
An Efficient Method for Large-Scale Slack Allocation

Siddharth Joshi Stephen Boyd

May 20, 2008

Abstract

We consider a timing or project graph, with given delays on the edges and given
arrival times at the source and sink nodes. We are to find the arrival times at the
other nodes; these determine the timing slacks, which must be nonnegative, on the
edges. The set of possible timing slacks is a polyhedron; to choose one we maximize
a separable concave utility function, such as the sum of the logarithms of the slacks.
This slack allocation problem, for which we give a simple statistical interpretation, is
convex, and can be solved by a variety of methods. Gradient and coordinate ascent
methods are simple and scale to large problems, but can converge slowly, depending on
the topology and problem data. The Newton method, in contrast, reliably computes
an accurate solution, but typically cannot scale beyond problems with a few thousand
nodes. In this paper we describe a custom truncated Newton method that efficiently
computes an accurate solution, and scales to large graphs (say, with a million or more
nodes). Our method typically requires just a few hundred iterations, with each iteration
requiring a few passes over the graph; in particular, our method has approximately
linear complexity in the size of the problem. The same approach can be used to solve
slack allocation problems with constraints, using an interior-point method that relies
on our custom truncated Newton approach.

Keywords: timing graph, slack allocation, delay budgeting, convex optimization,
truncated Newton method.

1 Introduction

A timing graph is a directed acyclic graph, with an arrival time at each node, and a delay
on each edge. Each edge represents a timing constraint: The difference in arrival times
at the nodes connected to an edge should be greater than the edge delay. The difference
between these two quantities is called the slack of the edge; nonnegative slack means the
timing constraint on that edge is satisfied.

In the slack allocation problem, we are given arrival times at the source and sink nodes of
the timing graph, and must choose the arrival times for all other nodes. These arrival times
determine the edge slacks. The timing assignments that meet all timing constraints, i.e.,
that correspond to nonnegative slacks, form a polyhedron. To choose a particular timing
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assignment, we maximize a concave utility function that is separable in the edges. This
is a convex optimization problem, and can be solved by a variety of methods, depending
on properties of the utility function (such as differentiability). In this paper we describe
algorithms for this maximum utility slack allocation problem that scale to very large timing
graphs, with millions (or more) nodes.

Timing graphs come up in several application areas. In a digital circuit, each node can
represent a gate; the arrival time represents the time by which the gate output signal becomes
valid. The edges represent connections from one gate to another, and the edge delay is the
delay of the gate and interconnect wiring. The slack on an edge can be interpreted as an
additional delay that can be tolerated, while still meeting the timing constraints. (It is also
possible to associate the edges with individual transitions from an input to the output of a
gate.)

The slack allocation problem, also known as delay budgeting, arises in a wide variety
of circuit placement and related problems; see, e.g., [SWY02, CSX+05, CN07]. The zero
slack allocation algorithm, introduced in [HNY87, NBHY89], has been used to solve many
variations on the slack allocation problem; see, e.g., [Fra92, LH05]. The log-barrier slack
allocation problem, for circuit placement problems, was described in [GVL91]. For slack
allocation problems with other utility objective functions, see [SKT97, YCS02].

A timing graph can also be used to represent a project network (or an activity network)
[Dav66, Elm64]. The edges represent tasks, and the delay is the time required to carry out
the task. A task cannot start until all the tasks associated with the its incoming edges (or
predecessors) have completed. In a project network, the node arrival times have the following
meaning: Tasks associated with outgoing edges cannot start until the arrival time; and tasks
associated with incoming edges must complete before the arrival time. The edge slack
corresponds to extra time a task has, over its delay, to complete. Zero edge slack means the
task has just enough time to complete; positive slack means it has some extra time. For slack
allocation and related problems in project networks see [CGT08, MMRB98, Dod84, DE85].
A project network in which the delays are random is called a stochastic activity network
[Dev79, Wei86, Hel81].

The outline of the paper is as follows. In §2 we formally describe the maximum utility
slack allocation problem. In §3 we give an efficient algorithm, which uses the underlying
problem structure, to find a feasible slack allocation. In §4 we describe various methods
to solve the slack allocation problem. We use the log-barrier formulation to demonstrate
the performance of the methods on number of numerical examples in §5. In §6 we briefly
describe how the methods can be applied in more general cases.
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2 Slack allocation

2.1 Timing graph and slacks

We consider a directed acyclic graph with ñ nodes, labeled 1, . . . , ñ, and m edges, labeled
1, . . . ,m. The sets of successor and predecessor nodes of node i are defined as

S(i) = {j | there is an edge from node i to node j},
P(i) = {j | there is an edge from node j to node i}.

Node i is called a source node (or just a source) if P(i) = ∅, or a sink node (or just a sink) if
S(i) = ∅. The set of source nodes is denoted Nsrc and the set of sink nodes is denoted Nsink.
We let F = Nsrc ∪Nsink denote the boundary nodes. We will order the nodes in such a way
that S(i) ⊆ {i+ 1, . . . , ñ}, for i = 1, . . . , ñ, which is possible because the graph is a directed
acyclic graph.

We are given a set of nonnegative edge delays, denoted d1, . . . , dm. With each node we
associate an arrival time ti, i = 1, . . . , ñ. We refer to the vector of arrival times t ∈ Rñ as
a timing assignment. The slack of edge k, which goes from node i to node j, is given by
sk = tj − ti − dk, k = 1, . . . ,m. We can express the vector of edge slacks as

s = ÃT t̃− d, (1)

where Ã ∈ Rñ×m is the incidence matrix of the graph,

Ãik =











1 edge k enters node i
−1 edge k leaves node i

0 otherwise.

We say that the timing constraint is met on edge k if sk ≥ 0, and call the timing assignment
t feasible if s ≥ 0, and strictly feasible if s > 0. (These inequalities are componentwise.) We
can interpret the slack sk as the amount of additional delay that can be tolerated on edge k,
while still maintaining feasibility. The set of feasible (strictly) timing assignments is denoted
T (T+). Evidently these are (closed and open) polyhedra.

It will sometimes be convenient to express the edge slacks in terms of the free arrival
times, i.e., those associated with i 6∈ F . We let t ∈ Rn denote the subvector of t̃ containing
the free arrival times, where n = ñ− |F|. We can express the slacks as

s = ÃT t̃− d = AT t− d+ f,

where A ∈ Rm×n is the submatrix of Ã formed from the rows associated with free nodes,
and f is the contribution to the slacks from the fixed arrival times.

2.2 Slack allocation problem

Now we can describe the slack allocation problem. We are given the edge delays and the
arrival times for the source and sink nodes, i.e., t̃i for i ∈ F . We are to choose the remaining
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node arrival times so as to make the slacks ‘large’. We will measure ‘large’ using a separable
utility function,

U(s) = U1(s1) + · · · + Um(sm),

where Ui is a concave, increasing function. The (optimal) slack allocation problem is then

maximize U(s)

subject to s = ÃT t̃− d ≥ 0,
t̃i = Ti, i ∈ F ,

(2)

with variables s ∈ Rm and t̃ ∈ Rñ. The problem data are d ∈ Rm, Ti for i ∈ F , and the
utility functions U1, . . . , Um. Since the constraints are linear and the objective, which is to
be maximized, is concave, the problem (2) is a convex optimization problem.

We can express the slack allocation problem in terms of the free arrival times as

maximize ψ(t) = U(AT t− d+ f)
subject to AT t− d ≥ 0,

(3)

with variable t ∈ Rn. This problem is also a convex optimization problem.
We will focus on the special case when U is barrier function for s ≥ 0, i.e., it is twice

differentiable, has domain Rm
++, and satisfies U(s) → −∞ as any sk → 0. In this case, the

constraint s > 0 is implicit, and the problem can be expressed as the unconstrained convex
problem

maximize ψ(t) = U(AT t− d+ f), (4)

with variable t.
For Ui(si) = log si, for which U is a barrier, we call the slack allocation problem the log-

barrier slack allocation problem. This is equivalent to maximizing the product of the slacks,
or finding the analytic center of T [BV04, §8.5.3]. Log utility and analytic centering come
up in many application, e.g., networking [TZB08], specifically rate control and proportional
fairness [KMT97].

When U is a barrier, the optimality condition is simply ∇ψ(t) = 0. We can express this
condition as follows. Consider a node i 6∈ F , with incoming edges I and outgoing edges O.
Then the optimality condition can be expressed as

∑

k∈I

U ′
k(sk) =

∑

k∈O

U ′
k(sk),

i.e., the total marginal utilities of the incoming and outgoing edge slacks are balanced, at
each free node.

2.3 Probabilistic interpretation

We can give a simple probabilistic interpretation of the slack allocation problem (2). Consider
a project network in which the tasks suffer independent random additional delays δ1, . . . , δm,
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so the edge delays become d1 + δ1, . . . , dm + δm. Task k meets its timing constraint if
dk + δk ≤ dk + sk; the probability that all tasks meet their deadlines is

m
∏

i=1

Prob(dk + δk ≤ dk + sk) =
m
∏

i=1

Prob(δk ≤ sk).

We can maximize this probability by maximizing its logarithm, which is U(s), with slack
utility functions

Uk(sk) = log Prob(δk ≤ sk), k = 1, . . . ,m. (5)

This utility function is always nondecreasing, and it is concave for many common distri-
butions, including uniform, exponential, normal, and log-normal. (It is concave for any
log-concave distribution.) If δk ≥ 0 almost surely, and has a positive density near 0, U is a
barrier, i.e., U(s) → −∞ as any sk → 0.

For example, suppose that δk is uniform on [0,∆k]. In this case the associated utility
function is

Uk(sk) =

{

− log ∆k + log sk sk ≤ ∆k

0 sk > ∆k.

In particular, we can think of log-barrier slack allocation as choosing the timing assignment so
as to maximize the probability that all tasks satisfy the timing requirements, with uniformly
distributed excess delays. (Here we ignore the saturation in U above ∆k.)

As another example, suppose that δk has exponential distribution with mean λk. The
associated utility is

Uk(sk) = log(1 − eλksk),

which is concave, and a barrier.
As a last example, we consider the case when δk is log-normal, i.e., log δk ∼ N (µk, σ

2
k).

Then we have
Uk(sk) = log Prob(δk ≤ sk) = log Φ((log sk − µk)/σk),

where Φ is the cumulative distribution function of the standard Gaussian random variable.
This utility is concave, although it is not immediately obvious. It can be shown several
ways, for example, by observing that log Φ is increasing and concave, and (log sk − µk)/σk

is concave in sk.
In a stochastic activity or project network, another quantity of interest is the completion

time, which is the maximum of the arrival times at the sink nodes [RT76, Dev79, Dod85].
Optimization problems involving the distribution of the completion time can be found in
[HJ90, Wei86, KBY+07]. The slack allocation problem is different, and a bit easier than,
completion time minimization problems.

3 Slack allocation feasibility

Feasibility (and strict feasibility) of the slack allocation problem is easily determined. One
simple method is to recursively compute the smallest possible arrival time at each node, as
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follows. For the source nodes we set tmin
i = Ti. Then we traverse the nodes in increasing

order, setting
tmin
i = max

j∈P(i)
(tmin

j + dk),

where edge k goes from node j to node i. If for each i ∈ Nsink we have tmin
i ≤ Ti, we

have constructed a feasible timing assignment; otherwise the slack allocation problem is
infeasible. The slack allocation problem is strictly feasible if and only if for each i ∈ Nsink we
have tmin

i < Ti. We will show below how to construct a strictly feasible timing assignment,
when the problem is strictly feasible.

Once it is determined that the problem is strictly feasible, we reset tmin
i = Ti, i ∈ Nsink.

We compute the largest possible value of the arrival times by carrying out a backward
recursion, starting from the sinks. We first assign tmax

i = Ti for i ∈ Nsink. We then traverse
the graph, in reverse order, setting

tmax
i = min

j∈S(i)
(tmax

j − dk),

where edge k goes from node i to node j. (The slack allocation problem is feasible (strictly
feasible) if and only if for each i ∈ Nsrc we have tmax

i ≥ Ti (tmax
i > Ti).) We reset tmax

i = Ti,
i ∈ Nsrc. Thus we obtain tmin and tmax feasible, but not strictly feasible, timing assignments.

To obtain a strictly feasible timing assignment tinit we compute the maximum slack that
can be allocated to an edge. The maximum slack of edge k (which goes from node i to
node j), denoted smax

k , is given by

smax
k = tmax

i − tmin
j − dk, k = 1, . . . ,m.

(The slack allocation problem is strictly feasible if and only if smax
k > 0, k = 1, . . . ,m.) Let

lk be the length of a longest path through edge k. (The length of a path is the number of
edges in the path.) Like the maximum slack smax

k , lk for all edges can computed by a forward
and a backward recursion. We set the slack on edge k to be smax

k /lk, and compute the timing
assignment by a forward recursion: For the source nodes we set tinit

i = Ti, i ∈ Nsrc, then
traversing the nodes in increasing order we set

tinit
i = max

j∈P(i)
(tinit

j + dk + smax
k /lk),

where edge k goes from node j to node i. Finally, we reset tinit
i = Ti, i ∈ Nsink. The

timing assignment tinit is strictly feasible, since the resulting slack of edge k, sk, satisfies
sk ≥ smax

k /lk > 0.

4 Solving the slack allocation problem

In this section we focus on the case when U is a barrier, in which case the unconstrained slack
allocation problem (4) can be solved by any of the many methods for smooth unconstrained
minimization. We mention a few of these methods below, before coming to our proposed
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method, which is a truncated Newton method. All of these methods start from a strictly
feasible point t, compute a search direction ∆t, and update the timing assignment to t+θ∆t,
where θ is the step size computed by a standard line search method, e.g., backtracking. The
trade-off among the different algorithms is between the effort required to compute each search
direction, and the quality of the search direction, as judged by the convergence progress made
per iteration.

For future use we give the gradient and Hessian of the objective ψ(t) = U(AT t− d+ f).
We have

∇ψ(t) = AU ′(AT t− d+ f), ∇2ψ(t) = Adiag(U ′′(AT t− d+ f))AT ,

where U ′ = (U ′
1, . . . , U

′
m) and U ′′ = (U ′′

1 , . . . , U
′′
m). We define Hdiag as the diagonal matrix

with entries equal to the diagonal of the Hessian ∇2ψ(t). The matrix Hdiag is given by

Hdiag = diag (∇2ψ(t)11, . . . ,∇2ψ(t)nn)

= diag
(

(A ◦ A)U ′′(AT t− d+ f)
)

,

where ◦ is the Hadamard (elementwise) product.

4.1 Coordinate ascent method

One simple approach to solve the slack allocation problem (4) is to cycle over the components
of t, and optimize each component individually, keeping all others fixed. This method is
called the cyclic coordinate ascent method [Lue84, §7.9]. Using Newton’s method, each one-
variable subproblem can be solved very quickly, requiring only a small number of floating
point operations, given the arrival times of the node’s predecessors and successors.

Cyclic coordinate ascent can be partially parallelized. We partition the free arrival times
into groups, with no edges between any two nodes in each group. We can then optimize all
the timing assignments in each group in parallel, and cycle through the groups.

Cyclic coordinate ascent can perform well for small problems, but for larger problems, it
typically makes some initial rapid progress, and then stalls, i.e., converges very slowly. The
convergence is quite dependent on the topology of the graph.

4.2 Diagonally scaled gradient method

The diagonally scaled gradient method uses the search direction ∆tdsg ∈ Rn given by

∆tdsg = −H−1
diag∇ψ(t),

which can be computed very efficiently, once the slacks of the incoming and outgoing edges
have been evaluated. We use this search direction, with a backtracking line search, to update
t. We stop when, for example, ∇ψ is small enough. (For more on this see [BV04, NW99].)

The scaled gradient method performs like the cyclic coordinate ascent method: It typi-
cally makes some rapid progress, and then convergence slows down. As with cyclic coordinate
ascent, the convergence is very much affected by the topology of the graph.
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4.3 Newton method

The Newton method uses the search direction

∆tnt = −∇2ψ(t)−1∇ψ(t),

with a backtracking line search to ensure convergence. The Newton method performs ex-
tremely well, typically converging to a highly accurate solution within a few tens of iterations
(and often far fewer). This performance is not particularly dependent on the graph topology,
or other problem data. Of course the cost of computing the Newton direction ∆t̃nt is far
higher than the cost of computing the diagonally scaled gradient direction ∆t̃dsg, or carrying
out one cycle of the cyclic coordinate ascent method.

To compute the Newton direction, we must solve the Newton equation
(

Adiag(−U ′′)AT
)

∆tnt = AU ′, (6)

where, to simplify notation, we omit the arguments of U ′ and U ′′. The coefficient matrix
has no more than n + 2m nonzero elements, which means for m small enough, it will be
worthwhile to use a sparse Cholesky factorization to compute the search direction. The
complexity of this method depends on the fill-in that occurs in the factorization, which in
turn depends primarily on the graph topology and the method used to order the variables
(see, e.g., [Dem97]). Depending on the fill-in, the complexity of this method can range from
O(m) (for very simple sparse graphs, or chordal graphs) to O(mn2) (for graphs with much,
or complete, fill-in). If the topology (and ordering method) is such that the fill-in is small,
the Newton method is very efficient, and can scale to very large timing graphs. But fill-in
typically limits the Newton method to problems with a few thousand nodes and edges.

4.4 Truncated Newton method

In a truncated Newton method [NW99, SF92], we compute the search direction as an ap-
proximate solution of the Newton equation (6), obtained by an iterative method, such
as the preconditioned conjugate gradient (PCG) method with diagonal preconditioning
[Kel95, NW99, Saa03]. The matrix Adiag(−U ′′)AT is diagonally dominant, which suggests
that PCG with diagonal preconditioning should work well.

In each iteration of the PCG algorithm, we must multiply a vector z by Adiag(−U ′′)AT .
This can carried out as A(diag(−U ′′)(AT z)), which is very efficient; in particular, we never
form or store the matrix Adiag(−U ′′)AT . We also need to multiply a vector by the inverse
of the diagonal preconditioner −H−1

diag, which also is very efficient because H−1
diag, the diagonal

of the Hessian, can be obtained without forming the Hessian.
If we terminate the PCG algorithm after one iteration, the resulting search direction

is the scaled gradient direction (scaled by a positive amount). Since the scaled gradient
method decreases the norm of the gradient rapidly for the first few iterations, we terminate
the PCG algorithm after one iteration until the relative decrease in the gradient norm is less
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than some threshold ζ. After that, we run the PCG algorithm until the search direction ∆t
satisfies

‖(Adiag(−U ′′)AT )∆t− AU ′‖
‖AU ′‖ ≤ η, (7)

i.e., the relative Newton equation residual is less than or equal to η, or until the number of
iterations reaches some limit Nmax. (In this case we use the search direction with the least
relative residual.) The thresholds ζ, η, and Nmax are set by experimentation.

The truncated Newton method performs very well, combining the good qualities of the
scaled gradient and Newton methods. It makes rapid initial progress, but does not stall.
The total number of PCG steps required to compute a very accurate solution is typically
less than 100, even for very large timing graphs.

4.5 Comparison of methods

To compare the performance of the coordinate ascent and diagonally scaled gradient meth-
ods to the truncated Newton method, we need a rough estimate of the effort required per
iteration, compared to the effort required in one PCG iteration.

In one PCG iteration we need to multiply a vector by Adiag(−U ′′)AT , multiply a vector
by −H−1

diag (the preconditioning step), and compute a couple of inner-products of size n
vectors. (For each search direction computation in the truncated Newton method we need
to compute U ′, U ′′, and ∇ψ(t). The computation cost for computing these quantities, when
amortized over the number of PCG iterations required to compute a search direction, is
negligible.)

In one iteration of the diagonally scaled gradient method we need to compute U ′, U ′′,
∇ψ(t), H−1

diag, and, finally, ∆tdsg. This requires approximately the same effort as one PCG
iteration.

One cycle of arrival time updates in the coordinate ascent method is considered as one
iteration. This requires an effort approximately equal to the average number of Newton
iterations to solve the one-variable optimization problems for the n nodes, times the effort
required in one iteration of the diagonally scaled gradient method. A typical number of New-
ton steps required to optimize one coordinate is around 5, so each cycle of coordinate ascent
corresponds to 5 iterations of diagonally scaled gradient method, which is approximately 5
PCG iterations.

To summarize, we take the effort required in one iteration of cyclic coordinate ascent to
be equal to 5 PCG iterations, and one iteration of the diagonally scaled gradient method to
be equal to 1 PCG iteration.

5 Examples

We will show the performance of the methods on some numerical instances of the log-barrier
slack allocation problem.
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Figure 1: Error and norm of the gradient versus iteration for Newton method.

5.1 Medium size example

In the first example we consider a graph with ñ = 1000 nodes. The edges are chosen
randomly, as follows. For i = 1, . . . , ñ an edge from node i to node j, j ∈ {i+1, . . . ,min{ñ, i+
100}} is chosen with a probability 5/100. Thus on average there are around 5 successors of
each node. The resulting graph has m = 4662 edges, 34 source nodes, and 27 sink nodes.
The delays are chosen independently from a uniform distribution on [0, 1]. The arrival times
at the source nodes are chosen randomly from a uniform distribution on [0, 1]. The minimum
arrival times at the sink nodes, for the problem to be feasible, are computed by a forward
pass. We look at the differences between the arrival times at the sink and source nodes; the
maximum of these differences is denoted Tspan. The arrival times of the sink nodes are set to
the (minimum) arrival time plus 0.05Tspan. The idea is to give 5% slack to the critical path.

We first show the performance of the Newton method. The Newton method solves the
problem to high accuracy in 9 iterations. Figure 1 shows the error and the norm of the
gradient, versus iteration.

The performance of the other methods is plotted in Figure 2, with effort shown in terms
of equivalent PCG iterations, as described in §4.5. The error and the norm of the gradient for
the diagonally scaled gradient and the cyclic coordinate descent methods decrease rapidly
in the first few iterations, but thereafter converge very slowly to the optimal value. The
truncated Newton method, however, converges to a highly accurate solution in around 200
PCG iterations. The performance shown in these plots is quite typical.

For the truncated Newton method we set ζ = 1%, i.e., the ascent direction is the same as
that obtained by the diagonally scaled gradient method, until the relative decrease in gradient
norm falls below 1%. After that, the truncation rule is switched to the criterion (7) with
η = 10%, and Nmax = 100. These thresholds were chosen after some experimentation, but
do not need to be fine tuned; very similar performance is obtained for a wide range of these
parameters. For example, we can choose ζ large, which means that we switch immediately
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Figure 2: Error and norm of the gradient versus effort, expressed in PCG iterations,
for cyclic coordinate ascent method (dotted curve), diagonally scaled gradient method
(solid curve), and truncated Newton method (dashed curve).

to the PCG termination criterion (7). In this case the number of PCG iterations to get a
highly accurate solution is still approximately 200.

5.2 Large examples

We now show the performance of the truncated Newton method for larger examples. We
consider graphs with ñ = 103, 104, 105, and 106 nodes. For each value of ñ we generate 3
random topologies, by choosing an edge from node i to node j, j ∈ {i+ 1, . . . ,min(i+ ν, ñ)}
independently with probability 5/n, taking ν = 0.1n, 0.2n, 0.3n. Sometimes a node remains
unconnected and is removed; thus the number of nodes is slightly less than the desired
number of nodes. The delays are chosen independently from a uniform distribution on [0, 1].
The arrival times at the source nodes are chosen randomly from a uniform distribution on
[0, 1]. As described earlier for the first example, Tspan is calculated and the (minimum)
arrival times of the sink nodes are moved forward by µTspan, where for µ we take three
values µ = 0.05, 0.10, 0.15. Thus we have a total of 36 numerical examples: for each of the
4 problem sizes we have 3 topologies and 3 sets of fixed arrival times.

For each of the 36 examples we run the truncated Newton method until the root mean
square value of the gradient is below 10−3, i.e., ‖∇ψ(t)‖/√n ≤ 10−3. The truncation rule
for the PCG algorithm is set to (7) from the very beginning. The number of PCG iterations
required versus problem size is plotted in Figure 3. There is a very slight increase in the
number of PCG iterations with problem size. We can see that around 700 PCG iterations are
enough to solve almost all problems, even problems with 106 nodes and around 5×106 edges.
We show, in Table 1, the number of times a search direction was computed and the number
of PCG iterations required to approximately solve the Newton system, for each problem size,
averaged over various examples. The important point to observe is that the number of PCG
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Figure 3: Cumulative PCG iterations required versus number of nodes in the problem.

Nodes 103 104 105 106

Newton system approximately solved 10 12 15 16

PCG iterations required/solve 17 23 31 40

Table 1: Number of PCG iterations per search direction computation and number
of times the Newton system is approximately solved, averaged over various topologies
and various set of fixed arrival times, for each problem size. (Values are approximate.)

iterations required to approximately solve the Newton system is very much less the size of
the Newton system; only 40 or so PCG iterations are required to approximately solve the
Newton system for the problems with 106 nodes. We see that the truncated Newton method
scales to very large problems.
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6 Extensions

In this section we show how the methods described in §4 apply to more general cases.

6.1 Worst-case slack allocation

A variation on the slack allocation problem is to allocate the slacks to maximize the minimum
slack. This is called the worst-case slack allocation problem:

maximize mink∈{1,...,m} sk

subject to s = AT t− d+ f,
(8)

with variables s and t. The optimization problem (8) is a convex optimization problem, and
is equivalent to the problem

maximize r
subject to r ≤ sk, k = 1, . . . ,m

s = AT t− d+ f,
(9)

with variables r, s and t.
The problem (9) can be solved efficiently using the bisection method. We note that

feasibility, for a particular value of r, can be efficiently determined using the method for
determining slack allocation feasibility described in §3, with the delay of the gates equal to
dk + r instead of dk. As a result we obtain a timing assignment for which all the resulting
slacks are greater than or equal to r, or we determine that the value of r is infeasible. The
bisection method works as follows. We start with an interval [0, rmax] in which the optimal
value of r, r⋆, lies. We check if r = rmax/2 is feasible, and if so then the new interval in
which r⋆ lies is [rmax/2, rmax]; if not, the new interval is [0, rmax/2]. If the desired accuracy
is ǫ the bisection method requires ⌈log2(r

max/ǫ)⌉ steps, each requiring one pass over the
graph. The length of an initial interval, i.e., rmax, can be chosen is many ways. One way
is to compute the maximum slack smax, after checking the feasibility of r = 0, and choose
rmax = mini=1,...,m s

max
i .

Though we can solve the worst-case slack allocation problem (8) efficiently, even for
large-scale problems, it is not appealing because of the following property its solution set.
At an optimal slack allocation the timing graph has as least one path with all edge slacks
equal to r∗. Such a path is called a critical path. For each non-critical path, there is a lot
of flexibility in allocating the slacks along the edges. This leads to a large solution set of
the worst-case slack allocation problem (8); in contrast the solution of the log-barrier slack
allocation problem, the analytic center of the timing polyhedron T , is unique.

6.2 Non-barrier utility functions

If the utility U is not a barrier, to solve the slack allocation problem (4) we add barrier terms
to the objective of the problem to maintain the positivity of the slack variables. Specifically
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if Uk is not a barrier, for the inequality sk ≥ 0, which no longer is implicit, we add the
barrier term κ log si to the objective, where κ is a positive constant. The slack allocation
problem (4) is solved by solving a sequence of optimization problems each of the form

maximize φ(t) = Ubar(AT t− d+ f), (10)

where Ubar(s) =
∑m

i=1 U
bar
i (si),

Ubar
i (si) = Ui(si) + κ log si, i = 1, . . . ,m,

for a decreasing sequence of values of κ. (Here we have added a log-barrier term for each of
the slack variables.) The solution of the problem for a value of κ serves as initial point of
the next problem with smaller value of κ. Usually the value of κ is decreased according to a
preselected schedule, but it can also be decreased adaptively. Let t⋆ be a timing assignment
that maximizes ψ (the original objective), and t∗ be the timing assignment that maximizes
φ. The suboptimality of the timing assignment t∗, defined as ψ(t⋆) − ψ(t∗), is at most
mκ. If the desired level of accuracy is ǫ, then the sequence of optimization problems is
solved until κ ≤ ǫ/m. If the desired accuracy ǫ is large enough, which is the case for many
practical applications, we can choose to solve just one optimization problem (10) with the
required value of κ. This choice of either solving one optimization problem or a sequence
of optimization problems depends on the particular application, the quality of the initial
point, the desired accuracy, etc., and is usually made after some experimentation. Some
applications in which the optimization problem is solved for only one value of κ are sensor
selection [JB07] and model predictive control [WB08].

The utility Ubar is a barrier and to solve the problem (10) the truncated Newton method
can be applied. The Hessian ∇2φ(t) is

∇2φ(t) = −AGAT ,

where the diagonal matrix G ∈ Rm×m is given by

Gkk = U ′′
k (tj − ti − dk) + κ/(tj − ti − dk)

2, k = 1, . . . ,m,

where edge k goes from node i to node j. The matrix AGAT is diagonally dominant.
The method we have outlined in this section is the interior-point algorithm for solving

the optimization problem (4) when U is not a barrier. The step of solving the optimization
problem (10) is called centering. See [Nes03, NN94, Ye97, Wri97] for details on interior-
point methods. The important point is that the problem (10) can be solved efficiently using
truncated Newton type methods.

6.3 Constraints on arrival times

To impose an equality constraint on the arrival time of a free node, we split the node in two
nodes: a source and a sink, since the only fixed nodes in our formulation are the sources and
sinks. The successors of the node are the successors of the newly introduced source node,
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and, similarly, the predecessors of the node are the predecessors of the newly introduced sink
node.

The inequality constraints on the arrival time of a free node:

T l
i ≤ ti ≤ T u

i ,

can also be incorporated in our formulation. To impose the above constraints we introduce
a source and a sink node with fixed arrival times T l

i and T u
i , respectively. We add directed

edges: one from the source node to node i, and one from node i to the sink node, each having
a delay 0. The slacks on these edges are ti − T l

i and T u
i − ti, and we introduce the utility

κ log(.) for these slacks, where κ is a positive constant. The slack allocation problem (4)
with the inequality constraints is approximated by the optimization problem

maximize ϕ(t) = U(AT t− d+ f) + κ
n

∑

i=1

(

log(ti − T l
i ) + log(T u

i − ti)
)

. (11)

To solve the slack allocation problem (4) with the inequality constraints, we solve a sequence
of optimization problems of the form (4) with decreasing value of κ. The solution of the
problem (4) for a value of κ serves as the initial point for the next problem with smaller
value of κ. If the desired level of accuracy is ǫ, the sequence of optimization problems is
solved until κ ≤ ǫ/2n.

The objective function of the problem (11) is a barrier (assuming U is a barrier): If any
of the slacks, including the slacks introduced by the inequality constraints, goes to 0, the
objective function value goes to −∞. The truncated Newton method can be used to solve
the problem (11). The Hessian ∇2ϕ(t) is

∇2ϕ(t) = Adiag(U ′′)AT − κB,

where the matrix B ∈ Rn×n is a diagonal matrix with the entries

Bii = 1/(ti − T l
i )

2 + 1/(T u
i − ti)

2, i = 1, . . . , n.

The matrix −∇2ϕ(t) is diagonally dominant; in fact the matrix −∇2ϕ(t) is more diagonally
dominant than the matrix Adiag(−U ′′)AT because of the diagonal matrix κB, and one can
expect better convergence of the preconditioned conjugate gradient method with diagonal
preconditioning.

7 Conclusion

We have developed a custom truncated Newton type method to solve the slack allocation
problem, which scales efficiently to large-scale problems, i.e., problems with the timing graph
consisting of a million or more nodes. The method exploits the underlying problem structure
via the preconditioned conjugate gradient method, which efficiently computes a good search
direction, as judged by the overall performance.
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