
Conic Optimization via Operator Splitting

and Homogeneous Self-Dual Embedding

B. O’Donoghue E. Chu N. Parikh S. Boyd

Convex Optimization and Beyond, Edinburgh, 11/6/2104

1

Outline

Cone programming

Homogeneous embedding

Operator splitting

Numerical results

Conclusions

Cone programming 2

Cone programming

minimize cT x
subject to Ax + s = b, s ∈ K

◮ variables x ∈ Rn and (slack) s ∈ Rm

◮ K is a proper convex cone
◮ K nonnegative orthant −→ LP
◮ K Lorentz cone −→ SOCP
◮ K positive semidefinite matrices −→ SDP

◮ the ‘modern’ canonical form for convex optimization

◮ popularized by Nesterov, Nemirovsky, others, in 1990s

Cone programming 3

Cone programming

◮ parser/solvers like CVX, CVXPY, YALMIP translate or
canonicalize to cone problems

◮ focus has been on symmetric self-dual cones

◮ for medium scale problems with enough sparsity, interior-point
methods reliably attain high accuracy

◮ but they scale superlinearly in problem size

◮ open source software (SDPT3, SeDuMi, . . .) widely used

Cone programming 4

This talk

a new first order method that

◮ solves general cone programs

◮ finds primal and dual solutions, or certificate of primal/dual
infeasibility

◮ obtains modest accuracy quickly

◮ scales to large problems and is easy parallelized

◮ is matrix-free: only requires z → Az , w → ATw

Cone programming 5

Some previous work

◮ projected subgradient type methods (Polyak 1980s)

◮ primal-dual subgradient methods (Chambelle-Pock 2011)

◮ matrix-free interior-point methods (Gondzio 2012)

◮ can use iterative linear solver (CG) in any interior-point method

Cone programming 6

Outline

Cone programming

Homogeneous embedding

Operator splitting

Numerical results

Conclusions

Homogeneous embedding 7

Primal-dual cone problem pair

primal and dual cone problems:

minimize cT x
subject to Ax + s = b

(x , s) ∈ Rn ×K

maximize −bT y
subject to −AT y + r = c

(r , y) ∈ {0}n ×K∗

◮ primal variables x ∈ Rn, s ∈ Rm; dual variables r ∈ Rn, y ∈ Rm

◮ K⋆ is dual of closed convex proper cone K

◮ note that Rn ×K and {0}n ×K∗ are dual cones

Homogeneous embedding 8

Example cones

K is typically a Cartesian product of smaller cones, e.g.,

◮ R, {0}, R+

◮ second-order cone Q = {(x , t) ∈ Rk+1 | ‖x‖2 ≤ t}

◮ positive semidefinite cone {X ∈ Sk | X � 0}

◮ exponential cone cl{(x , y , z) ∈ R3 | y > 0, ex/y ≤ z/y}

these cones would handle almost all convex problems that arise in
applications

Homogeneous embedding 9

Optimality conditions

KKT conditions (necessary and sufficient, assuming strong duality):

◮ primal feasibility: Ax + s = b, s ∈ K

◮ dual feasibility: AT y + c = r , r = 0, y ∈ K∗

◮ complementary slackness: yT s = 0
equivalent to zero duality gap: cT x + bT y = 0

Homogeneous embedding 10

Primal-dual embedding

◮ KKT conditions as feasibility problem: find

(x , s, r , y) ∈ Rn ×K × {0}n ×K∗

that satisfy




r
s
0



 =





0 AT

−A 0
cT bT





[

x
y

]

+





c
b
0





◮ reduces solving cone program to finding point in intersection of
cone and affine set

◮ no solution if primal or dual problem infeasible/unbounded

Homogeneous embedding 11

Homogeneous self-dual (HSD) embedding

(Ye, Todd, Mizuno, 1994)

◮ find nonzero

(x , s, r , y) ∈ Rn ×K × {0}n ×K∗, τ ≥ 0, κ ≥ 0

that satisfy




r
s
κ



 =





0 AT c
−A 0 b
−cT −bT 0









x
y
τ





◮ this feasibility problem is homogeneous and self-dual

◮ τ = 1, κ = 0 reduces to primal-dual embedding

◮ due to skew symmetry, any solution satisfies

(x , y , τ) ⊥ (r , s, κ), τκ = 0

Homogeneous embedding 12

Recovering solution or certificates

any HSD solution (x , s, r , y , τ, κ) falls into one of three cases:

1. τ > 0, κ = 0: (x̂ , ŷ , ŝ) = (x/τ, y/τ, s/τ) is a solution

2. τ = 0, κ > 0: in this case cT x + bT y < 0
◮ if bT y < 0, then ŷ = y/(−bT y) certifies primal infeasibility
◮ if cT x < 0, then x̂ = x/(−cT x) certifies dual infeasibility

3. τ = κ = 0: nothing can be said about original problem
(a pathology)

Homogeneous embedding 13

Homogeneous primal-dual embedding

HSD embedding

◮ obviates need for phase I / phase II solves to handle
infeasibility/unboundedness

◮ is used in all interior-point cone solvers

◮ is a particularly nice form to solve
(for reasons not completely understood)

Homogeneous embedding 14

Notation

◮ define

u =





x
y
τ



 , v =





r
s
κ



 , Q =





0 AT c
−A 0 b
−cT −bT 0





◮ HSD embedding is: find (u, v) that satisfy

v = Qu, (u, v) ∈ C × C∗

with C = Rn ×K∗ × R+

Homogeneous embedding 15

Outline

Cone programming

Homogeneous embedding

Operator splitting

Numerical results

Conclusions

Operator splitting 16

Consensus problem

◮ consensus problem:

minimize f (x) + g(z)
subject to x = z

◮ f , g convex, not necessarily smooth, can take infinite values

◮ p⋆ is optimal objective value

Operator splitting 17

Alternating direction method of multipliers

◮ ADMM is: for k = 0, . . .,

xk+1 = argmin
x

(

f (x) + (ρ/2)‖x − zk − λk‖2

2

)

zk+1 = argmin
z

(

g(z) + (ρ/2)‖xk+1 − z − λk‖2

2

)

λk+1 = λk − xk+1 + zk+1

◮ ρ > 0 step-size

◮ λ (scaled) dual variable for x = z constraint

◮ same as many other operator splitting methods for consensus
problem, e.g., Douglas-Rachford method

Operator splitting 18

Convergence of ADMM

under benign conditions ADMM guarantees:

◮ f (xk) + g(zk) → p⋆

◮ λk → λ⋆, an optimal dual variable

◮ xk − zk → 0

Operator splitting 19

ADMM applied to HSD embedding

◮ HSD in consensus form

minimize IC×C∗(u, v) + IQũ=ṽ (ũ, ṽ)
subject to (u, v) = (ũ, ṽ)

IS is indicator function of set S

◮ ADMM is:

(ũk+1, ṽk+1) = ΠQu=v (u
k + λk , vk + µk)

uk+1 = ΠC(ũ
k+1 − λk)

vk+1 = ΠC∗(ṽk+1 − µk)

λk+1 = λk − ũk+1 + uk+1

µk+1 = µk − ṽk+1 + vk+1

ΠS(x) is Euclidean projection of x onto S

Operator splitting 20

Simplifications

(straightforward, but not immediate)

◮ if λ0 = v0 and µ0 = u0, then λk = vk and µk = uk for all k

◮ simplify projection onto Qu = v using QT = −Q

◮ nothing depends on ṽk , so can be eliminated

Operator splitting 21

Final algorithm

◮ for k = 0, . . . ,

ũk+1 = (I + Q)−1(uk + vk)

uk+1 = ΠC

(

ũk+1 − vk
)

vk+1 = vk − ũk+1 + uk+1

◮ parameter free

◮ homogeneous

◮ same complexity as ADMM applied to primal or dual alone

Operator splitting 22

Variation: Approximate projection

◮ replace exact projection with any ũk+1 that satisfies

‖ũk+1 − (I + Q)−1(uk + vk)‖2 ≤ µk ,

where µk > 0 satisfy
∑

k µk < ∞

◮ useful when an iterative method is used to compute ũk+1

◮ implied by the (more easily verified) inequality

‖(Q + I)ũk+1 − (uk + vk)‖2 ≤ µk

by skew-symmetry of Q

Operator splitting 23

Convergence

can show the following (even with approximate projection):

◮ for all iterations k > 0 we have

uk ∈ C, vk ∈ C∗, (uk)T vk = 0

◮ as k → ∞,
Quk − vk → 0

◮ with τ0 = 1, κ0 = 1, (uk , vk) bounded away from zero

Operator splitting 24

Solving the linear system

◮ in first step need to solve equations




I AT c
−A I b
−cT −bT 1









ũx

ũy

ũτ



 =





wx

wy

wτ





◮ let

M =

[

I AT

−A I

]

, h =

[

c
b

]

so

I + Q =

[

M h
−hT 1

]

◮ it follows that
[

ũx

ũy

]

= (M + hhT)−1

([

wx

wy

]

− wτh

)

,

Operator splitting 25

Solving the linear system, contd.

◮ applying matrix inversion lemma to (M + hhT)−1 yields

[

ũx

ũy

]

=

(

M−1 −
M−1hhTM−1

(1 + hTM−1h)

)([

wx

wy

]

− wτh

)

and
ũτ = wτ + cT ũx + bT ũy

◮ first compute and cache M−1h

◮ so each iteration requires that we compute

M−1

[

wx

wy

]

and perform vector operations with cached quantities

Operator splitting 26

Direct method

◮ to solve
[

I −AT

−A −I

] [

zx

−zy

]

=

[

wx

wy

]

◮ compute sparse permuted LDL factorization of matrix

◮ re-use cached factorization for subsequent solves

◮ factorization guaranteed to exist for all permutations, since
matrix is symmetric quasi-definite

Operator splitting 27

Indirect method

◮ by elimination

zx = (I + ATA)−1(wx − ATwy)

zy = wy + Azx

◮ can apply conjugate gradient (CG) to first equation

◮ CG requires only multiplies by A and AT

◮ terminate CG iterations when residual smaller than µk

◮ easily parallelized; can exploit warm-starting

Operator splitting 28

Scaling / preconditioning

convergence greatly improved by scaling / preconditioning:

◮ replace original data A, b, c with Â = DAE , b̂ = Db, ĉ = Ec

◮ D and E are diagonal positive; D respects cone boundaries

◮ D and E chosen by equilibrating A (details in paper)

◮ stopping condition retains unscaled (original) data

Operator splitting 29

Outline

Cone programming

Homogeneous embedding

Operator splitting

Numerical results

Conclusions

Numerical results 30

SCS software package

◮ available from:

https://github.com/cvxgrp/scs

◮ written in C with matlab and python hooks

◮ can be called from CVX and CVXPY

◮ solves LPs, SOCPs, ECPs, and SDPs

◮ includes sparse direct and indirect linear system solvers

◮ can use single or double precision, ints or longs for indices

Numerical results 31

https://github.com/cvxgrp/scs

Portfolio optimization

◮ z ∈ Rp gives weights of (long-only) portfolio with p assets

◮ maximize risk-adjusted portfolio return:

maximize µT z − γ(zTΣz)
subject to 1T z = 1, z ≥ 0

◮ µ, Σ are return mean, covariance

◮ γ > 0 is risk aversion parameter

◮ Σ given as factor model Σ = FFT + D

◮ F ∈ Rq×p is factor loading matrix

◮ can be transformed to SOCP

Numerical results 32

Portfolio optimization results

assets p 5000 50000 100000
factors q 50 500 1000
SOCP variables n 5002 50002 100002
SOCP constraints m 10055 100505 201005
nonzeros in A 3.8 × 104 2.5 × 106 1.0 × 107

SDPT3:
solve time 1.14 sec 17836.7 sec OOM

SCS direct:
solve time 0.17 sec 4.7 sec 37.1 sec

iterations 420 340 760
SCS indirect:
solve time 0.23 sec 12.2 sec 101 sec

average CG iterations 1.62 1.39 1.82
iterations 400 400 800

Numerical results 33

ℓ1-regularized logistic regression

◮ fit logistic model, with ℓ1 regularization

◮ data zi ∈ Rp, i = 1, . . . , q with labels yi ∈ {−1, 1}

◮ solve

minimize
∑q

i=1
log(1 + exp(yiw

T zi)) + µ‖w‖1

over variable w ∈ Rp; µ > 0 regularization parameter

◮ can be transformed to exponential cone program (ECP)

Numerical results 34

ℓ1-regularized logistic regression results

small medium large

features p 600 2000 6000
samples q 3000 10000 30000
ECP variables n 10200 34000 102000
ECP constraints m 22200 74000 222000
nonzeros in A 1.9 × 105 1.9 × 106 1.7 × 107

SCS direct:
solve time 22.1 sec 165 sec 1020 sec

iterations 280 660 1240
SCS indirect:
solve time 24.0 sec 199 sec 1290 sec

average CG iterations 2.00 2.49 2.82
iterations 300 760 1320

Numerical results 35

Large random SOCP

◮ randomly generated SOCP with known optimal value

◮ n = 1.6 × 106 variables, m = 4.8 × 106 constraints

◮ 2 × 109 nonzeros in A, 22.5Gb memory to store

◮ indirect solver, tolerance 10−3, parallelized over 32 threads

◮ results:

◮ 740 SCS iterations, about 5000 matrix multiplies

◮ 10 hours wall-clock time

◮ |cT x − cT x⋆|/|cT x⋆| = 7 × 10−4

◮ |bT y − bT y⋆|/|bT y⋆| = 1 × 10−3

Numerical results 36

Outline

Cone programming

Homogeneous embedding

Operator splitting

Numerical results

Conclusions

Conclusions 37

Conclusions

◮ HSD embedding is great for first-order methods

◮ diagonal preconditioning critical

◮ matrix-free algorithm: only z → Az , w → ATw

◮ SCS is now standard large scale solver in CVXPY

Conclusions 38

	Cone programming
	Homogeneous embedding
	Operator splitting
	Numerical results
	Conclusions

