» find nonzero
(x,s,r,y) ER" XK x{0}" xK*, 7>0, >0

that satisfy

r 0 AT] [x
s| =] -A 0 b| |y
K —cT —bT 0| |7

» this feasibility problem is homogeneous and self-dual

» 7 =1,k = 0 reduces to primal-dual embedding

» due to skew symmetry, any solution satisfies
(x,y,7) L (r,s,K), Tk =0

Homogeneous embedding

12

Recovering solution or certificates

any HSD solution (x, s, r,y, 7, k) falls into one of three cases:

1. 7>0,k=0: (X,9,5) = (x/7,y/7,5/7) is a solution

2. 7 =0, k> 0: in this case ch—l— bTy <0
> if bTy <0, then § = y/(—bTy) certifies primal infeasibility
» if c"x <0, then & = x/(—cTx) certifies dual infeasibility

3. 7 = k = 0: nothing can be said about original problem
(a pathology)

Homogeneous embedding

13

Homogeneous primal-dual embedding

HSD embedding

» obviates need for phase | / phase Il solves to handle
infeasibility /unboundedness

» is used in all interior-point cone solvers

> is a particularly nice form to solve
(for reasons not completely understood)

Homogeneous embedding

14

Notation

» define

< X

r 0 AT ¢
u= , v=|s|, Q=]-A 0 b
K —cT —b" 0

» HSD embedding is: find (u, v) that satisfy

\]

v = Qu, (u,v) eC xC*

with C = R" x £* x Ry

Homogeneous embedding

15

Outline

Operator splitting

Operator splitting

16

Consensus problem

» consensus problem:

minimize f(x) + g(2)
subjectto x =1z

» f, g convex, not necessarily smooth, can take infinite values

» p* is optimal objective value

Operator splitting

17

Alternating direction method of multipliers

v

ADMM is: for k =0,...,
xk*1 = argmin (f(x) +(p/2)||x — 2* —)\kH%)

241 = argmin (g(2) + (p/2) X = z = A¥|3)

Ak+1 —)\k . Xk+1 + zk+l

v

p > 0 step-size

v

A (scaled) dual variable for x = z constraint

» same as many other operator splitting methods for consensus
problem, e.g., Douglas-Rachford method

Operator splitting 18

Convergence of ADMM

under benign conditions ADMM guarantees:

> F(xK) + g(z¥) — p*
» Ak 5 * an optimal dual variable

k

» xk—zk 50

Operator splitting

19

ADMM applied to HSD embedding

» HSD in consensus form

minimize lexcx(u, v l
subject to (u,v) = (@, V)

Is is indicator function of set S

> ADMM is:
(B, 75H) = TMguey (% + Nk, vK + 1K)
R
VL = e (PR — k)
NeFL = K gkl ke
PRl =k gkl gk

Ms(x) is Euclidean projection of x onto S

Operator splitting

Simplifications

(straightforward, but not immediate)
» if A =10 and ;0 = 10, then Ak = vk and pk = u¥ for all k
» simplify projection onto Qu = v using QT = —Q

k

» nothing depends on ¥, so can be eliminated

Operator splitting 21

Final algorithm

» for k=0,...,
flk+1 — (/+ Q)_l(uk+ Vk)
Ukl = e (R = vk)
VhHL =k gkl ke
» parameter free

» homogeneous

» same complexity as ADMM applied to primal or dual alone

Operator splitting

22

Variation: Approximate projection

k+1

> replace exact projection with any U1+ that satisfies

15 = (1 + @M + V)2 < i,

where 1K > 0 satisfy 3, px < 00
» useful when an iterative method is used to compute ¥

» implied by the (more easily verified) inequality
1@ + NE T — (uk + vF) |2 < ¥

by skew-symmetry of @

Operator splitting

+1

23

Convergence

can show the following (even with approximate projection):

» for all iterations kK > 0 we have
vkec, vkecr, W)Tvk=0

» as k — oo,
Quk—vk—>0

» with 70 = 1, k% = 1, (u¥, v¥) bounded away from zero

Operator splitting

24

Solving the linear system

» in first step need to solve equations
/ AT] Toy Wi
—A 1 b| || = |w
—cT —p" 1] |0y W
I AT c
M=l] el

M
I+Q= [—hT 1

> let

SO

» it follows that

uy

Operator splitting

H — (M + hhT)? ({W - WTh) ,

25

Solving the linear system, contd.

» applying matrix inversion lemma to (M 4 hhT)~! yields
. —1ppT pg—1
ilX _ Mil . M hh M Wy N W,rh
Ty (1+hTM~1h) wy,

i =w, +c i +b"0,

and

» first compute and cache M~1h

» so each iteration requires that we compute

M_l [WX}
Wy
and perform vector operations with cached quantities

Operator splitting

26

Direct method

» to solve
I —AT] T z |y
A =l | |-z |w
» compute sparse permuted LDL factorization of matrix

» re-use cached factorization for subsequent solves

» factorization guaranteed to exist for all permutations, since
matrix is symmetric quasi-definite

Operator splitting

Indirect method

\4

by elimination

ze=(I+ATA)(wy — ATwy)
wy, + Az,

Zy

v

can apply conjugate gradient (CG) to first equation
CG requires only multiplies by A and AT

v

terminate CG iterations when residual smaller than p*

v

v

easily parallelized; can exploit warm-starting

Operator splitting

28

Scaling / preconditioning

convergence greatly improved by scaling / preconditioning:

» replace original data A, b, ¢ with A= DAE, b= Db, ¢ = Ec
» D and E are diagonal positive; D respects cone boundaries

» D and E chosen by equilibrating A (details in paper)

» stopping condition retains unscaled (original) data

Operator splitting 29

Outline

Numerical results

Numerical results

30

SCS software package

» available from:

https://github.com/cvxgrp/scs
» written in C with matlab and python hooks
» can be called from CVX and CVXPY
» solves LPs, SOCPs, ECPs, and SDPs
» includes sparse direct and indirect linear system solvers

» can use single or double precision, ints or longs for indices

Numerical results 31

https://github.com/cvxgrp/scs

Portfolio optimization

v

z € RP gives weights of (long-only) portfolio with p assets

» maximize risk-adjusted portfolio return:

maximize 'z —y(z7ZL2)
subjectto 17z=1, z>0

v

(, X are return mean, covariance

v

~v > 0 is risk aversion parameter

Y given as factor model ¥ = FFT + D

v

v

F € R9*P is factor loading matrix

v

can be transformed to SOCP

Numerical results

32

Portfolio optimization results

assets p 5000 50000 100000
factors g 50 500 1000
SOCP variables n 5002 50002 100002
SOCP constraints m 10055 100505 201005
nonzeros in A 3.8 x 10* 2.5 x10° 1.0 x 107
SDPT3:

solve time 1.14 sec 17836.7 sec OOM
SCS direct:

solve time 0.17 sec 4.7 sec 37.1 sec
iterations 420 340 760
SCS indirect:

solve time 0.23 sec 12.2 sec 101 sec
average CG iterations 1.62 1.39 1.82
iterations 400 400 800

Numerical results

33

¢1-regularized logistic regression

» fit logistic model, with ¢; regularization
» data z; € RP, i =1,...,q with labels y; € {—1,1}

» solve
minimize Y7, log(1 + exp(yiw " z;)) + pl|wl|y

over variable w € RP; 1 > 0 regularization parameter

» can be transformed to exponential cone program (ECP)

Numerical results 34

¢1-regularized logistic regression results

small medium large
features p 600 2000 6000
samples g 3000 10000 30000
ECP variables n 10200 34000 102000
ECP constraints m 22200 74000 222000
nonzeros in A 1.9 x 10° 1.9x10° 1.7 x 107
SCS direct:
solve time 22.1 sec 165 sec 1020 sec
iterations 280 660 1240
SCS indirect:
solve time 24.0 sec 199 sec 1290 sec
average CG iterations 2.00 2.49 2.82
iterations 300 760 1320

Numerical results 35

Large random SOCP

v

randomly generated SOCP with known optimal value

n = 1.6 x 10° variables, m = 4.8 x 10° constraints

v

v

2 x 102 nonzeros in A, 22.5Gb memory to store

v

indirect solver, tolerance 1073, parallelized over 32 threads

results:

\4

» 740 SCS iterations, about 5000 matrix multiplies
» 10 hours wall-clock time
> [cTx —cTx*|/|cTx*| =7 x 1074

> [bTy —bTy*|/|bTy* | =1x1073

Numerical results

36

Outline

Conclusions

Conclusions

37

Conclusions

v

HSD embedding is great for first-order methods

v

diagonal preconditioning critical

\4

matrix-free algorithm: only z = Az, w — ATw

v

SCS is now standard large scale solver in CVXPY

Conclusions

38

	Cone programming
	Homogeneous embedding
	Operator splitting
	Numerical results
	Conclusions

