
Introduction to Applied Linear Algebra
Vectors, Matrices, and Least Squares

Julia Language Companion

Stephen Boyd and Lieven Vandenberghe

DRAFT March 28, 2021

Contents

Preface vii

Getting started with Julia ix

1 Vectors 1
1.1 Vectors . 1
1.2 Vector addition . 9
1.3 Scalar-vector multiplication . 9
1.4 Inner product . 14
1.5 Complexity of vector computations . 15

2 Linear functions 17
2.1 Linear functions . 17
2.2 Taylor approximation . 18
2.3 Regression model . 19

3 Norm and distance 23
3.1 Norm . 23
3.2 Distance . 25
3.3 Standard deviation . 26
3.4 Angle . 27
3.5 Complexity . 28

4 Clustering 31
4.1 Clustering . 31
4.2 A clustering objective . 31
4.3 The k-means algorithm . 32
4.4 Examples . 35
4.5 Applications . 39

5 Linear independence 41
5.1 Linear dependence . 41
5.2 Basis . 41
5.3 Orthonormal vectors . 42
5.4 Gram–Schmidt algorithm . 43

iv Contents

6 Matrices 47
6.1 Matrices . 47
6.2 Zero and identity matrices . 52
6.3 Transpose, addition, and norm . 56
6.4 Matrix-vector multiplication . 58
6.5 Complexity . 61

7 Matrix examples 63
7.1 Geometric transformations . 63
7.2 Selectors . 63
7.3 Incidence matrix . 65
7.4 Convolution . 67

8 Linear equations 69
8.1 Linear and affine functions . 69
8.2 Linear function models . 71
8.3 Systems of linear equations . 73

9 Linear dynamical systems 75
9.1 Linear dynamical systems . 75
9.2 Population dynamics . 76
9.3 Epidemic dynamics . 77
9.4 Motion of a mass . 77
9.5 Supply chain dynamics . 78

10 Matrix multiplication 81
10.1 Matrix-matrix multiplication . 81
10.2 Composition of linear functions . 82
10.3 Matrix power . 83
10.4 QR factorization . 84

11 Matrix inverses 87
11.1 Left and right inverses . 87
11.2 Inverse . 88
11.3 Solving linear equations . 89
11.4 Examples . 92
11.5 Pseudo-inverse . 93

12 Least squares 95
12.1 Least squares problem . 95
12.2 Solution . 96
12.3 Solving least squares problems . 97
12.4 Examples . 98

13 Least squares data fitting 101
13.1 Least squares data fitting . 101
13.2 Validation . 107
13.3 Feature engineering . 110

Contents v

14 Least squares classification 115
14.1 Classification . 115
14.2 Least squares classifier . 116
14.3 Multi-class classifiers . 117

15 Multi-objective least squares 123
15.1 Multi-objective least squares . 123
15.2 Control . 126
15.3 Estimation and inversion . 126
15.4 Regularized data fitting . 127
15.5 Complexity . 129

16 Constrained least squares 131
16.1 Constrained least squares problem . 131
16.2 Solution . 133
16.3 Solving contrained least squares problems 134

17 Constrained least squares applications 137
17.1 Portfolio optimization . 137
17.2 Linear quadratic control . 139
17.3 Linear quadratic state estimation . 145

18 Nonlinear least squares 147
18.1 Nonlinear equations and least squares 147
18.2 Gauss–Newton algorithm . 147
18.3 Levenberg–Marquardt algorithm . 149
18.4 Nonlinear model fitting . 154
18.5 Nonlinear least squares classification 157

19 Constrained nonlinear least squares 159
19.1 Constrained nonlinear least squares . 159
19.2 Penalty algorithm . 159
19.3 Augmented Lagrangian algorithm . 161
19.4 Nonlinear control . 163

Appendices 165

A The VMLS package 167
A.1 Utility functions . 167
A.2 Algorithms . 168
A.3 Data sets . 169

vi Contents

Preface

This Julia Language Companion accompanies our book Introduction to Applied
Linear Algebra: Vectors, Matrices, and Least Squares (referred to here as VMLS).
It is meant to show how the ideas and methods in VMLS can be expressed and
implemented in the programming language Julia.

We assume that the reader has installed Julia, or is using Juliabox online, and
understands the basics of the language. We also assume that the reader has care-
fully read the relevant sections of VMLS. The organization of the Julia Language
Companion follows VMLS, section by section.

You will see that mathematical notation and Julia syntax are pretty close, but
not the same. You must be careful to never confuse mathematical notation and Julia
syntax. In these notes we write mathematical notation (as in VMLS) in standard
mathematics font, e.g., y = Ax. Julia code, expressions, and snippets are written
in a fixed-width typewriter font, e.g., y = A*x. We encourage you to cut and paste
our Julia code snippets into a Julia interactive session or notebook, to test them
out, and maybe modify them and run them again. You can also use our snippets as
templates for your own Julia code. At some point we will collect the Julia snippets
in this companion document into Julia notebooks that you can easily run.

Julia is a very powerful language, but in this companion document we use only
a small and limited set of its features. The code snippets in this companion are
written so as to be transparent and simple, and to emphasize closeness to the
concepts in VMLS. Some of the code snippets could be written in a much more
compact way, or in a way that would result in faster or more efficient execution.

The code snippets in this companion document are compatible with Julia 1.0,
which is not quite the same as earlier versions, like Julia 0.6. Some of the functions
we use are in the standard packages LinearAlgebra, SparseArrays, and Plots,
and a few others. We have created a simple and small Julia package VMLS, which
includes a small number of simple Julia functions that are useful for studying the
material in VMLS. The next section, Getting started with Julia, explains how to
install these Julia packages.

We consider this companion to be a draft. We’ll be updating it occasionally,
adding more examples and fixing typos as we become aware of them. So you may
wish to periodically check whether a newer version is available.

Stephen Boyd Stanford, California
Lieven Vandenberghe Los Angeles, California

Getting started with Julia

Installing Julia. Download Julia 1.0 or higher from its website, and then follow
the instructions to install it on your platform. You’ll want to make sure it’s working
before proceeding to install additional packages, as described below.

Installing packages. While most of the Julia code we use in this companion is
from the base or core of the Julia language, several important functions are con-
tained in other packages that you must explicitly install. Here we explain how to
do this. The installation has to be done only once.

To add (install) a Julia package you use the package manager system, which
is entered by typing] to the Julia prompt. You’ll then see the package manager
prompt, (@v1.6) pkg>. If you type ?, you’ll see a list of package manager com-
mands. You exit the package manager by typing Ctrl-C (Control-C), which returns
you to the julia prompt.

To add a package called PackageName, type add PackageName to the package
control prompt. It may take a few minutes to get the required packages, compile,
and install them. If you type status, you’ll see what packages are installed. If you
type up, installed packages will be upgraded, if needed.

This companion will use functions from the following packages:

• LinearAlgebra

• SparseArrays

• Plots

On a few occasions we use functions from the packages Random and DSP, but we
will mention this in the text when we use these functions.

Here’s what it looks like when you install the Plots package.

julia>]
(@v1.6) pkg> add Plots
Updating registry at `~/.julia/registries/General`
Updating git-repo `https://github.com/JuliaRegistries/General.git`

Resolving package versions...
Updating `~/.julia/environments/v1.6/Project.toml`

[no changes]
Updating `~/.julia/environments/v1.6/Manifest.toml`

x Getting started with Julia

[no changes]
(@v1.6) pkg> status
Status `~/.julia/environments/v1.6/Project.toml`
[91a5bcdd] Plots v1.11.0
[37e2e46d] LinearAlgebra
[2f01184e] SparseArrays

(@v1.6) pkg> ^C
julia>

The VMLS package. We have created a small package called VMLS. It contains
a few functions that use notation closer to VMLS notation or are easier to use
than the corresponding Julia functions, basic implementations of some algorithms
in VMLS, and functions that generate data used in examples. The list of functions
is given in Appendix A. To install VMLS, go to the package manager from the Julia
prompt, then install it as follows.

julia>]
(@v1.6) pkg> add https://github.com/VMLS-book/VMLS.jl
(@v1.6) pkg> ^C
julia>

Using packages. Once a package is installed (which needs to be done only once),
you import it into Julia with the command using, followed by the package name,
or a comma separated list of package names. This too can take some time. After
executing this command you can access the functions contained in the packages.

To run any the code fragments in this companion you will need to first execute
the statement

julia> using LinearAlgebra, SparseArrays, VMLS

When we use other packages (in particular, Plots), we include the using statement
in the code.

Chapter 1

Vectors

1.1 Vectors
Vectors in Julia are represented by one-dimensional Array objects. A vector is
constructed by giving the list of elements surrounded by square brackets, with the
elements separated by commas or semicolons. The assignment operator = is used
to give a name to the array. The length function returns the size (dimension).

julia> x = [-1.1, 0.0, 3.6, -7.2]
4-element Vector{Float64}:
-1.1
0.0
3.6

-7.2
julia> length(x)
4
julia> y = [-1.1; 0.0; 3.6; -7.2] # Using semicolons
4-element Vector{Float64}:
-1.1
0.0
3.6

-7.2
julia> length(y)
4

The Vector{Float64} displayed by Julia above each array tells us that the array
is one-dimensional and its entries are floating point numbers that use 64 bits.

Some common mistakes. Don’t forget the commas or semicolons between entries,
and be sure to use square brackets and not parentheses. Otherwise you’ll get things
that makes sense in Julia, but are not vectors.

2 1 Vectors

julia> a = [1 2]
1×2 Matrix{Int64}:
1 2

julia> b = (1, 2)
(1, 2)

Here a is a row vector, which we will encounter later; b is a tuple or list consisting
of two scalars.

Indexing. A specific element xi is retrieved by the expression x[i] where i is the
index (which runs to 1 to n, for an n-vector). Array indexing can be also be used
on the left-hand side of an assignment, to change the value of a specific element.

julia> x = [-1.1, 0.0, 3.6, -7.2];
julia> x[3]
3.6
julia> x[3] = 4.0;
julia> x
4-element Vector{Float64}:
-1.1
0.0
4.0
-7.2

The special index end refers to the last index of a vector. In the example above,
x[end] and x[length(x)] both give the last entry, -7.2.

Assignment versus copying. MATLAB or Octave users may be surprised by the
behavior of an assignment y = x if x is an array. This expression gives a new name
(or reference) y to the same array already referenced by x. It does not create a
new copy of the array x.

julia> x = [-1.1, 0.0, 3.6, -7.2];
julia> y = x;
julia> x[3] = 4.0;
julia> y
4-element Vector{Float64}:
-1.1
0.0
4.0 # The assignment to x[3] also changed y[3]
-7.2

julia> y[1] = 2.0;
julia> x
4-element Vector{Float64}:

1.1 Vectors 3

2.0 # The assignment to y[1] also changed x[1]
0.0
4.0

-7.2

To create a new copy of an array, the function copy should be used.

julia> x = [-1.1, 0.0, 3.6, -7.2];
julia> y = copy(x);
julia> x[3] = 4.0;
julia> y
4-element Vector{Float64}:
-1.1
0.0
3.6

-7.2
julia> y[1] = 2.0;
julia> x
4-element Vector{Float64}:
-1.1
0.0
4.0

-7.2

Vector equality. Equality of vectors is checked using the relational operator ==.
For two vectors (arrays) a and b, the Julia expression a==b evaluates to true if
the vectors (arrays) are equal, i.e., they have the same length and identical entries,
and false otherwise.

julia> x = [-1.1, 0.0, 3.6, -7.2];
julia> y = copy(x);
julia> y[3] = 4.0
julia> y == x
false
julia> z = x
julia> z[3] = 4.0
julia> z == x
true

Scalars versus 1-vectors. In the mathematical notation used in VMLS we con-
sider a 1-vector to be the same as a number. But in Julia, 1-vectors are not the same
as scalars (numbers). Julia distinguishes between the 1-vector (array) [1.3] and
the number 1.3.

4 1 Vectors

julia> x = [1.3]
1-element Vector{Float64}:
1.3

julia> y = 1.3
1.3
julia> x == y
false
julia> x[1] == y
true

In the last line, x[1] is the first (and only) entry of x, which is indeed the number
1.3.

Block or stacked vectors. To construct a block vector in Julia, you can use vcat
(vertical concatenate) or the semicolon (;) operator. Let’s construct the block
vector z = (x, y) with x = (1,−2) and y = (1, 1, 0) using the two methods.

julia> x = [1, -2]; y = [1, 1, 0];
julia> z = [x; y] # Concatenate using semicolon
5-element Vector{Int64}:
1
-2
1
1
0

julia> z = vcat(x, y) # Concatenate using vcat
5-element Vector{Int64}:
1

-2
1
1
0

As in mathematical notation, you can stack vectors with scalars, e.g., [1;x;0]
creates (1, x, 0).

Some common mistakes. There are a few Julia operations that look similar but
do not construct a block or stacked vector. For example, z = (x,y) creates a list
or tuple of the two vectors; z = [x,y] creates an array of the two vectors. Both of
these are valid Julia expression, but neither of them is the stacked vector [x;y].

Subvectors and slicing. As in the mathematical notation used in VMLS, the Julia
expression r:s denotes the index range r, r + 1, . . . , s. (It is assumed here that r
and s are positive integers with r the smaller of the two.) In VMLS, we use xr:s

1.1 Vectors 5

to denote the slice of the vector x from index r to s. In Julia you can extract a
subvector or slice of a vector using an index range as the argument. You can also
use index ranges to assign a slice of a vector.

julia> x = [9, 4, 3, 0, 5];
julia> y = x[2:4]
3-element Vector{Int64}:
4
3
0
julia> x[4:5] = [-2, -3]; # Re-assign the 4 and 5 entries of x
julia> x
5-element Vector{Int64}:
9
4
3

-2
-3

Julia indexing into arrays. Julia slicing and subvectoring is much more general
than the mathematical notation we use in VMLS. For example, one can use a
number range with a third argument, that gives the stride, which is the increment
between successive indexes. For example, the index range 1:2:5 is the list of
numbers 1,3,5. The expression x[1:2:5] extracts the 3-vector [9,3,5], i.e., the
first, third, and fifth entries of x defined above. You can also use an index range
that runs backward. For any vector z, the Julia expression z[end:-1:1] is the
reversed vector, i.e., the vector with the same coefficients, but in opposite order.

Vector of first differences. Let’s use slicing to create the (n−1)-vector d defined
by di = xi+1 − xi, for i = 1, . . . , n − 1, where x is an n-vector. The vector d is
called the vector of (first) differences of x.

julia> x = [1, 0, 0, -2, 2];
julia> d = x[2:end] - x[1:end-1]
4-element Vector{Int64}:
-1
0

-2
4

Lists of vectors. An ordered list of n-vectors might be denoted in VMLS as
a1, . . . , ak or a(1), . . . , a(k), or just as a, b, c. There are several ways to represent
lists of vectors in Julia. If we give the elements of the list, separated by commas,

6 1 Vectors

and surrounded by square brackets, we form a one-dimensional array of vectors. If
instead we use parentheses as delimiters, we obtain a tuple or list.

julia> x = [1.0, 0]; y = [1.0, -1.0]; z = [0, 1.0];
julia> list = [x, y, z]
3-element Vector{Vector{Float64}}:
[1.0, 0.0]
[1.0, -1.0]
[0.0, 1.0]

julia> list[2] # Second element of list
2-element Vector{Float64}:
1.0
-1.0

julia> list = (x, y, z)
([1.0, 0.0], [1.0, -1.0], [0.0, 1.0])
julia> list[3] # Third element of list
2-element Vector{Float64}:
0.0
1.0

Note the difference between [x, y, z] (an array of arrays) and [x; y; z] (an
array of numbers, obtained by concatenation). To extract the ith vector from the
list of vectors, use list[i]. To get the jth element or coefficient of the ith vector
in the list, use list[i][j].

Zero vectors. In Julia a zero vector of dimension n is created using zeros(n).

julia> zeros(3)
3-element Vector{Float64}:
0.0
0.0
0.0

The expression zeros(length(a)) creates a zero vector with the same size as the
vector a.

Unit vectors. There is no built-in Julia function for creating ei, the ith unit vector
of length n. The following code creates ei, with i = 2 and n = 4.

julia> i = 2; n = 4;
julia> ei = zeros(n); # Create a zero vector
julia> ei[i] = 1; # Set ith entry to 1
julia> ei
4-element Vector{Float64}:
0.0

1.1 Vectors 7

1.0
0.0
0.0

Here’s another way to create ei using concatenation, using a Julia inline func-
tion.

julia> unit_vector(i,n) = [zeros(i-1); 1 ; zeros(n-i)]
unit_vector (generic function with 1 method)
julia> unit_vector(2,4)
4-element Vector{Float64}:
0.0
1.0
0.0
0.0

Ones vector. In Julia the ones vector of dimension n, denoted 1n or just 1 in
VMLS, is created using ones(n).

julia> ones(2)
2-element Vector{Float64}:
1.0
1.0

Random vectors. We do not use or refer to random vectors in VMLS, which
does not assume a background in probability. However, it is sometimes useful
to generate random vectors, for example to test an identity or some algorithm. In
Julia, rand(n) generates a random vector of length n with entries that are between
0 and 1. Each time this function is called or evaluated, it gives a different vector.
The variant randn(n) (with the extra ‘n’ for normal) gives an n-vector with entries
that come from a normal (Gaussian) distribution. They can be positive or negative,
with typical values on the order of one. Remember that every time you evaluate
these functions, you get a different random vector. In particular, you will obtain
different entries in the vectors below when you run the code.

julia> rand(2)
2-element Vector{Float64}:
0.831491
0.0497708
julia> rand(2)
2-element Vector{Float64}:
0.189284
0.713467

8 1 Vectors

0 10 20 30 40

70

75

80

85

Figure 1.1 Hourly temperature in downtown Los Angeles on August 5 and
6, 2015 (starting at 12:47AM, ending at 11:47PM).

julia> randn(2)
2-element Vector{Float64}:
2.44544
-0.12134

Plotting. There are several external packages for creating plots in Julia. One such
package is Plots.jl, which you must add (install) via Julia’s package manager
control system; see page ix. Assuming the Plots package had been installed, you
import it into Julia for use, using the command using Plots. (This can take some
time.) After that you can access the Julia commands that create or manipulate
plots.

For example, we can plot the temperature time series in Figure 1.3 of VMLS
using the code below; the last line saves the plot in the file temperature.pdf. The
result is shown in Figure 1.1.

julia> using Plots # Only need to do this once per session
julia> temps = [71, 71, 68, 69, 68, 69, 68, 74, 77, 82, 85, 86,
88, 86, 85, 86, 84, 79, 77, 75, 73, 71, 70, 70, 69, 69, 69,
69, 67, 68, 68, 73, 76, 77, 82, 84, 84, 81, 80, 78, 79, 78,
73, 72, 70, 70, 68, 67];

julia> plot(temps, marker = :circle, legend = false, grid = false)
julia> savefig("temperature.pdf")

https://web.stanford.edu/\%7Eboyd/vmls/vmls.pdf#figure.1.3

1.2 Vector addition 9

1.2 Vector addition
Vector addition and subtraction. If x and y are vectors of the same size, x+y and
x-y give their sum and difference, respectively.

julia> [0, 7, 3] + [1, 2, 0] # Vector addition
3-element Vector{Int64}:
1
9
3
julia> [1, 9] - [1, 1] # Vector subtraction
2-element Vector{Int64}:
0
8

1.3 Scalar-vector multiplication
Scalar-vector multiplication and division. If a is a number and x a vector, you
can express the scalar-vector product either as a*x or x*a. (Julia actually allows
you to write 2.0x for 2.0*x. This is unambiguous because variable names cannot
start with a number.) You can carry out scalar-vector division in a similar way, as
x/a, or the less familar looking expression a\x.

julia> x = [0, 2, -1];
julia> 2.2 * x # Scalar-vector multiplication
3-element Vector{Float64}:
0.0
4.4

-2.2
julia> x * 2.2 # Scalar-vector multiplication
3-element Vector{Float64}:
0.0
4.4

-2.2
julia> x / 3 # Scalar-vector division
3-element Vector{Float64}:
0.0
0.666667

-0.333333
julia> 3 \ x # Scalar-vector division
3-element Vector{Float64}:

10 1 Vectors

0.0
0.666667
-0.333333

Scalar-vector addition. In Julia you can add a scalar a and a vector x using
x .+ a. The dot that precedes the plus symbol tells Julia to apply the operation
to each element. (More on this below.) The meaning is that the scalar is added to
or subtracted from each element. (This is not standard mathematical notation; in
VMLS we denote this as, e.g., x+ a1, where x is an n-vector and a is a scalar.) In
Julia you can also carry out scalar-vector addition with the scalar on the left.

julia> [1.1, -3.7, 0.3] .- 1.4 # Vector-scalar subtraction
3-element Vector{Float64}:
-0.3
-5.1
-1.1

julia> 0.7 .+ [1,-1]
2-element Vector{Float64}:
1.7
-0.30000000000000004

Elementwise operations. Julia supports methods for carrying out an operation
on every element or coefficient of a vector. To do this we add a period or dot
before the operator. For example, if x and y are vectors of the same length, then
x.*y, x./y, x.\y, x.^y are elementwise vector-vector operations. They result in
vectors of the same length as x and y, and ith element xiyi, xi/yi, yi/xi, and xyi

i ,
respectively.

As an example of elementwise division, let’s find the 3-vector of asset returns r
from the (vectors of) initial and final prices of assets (see page 22 in VMLS).

julia> p_initial = [22.15, 89.32, 56.77];
julia> p_final = [23.05, 87.32, 57.13];
julia> r = (p_final - p_initial) ./ p_initial
3-element Vector{Float64}:
0.0406321
-0.0223914
0.00634138

Elementwise operations with a scalar. Elementwise operations work when one
of the arguments is a scalar, in which case it is interpreted as the scalar times a
ones vector of the appropriate dimension. Scalar-vector addition, described above,
is a special case of this. If a is a scalar and x is a vector, then x.^a is a vector with

https://web.stanford.edu/\%7Eboyd/vmls/vmls.pdf#figure.1.13

1.3 Scalar-vector multiplication 11

ith element xa
i , and a.^x is a vector with elements axi . Like scalar-vector addition,

the dot notation for elementwise operations is not standard mathematical notation
and we do not use it in VMLS.

We can also use the period notation with a function that has a name, to let
Julia know that the function should be applied elementwise. In this case we add the
period after the function name to indicate that it should be applied elementwise.
For example, if x is a vector, we can form sin.(x) to apply the sine function to
each element of x.

The equality test operator == (and other relational operators like <, >=) can be
made to work elementwise by preceding it with a period: x==y tells us whether or
not x and y are the same vector; x.==y is a vector whose entries tell us whether
the corresponding entries in x and y are the same.

julia> w = [1,2,2]; z = [1,2,3];
julia> w == z
false
julia> w .== z
3-element BitVector:
1
1
0

You can combine this with Julia’s slicing to extract the subvector of entries that
satisfy some logical condition. For example x[abs.(x) .> 1] gives the subvector
of x consisting of the entries larger than one in magnitude.

julia> x = [1.1, .5, -1.5, -0.3]
4-element Vector{Float64}:
1.1
0.5

-1.5
-0.3
julia> x[abs.(x) .> 1]
2-element Vector{Float64}:
1.1

-1.5

Dot notation works with assignment too, allowing you to assign multiple entries
of a vector to a scalar value. For example:

julia> x = rand(4)
4-element Vector{Float64}:
0.4735758513909343
0.3554729725184458
0.13775623085957855

12 1 Vectors

0.9227200780245117
julia> x[1:2] = [-1,1];
julia> x
4-element Vector{Float64}:
-1.0
1.0
0.13775623085957855
0.9227200780245117

julia> x[2:3] .= 1.3;
julia> x
4-element Vector{Float64}:
-1.0
1.3
1.3
0.9227200780245117

Linear combination. You can form a linear combination in Julia using scalar-
vector multiplication and addition.

julia> a = [1, 2]; b = [3, 4];
julia> alpha = -0.5; beta = 1.5;
julia> c = alpha*a + beta*b
2-element Vector{Float64}:
4.0
5.0

To illustrate some additional Julia syntax, we create a function that takes a
list of coefficients and a list of vectors as its arguments, and returns the linear
combination. The lists can be represented by tuples or arrays.

julia> function lincomb(coeff, vectors)
n = length(vectors[1]) # Length of vectors
a = zeros(n);
for i = 1:length(vectors)

a = a + coeff[i] * vectors[i];
end
return a
end

lincomb (generic function with 1 method)
julia> lincomb((-0.5, 1.5), ([1, 2], [3, 4]))
2-element Vector{Float64}:
4.0
5.0

1.3 Scalar-vector multiplication 13

A more concise definition of the function is as follows.

julia> function lincomb(coeff, vectors)
return sum(coeff[i] * vectors[i] for i = 1:length(vectors))
end

Checking properties. Let’s check the distributive property

β(a+ b) = βa+ βb,

which holds for any two n-vectors a and b, and any scalar β. We’ll do this for
n = 3, and randomly generated a, b, and β. (This computation does not show
that the property always holds; it only shows that it holds for the specific vectors
chosen. But it’s good to be skeptical and check identities with random arguments.)
We use the lincomb function we just defined.

julia> a = rand(3)
3-element Vector{Float64}:
0.55304
0.55801
0.0299682
julia> b = rand(3);
3-element Vector{Float64}:
0.796619
0.578865
0.219901
julia> beta = randn() # Generates a random scalar
beta = randn()
-0.17081925677011056
julia> lhs = beta*(a+b)
3-element Vector{Float64}:
-0.230548
-0.1942
-0.0426825
julia> rhs = beta*a + beta*b
3-element Vector{Float64}:
-0.230548
-0.1942
-0.0426825

Although the two vectors lhs and rhs are displayed as the same, they might not be
exactly the same, due to very small round-off errors in floating point computations.
When we check an identity using random numbers, we can expect that the left-
hand and right-hand sides of the identity are not exactly the same, but very close
to each other.

14 1 Vectors

1.4 Inner product

Inner product. The inner product of n-vectors x and y is denoted as xT y. In
Julia, the inner product of x and y is denoted as x'*y.

julia> x = [-1, 2, 2];
julia> y = [1, 0, -3];
julia> x'*y
-7

Net present value. As an example, the following code snippet finds the net
present value (NPV) of a cash flow vector c, with per-period interest rate r.

julia> c = [0.1, 0.1, 0.1, 1.1]; # Cash flow vector
julia> n = length(c);
julia> r = 0.05; # 5% per-period interest rate
julia> d = (1+r) .^ -(0:n-1)
4-element Vector{Float64}:
1.0
0.952381
0.907029
0.863838

julia> NPV = c'*d
1.236162401468524

In the fourth line, to get the vector d we raise the scalar 1+r elementwise to the
powers given in the array (0:n-1), which expands to [0,1,...,n-1].

Total school-age population. Suppose that the 100-vector x gives the age dis-
tribution of some population, with xi the number of people of age i − 1, for
i = 1, . . . , 100. The total number of people with age between 5 and 18 (inclu-
sive) is given by

x6 + x7 + · · ·+ x18 + x19.

We can express this as sTx, where s is the vector with entries one for i = 6, . . . , 19
and zero otherwise. In Julia, this is expressed as

julia> s = [zeros(5); ones(14); zeros(81)];
julia> school_age_pop = s'*x

Several other expressions can be used to evaluate this quantity, for example, the
expression sum(x[6:19]), using the Julia function sum, which gives the sum of the
entries of a vector.

1.5 Complexity of vector computations 15

1.5 Complexity of vector computations
Floating point operations. For any two numbers a and b, we have (a+b)(a−b) =
a2− b2. When a computer calculates the left-hand and right-hand side, for specific
numbers a and b, they need not be exactly the same, due to very small floating
point round-off errors. But they should be very nearly the same. Let’s see an
example of this.

julia> a = rand(); b = rand();
julia> lhs = (a+b) * (a-b)
-0.025420920298883976
julia> rhs = a^2 - b^2
-0.02542092029888398
julia> lhs - rhs
3.469446951953614e-18

Here we see that the left-hand and right-hand sides are not exactly equal, but very
very close.

Complexity. You can time a Julia command by adding @time before the com-
mand. The timer is not very accurate for very small times, say, measured in
microseconds (10−6 seconds). Also, you should run the command more than once;
it can be a lot faster on the second or subsequent runs.

julia> a = randn(10^5); b = randn(10^5);
julia> @time a'*b
0.002695 seconds (5 allocations: 176 bytes)
38.97813069037062
julia> @time a'*b
0.000173 seconds (5 allocations: 176 bytes)
38.97813069037062
julia> c = randn(10^6); d = randn(10^6);
julia> @time c'*d
0.001559 seconds (5 allocations: 176 bytes)
1189.2960722446112
julia> @time c'*d
0.001765 seconds (5 allocations: 176 bytes)
1189.2960722446112

The first inner product, of vectors of length 105, takes around 0.00017 seconds;
the second, with vectors of length 106 (tens times bigger), product takes around
0.0018 seconds, about 10 longer. This is predicted by the complexity of the inner
product, which is 2n − 1 flops. The computer on which the computations were
done is capable of around 2 · 106/0.001765 flops per second, i.e., around 1 Gflop/s.
These timings, and the estimate of computer speed, are very approximate.

16 1 Vectors

Sparse vectors. Functions for creating and manipulating sparse vectors are con-
tained in the Julia package SparseArrays, so you need to install this package
before you can use them; see page ix.

Sparse vectors are stored as sparse arrays, i.e., arrays in which only the nonzero
elements are stored. In Julia you can create a sparse vector from lists of the indices
and values using the sparsevec function. You can also first create a sparse vector
of zeros (using spzeros(n)) and then assign values to the nonzero entries. A sparse
vector can be created from a non-sparse vector using sparse(x), which returns a
sparse version of x. nnz(x) gives the number of nonzero elements of a sparse vector.
Sparse vectors are overloaded to work as you imagine; for example, all the usual
vector operations work, and they are automatically recast as non-sparse vectors
when appropriate.

julia> a = sparsevec([123456, 123457], [1.0, -1.0], 10^6)
1000000-element SparseVector{Float64,Int64} with 2 stored entries:
[123456] = 1.0
[123457] = -1.0

julia> length(a)
1000000
julia> nnz(a)
2
julia> b = randn(10^6); # An ordinary (non-sparse) vector
julia> @time 2*a; # Computed efficiently!
0.000003 seconds (7 allocations: 384 bytes)

julia> @time 2*b;
0.003558 seconds (6 allocations: 7.630 MiB)

julia> @time a'*b; # Computed efficiently!
0.000003 seconds (5 allocations: 176 bytes)

julia> @time b'*b;
0.000450 seconds (5 allocations: 176 bytes)

julia> @time c = a + b;
0.002085 seconds (6 allocations: 7.630 MiB)

In the last line, the sparse vector a is automatically converted to an ordinary vector
(array) so it can be added to the random vector; the result is a (non-sparse) vector
of length 106.

Chapter 2

Linear functions

2.1 Linear functions
Functions in Julia. Julia provides several methods for defining functions. A sim-
ple function given by an expression such as f(x) = x1 + x2 − x2

4 can be defined in
a single line.

julia> f(x) = x[1] + x[2] - x[4]^2
f (generic function with 1 method)
julia> f([-1,0,1,2])
-5

Since the function definition refers to the first, second, and fourth elements of the
argument x, these have to be defined when you call or evaluate f(x); you’ll get an
error if, for example, x has dimension 3 or is a scalar.

Superposition. Suppose a is an n-vector. The function f(x) = aTx is linear,
which means that for any n-vectors x and y, and any scalars α and β, the super-
position equality

f(αx+ βy) = αf(x) + βf(y)

holds. Superposition says that evaluating f at a linear combination of two vectors
is the same as forming the linear combination of f evaluated at the two vectors.

Let’s define the inner product function f for a specific value of a, and then
verify superposition in Julia for specific values of x, y, α, and β. (This check does
not show that the function is linear. It simply checks that superposition holds for
these specific values.)

julia> a = [-2, 0, 1, -3];
julia> f(x) = a'*x # Inner product function
f (generic function with 1 method)
julia> x = [2, 2, -1, 1]; y = [0, 1, -1, 0];
julia> alpha = 1.5; beta = -3.7;

18 2 Linear functions

julia> lhs = f(alpha * x + beta * y)
-8.3
julia> rhs = alpha * f(x) + beta * f(y)
-8.3

For the function f(x) = aTx, we have f(e3) = a3. Let’s check that this holds in
our example.

julia> e3 = [0, 0, 1, 0];
julia> f(e3)
1.0

Examples. Let’s define the average function in Julia, and check its value for a
specific vector. (Julia’s Statistics package contains the average function, which
is called mean.)

julia> avg(x) = (ones(length(x)) / length(x))'*x;
julia> x = [1, -3, 2, -1];
julia> avg(x)
-0.25

The average function can be implemented more concisely as sum(x)/length(x).
The avg function is part of the VMLS package; once you install and then add this
package, you can use the avg function.

2.2 Taylor approximation
Taylor approximation. The (first-order) Taylor approximation of a function f :
Rn → R, at the point z, is the affine function of x given by

f̂(x) = f(z) +∇f(z)T (x− z).

For x near z, f̂(x) is very close to f(x). Let’s try a numerical example (see page 36)
using Julia.

julia> f(x) = x[1] + exp(x[2]-x[1]); # A function
julia> # And its gradient
julia> grad_f(z) = [1-exp(z[2]-z[1]), exp(z[2]-z[1])];
julia> z = [1, 2];
julia> # Taylor approximation at z
julia> f_hat(x) = f(z) + grad_f(z)'*(x-z);
julia> # Let's compare f and f_hat for some specific x's

https://web.stanford.edu/\%7Eboyd/vmls/vmls.pdf#section*.54

2.3 Regression model 19

julia> f([1,2]), f_hat([1,2])
(3.718281828459045, 3.718281828459045)
julia> f([0.96,1.98]), f_hat([0.96,1.98])
(3.733194763964298, 3.732647465028226)
julia> f([1.10,2.11]), f_hat([1.10,2.11])
(3.845601015016916, 3.845464646743635)

2.3 Regression model
Regression model. The regression model is the affine function of x given by
f(x) = xTβ + v, where the n-vector β and the scalar v are the parameters in
the model. The regression model is used to guess or approximate a real or ob-
served value of the number y that is associated with x. (We’ll see later how to find
the parameters in a regression model, using data.)

Let’s define the regression model for house sale prices described on page 39 of
VMLS, and compare its prediction to the true house sale price y for a few values
of x.

julia> # Parameters in regression model
julia> beta = [148.73, -18.85]; v = 54.40;
julia> y_hat(x) = x'*beta + v;
julia> # Evaluate regression model prediction
julia> x = [0.846, 1]; y = 115;
julia> y_hat(x), y
(161.37557999999999, 115)
julia> x = [1.324,2]; y = 234.50;
julia> y_hat(x), y
(213.61852000000002, 234.5)

Our first prediction is pretty bad; our second one is better.
A scatter plot of predicted and actual house prices (Figure 2.4 of VMLS) can

be generated as follows. We use the VMLS function house_sales_data to obtain
the vectors price, area, beds (see appendix A).

julia> D = house_sales_data();
julia> price = D["price"]
774-element Vector{Float64}:
94.905
98.937

100.309
106.25

https://web.stanford.edu/\%7Eboyd/vmls/vmls.pdf#section*.56
https://web.stanford.edu/\%7Eboyd/vmls/vmls.pdf#figure.2.4

20 2 Linear functions

107.502
108.75
110.7
113.263
116.25
120.0
...
229.027
229.5
230.0
230.0
232.425
234.0
235.0
235.301
235.738

julia> area = D["area"]
774-element Vector{Float64}:
0.941
1.146
0.909
1.289
1.02
1.022
1.134
0.844
0.795
0.588
...
1.358
1.329
1.715
1.262
2.28
1.477
1.216
1.685
1.362

julia> beds = D["beds"]
774-element Vector{Int64}:
2

2.3 Regression model 21

3
3
3
3
2
2
2
2
2
...
3
4
4
3
4
3
3
4
3
julia> v = 54.4017;
julia> beta = [148.7251, -18.8534];
julia> predicted = v .+ beta[1] * area + beta[2] * beds;
julia> using Plots
julia> scatter(price, predicted, lims = (0,800))
julia> plot!([0, 800], [0, 800], linestyle = :dash)
julia> # make axes equal and add labels
julia> plot!(xlims = (0,800), ylims = (0,800), size = (500,500))
julia> plot!(xlabel = "Actual price", ylabel = "Predicted price")

22 2 Linear functions

0 200 400 600 800
0

200

400

600

800

Actual price

P
re

di
ct

ed
 p

ric
e

Figure 2.1 Scatter plot of actual and predicted sale prices for 774 houses
sold in Sacramento during a five-day period.

Chapter 3

Norm and distance

3.1 Norm
Norm. The norm ‖x‖ is written in Julia as norm(x). (It can be evaluated
several other ways too.) The norm function is contained in the Julia package
LinearAlgebra, so you must install and then add this package to use it; see page ix.

julia> x = [2, -1, 2];
julia> norm(x)
3.0
julia> sqrt(x'*x))
3.0
julia> sqrt(sum(x.^2))
3.0

Triangle inequality. Let’s check the triangle inequality, ‖x+ y‖ ≤ ‖x‖+ ‖y‖, for
some specific values of x and y.

julia> x = randn(10); y = randn(10);
julia> lhs = norm(x+y)
3.5830436972032644
julia> rhs = norm(x) + norm(y)
4.937368598697242

RMS value. The RMS value of a vector x is rms(x) = ‖x‖/
√
n. In Julia, this is

expressed as norm(x)/sqrt(length(x)). (The VMLS package contains this func-
tion, so you can use it once you’ve installed this package.)

Let’s define a vector (which represents a signal, i.e., the value of some quantity
at uniformly space time instances), and find its RMS value. The following code

24 3 Norm and distance

0.00 0.25 0.50 0.75 1.00

-1

0

1

2

Figure 3.1 A signal x. The horizontal lines show avg(x) + rms(x), avg(x),
and avg(x)− rms(x).

plots the signal, its average value, and two constant signals at avg(x) ± rms(x)
(Figure 3.1).

julia> rms(x) = norm(x) / sqrt(length(x));
julia> t = 0:0.01:1; # List of times
julia> x = cos.(8*t) - 2*sin.(11*t);
julia> avg(x)
-0.04252943783238692
julia> rms(x)
1.0837556422598
julia> using Plots
julia> plot(t, x)
julia> plot!(t, avg(x)*ones(length(x)))
julia> plot!(t, (avg(x)+rms(x))*ones(length(x)), color = :green)
julia> plot!(t, (avg(x)-rms(x))*ones(length(x)), color = :green)
julia> plot!(legend = false)

Chebyshev inequality. The Chebyshev inequality states that the number of entries
of an n-vector x that have absolute value at least a is no more than ‖x‖2/a2 =
n rms(x)2/a2. If this number is, say, 12.15, we can conclude that no more that
12 entries have absolute value at least a, since the number of entries is an integer.
So the Chebyshev bound can be improved to be floor(‖x‖2/a), where floor(u) is
the integer part of a positive number. Let’s define a function with the Chebyshev
bound, including the floor function improvement, and apply the bound to the signal
found above, for a specific value of a.

3.2 Distance 25

julia> # Define Chebyshev bound function
julia> cheb_bound(x,a) = floor(norm(x)^2/a);
julia> a = 1.5;
julia> cheb_bound(x,a)
79.0
julia> # Number of entries of x with |x_i| >= a
julia> sum(abs.(x) .>= a)
20

In the last line, the expression abs.(x) .>= a creates an array with entries that
are Boolean, i.e., true or false, depending on whether the corresponding entry of
x satisfies the inequality. When we sum the vector of Booleans, they are automat-
ically converted to (re-cast as) the numbers 1 and 0, respectively.

3.2 Distance
Distance. The distance between two vectors is dist(x, y) = ‖x − y‖. This is
written in Julia as norm(x-y). Let’s find the distance between the pairs of the
three vectors u, v, and w from page 49 of VMLS.

julia> u = [1.8, 2.0, -3.7, 4.7];
julia> v = [0.6, 2.1, 1.9, -1.4];
julia> w = [2.0, 1.9, -4.0, 4.6];
julia> norm(u-v), norm(u-w), norm(v-w)
(8.36779540858881, 0.3872983346207417, 8.532877591996735)

We can see that u and w are much closer to each other than u and v, or v and w.

Nearest neighbor. We define a function that calculates the nearest neighbor of a
vector in a list of vectors, and try it on the points in Figure 3.3 of VMLS.

julia> nearest_neighbor(x,z) = z[argmin([norm(x-y) for y in z])];
julia> z = ([2,1], [7,2], [5.5,4], [4,8], [1,5], [9,6]);
julia> nearest_neighbor([5,6], z)
2-element Vector{Float64}:
5.5
4.0
julia> nearest_neighbor([3,3], z)
2-element Vector{Int64}:
2
1

https://web.stanford.edu/\%7Eboyd/vmls/vmls.pdf#figure.3.1
https://web.stanford.edu/\%7Eboyd/vmls/vmls.pdf#figure.3.3

26 3 Norm and distance

On the first line, the expression [norm(x-y) for y in z] uses a convenient con-
struction in Julia. Here z is a list of vectors, and the expression expands to an array
with elements norm(x-z[1]), norm(x-z[2]), …. The function argmin applied to
this array returns the index of the smallest element.

De-meaning a vector. We refer to the vector x − avg(x)1 as the de-meaned
version of x.

julia> de_mean(x) = x .- avg(x); # Define de-mean function
julia> x = [1, -2.2, 3];
julia> avg(x)
0.6
julia> x_tilde = de_mean(x)
3-element Vector{Float64}:
0.4
-2.8
2.4

julia> avg(x_tilde)
-1.4802973661668753e-16

(The mean of x̃ is very very close to zero.)

3.3 Standard deviation
Standard deviation. We can define a function that corresponds to the VMLS
definition of the standard deviation of a vector, std(x) = ‖x − avg(x)1‖/

√
n,

where n is the length of the vector.

julia> x = rand(100);
julia> # VMLS definition of std
julia> stdev(x) = norm(x .- avg(x)) / sqrt(length(x));
julia> stdev(x)
0.292205696281305

This function is in the VMLS package, so you can use it once you’ve installed this
package. (Julia’s Statistics package has a similar function, std(x), which com-
putes the value ‖x− avg(x)1‖/

√
n− 1, where n is the length of x.)

Return and risk. We evaluate the mean return and risk (measured by standard
deviation) of the four time series Figure 3.4 of VMLS.

julia> a = ones(10);
julia> avg(a), stdev(a)

https://web.stanford.edu/\%7Eboyd/vmls/vmls.pdf#figure.3.4

3.4 Angle 27

(1.0, 0.0)
julia> b = [5, 1, -2, 3, 6, 3, -1, 3, 4, 1];
julia> avg(b), stdev(b)
(2.3, 2.41039415863879)
julia> c = [5, 7, -2, 2, -3, 1, -1, 2, 7, 8];
julia> avg(c), stdev(c)
(2.6, 3.773592452822641)
julia> d = [-1, -3, -4, -3, 7, -1, 0, 3, 9, 5];
julia> avg(d), stdev(d)
(1.2, 4.308131845707603)

Standardizing a vector. If a vector x isn’t constant (i.e., at least two of its entries
are different), we can standardize it, by subtracting its mean and dividing by its
standard deviation. The resulting standardized vector has mean value zero and
RMS value one. Its entries are called z-scores. We’ll define a standardize function,
and then check it with a random vector.

julia> function standardize(x)
x_tilde = x .- avg(x) # De-meaned vector
return x_tilde/rms(x_tilde)
end

julia> x = rand(100);
julia> avg(x), rms(x)
(0.510027255229345, 0.5883938729563185)
julia> z = standardize(x);
julia> avg(z), rms(z)
(1.965094753586527e-16, 1.0)

The mean or average value of the standarized vector z is very nearly zero.

3.4 Angle
Angle. Let’s define a function that computes the angle between two vectors. We
will call it ang because Julia already includes a function angle (for the phase angle
of a complex number).

julia> # Define angle function, which returns radians
julia> ang(x,y) = acos(x'*y/(norm(x)*norm(y)));
julia> a = [1,2,-1]; b=[2,0,-3];
julia> ang(a,b)
0.9689825515916383

28 3 Norm and distance

julia> ang(a,b)*(360/(2*pi)) # Get angle in degrees
55.51861062801842

Correlation coefficient. The correlation coefficient between two vectors a and b
(with nonzero standard deviation) is defined as

ρ =
ãT b̃

‖ã‖‖b̃‖
,

where ã and b̃ are the de-meaned versions of a and b, respectively. There is no
built-in function for correlation, so we can define one. We use function to calculate
the correlation coefficients of the three pairs of vectors in Figure 3.8 in VMLS.

julia> function correl_coef(a,b)
a_tilde = a .- avg(a)
b_tilde = b .- avg(b)
return (a_tilde'*b_tilde)/(norm(a_tilde)*norm(b_tilde))
end

julia> a = [4.4, 9.4, 15.4, 12.4, 10.4, 1.4, -4.6, -5.6, -0.6, 7.4];
julia> b = [6.2, 11.2, 14.2, 14.2, 8.2, 2.2, -3.8, -4.8, -1.8, 4.2];
julia> correl_coef(a,b)
0.9678196342570434
julia> a = [4.1, 10.1, 15.1, 13.1, 7.1, 2.1, -2.9, -5.9, 0.1, 7.1];
julia> b = [5.5, -0.5, -4.5, -3.5, 1.5, 7.5, 13.5, 14.5, 11.5, 4.5];
julia> correl_coef(a,b)
-0.9875211120643734
julia> a = [-5.0, 0.0, 5.0, 8.0, 13.0, 11.0, 1.0, 6.0, 4.0, 7.0];
julia> b = [5.8, 0.8, 7.8, 9.8, 0.8, 11.8, 10.8, 5.8, -0.2, -3.2];
julia> correl_coef(a,b)
0.004020976661367021

The correlation coefficients of the three pairs of vectors are 96.8%, −98.8%, and
0.4%.

3.5 Complexity
Let’s check that the time to compute the correlation coefficient of two n-vectors is
approximately linear in n.

julia> x = randn(10^6); y = randn(10^6);
julia> @time correl_coef(x,y);
0.131375 seconds (33.01 k allocations: 16.913 MiB, 2.86% gc time)

https://web.stanford.edu/\%7Eboyd/vmls/vmls.pdf#figure.3.8

3.5 Complexity 29

julia> @time correl_coef(x,y);
0.023760 seconds (9 allocations: 15.259 MiB, 31.84% gc time)
julia> x = randn(10^7); y = randn(10^7);
julia> @time correl_coef(x,y)
0.296075 seconds (9 allocations: 152.588 MiB, 30.16% gc time)
julia> @time correl_coef(x,y)
0.118979 seconds (9 allocations: 152.588 MiB, 21.53% gc time)

30 3 Norm and distance

Chapter 4

Clustering

4.1 Clustering

4.2 A clustering objective

In Julia, we can store the list of vectors in a Julia list or tuple of N vectors. If
we call this list x, we can access the ith entry (which is a vector) using x[i]. To
specify the clusters or group membership, we can use a list of assignments called
assignment, where assignment[i] is the number of the group that vector x[i]
is assigned to. (This is an integer between 1 and k.) (In VMLS chapter 4, we
describe the assignments using a vector c or the subsets Gj .) We can store the
k cluster representatives as a Julia list called reps, with reps[j] the jth cluster
representative. (In VMLS we describe the representatives as the vectors z1, . . . , zk.)

julia> Jclust(x,reps,assignment) =
avg([norm(x[i]-reps[assignment[i]])^2 for i=1:length(x)])

Jclust (generic function with 1 method)
julia> x = [[0,1], [1,0], [-1,1]]
3-element Vector{Array{Int64}}:
[0, 1]
[1, 0]
[-1, 1]
julia> reps = [[1,1], [0,0]]
2-element Vector{Vector{Int64}}:
[1, 1]
[0, 0]
julia> assignment = [1,2,1]
3-element Vector{Int64}:
1
2

https://web.stanford.edu/\%7Eboyd/vmls/vmls.pdf#chapter.4

32 4 Clustering

1
julia> Jclust(x,reps,assignment)
2.0
julia> assignment = [1,1,2];
julia> Jclust(x,reps,assignment)
1.3333333333333333

4.3 The k-means algorithm
We write a simple Julia implementation of the k-means algorithm and apply it to
a set of points in a plane, similar to the example in Figure 4.1 of VMLS.

We first create a function kmeans that can be called as

julia> assignment, representatives = kmeans(x, k)

where x is an array of N vectors and k is the number of groups. The first output
argument is an array of N integers, containing the computed group assignments
(integers from 1 to k). The second output argument is an array of k vectors, with
the k group representatives. We also include two optional keyword arguments, with
a limit on the number of iterations and a tolerance used in the stopping condition.

1 function kmeans(x, k; maxiters = 100, tol = 1e-5)
2

3 N = length(x)
4 n = length(x[1])
5 distances = zeros(N) # used to store the distance of each
6 # point to the nearest representative.
7 reps = [zeros(n) for j=1:k] # used to store representatives.
8

9 # 'assignment' is an array of N integers between 1 and k.
10 # The initial assignment is chosen randomly.
11 assignment = [rand(1:k) for i in 1:N]
12

13 Jprevious = Inf # used in stopping condition
14 for iter = 1:maxiters
15

16 # Cluster j representative is average of points in cluster j.
17 for j = 1:k
18 group = [i for i=1:N if assignment[i] == j]
19 reps[j] = sum(x[group]) / length(group);
20 end;
21

22 # For each x[i], find distance to the nearest representative

https://web.stanford.edu/\%7Eboyd/vmls/vmls.pdf#figure.4.1

4.3 The k-means algorithm 33

23 # and its group index.
24 for i = 1:N
25 (distances[i], assignment[i]) =
26 findmin([norm(x[i] - reps[j]) for j = 1:k])
27 end;
28

29 # Compute clustering objective.
30 J = norm(distances)^2 / N
31

32 # Show progress and terminate if J stopped decreasing.
33 println("Iteration ", iter, ": Jclust = ", J, ".")
34 if iter > 1 && abs(J - Jprevious) < tol * J
35 return assignment, reps
36 end
37 Jprevious = J
38 end
39

40 end

Initialization. As discussed in VMLS (page 76), the k-means algorithm can start
from a random initial choice of representatives, or from a random assignment of
the points in k groups. In this implementation, we use the second option (line 11).
The Julia function rand(1:k) picks a random number from the set 1:k, i.e., the
integers 1, . . . , k. On line 11 we create an array assignment of N elements, with
each element chosen by calling rand(1:k).

Updating group representatives. Lines 17–20 update the k group representa-
tives. In line 18, we find the indexes of the points in cluster j and collect them
in an array group. The expression x[group] on line 19 constructs an array from
the subset of elements of x indexed by group. The function sum computes the
sum of the elements of the array x[group]. Dividing by the number of elements
length(x[group]) gives the average of the vectors in the group. The result is jth
the group representative. This vector is stored as the jth element in an array reps
of length N .

Updating group assignments. On lines 24–27 we update the group assignments.
The Julia function findmin computes both the minimum of a sequence of numbers
and the position of the minimum in the sequence. The result is returned as a 2-
tuple. On lines 25–26, we apply findmin to the array of k distances of point x[i]
to the k representatives. We store the distance to the nearest representative in
distances[i], and the index of the nearest representative (i.e., the new assignment
of point i) in assignment[i].

Clustering objective. On line 30 we compute the clustering objective Jclust (equa-
tion (4.1) in VMLS) as the square of the RMS value of the vector of distances.

https://web.stanford.edu/\%7Eboyd/vmls/vmls.pdf#section*.91
https://web.stanford.edu/\%7Eboyd/vmls/vmls.pdf#equation.4.2.1

34 4 Clustering

-1 0 1 2
-2

-1

0

1

2

Figure 4.1 300 points in a plane.

Convergence. We terminate the algorithm when the improvement in the cluster-
ing objective becomes very small (lines 34–36).

Example. We apply the algorithm on a randomly generated set of N = 300 points,
shown in Figure 4.1. These points were generated as follows.

julia> X = vcat([0.3*randn(2) for i = 1:100],
[[1,1] + 0.3*randn(2) for i = 1:100],
[[1,-1] + 0.3*randn(2) for i = 1:100])

julia> scatter([x[1] for x in X], [x[2] for x in X])
julia> plot!(legend = false, grid = false, size = (500,500),

xlims = (-1.5,2.5), ylims = (-2,2))

On the first line we generate three arrays of vectors. Each set consists of 100
vectors chosen randomly around one of the three points (0, 0), (1, 1), and (1,−1).
The three arrays are concatenated using vcat to get an array of 300 points.

Next, we apply our kmeans function and make a figure with the three clusters
(Figure 4.2).

julia> assignment, reps = kmeans(X, 3)
Iteration 1: Jclust = 0.8815722022603146.
Iteration 2: Jclust = 0.24189035975341422.
Iteration 3: Jclust = 0.18259342207994636.
Iteration 4: Jclust = 0.1800980527878161.

4.4 Examples 35

-1 0 1 2
-2

-1

0

1

2

Figure 4.2 Final clustering.

Iteration 5: Jclust = 0.17993051934500726.
Iteration 6: Jclust = 0.17988967509836415.
Iteration 7: Jclust = 0.17988967509836415.
julia> grps = [[X[i] for i=1:N if assignment[i] == j] for j=1:k]
julia> scatter([c[1] for c in grps[1]], [c[2] for c in grps[1]])
julia> scatter!([c[1] for c in grps[2]], [c[2] for c in grps[2]])
julia> scatter!([c[1] for c in grps[3]], [c[2] for c in grps[3]])
julia> plot!(legend = false, grid = false, size = (500,500),

xlims = (-1.5,2.5), ylims = (-2,2))

4.4 Examples

4.4.1 Image clustering

4.4.2 Document topic discovery

We apply the kmeans function to the document topic discovery example in Sec-
tion 4.4.2 of VMLS. The word histograms, dictionary, and document titles are
available via the VMLS function wikipedia_data. The resulting clustering depends
on the (randomly chosen) initial partition selected by kmeans. Below we show the
output for the initial paritition that was used for Tables 4.1 and 4.2.

https://web.stanford.edu/\%7Eboyd/vmls/vmls.pdf#subsection.4.4.2
https://web.stanford.edu/\%7Eboyd/vmls/vmls.pdf#table.4.1
https://web.stanford.edu/\%7Eboyd/vmls/vmls.pdf#table.4.2

36 4 Clustering

julia> articles, dictionary, titles = wikipedia_data();
julia> N = length(articles);
julia> k = 9;
julia> assignment, reps = kmeans(articles, k);
Iteration 1: Jclust = 0.008143702459413413.
Iteration 2: Jclust = 0.007436727270002902.
Iteration 3: Jclust = 0.0072025332925653805.
Iteration 4: Jclust = 0.007092462665149569.
Iteration 5: Jclust = 0.007004824817596477.
Iteration 6: Jclust = 0.006946504182270655.
Iteration 7: Jclust = 0.0069361288610571845.
Iteration 8: Jclust = 0.00692768960954958.
Iteration 9: Jclust = 0.006918786727642187.
Iteration 10: Jclust = 0.006911485656122732.
Iteration 11: Jclust = 0.006908919738110439.
Iteration 12: Jclust = 0.006907647034585236.
Iteration 13: Jclust = 0.006907461725980796.
Iteration 14: Jclust = 0.006907461725980796.
julia> d = [norm(articles[i] - reps[assignment[i]]) for i = 1:N];
julia> for j = 1:k

group = [i for i=1:N if assignment[i] == j]
println()
println("Cluster ", j, " (", length(group), " articles)")
I = sortperm(reps[j], rev=true)
println("Top words: \n ", dictionary[I[1:5]]);
println("Documents closest to representative: ")
I = sortperm(d[group])
for i= 1:5

println(" ", titles[group[I[i]]])
end

end

Cluster 1 (21 articles)
Top words:

["fight", "win", "event", "champion", "fighter"]
Documents closest to representative:

Floyd_Mayweather,_Jr.
Kimbo_Slice
Ronda_Rousey
Jose_Aldo
Joe_Frazier

4.4 Examples 37

Cluster 2 (43 articles)
Top words:

["holiday", "celebrate", "festival", "celebration", "calendar"]
Documents closest to representative:

Halloween
Guy_Fawkes_Night
Diwali
Hanukkah
Groundhog_Day

Cluster 3 (189 articles)
Top words:

["united", "family", "party", "president", "government"]
Documents closest to representative:

Mahatma_Gandhi
Sigmund_Freud
Carly_Fiorina
Frederick_Douglass
Marco_Rubio

Cluster 4 (46 articles)
Top words:

["album", "release", "song", "music", "single"]
Documents closest to representative:

David_Bowie
Kanye_West
Celine_Dion
Kesha
Ariana_Grande

Cluster 5 (49 articles)
Top words:

["game", "season", "team", "win", "player"]
Documents closest to representative:

Kobe_Bryant
Lamar_Odom
Johan_Cruyff
Yogi_Berra
Jose_Mourinho

Cluster 6 (39 articles)

38 4 Clustering

Top words:
["series", "season", "episode", "character", "film"]

Documents closest to representative:
The_X-Files
Game_of_Thrones
House_of_Cards_(U.S._TV_series)
Daredevil_(TV_series)
Supergirl_(U.S._TV_series)

Cluster 7 (16 articles)
Top words:

["match", "win", "championship", "team", "event"]
Documents closest to representative:

Wrestlemania_32
Payback_(2016)
Survivor_Series_(2015)
Royal_Rumble_(2016)
Night_of_Champions_(2015)

Cluster 8 (58 articles)
Top words:

["film", "star", "role", "play", "series"]
Documents closest to representative:

Ben_Affleck
Johnny_Depp
Maureen_O'Hara
Kate_Beckinsale
Leonardo_DiCaprio

Cluster 9 (39 articles)
Top words:

["film", "million", "release", "star", "character"]
Documents closest to representative:

Star_Wars:_The_Force_Awakens
Star_Wars_Episode_I:_The_Phantom_Menace
The_Martian_(film)
The_Revenant_(2015_film)
The_Hateful_Eight

4.5 Applications 39

4.5 Applications

40 4 Clustering

Chapter 5

Linear independence

5.1 Linear dependence

5.2 Basis
Cash flow replication. Let’s consider cash flows over 3 periods, given by 3-vectors.
We know from VMLS page 93 that the vectors

e1 =

 1
0
0

 , l1 =

 1
−(1 + r)

0

 , l2 =

 0
1

−(1 + r)


form a basis, where r is the (positive) per-period interest rate. The first vector e1
is a single payment of $1 in period (time) t = 1. The second vector l1 is loan of $1
in period t = 1, paid back in period t = 2 with interest r. The third vector l2 is
loan of $1 in period t = 2, paid back in period t = 3 with interest r. Let’s use this
basis to replicate the cash flow c = (1, 2,−3) as

c = α1e1 + α2l1 + α3l2 = α1

 1
0
0

+ α2

 1
−(1 + r)

0

+ α3

 0
1

−(1 + r)

 .

From the third component we have c3 = α3(−(1 + r)), so α3 = −c3/(1 + r). From
the second component we have

c2 = α2(−(1 + r)) + α3 = α2(−(1 + r))− c3/(1 + r),

so α2 = −c2/(1 + r)− c3/(1 + r)2. Finally from c1 = α1 + α2, we have

α1 = c1 + c2/(1 + r) + c3/(1 + r)2,

which is the net present value (NPV) of the cash flow c.
Let’s check this in Julia using an interest rate of 5% per period, and the specific

cash flow c = (1, 2,−3).

https://web.stanford.edu/\%7Eboyd/vmls/vmls.pdf#section*.108

42 5 Linear independence

julia> r = 0.05;
julia> e1 = [1,0,0]; l1 = [1,-(1+r),0]; l2 = [0,1,-(1+r)];
julia> c = [1,2,-3];
julia> # Coefficients of expansion
julia> alpha3 = -c[3]/(1+r);
julia> alpha2 = -c[2]/(1+r) -c[3]/(1+r)^2;
julia> alpha1 = c[1] + c[2]/(1+r) + c[3]/(1+r)^2 # NPV of cash flow
0.18367346938775508
julia> alpha1*e1 + alpha2*l1 + alpha3*l2
3-element Vector{Float64}:
1.0
2.0
-3.0

(Later in the course we’ll an automated and simple way to find the coefficients in
the expansion of a vector in a basis.)

5.3 Orthonormal vectors
Expansion in an orthonormal basis. Let’s check that the vectors

a1 =

 0
0

−1

 , a2 =
1√
2

 1
1
0

 , a3 =
1√
2

 1
−1
0

 ,

form an orthonormal basis, and check the expansion of x = (1, 2, 3) in this basis,

x = (aT1 x)a1 + · · ·+ (aTnx)an.

julia> a1 = [0,0,-1]; a2 = [1,1,0]/sqrt(2); a3 = [1,-1,0]/sqrt(2);
julia> norm(a1), norm(a2), norm(a3)
(1.0, 0.9999999999999999, 0.9999999999999999)
julia> a1'*a2, a1'*a3, a2'*a3
(0.0, 0.0, 0.0)
julia> x = [1,2,3]
3-element Vector{Int64}:
1
2
3

julia> # Get coefficients of x in orthonormal basis
julia> beta1 = a1'*x; beta2 = a2'*x; beta3 = a3'*x;
julia> # Expansion of x in basis

5.4 Gram–Schmidt algorithm 43

julia> xexp = beta1*a1 + beta2*a2 + beta3*a3
3-element Vector{Float64}:
1.0
2.0
3.0

5.4 Gram–Schmidt algorithm
The following is a Julia implementation of Algorithm 5.1 in VMLS (Gram–Schmidt
algorithm). It takes as input an array [a[1], a[2], ..., a[k]], containing
the k vectors a1, . . . , ak. If the vectors are linearly independent, it returns an array
[q[1], ..., q[k]] with the orthonormal set of vectors computed by the Gram–
Schmidt algorithm. If the vectors are linearly dependent and the Gram–Schnidt
algorithm terminates early in iteration i, it returns the array [q[1], ..., q[i]]
of length i.

1 function gram_schmidt(a; tol = 1e-10)
2

3 q = []
4 for i = 1:length(a)
5 qtilde = a[i]
6 for j = 1:i-1
7 qtilde -= (q[j]'*a[i]) * q[j]
8 end
9 if norm(qtilde) < tol

10 println("Vectors are linearly dependent.")
11 return q
12 end
13 push!(q, qtilde/norm(qtilde))
14 end;
15 return q
16 end

On line 3, we initialize the output array as the empty array. In each iteration, we
add the next vector to the array using the push! function (line 13).

Example. We apply the function to the example on page 100 of VMLS.

julia> a = [[-1, 1, -1, 1], [-1, 3, -1, 3], [1, 3, 5, 7]]
3-element Vector{Vector{Int64}}:
[-1, 1, -1, 1]

https://web.stanford.edu/\%7Eboyd/vmls/vmls.pdf#algorithmctr.5.1
https://web.stanford.edu/\%7Eboyd/vmls/vmls.pdf#section*.117

44 5 Linear independence

[-1, 3, -1, 3]
[1, 3, 5, 7]

julia> q = gram_schmidt(a)
3-element Vector{Any}:
[-0.5, 0.5, -0.5, 0.5]
[0.5, 0.5, 0.5, 0.5]
[-0.5, -0.5, 0.5, 0.5]

julia> # test orthnormality
julia> norm(q[1])
1.0
julia> q[1]'*q[2]
0.0
julia> q[1]'*q[3]
0.0
julia> norm(q[2])
1.0
julia> q[2]'*q[3]
0.0
julia> norm(q[3])
1.0

Example of early termination. If we replace a3 with a linear combination of a1
and a2 the set becomes linearly dependent.

julia> b = [a[1], a[2], 1.3*a[1] + 0.5*a[2]]
3-element Vector{Vector{Float64}}:
[-1.0, 1.0, -1.0, 1.0]
[-1.0, 3.0, -1.0, 3.0]
[-1.8, 2.8, -1.8, 2.8]

julia> q = gram_schmidt(b)
Vectors are linearly dependent.
2-element Vector{Any}:
[-0.5, 0.5, -0.5, 0.5]
[0.5, 0.5, 0.5, 0.5]

Example of independence-dimension inequality. We know that any three 2-
vectors must be dependent. Let’s use the Gram-Schmidt algorithm to verify this
for three specific vectors.

julia> three_two_vectors = [[1,1], [1,2], [-1,1]]
julia> q = gram_schmidt(three_two_vectors)

5.4 Gram–Schmidt algorithm 45

Vectors are linearly dependent.
2-element Vector{Any}:
[0.707107, 0.707107]
[-0.707107, 0.707107]

46 5 Linear independence

Chapter 6

Matrices

6.1 Matrices
Creating matrices from the entries. Matrices are represented in Julia as 2-
dimensional arrays. These are constructed by giving the elements in each row,
separated by space, with the rows separated by semicolons. For example, the 3× 4
matrix

A =

 0 1 −2.3 0.1
1.3 4 −0.1 0
4.1 −1 0 1.7


is constructed in Julia as

julia> A = [0.0 1.0 -2.3 0.1;
1.3 4.0 -0.1 0.0;
4.1 -1.0 0.0 1.7]

3×4 Matrix{Float64}:
0.0 1.0 -2.3 0.1
1.3 4.0 -0.1 0.0
4.1 -1.0 0.0 1.7

(Here, Matrix{Float64} above the array tells us that the array is 2-dimensional,
and its entries are 64-bit floating-point numbers.) In this example, we put the
different rows of the matrix on different lines, which makes the code more readable,
but there is no need to do this; we get the same matrix with

julia> A = [0 1 -2.3 0.1; 1.3 4 -0.1 0; 4.1 -1 0 1.7]
3×4 Matrix{Float64}:
0.0 1.0 -2.3 0.1
1.3 4.0 -0.1 0.0
4.1 -1.0 0.0 1.7

The Julia function size(A) gives the size, as a tuple. It can also be called as
size(A,1) or size(A,2) to get only the number of rows or columns. As an exam-

48 6 Matrices

ple, we create a function that determines if a matrix is tall.

julia> m, n = size(A)
(3, 4)
julia> m
3
julia> n
4
julia> size(A,1)
3
julia> size(A,2)
4
julia> tall(X) = size(X,1)>size(X,2);
julia> tall(A)
false

In the function definition, the number of rows and the number of columns are
combined using the relational operator <, which gives a Boolean.

Indexing entries. We get the i, j entry of a matrix A using A[i,j]. We can also
assign a new value to an entry.

julia> A[2,3] # Get 2,3 entry of A
-0.1
julia> A[1,3] = 7.5; # Set 1,3 entry of A to 7.5
7.5
julia> A
3×4 Matrix{Float64}:
0.0 1.0 7.5 0.1
1.3 4.0 -0.1 0.0
4.1 -1.0 0.0 1.7

Single index indexing. Julia allows you to access an entry of a matrix using
only one index. To use this, you need to know that matrices in Julia are stored
in column-major order. This means that a matrix can be considered as a one-
dimensional array, with the first column stacked on top of the second, stacked on
top of the third, and so on. For example, the elements of the matrix

Z =

[
−1 0 2
−1 2 3

]
are stored in the order

−1, −1, 0, 2, 2, 3.

With single index indexing, Z[5] is the fifth element in this sequence.

6.1 Matrices 49

julia> Z = [-1 0 2; -1 2 -3];
julia> Z[5]
2

This is very much not standard mathematical notation, and we would never use
this in VMLS. But it can be handy in some cases when you are using Julia.

Equality of matrices. A == B determines whether the matrices A and B are equal.
The expression A .== B creates a matrix whose entries are Boolean, depending
on whether the corresponding entries of A and B are the same. The expression
sum(A .== B) gives the number of entries of A and B that are equal.

julia> B = copy(A);
julia> B[2,2] = 0;
julia> A == B
false
julia> A .== B
3×4 BitMatrix:
1 1 1 1
1 0 1 1
1 1 1 1
julia> sum(A .== B)
11

Row and column vectors. In Julia, as in VMLS, n-vectors are the same as n× 1
matrices.

julia> a = [-2.1 -3 0] # A 3-row vector or 1x3 matrix
1×3 Matrix{Float64}:
-2.1 -3.0 0.0
julia> b = [-2.1; -3; 0] # A 3-vector or 3x1 matrix
3-element Vector{Float64}:
-2.1
-3.0
0.0

You can see that b has type Vector{Float64}. (The Vector type is an alias for
an Array of dimension one, and Matrix is an alias for an Array of dimension two.)
However, the command size(b) gives (3,), whereas you might think it would or
should be (3,1).

Slicing and submatrices. Using colon notation you can extract a submatrix.

50 6 Matrices

julia> A = [-1 0 1 0 ; 2 -3 0 1 ; 0 4 -2 1]
3×4 Matrix{Int64}:
-1 0 1 0
2 -3 0 1
0 4 -2 1

julia> A[1:2,3:4]
2×2 Matrix{Float64}:
1 0
0 1

This is very similar to the mathematical notation in VMLS, where this submatrix
would be denoted A1:2,3:4. You can also assign a submatrix using slicing (index
range) notation.

A very useful shortcut is the index range : which refers to the whole index range
for that index. This can be used to extract the rows and columns of a matrix.

julia> A[:,3] # Third column of A
3-element Vector{Int64}:
1
0

-2
julia> A[2,:] # Second row of A, returned as column vector!
4-element Vector{Int64}:
2
-3
0
1

In mathematical (VMLS) notation, we say that A[2,:] returns the transpose of
the second row of A.

As with vectors, Julia’s slicing and selection is not limited to contiguous ranges
of indexes. For example, we can reverse the order of the rows of a matrix X using

julia> m = size(X,1)
julia> X[m:-1:1,:] # Matrix X with row order reversed

Julia’s single indexing for matrices can be used with index ranges or sets. For
example if X is an m × n matrix, X[:] is a vector of size mn that consists of the
columns of X stacked on top of each other. The Julia function reshape(X,(k,l))
gives a new k× l matrix, with the entries taken in the column-major order from X.
(We must have mn = kl, i.e., the original and reshaped matrix must have the same
number of entries.) Neither of these is standard mathematical notation, but they
can be useful in Julia.

6.1 Matrices 51

julia> B = [1 -3 ; 2 0 ; 1 -2]
3×2 Matrix{Int64}:
1 -3
2 0
1 -2
julia> B[:]
6-element Vector{Int64}:
1
2
1

-3
0

-2
julia> reshape(B,(2,3))
2×3 Matrix{Int64}:
1 1 0
2 -3 -2
julia> reshape(B,(3,3))
ERROR: DimensionMismatch("new dimensions (3, 3) must be consistent
with array size 6")

Block matrices. Block matrices are constructed in Julia very much as in the
standard mathematical notation in VMLS. You use ; to stack matrices, and a
space to do (horizontal) concatenation. We apply this to the example on page 109
of VMLS.

julia> B = [0 2 3]; # 1x3 matrix
julia> C = [-1]; # 1x1 matrix
julia> D = [2 2 1 ; 1 3 5]; # 2x3 matrix
julia> E = [4 ; 4]; # 2x1 matrix
julia> # construct 3x4 block matrix
julia> A = [B C ;

D E]
3×4 Matrix{Int64}:
0 2 3 -1
2 2 1 4
1 3 5 4

Column and row interpretation of a matrix. An m × n matrix A can be inter-
preted as a collection of n m-vectors (its columns) or a collection of m row vectors
(its rows). Julia distinguishes between a matrix (a two-dimensional array) and an

https://web.stanford.edu/\%7Eboyd/vmls/vmls.pdf#equation.6.1.1

52 6 Matrices

array of vectors. An array (or a tuple) of column vectors can be converted into a
matrix using the horizontal concatenation function hcat.

julia> a = [[1., 2.], [4., 5.], [7., 8.]] # array of 2-vectors
3-element Vector{Vector{Float64}}:
[1.0, 2.0]
[4.0, 5.0]
[7.0, 8.0]

julia> A = hcat(a...)
2×3 Matrix{Float64}:
1.0 4.0 7.0
2.0 5.0 8.0

The ... operator in hcat(a...) splits the array a into its elements, i.e., hcat(a...)
is the same as hcat(a[1], a[2], a[3]), which concatenates a[1], a[2], a[3]
horizontally.

Similarly, vcat concatenates an array of arrays vertically. This is useful when
constructing a matrix from its row vectors.

julia> a = [[1. 2.], [4. 5.], [7. 8.]] # array of 1x2 matrices
3-element Vector{Vector{Float64}}:
[1.0 2.0]
[4.0 5.0]
[7.0 8.0]

julia> A = vcat(a...)
3×2 Matrix{Float64}:
1.0 2.0
4.0 5.0
7.0 8.0

6.2 Zero and identity matrices
Zero matrices. A zero matrix of size m× n is created using zeros(m,n).

julia> zeros(2,2)
2×2 Matrix{Float64}:
0.0 0.0
0.0 0.0

Identity matrices. Identity matrices in Julia can be created many ways, for ex-
ample by starting with a zero matrix and then setting the diagonal entries to one.

6.2 Zero and identity matrices 53

The LinearAlgebra package also contains functions for creating a special identity
matrix object I, which has some nice features. You can use 1.0*Matrix(I,n,n)
to create an n × n identity matrix. (Multiplying by 1.0 converts the matrix into
one with numerical entries; otherwise it has Boolean entries.) This expression is
pretty unwieldy, so we can define a function eye(n) to generate an identity ma-
trix. This function is in the VMLS package, so you can use it once the package
is installed. (The name eye to denote the identity matrix I traces back to the
MATLAB language.)

julia> eye(n) = 1.0*Matrix(I,n,n)
julia> eye(4)
4×4 Matrix{Float64}:
1.0 0.0 0.0 0.0
0.0 1.0 0.0 0.0
0.0 0.0 1.0 0.0
0.0 0.0 0.0 1.0

Julia’s identity matrix I has some useful properties. For example, when it can
deduce its dimensions, you don’t have to specify it. (This is the same as with
common mathematical notation; see VMLS page 113.)

julia> A = [1 -1 2; 0 3 -1]
2×3 Matrix{Int64}:
1 -1 2
0 3 -1
julia> [A I]
2×5 Matrix{Int64}:
1 -1 2 1 0
0 3 -1 0 1
julia> [A ; I]
5×3 Matrix{Int64}:
1 -1 2
0 3 -1
1 0 0
0 1 0
0 0 1
julia> B = [1 2 ; 3 4]
2×2 Matrix{Int64}:
1 2
3 4
julia> B + I
2×2 Matrix{Int64}:
2 2
3 5

https://web.stanford.edu/\%7Eboyd/vmls/vmls.pdf#section*.135

54 6 Matrices

Ones matrix. In VMLS we do not have notation for a matrix with all entries one.
In Julia, such a matrix is given by ones(m,n).

Diagonal matrices. In standard mathematical notation, diag(1, 2, 3) is a diagonal
3×3 matrix with diagonal entries 1, 2, 3. In Julia such a matrix is created using the
function diagm, provided in the LinearAlgebra package. To construct the diagonal
matrix with diagonal entries in the vector s, you use diagm(0 => s). This is fairly
unwieldy, so the VMLS package defines a function diagonal(s). (Note that you
have to pass the diagonal entries as a vector.)

julia> diagonal(x) = diagm(0 => x)
diagonal (generic function with 1 method)
julia> diagonal([1,2,3])
3×3 Matrix{Int64}:
1 0 0
0 2 0
0 0 3

A closely related Julia function diag(X) does the opposite: It takes the diagonal
entries of the (possibly not square) matrix X and puts them into a vector.

julia> H = [0 1 -2 1; 2 -1 3 0]
2×4 Matrix{Int64}:
0 1 -2 1
2 -1 3 0

julia> diag(H)
2-element Vector{Int64}:
0
-1

Random matrices. A random m×n matrix with entries between 0 and 1 is created
using rand(m,n). For entries that have a normal distribution, randn(m,n).

julia> rand(2,3)
2×3 Matrix{Float64}:
0.365832 0.381598 0.321444
0.0317522 0.434451 0.95419

julia> randn(3,2)
3×2 Matrix{Float64}:
0.541546 1.65458
-0.684011 -2.12776
0.0443909 -1.81297

6.2 Zero and identity matrices 55

Sparse matrices. Functions for creating and manipulating sparse matrices are
contained in the SparseArrays package, which must be installed; see page ix.
Sparse matrices are stored in a special format that exploits the property that most
of the elements are zero. The sparse function creates a sparse matrix from three
arrays that specify the row indexes, column indexes, and values of the nonzero
elements. The following code creates a sparse matrix

A =


−1.11 0 1.17 0 0
0.15 −0.10 0 0 0

0 0 −0.30 0 0
0 0 0 0.13 0

 .

julia> rowind = [1, 2, 2, 1, 3, 4]; # row indexes of nonzeros
julia> colind = [1, 1, 2, 3, 3, 4]; # column indexes
julia> values = [-1.11, 0.15, -0.10, 1.17, -0.30, 0.13]; # values
julia> A = sparse(rowind, colind, values, 4, 5)
4×5 SparseMatrixCSC{Float64,Int64} with 6 stored entries:
-1.11 · 1.17 · ·
0.15 -0.1 · · ·
· · -0.3 · ·
· · · 0.13 ·

julia> nnz(A)
6

Sparse matrices can be converted to regular non-sparse matrices using the Array
function. Applying sparse to a full matrix gives the equivalent sparse matrix.

julia> A = sparse([1, 3, 2, 1], [1, 1, 2, 3],
[1.0, 2.0, 3.0, 4.0], 3, 3)

julia> 3×3 SparseMatrixCSC{Float64,Int64} with 4 stored entries:
1.0 · 4.0
· 3.0 ·

2.0 · ·

julia> B = Array(A)
3×3 Matrix{Float64}:
1.0 0.0 4.0
0.0 3.0 0.0
2.0 0.0 0.0
julia> B[1,3] = 0.0;
julia> sparse(B)
3×3 SparseMatrixCSC{Float64,Int64} with 3 stored entries:
1.0 · ·
· 3.0 ·

2.0 · ·

56 6 Matrices

A sparse m× n zero matrix is created with spzeros(m,n). To create a sparse
n × n identity matrix in Julia, use sparse(1.0I,n,n). This is not a particularly
natural syntax, so we define a function speye(n) in the VMLS package. The VMLS
package also includes the function speye(n) which creates a sparse n× n identity
matrix, as well as spdiagonal(a), which creates a sparse diagonal matrix with the
entries of the vector a on its diagonal.

A useful function for creating a random sparse matrix is sprand(m,n,d) (with
entries between 0 and 1) and sprandn(m,n,d) (with entries that range over all
numbers). The first two arguments give the dimensions of the matrix; the last one,
d, gives the density of nonzero entries. The nonzero entries are chosen randomly,
with about mnd of them nonzero. The following code creates a random 10000 ×
10000 sparse matrix, with a density 10−7. This means that we’d expect there to
be around 10 nonzero entries. (So this is a very sparse matrix!)

julia> A = sprand(10000,10000,10^-7)
10000×10000 SparseMatrixCSC{Float64,Int64} with 10 stored entries:
� .

.
.

.
.

.
.

.

.
.

6.3 Transpose, addition, and norm
Transpose. In VMLS we denote the transpose of an m × n matrix A as AT . In
Julia, the transpose of A is given by A'.

julia> H = [0 1 -2 1; 2 -1 3 0]
2×4 Matrix{Int64}:

6.3 Transpose, addition, and norm 57

0 1 -2 1
2 -1 3 0
julia> H'
4×2 adjoint(::Matrix{Int64}) with eltype Int64:
0 2
1 -1

-2 3
1 0

Addition, subtraction, and scalar multiplication. In Julia, addition and subtrac-
tion of matrices, and scalar-matrix multiplication, both follow standard mathemat-
ical notation.

julia> U = [0 4; 7 0; 3 1]
3×2 Matrix{Int64}:
0 4
7 0
3 1
julia> V = [1 2; 2 3; 0 4]
3×2 Matrix{Int64}:
1 2
2 3
0 4
julia> U+V
3×2 Matrix{Int64}:
1 6
9 3
3 5
julia> 2.2*U
3×2 Matrix{Float64}:
0.0 8.8

15.4 0.0
6.6 2.2

(We can also multiply a matrix on the right by a scalar.)
Julia supports some operations that are not standard mathematical ones. For

example, in Julia you can add or subtract a constant from a matrix, which carries
out the operation on each entry.

Elementwise operations. The syntax for elementwise vector operations described
on page 10 carries over naturally to matrices. We add a period before a binary
operator to change the interpretation to elementwise. For example, if A and B
are matrices of the same size, then C = A .* B creates a matrix of the same size

58 6 Matrices

with elements Cij = AijBij . We can add a period after a function name to tell
Julia that the function should be applied elementwise. Thus, if X is a matrix, then
Y = exp.(X) creates a matrix of the same size, with elements Yij = exp(Xij).

Matrix norm. In VMLS we use ‖A‖ to denote the norm of an m× n matrix,

‖A‖ =

 m∑
i=1

n∑
j=1

A2
ij

1/2

.

In standard mathematical notation, this is more often written as ‖A‖F , where F
stands for the name Frobenius. In standard mathematical notation, ‖A‖ usually
refers to another norm of a matrix, that is beyond the scope of the topics in VMLS.
In Julia, norm(A) gives the norm used in VMLS.

julia> A = [2 3 -1; 0 -1 4]
julia> norm(A)
5.5677643628300215
julia> norm(A[:])
5.5677643628300215

Triangle inequality. Let’s check that the triangle inequality ‖A+B‖ ≤ ‖A‖+‖B‖
holds, for two specific matrices.

julia> A = [-1 0; 2 2]; B = [3 1; -3 2];
julia> norm(A + B), norm(A) + norm(B)
(4.69041575982343, 7.795831523312719)

6.4 Matrix-vector multiplication
In Julia, matrix-vector multiplication has the natural syntax y=A*x.

julia> A = [0 2 -1; -2 1 1]
2×3 Matrix{Int64}:
0 2 -1
-2 1 1

julia> x = [2, 1, -1]
3-element Vector{Int64}:
2
1
-1

julia> A*x

6.4 Matrix-vector multiplication 59

2-element Vector{Int64}:
3

-4

Difference matrix. An (n − 1) × n difference matrix (equation (6.5) of VMLS)
can be constructed in several ways. A simple one is the following.

julia> difference_matrix(n) = [-eye(n-1) zeros(n-1)] +
[zeros(n-1) eye(n-1)];

julia> D = difference_matrix(4)
3×4 Matrix{Float64}:
-1.0 1.0 0.0 0.0
0.0 -1.0 1.0 0.0
0.0 0.0 -1.0 1.0

julia> D*[-1,0,2,1]
3-element Vector{Float64}:
1.0
2.0

-1.0

Since a difference matrix contains many zeros, this is a good opportunity to use
sparse matrices.

julia> difference_matrix(n) = [-speye(n-1) spzeros(n-1)] +
[spzeros(n-1) speye(n-1)];

julia> D = difference_matrix(4)
3×4 SparseMatrixCSC{Float64,Int64} with 6 stored entries:
-1.0 1.0 · ·
· -1.0 1.0 ·
· · -1.0 1.0

julia> D*[-1,0,2,1]
3-element Vector{Float64}:
1.0
2.0

-1.0

Running sum matrix. The running sum matrix (equation (6.6) in VMLS) is a
lower triangular matrix, with elements on and below the diagonal equal to one.

julia> function running_sum(n) # n x n running sum matrix
S = zeros(n,n)
for i=1:n

https://web.stanford.edu/\%7Eboyd/vmls/vmls.pdf#equation.6.4.5
https://web.stanford.edu/\%7Eboyd/vmls/vmls.pdf#equation.6.4.6

60 6 Matrices

for j=1:i
S[i,j] = 1

end
end
return S
end

running_sum (generic function with 1 method)
julia> running_sum(4)
4×4 Matrix{Float64}:
1.0 0.0 0.0 0.0
1.0 1.0 0.0 0.0
1.0 1.0 1.0 0.0
1.0 1.0 1.0 1.0

julia> running_sum(4)*[-1,1,2,0]
4-element Vector{Float64}:
-1.0
0.0
2.0
2.0

An alternative construction is tril(ones(n,n)). This uses the function tril,
which sets the elements of a matrix above the diagonal to zero.

Vandermonde matrix. An m×n Vandermonde matrix (equation (6.7) in VMLS)
has entries tj−1

i for i = 1, . . . ,m and j = 1, . . . , n. We define a function that
takes an m-vector with elements t1, . . . , tm and returns the corresponding m × n
Vandermonde matrix.

julia> function vandermonde(t,n)
m = length(t)
V = zeros(m,n)
for i=1:m

for j=1:n
V[i,j] = t[i]^(j-1)

end
end
return V
end

vandermonde (generic function with 1 method)
julia> vandermonde([-1,0,0.5,1],5)
4×5 Matrix{Float64}:
1.0 -1.0 1.0 -1.0 1.0
1.0 0.0 0.0 0.0 0.0

https://web.stanford.edu/\%7Eboyd/vmls/vmls.pdf#equation.6.4.7

6.5 Complexity 61

1.0 0.5 0.25 0.125 0.0625
1.0 1.0 1.0 1.0 1.0

An alternative shorter definition uses Julia’s hcat function.

julia> vandermonde(t,n) = hcat([t.^i for i = 0:n-1]...)
vandermonde (generic function with 1 method)
julia> vandermonde([-1,0,0.5,1],5)
4×5 Matrix{Float64}:
1.0 -1.0 1.0 -1.0 1.0
1.0 0.0 0.0 0.0 0.0
1.0 0.5 0.25 0.125 0.0625
1.0 1.0 1.0 1.0 1.0

6.5 Complexity
Complexity of matrix-vector multiplication. The complexity of multiplying an
m×n matrix by an n-vector is 2mn flops. This grows linearly with both m and n.
Let’s check this.

julia> A = rand(1000,10000); x = rand(10000);
julia> @time y = A*x;
0.022960 seconds (2.01 k allocations: 127.499 KiB)
julia> @time y = A*x;
0.006321 seconds (5 allocations: 8.094 KiB)
julia> A = rand(5000,20000); x = rand(20000);
julia> @time y = A*x;
0.084710 seconds (6 allocations: 39.297 KiB)
julia> @time y = A*x;
0.047996 seconds (6 allocations: 39.297 KiB)

In the second matrix-vector multiply, m increases by a factor of 5 and n increases
by a factor of 2, so the complexity predicts that the computation time should be
(approximately) increased by a factor of 10. As we can see, it is increased by a
factor around 7.4.

The increase in efficiency obtained by sparse matrix computations is seen from
matrix-vector multiplications with the difference matrix.

julia> n = 10^4;
julia> D = [-eye(n-1) zeros(n-1)] + [zeros(n-1) eye(n-1)];
julia> x = randn(n);
julia> @time y=D*x;

62 6 Matrices

0.051516 seconds (6 allocations: 78.359 KiB)
julia> Ds = [-speye(n-1) spzeros(n-1)] + [spzeros(n-1) speye(n-1)];
julia> @time y=Ds*x;
0.000177 seconds (6 allocations: 78.359 KiB)

Chapter 7

Matrix examples

7.1 Geometric transformations
Let’s create a rotation matrix, and use it to rotate a set of points π/3 radians (60◦).
The result is in Figure 7.1.

julia> Rot(theta) = [cos(theta) -sin(theta); sin(theta) cos(theta)];
julia> R = Rot(pi/3)
2×2 Matrix{Float64}:
0.5 -0.866025
0.866025 0.5
julia> # Create a list of 2-D points
julia> points = [[1,0], [1.5,0], [2,0], [1,0.25], [1.5, 0.25],

[1,.5]];
julia> # Now rotate them.
julia> rpoints = [R*p for p in points];
julia> # Show the two sets of points.
julia> using Plots
julia> scatter([c[1] for c in points], [c[2] for c in points])
julia> scatter!([c[1] for c in rpoints], [c[2] for c in rpoints])
julia> plot!(lims = (-0.1, 2.1), size = (500,500), legend = false)

7.2 Selectors
Reverser matrix. The reverser matrix can be created from an identity matrix
by reversing the order of its rows. The Julia command reverse can be used for
this purpose. (reverse(A,dims=1) reverses the order of the rows of a matrix;

64 7 Matrix examples

0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

2.0

Figure 7.1 Counterclockwise rotation by 60 degrees applied to six points.

flipdim(A,dims=2) reverses the order of the columns.) Multiplying a vector with
a reverser matrix is the same as reversing the order of its entries directly.

julia> reverser(n) = reverse(eye(n),dims=1)
reverser (generic function with 1 method)
julia> A = reverser(5)
5×5 Matrix{Float64}:
0.0 0.0 0.0 0.0 1.0
0.0 0.0 0.0 1.0 0.0
0.0 0.0 1.0 0.0 0.0
0.0 1.0 0.0 0.0 0.0
1.0 0.0 0.0 0.0 0.0

julia> x = [1., 2., 3., 4., 5.];
julia> A*x # Reverse x by multiplying with reverser matrix.
5-element Vector{Float64}:
5.0
4.0
3.0
2.0
1.0

julia> reverse(x) # Reverse x directly.
5-element Vector{Float64}:
5.0

7.3 Incidence matrix 65

4.0
3.0
2.0
1.0

Permutation matrix. Let’s create a permutation matrix and use it to permute
the entries of a vector. In Julia, there is no reason to create a matrix to carry
out the permutation, since we can do the same thing directly by passing in the
permuted indexes to the vector.

julia> A = [0 0 1; 1 0 0; 0 1 0]
3×3 Matrix{Int64,2}:
0 0 1
1 0 0
0 1 0
julia> x = [0.2, -1.7, 2.4]
3-element Vector{Float64}:
0.2

-1.7
2.4

julia> A*x # Permutes entries of x to [x[3],x[1],x[2]]
3-element Vector{Float64}:
2.4
0.2

-1.7
julia> x[[3,1,2]] # Same thing using permuted indices
3-element Vector{Float64}:
2.4
0.2

-1.7

7.3 Incidence matrix
Incidence matrix of a graph. We create the incidence matrix of the network
shown in Figure 7.3 in VMLS.

julia> A = [-1 -1 0 1 0; 1 0 -1 0 0 ; 0 0 1 -1 -1 ; 0 1 0 0 1]
4×5 Matrix{Int64}:
-1 -1 0 1 0
1 0 -1 0 0

https://web.stanford.edu/\%7Eboyd/vmls/vmls.pdf#figure.7.3

66 7 Matrix examples

0 0 1 -1 -1
0 1 0 0 1

julia> xcirc = [1, -1, 1, 0, 1] # A circulation
5-element Vector{Int64}:
1
-1
1
0
1

julia> A*xcirc
4-element Vector{Int64}:
0
0
0
0

julia> s = [1,0,-1,0]; # A source vector
julia> x = [0.6, 0.3, 0.6, -0.1, -0.3]; # A flow vector
julia> A*x + s # Total incoming flow at each node
4-element Vector{Float64}:
1.11022e-16
0.0
0.0
0.0

Dirichlet energy. On page 135 of VMLS we compute the Dirichlet energy of two
potential vectors associated with the graph of Figure 7.2 in VMLS.

julia> A = [-1 -1 0 1 0 ; 1 0 -1 0 0 ; 0 0 1 -1 -1; 0 1 0 0 1]
4×5 Matrix{Int64}:
-1 -1 0 1 0
1 0 -1 0 0
0 0 1 -1 -1
0 1 0 0 1

julia> vsmooth = [1, 2, 2, 1]
julia> norm(A'*vsmooth)^2 # Dirichlet energy of vsmooth
2.9999999999999996
julia> vrough = [1, -1, 2, -1]
julia> norm(A'*vrough)^2 # Dirichlet energy of vrough
27.0

https://web.stanford.edu/\%7Eboyd/vmls/vmls.pdf#section*.172
https://web.stanford.edu/\%7Eboyd/vmls/vmls.pdf#figure.7.2

7.4 Convolution 67

7.4 Convolution
The Julia package DSP includes a convolution function conv. After adding this
package, the command conv(a,b) can be used to compute the convolution of the
vectors a and b. Let’s use this to find the coefficients of the polynomial

p(x) = (1 + x)(2− x+ x2)(1 + x− 2x2) = 2 + 3x− 3x2 − x3 + x4 − 2x5.

julia> Using DSP
julia> a = [1,1]; # coefficients of 1+x
julia> b = [2,-1,1]; # coefficients of 2-x+x^2
julia> c = [1,1,-2]; # coefficients of 1+x-2x^2
julia> d = conv(conv(a,b),c) # coefficients of product
6-element Vector{Int64}:
2
3

-3
-1
1

-2

Let’s write a function that creates a Toeplitz matrix, and check it against the
conv function. We will also check that Julia is using the very efficient method for
computing the convolution.

To construct the Toeplitz matrix T (b) defined in equation (7.3) of VMLS, we
first create a zero matrix of the correct dimensions ((n + m − 1) × n) and then
add the coefficients bi one by one. Single-index indexing comes in handy for this
purpose. The single-index indexes of the elements bi in the matrix T (b) are i,
i+m+ n, i+ 2(m+ n), …, i+ (n− 1)(m+ n).

julia> function toeplitz(b,n)
m = length(b)
T = zeros(n+m-1,n)
for i=1:m

T[i : n+m : end] .= b[i]
end
return T
end

julia> b = [-1,2,3]; a = [-2,3,-1,1];
julia> Tb = toeplitz(b, length(a))
6×4 Matrix{Float64}:
-1.0 0.0 0.0 0.0
2.0 -1.0 0.0 0.0
3.0 2.0 -1.0 0.0
0.0 3.0 2.0 -1.0

https://web.stanford.edu/\%7Eboyd/vmls/vmls.pdf#equation.7.4.3

68 7 Matrix examples

0.0 0.0 3.0 2.0
0.0 0.0 0.0 3.0

julia> Tb*a, conv(b,a)
([2.0, -7.0, 1.0, 6.0, -1.0, 3.0], [2, -7, 1, 6, -1, 3])
julia> m = 2000; n = 2000;
julia> b = randn(n); a=randn(m);
julia> @time ctoep = toeplitz(b,n)*a;
0.124865 seconds (8.01 k allocations: 122.696 MiB, 5.07% gc time)

julia> @time cconv = conv(a,b);
0.000748 seconds (164 allocations: 259.313 KiB)

julia> norm(ctoep - cconv)
2.4593600404835336e-12

Chapter 8

Linear equations

8.1 Linear and affine functions

Matrix-vector product function. Let’s define an instance of the matrix-vector
product function, and then numerically check that superpoisition holds.

julia> A = [-0.1 2.8 -1.6; 2.3 -0.6 -3.6] # Define 2x3 matrix A
2×3 Matrix{Float64}:
-0.1 2.8 -1.6
2.3 -0.6 -3.6

julia> f(x) = A*x # Define matrix-vector product function
f (generic function with 1 method)
julia> # Let's check superposition
julia> x = [1, 2, 3]; y = [-3, -1, 2];
julia> alpha = 0.5; beta = -1.6;
julia> lhs = f(alpha*x+beta*y)
2-element Vector{Float64}:
9.47

16.75
julia> rhs = alpha*f(x)+beta*f(y)
2-element Vector{Float64}:
9.47

16.75
julia> norm(lhs-rhs)
1.7763568394002505e-15
julia> f([0,1,0]) # Should be second column of A
2-element Vector{Float64}:
2.8

-0.6

70 8 Linear equations

De-meaning matrix. Let’s create a de-meaning matrix, and check that it works
on a vector.

julia> de_mean(n) = eye(n) .- 1/n; # De-meaning matrix
julia> x = [0.2, 2.3, 1.0];
julia> de_mean(length(x))*x # De-mean using matrix multiplication
3-element Vector{Float64}:
-0.966667
1.13333
-0.166667

julia> x .- avg(x) # De-mean by subtracting mean
3-element Vector{Float64,1}:
-0.966667
1.13333
-0.166667

Examples of functions that are not linear. The componentwise absolute value
and the sort function are examples of nonlinear functions. These functions are
easily computed by abs and sort. By default, the sort function sorts in increasing
order, but this can be changed by adding an optional keyword argument.

julia> f(x) = abs.(x) # componentwise absolute value
f (generic function with 1 method)
julia> x = [1, 0]; y = [0, 1]; alpha = -1; beta = 2;
julia> f(alpha*x + beta*y)
2-element Vector{Int64}:
1
2

julia> alpha*f(x) + beta*f(y)
2-element Vector{Int64}:
-1
2

julia> f(x) = sort(x, rev = true) # sort in decreasing order
f (generic function with 1 method)
julia> f(alpha*x + beta*y)
2-element Vector{Int64}:
2
-1

julia> alpha*f(x) + beta*f(y)
2-element Vector{Int64}:
1
0

8.2 Linear function models 71

8.2 Linear function models

Price elasticity of demand. Let’s use a price elasticity of demand matrix to pre-
dict the demand for three products when the prices are changed a bit. Using this
we can predict the change in total profit, given the manufacturing costs.

julia> p = [10, 20, 15]; # Current prices
julia> d = [5.6, 1.5, 8.6]; # Current demand (say in thousands)
julia> c = [6.5, 11.2, 9.8]; # Cost to manufacture
julia> profit = (p-c)'*d # Current total profit
77.51999999999998
julia> # Demand elasticity matrix
julia> E = [-0.3 0.1 -0.1; 0.1 -0.5 0.05 ; -0.1 0.05 -0.4]
3×3 Matrix{Float64}:
-0.3 0.1 -0.1
0.1 -0.5 0.05

-0.1 0.05 -0.4
julia> p_new = [9, 21, 14]; # Proposed new prices
julia> delta_p = (p_new-p)./p # Fractional change in prices
3-element Vector{Float64}:
-0.1
0.05

-0.0666667
julia> delta_d = E*delta_p # Predicted fractional change in demand
3-element Vector{Float64}:
0.0416667

-0.0383333
0.0391667

julia> d_new = d .* (1 .+ delta_d) # Predicted new demand
3-element Vector{Float64}:
5.833333333333333
1.4425
8.936833333333333
julia> profit_new = (p_new-c)'*d_new # Predicted new profit
66.25453333333333

If we trust the linear demand elasticity model, we should not make these price
changes.

Taylor approximation. Consider the nonlinear function f : R2 → R2 given by

f(x) =

[
‖x− a‖
‖x− b‖

]
=

[√
(x1 − a1)2 + (x2 − a2)2√
(x1 − b1)2 + (x2 − b2)2

]
.

72 8 Linear equations

The two components of f give the distance of x to the points a and b. The function
is differentiable, except when x = a or x = b. Its derivative or Jacobian matrix is
given by

Df(z) =


∂f1
∂x1

(z)
∂f1
∂x2

(z)

∂f2
∂x1

(z)
∂f2
∂x2

(z)

 =


z1 − a1
‖z − a‖

z2 − a2
‖z − a‖

z1 − b1
‖z − b‖

z2 − b2
‖z − b‖

 .

Let’s form the Taylor approximation of f for some specific values of a, b, and z,
and then check it against the true value of f at a few points near z.

julia> f(x) = [norm(x-a), norm(x-b)];
julia> Df(z) = [(z-a)' / norm(z-a) ; (z-b)' / norm(z-b)];
julia> f_hat(x) = f(z) + Df(z)*(x-z);
julia> a = [1, 0]; b = [1, 1]; z = [0, 0];
julia> f([0.1, 0.1])
2-element Vector{Float64}:
0.905539
1.27279

julia> f_hat([0.1, 0.1])
2-element Vector{Float64}:
0.9
1.27279

julia> f([0.5, 0.5])
2-element Vector{Float64}:
0.707107
0.707107

julia> f_hat([0.5, 0.5])
2-element Vector{Float64}:
0.5
0.707107

Regression model. We revisit the regression model for the house sales data in
Section 2.3. The model is

ŷ = xTβ + v = β1x1 + β2x2 + v,

where ŷ is the predicted house sale price, x1 is the house area in 1000 square feet,
and x2 is the number of bedrooms.

In the following code we construct the 2 × 774 data matrix X and vector of
outcomes yd, for the N = 774 examples in the data set. We then calculate the
regression model predictions ŷd, the prediction errors rd, and the RMS prediction
error.

8.3 Systems of linear equations 73

julia> # parameters in regression model
julia> beta = [148.73, -18.85]; v = 54.40;
julia> D = house_sales_data();
julia> yd = D["price"]; # vector of outcomes
julia> N = length(yd)
774
julia> X = [D["area"] D["beds"]]';
julia> size(X)
(2, 774)
julia> ydhat = X'*beta .+ v; # vector of predicted outcomes
julia> rd = yd - ydhat; # vector of predicted errors
julia> rms(rd) # RMS prediction error
74.84571862623022
julia> # Compare with standard deviation of prices
julia> stdev(yd)
112.7821615975651

8.3 Systems of linear equations
Balancing chemical reactions. We verify the linear balancing equations on page 155
of VMLS, for the simple example of electrolysis of water.

julia> R = [2 ; 1]
2-element Vector{Int64}:
2
1
julia> P = [2 0 ; 0 2]
2×2 Matrix{Int64}:
2 0
0 2
julia> # Check balancing coefficients [2,2,1]
julia> coeff = [2,2,1];
julia> [R -P]*coeff
2-element Vector{Int64}:
0
0

https://web.stanford.edu/\%7Eboyd/vmls/vmls.pdf#section*.192

74 8 Linear equations

Chapter 9

Linear dynamical systems

9.1 Linear dynamical systems
Let’s simulate a time-invariant linear dynamic system

xt+1 = Axt, t = 1, . . . , T,

with dynamics matrix

A =

 0.97 0.10 −0.05
−0.30 0.99 0.05
0.01 −0.04 0.96


and initial state x1 = (1, 0,−1). We store the state trajectory in the n× T matrix
state_traj, with the ith column xt. We plot the result in Figure 9.1.

julia> x_1 = [1,0,-1]; # initial state
julia> n = length(x_1); T = 50;
julia> A = [0.97 0.10 -0.05 ; -0.3 0.99 0.05 ; 0.01 -0.04 0.96]
3×3 Matrix{Float64}:
0.97 0.1 -0.05

-0.3 0.99 0.05
0.01 -0.04 0.96

julia> state_traj = [x_1 zeros(n,T-1)];
julia> for t=1:T-1 # Dynamics recursion

state_traj[:,t+1] = A*state_traj[:,t];
end

julia> using Plots
julia> plot(1:T, state_traj', xlabel = "t",

label = ["(x_t)_1" "(x_t)_2" "(x_t)_3"])

76 9 Linear dynamical systems

0 10 20 30 40 50

-2

-1

0

1

2

t

(x_t)_1
(x_t)_2
(x_t)_3

Figure 9.1 Linear dynamical system simulation.

9.2 Population dynamics

We can create a population dynamics matrix with just one simple line of Ju-
lia. The following code predicts the 2020 population distribution in the US using
the data of Section 9.2 of VMLS, which are available through the VMLS function
population_data. The result is shown in Figure 9.2.

julia> # Import 3 100-vectors: population, birth_rate, death_rate
julia> D = population_data();
julia> b = D["birth_rate"];
julia> d = D["death_rate"];
julia> A = [b'; diagonal(1 .- d[1:end-1]) zeros(length(d)-1)];
julia> x = D["population"];
julia> for k = 1:10

global x
x = A*x;

end;
julia> using Plots
julia> plot(x, legend=false, xlabel = "Age",

ylabel = "Population (millions)")

Note the keyword global in the for-loop. Without this statement, the scope of the
variable x created by the assignment x = A*x would be local to the for-loop, i.e.,
this variable does not exist outside the loop and is different from the x outside the
loop.

https://web.stanford.edu/\%7Eboyd/vmls/vmls.pdf#section.9.2

9.3 Epidemic dynamics 77

0 25 50 75 100
0

1

2

3

4

Age

P
op

ul
at

io
n

(m
ill

io
ns

)

Figure 9.2 Predicted age distribution in the US in 2020.

9.3 Epidemic dynamics
Let’s implement the simulation of the epidemic dynamics from VMLS §9.3. The
plot is in figure 9.3.

julia> T = 210;
julia> A = [0.95 0.04 0 0 ; 0.05 0.85 0 0 ;

0 0.10 1 0 ; 0 0.01 0 1];
julia> x_1 = [1,0,0,0];
julia> state_traj = [x_1 zeros(4,T-1)]; # State trajectory
julia> for t=1:T-1 # Dynamics recursion

state_traj[:,t+1] = A*state_traj[:,t];
end

julia> using Plots
julia> plot(1:T, state_traj', xlabel = "Time t",

label = ["Susceptible" "Infected" "Recovered" "Deceased"])

9.4 Motion of a mass
Let’s simulate the discretized model of the motion of a mass in §9.4 of VMLS. See
figure 9.4.

julia> h = 0.01; m = 1; eta = 1;
julia> A = [1 h ; 0 1-h*eta/m];

https://web.stanford.edu/\%7Eboyd/vmls/vmls.pdf#section.9.3
https://web.stanford.edu/\%7Eboyd/vmls/vmls.pdf#section.9.4

78 9 Linear dynamical systems

0 50 100 150 200

0.00

0.25

0.50

0.75

1.00

Time t

Susceptible
Infected
Recovered
Deceased

Figure 9.3 Simulation of epidemic dynamics.

julia> B = [0 ; h/m];
julia> x1 = [0,0];
julia> K = 600; # simulate for K*h = 6 seconds
julia> f = zeros(K); f[50:99] .= 1.0; f[100:139] .= -1.3;
julia> X = [x1 zeros(2,K-1)];
julia> for k=1:K-1

X[:,k+1] = A* X[:,k] + B*f[k]
end

julia> using Plots
julia> plot(X[1,:], xlabel="k", ylabel="Position", legend=false)
julia> plot(X[2,:], xlabel="k", ylabel="Velocity", legend=false)

9.5 Supply chain dynamics

9.5 Supply chain dynamics 79

0 100 200 300 400 500 600

0.00

0.05

0.10

0.15

k

P
os

iti
on

0 100 200 300 400 500 600

-0.1

0.0

0.1

0.2

0.3

0.4

k

V
el

oc
ity

Figure 9.4 Simulation of a mass moving along a line: position (top) and
velocity (bottom).

80 9 Linear dynamical systems

Chapter 10

Matrix multiplication

10.1 Matrix-matrix multiplication
In Julia the product of matrices A and B is obtained with A*B. We calculate the
matrix product on page 177 of VMLS.

julia> A = [-1.5 3 2; 1 -1 0]
2×3 Matrix{Float64}:
-1.5 3.0 2.0
1.0 -1.0 0.0

julia> B = [-1 -1; 0 -2; 1 0]
3×2 Matrix{Int64}:
-1 -1
0 -2
1 0

julia> C = A*B
2×2 Matrix{Float64}:
3.5 -4.5

-1.0 1.0

Gram matrix. The Gram matrix of a matrix A is the matrix G = ATA. It is a
symmetric matrix and the i, j element Gij is the inner product of columns i and j
of A.

julia> A = randn(10,3);
julia> G = A'*A
3×3 Matrix{Float64}:
11.1364 -3.91865 -3.69057
-3.91865 7.98358 2.4839
-3.69057 2.4839 10.956

https://web.stanford.edu/\%7Eboyd/vmls/vmls.pdf#section.10.1

82 10 Matrix multiplication

julia> # Gii is norm of column i, squared
julia> G[2,2]
7.983579175590987
julia> norm(A[:,2])^2
7.983579175590987
julia> # Gij is inner product of columns i and j
julia> G[1,3]
-3.6905664879621454
julia> A[:,1]'*A[:,3]
-3.6905664879621463

Complexity of matrix triple product. Let’s check the associative property, which
states that (AB)C = A(BC) for any m×n matrix A, any n×p matrix B, and any
p × q matrix B. At the same time we will see that the left-hand and right-hand
sides take very different amounts of time to compute.

julia> m = 2000; n = 50; q = 2000; p = 2000;
julia> A = randn(m,n); B = randn(n,p); C = randn(p,q);
julia> @time LHS = (A*B)*C;
0.819912 seconds (245.32 k allocations: 72.557 MiB, 13.47% gc time)

julia> @time LHS = (A*B)*C;
0.254107 seconds (8 allocations: 61.035 MiB, 20.85% gc time)

julia> @time RHS = A*(B*C);
0.030907 seconds (9 allocations: 31.281 MiB, 13.95% gc time)

julia> @time RHS = A*(B*C);
0.023507 seconds (8 allocations: 31.281 MiB, 3.13% gc time)

julia> norm(LHS-RHS)
5.334805188873507e-10
julia> @time D = A*B*C; # evaluated as (A*B)*C or as A*(B*C)?
0.220616 seconds (1.03 k allocations: 61.098 MiB, 5.09% gc time)

We see that evaluating (A*B)*C takes around 10 times as much time as evaluating
A*(B*C), which is predicted from the complexities. In the last line we deduce that
A*B*C is evaluated left to right, as (A*B)*C. Note that for these particular matrices,
this is the (much) slower order to multiply the matrices.

10.2 Composition of linear functions

Second difference matrix. We compute the second difference matrix on page 184
of VMLS.

https://web.stanford.edu/\%7Eboyd/vmls/vmls.pdf#section*.221

10.3 Matrix power 83

julia> D(n) = [-eye(n-1) zeros(n-1)] + [zeros(n-1) eye(n-1)];
julia> D(5)
4×5 Matrix{Float64}:
-1.0 1.0 0.0 0.0 0.0
0.0 -1.0 1.0 0.0 0.0
0.0 0.0 -1.0 1.0 0.0
0.0 0.0 0.0 -1.0 1.0

julia> D(4)
3×4 Matrix{Float64}:
-1.0 1.0 0.0 0.0
0.0 -1.0 1.0 0.0
0.0 0.0 -1.0 1.0

julia> Delta = D(4)*D(5) # Second difference matrix
3×5 Matrix{Float64}:
1.0 -2.0 1.0 0.0 0.0
0.0 1.0 -2.0 1.0 0.0
0.0 0.0 1.0 -2.0 1.0

10.3 Matrix power
The kth power of a square matrix A is denoted Ak. In Julia, this power is formed
using A^k.

Let’s form the adjacency matrix of the directed graph on VMLS page 186. Then
let’s find out how many cycles of length 8 there are, starting from each node. (A
cycle is a path that starts and stops at the same node.)

julia> A = [0 1 0 0 1; 1 0 1 0 0; 0 0 1 1 1; 1 0 0 0 0; 0 0 0 1 0]
5×5 Matrix{Int64}:
0 1 0 0 1
1 0 1 0 0
0 0 1 1 1
1 0 0 0 0
0 0 0 1 0
julia> A^2
5×5 Matrix{Int64}:
1 0 1 1 0
0 1 1 1 2
1 0 1 2 1
0 1 0 0 1
1 0 0 0 0

https://web.stanford.edu/\%7Eboyd/vmls/vmls.pdf#section*.226

84 10 Matrix multiplication

julia> A^8
5×5 Matrix{Int64}:
18 11 15 20 20
25 14 21 28 26
24 14 20 27 26
11 6 9 12 11
6 4 5 7 7

julia> number_of_cycles = diag(A^8)
5-element Vector{Int64}:
18
14
20
12
7

Population dynamics. Let’s write the code for figure 10.2 in VMLS, which plots
the contribution factor to the total US population in 2020 (ignoring immigration),
for each age in 2010. The Julia plot is in figure 10.1. We can see that, not
surprisingly, 20–25 year olds have the highest contributing factor, around 1.5. This
means that on average, each 20-25 year old in 2010 will be responsible for around
1.5 people in 2020. This takes into account any children they may have before
then, and (as a very small effect) the few of them who will no longer be with us in
2020.

julia> D = population_data();
julia> b = D["birth_rate"];
julia> d = D["death_rate"];
julia> # Dynamics matrix for populaion dynamics
julia> A = [b'; diagonal(1 .- d[1:end-1]) zeros(length(d)-1)];
julia> # Contribution factor to total poulation in 2020
julia> # from each age in 2010
julia> cf = ones(100)'*(A^10); # Contribution factor
julia> using Plots
julia> plot(cf', legend = false, xlabel = "Age", ylabel = "Factor")

10.4 QR factorization
In Julia, the QR factorization of a matrix A can be found using qr(A), which
returns a tuple with the Q and R factors. However the matrix Q is not returned as

https://web.stanford.edu/\%7Eboyd/vmls/vmls.pdf#figure.10.2

10.4 QR factorization 85

0 25 50 75 100

0.0

0.5

1.0

1.5

Age

F
ac

to
r

Figure 10.1 Contribution factor per age in 2010 to the total population in
2020. The value for age i− 1 is the ith component of the row vector 1TA10.

an array, but in a special compact format. It can be converted to a regular matrix
variable using the command Matrix(Q). Hence, the QR factorization as defined in
VMLS is computed by a sequence of two commands:

julia> Q, R = qr(A);
julia> Q = Matrix(Q);

The following example also illustates a second, but minor difference with the
VMLS definition. The R factor computed by Julia may have negative elements on
the diagonal, as opposed to only positive elements if we follow the definition used
in VMLS. The two definitions are equivalent, because if Rii is negative, one can
change the sign of the ith row of R and the ith column of Q, to get an equivalent
factorization with Rii > 0. However this step is not needed in practice, since
negative elements on the diagonal do not pose any problem in applications of the
QR factorization.

julia> A = randn(6,4);
julia> Q, R = qr(A);
julia> R
4×4 Matrix{Float64}:
1.36483 -1.21281 -0.470052 -1.40011
0.0 -2.01191 -2.92458 -0.802368
0.0 0.0 -1.94759 0.84228
0.0 0.0 0.0 1.19766
julia> Q = Matrix(Q)
6×4 Matrix{Float64}:
-0.454997 -0.442971 -0.00869016 0.121067

86 10 Matrix multiplication

-0.577229 -0.301916 0.349002 -0.370212
0.00581297 -0.159604 -0.647797 0.28373
0.221266 0.388812 0.223813 -0.46152
-0.550089 0.546873 -0.507827 -0.30155
-0.328929 0.48673 0.387945 0.681065

julia> norm(Q*R-A)
1.0046789954275695e-15
julia> Q'*Q
4×4 Matrix{Float64}:
1.0 0.0 -2.77556e-17 2.77556e-17
0.0 1.0 -8.32667e-17 -1.66533e-16
-2.77556e-17 -8.32667e-17 1.0 5.55112e-17
2.77556e-17 -1.66533e-16 5.55112e-17 1.0

Chapter 11

Matrix inverses

11.1 Left and right inverses

We’ll see later how to find a left or right inverse, when one exists.

julia> A = [-3 -4; 4 6; 1 1]
3×2 Matrix{Int64}:
-3 -4
4 6
1 1

julia> B = [-11 -10 16; 7 8 -11]/9 # A left inverse of A
2×3 Matrix{Float64}:
-1.22222 -1.11111 1.77778
0.777778 0.888889 -1.22222

julia> C = [0 -1 6; 0 1 -4]/2 # Another left inverse of A
2×3 Matrix{Float64}:
0.0 -0.5 3.0
0.0 0.5 -2.0
julia> # Let's check
julia> B*A
2×2 Matrix{Float64}:
1.0 0.0

-4.44089e-16 1.0
julia> C*A
2×2 Matrix{Float64}:
1.0 0.0
0.0 1.0

88 11 Matrix inverses

11.2 Inverse
If A is invertible, its inverse is given by inv(A) (and also A^-1). You’ll get an error
if A is not invertible, or not square.

julia> A = [1 -2 3; 0 2 2; -4 -4 -4]
3×3 Matrix{Int64}:
1 -2 3
0 2 2
-4 -4 -4

julia> B = inv(A)
3×3 Matrix{Float64}:
0.0 -0.5 -0.25
-0.2 0.2 -0.05
0.2 0.3 0.05

julia> B*A
3×3 Matrix{Float64}:
1.0 0.0 0.0
0.0 1.0 2.77556e-17
0.0 5.55112e-17 1.0

julia> A*B
3×3 Matrix{Float64}:
1.0 1.11022e-16 0.0
5.55112e-17 1.0 1.38778e-17
-1.11022e-16 -2.22045e-16 1.0

Dual basis. The next example illustrates the dual basis provided by the rows of
the inverse B = A−1. We calculate the expansion

x = (bT1 x)a1 + · · ·+ (bTnx)an

for a 3× 3 example (see page 205 of VMLS).

julia> A = [1 0 1; 4 -3 -4; 1 -1 -2]
3×3 Matrix{Int64}:
1 0 1
4 -3 -4
1 -1 -2

julia> B = inv(A)
3×3 Matrix{Float64}:
2.0 -1.0 3.0
4.0 -3.0 8.0
-1.0 1.0 -3.0

julia> x = [0.2, -0.3, 1.2]

https://web.stanford.edu/\%7Eboyd/vmls/vmls.pdf#section*.249

11.3 Solving linear equations 89

3-element Vector{Float64}:
0.2

-0.3
1.2

julia> rhs = (B[1,:]'*x) * A[:,1] + (B[2,:]'*x) * A[:,2]
+ (B[3,:]'*x) * A[:,3]

3-element Vector{Float64}:
0.2

-0.3
1.2

Inverse via QR factorization. The inverse of a matrix A can be computed from
its QR factorization A = QR via the formula A−1 = R−1QT .

julia> A = randn(3,3);
julia> inv(A)
3×3 Matrix{Float64}:
-0.321679 0.323945 -0.347063
-1.0735 -5.03083 -3.24503
-1.17582 -2.68161 -1.8496
julia> Q, R = qr(A);
julia> Q = Matrix(Q);
julia> inv(R)*Q'
3×3 Matrix{Float64}:
-0.321679 0.323945 -0.347063
-1.0735 -5.03083 -3.24503
-1.17582 -2.68161 -1.8496

11.3 Solving linear equations
Back substitution. Let’s first implement back substitution (VMLS Algorithm 11.1)
in Julia, and check it. You won’t need this function, since Julia has a better im-
plementation of it built in (via the backslash operation discussed below). We give
it here only to demonstrate that it works.

julia> function back_subst(R,b)
n = length(b)
x = zeros(n)
for i=n:-1:1

x[i] = (b[i] - R[i,i+1:n]'*x[i+1:n]) / R[i,i]

https://web.stanford.edu/\%7Eboyd/vmls/vmls.pdf#algorithmctr.11.1

90 11 Matrix inverses

end
return x
end;

julia> R = triu(randn(4,4)) # Random 4x4 upper triangular matrix
4×4 Matrix{Float64}:
-0.498881 -0.880538 -0.745078 0.125678
0.0 -0.922477 -0.00673699 0.30122
0.0 0.0 -0.283035 -0.0184466
0.0 0.0 0.0 -2.01396

julia> b = rand(4);
julia> x = back_subst(R,b);
julia> norm(R*x-b)
2.220446049250313e-16

The function triu gives the upper triangular part of a matrix, i.e., it zeros out the
entries below the diagonal.

Backslash notation. The Julia command for solving a set of linear equations

Ax = b

is x=A\b. This is faster than x=inv(A)*b, which first computes the inverse of A
and then multiplies it with b.

julia> n = 5000;
julia> A = randn(n,n); b = randn(n); # random set of equations
julia> @time x1 = A\b;
1.422173 seconds (14 allocations: 190.812 MiB, 0.73% gc time)

julia> norm(b-A*x1)
3.8666263141510634e-9
julia> @time x2 = inv(A)*b;
4.550091 seconds (21 allocations: 384.026 MiB, 1.66% gc time)

julia> norm(b-A*x2)
1.682485195063787e-8

Julia chooses a suitable algorithm for solving the equation after checking the
properties of A. For example, it will use back substitution if A is lower triangular.
This explains the result in the following timing experiment.

julia> n = 5000;
julia> b = randn(n);
julia> A = tril(randn(n,n)); # random lower triangular matrix
julia> @time x = A\b;
0.042580 seconds (7 allocations: 39.313 KiB)

julia> A = randn(n,n); # random square matrix

11.3 Solving linear equations 91

julia> @time x = A\b;
1.289663 seconds (14 allocations: 190.812 MiB, 0.91% gc time)

julia> n = 10000;
julia> b = randn(n);
julia> A = tril(randn(n,n)); # random lower triangular matrix
julia> @time x = A\b;
0.157043 seconds (7 allocations: 78.375 KiB)

julia> A = randn(n,n); # random square matrix
julia> @time x = A\b;
9.008604 seconds (14 allocations: 763.093 MiB, 0.41% gc time)

When we double the size from n = 5000 to n = 10000, the solution time for the
triangular equation increases from 0.04 seconds to 0.16 seconds. This is a factor of
four, consistent with the n2 complexity of backsubstitution. For the general square
system, the solution times increases from 1.23 seconds to 9.01 seconds, i.e., a factor
of roughly eight, as we would expect given the order n3 complexity.

Factor-solve methods for multiple right-hand sides. A linear equation is solved
by first factorizing A and then solving several simpler equations with the factors
of A. This is referred to as a factor-solve scheme. An important application is the
solution of multiple linear equations with the same coefficient matrix and different
right-hand sides.

julia> n = 5000;
julia> A = randn(n,n); B = randn(n,2);
julia> # Solve with right-hand side B[:,1]
julia> @time x1 = A \ B[:,1];
1.501368 seconds (17 allocations: 190.850 MiB, 0.79% gc time)

julia> # Solve with right-hand side B[:,2]
julia> @time x2 = A \ B[:,2];
1.388827 seconds (17 allocations: 190.850 MiB, 0.81% gc time)

julia> # Naive approach for solving A*X = B
julia> @time X = [A\B[:,1] A\B[:,2]];
2.617617 seconds (35 allocations: 381.776 MiB, 3.19% gc time)

julia> # Factor-solve approach
julia> @time X = A \ B;
1.418451 seconds (83.37 k allocations: 194.881 MiB, 0.58% gc time)

The factor-solve approach finds the solutions for the two right-hand sides in roughly
the same time as the solution for one right-hand side. The solution time with the
naïve approach is twice the time for one right-hand side.

92 11 Matrix inverses

11.4 Examples

Polynomial interpolation. We compute the interpolating polynomials in Fig-
ure 11.1 of VMLS. The following code uses the functions vandermonde and linspace
from the VMLS package. (Th function linspace(a,b,n) returns a vector with n
equally spaced numbers in the interval [a, b].) The result is shown in Figure 11.1.

julia> t = [-1.1, -0.4, 0.2, 0.8];
julia> A = vandermonde(t, 4)
4×4 Matrix{Float64}:
1.0 -1.1 1.21 -1.331
1.0 -0.4 0.16 -0.064
1.0 0.2 0.04 0.008
1.0 0.8 0.64 0.512

julia> b1 = [-1.0, 1.3, 1.0, 0.5];
julia> c1 = A \ b1
4-element Vector{Float64}:
1.21096
-0.888311
-1.10967
1.38648

julia> b2 = [1.0, 0.0, -2.0, 0];
julia> c2 = A \ b2
4-element Vector{Float64}:
-1.54129
-3.10905
3.33847
3.69514

julia> using Plots
julia> ts = linspace(-1.2, 1.2, 1000);
julia> p1 = c1[1] .+ c1[2]*ts + c1[3]*ts.^2 + c1[4]*ts.^3;
julia> plot(ts, p1)
julia> scatter!(t, b1)
julia> p2 = c2[1] .+ c2[2]*ts + c2[3]*ts.^2 + c2[4]*ts.^3;
julia> plot!(ts, p2)
julia> scatter!(t, b2, marker = :square)

https://web.stanford.edu/\%7Eboyd/vmls/vmls.pdf#figure.11.1

11.5 Pseudo-inverse 93

-1.0 -0.5 0.0 0.5 1.0

-2

-1

0

1

2

Figure 11.1 Cubic interpolants through two sets of points, shown as circles
and squares.

11.5 Pseudo-inverse

In Julia, the pseudo-inverse of a matrix A is obtained with pinv(A). We compute
the pseudo-inverse for the example on page 216 of VMLS using the pinv function,
and via the formula A† = R−1QT , where A = QR is the QR factorization of A.

julia> A = [-3 -4; 4 6; 1 1]
3×2 Matrix{Int64}:
-3 -4
4 6
1 1

julia> pinv(A)
2×3 Matrix{Float64}:
-1.22222 -1.11111 1.77778
0.777778 0.888889 -1.22222

julia> Q, R = qr(A);
julia> Q = Matrix(Q)
3×2 Matrix{Float64}:
-0.588348 -0.457604
0.784465 -0.522976
0.196116 0.719092

julia> R
2×2 Matrix{Float64}:
5.09902 7.2563
0.0 -0.588348

https://web.stanford.edu/\%7Eboyd/vmls/vmls.pdf#section*.270

94 11 Matrix inverses

julia> R \ Q' # pseudo-inverse from QR factors
2×3 Matrix{Float64}:
-1.22222 -1.11111 1.77778
0.777778 0.888889 -1.22222

Chapter 12

Least squares

12.1 Least squares problem
We take the small least squares problem of Figure 12.1 in VMLS and check that
‖Ax̂− b‖ is less than ‖Ax− b‖ for some other value of x.

julia> A = [2 0 ; -1 1 ; 0 2]
3×2 Matrix{Int64}:
2 0

-1 1
0 2

julia> b = [1, 0, -1]
3-element Vector{Int64}:
1
0

-1
julia> xhat = [1/3, -1/3]
2-element Vector{Float64}:
0.333333

-0.333333
julia> rhat = A*xhat -b
3-element Vector{Float64}:
-0.333333
-0.666667
0.333333

julia> norm(rhat)
0.816496580927726
julia> x = [1/2, -1/2]
2-element Vector{Float64}:
0.5

https://web.stanford.edu/\%7Eboyd/vmls/vmls.pdf#figure.12.1

96 12 Least squares

-0.5
julia> r = A*x -b
3-element Vector{Float64}:
0.0
-1.0
0.0

julia> norm(r)
1.0

12.2 Solution
Least squares solution formula. Let’s check the solution formulas (12.5) and
(12.6) in VMLS,

x̂ = (ATA)−1AT b = A†b

for the small example of Figure 12.1) (where x̂ = (1/3, 1/3)).

julia> inv(A'*A)*A'*b
2-element Vector{Float64}:
0.333333
-0.333333

julia> pinv(A)*b
2-element Vector{Float64}:
0.333333
-0.333333

julia> (A'*A)*xhat - A'*b # Check that normal equations hold
2-element Vector{Float64}:
0.0
-8.88178e-16

Orthogonality principle. Let’s check the orthogonality principle (12.9), for the
same example.

julia> z = [-1.1, 2.3];
julia> (A*z)'*rhat
2.220446049250313e-16
julia> z = [5.3, -1.2];
julia> (A*z)'*rhat
-6.661338147750939e-16

https://web.stanford.edu/\%7Eboyd/vmls/vmls.pdf#equation.12.2.5
https://web.stanford.edu/\%7Eboyd/vmls/vmls.pdf#equation.12.2.6
https://web.stanford.edu/\%7Eboyd/vmls/vmls.pdf#figure.12.1
https://web.stanford.edu/\%7Eboyd/vmls/vmls.pdf#equation.12.2.9

12.3 Solving least squares problems 97

12.3 Solving least squares problems
Julia uses the backslash operator to denote the least squares approximate solu-
tion: xhat = A\b. (The same operator is used to solve square systems of linear
equations, and we will see more uses of it in later chapters.)

julia> A = randn(100,20); b = randn(100);
julia> x1 = A\b; # Least squares using backslash operator
julia> x2 = inv(A'*A)*(A'*b); # Using formula
julia> x3 = pinv(A)*b; # Using pseudo-inverse
julia> Q, R = qr(A);
julia> Q = Matrix(Q);
julia> x4 = R\(Q'*b); # Using QR factorization
julia> norm(x1-x2)
4.258136640215341e-16
julia> norm(x2-x3)
1.3328728382991758e-15
julia> norm(x3-x4)
1.3507615689695538e-15

Complexity. The complexity of solving the least squares problem with m × n
matrix A is around 2mn2 flops. Let’s check this in Julia by solving a few least
squares problems of different dimensions.

julia> m = 2000; n = 500;
julia> A = randn(m,n); b = randn(m);
julia> @time x = A\b;
0.190497 seconds (4.07 k allocations: 12.031 MiB, 28.89% gc time)
julia> @time x = A\b;
0.120246 seconds (4.07 k allocations: 12.031 MiB)
julia> m = 4000; n = 500;
julia> A = randn(m,n); b = randn(m);
julia> @time x = A\b;
0.248510 seconds (4.07 k allocations: 19.675 MiB)
julia> m = 2000; n = 1000;
julia> A = randn(m,n); b = randn(m);
julia> @time x = A\b;
0.418181 seconds (8.07 k allocations: 31.608 MiB, 1.66% gc time)

We can see that doubling m approximately doubles the computation time, and
doubling n increases it by around a factor of four. The times above can be used to
guess the speed of the computer on which it was carried out. For example, using
the last problem solved, the number of flops is around 2mn2 = 4 · 109, and it took
around 0.4 seconds. This suggests a speed of around 10 Gflop/sec.

98 12 Least squares

Matrix least squares. Let’s solve multiple least squares problems with the same
matrix A and different vectors b.

julia> A = randn(1000,100); B = randn(1000,10);
julia> X = A\B;
julia> # Check that third column of X is least squares solution
julia> # with third column of B
julia> x3 = A\B[:,3];
julia> norm(X[:,3]-x3)
1.1037090583270415e-16

12.4 Examples

Advertising purchases. We work out the solution of the optimal advertising pur-
chase problem on page 234 of VMLS.

julia> R = [0.97 1.86 0.41;
1.23 2.18 0.53;
0.80 1.24 0.62;
1.29 0.98 0.51;
1.10 1.23 0.69;
0.67 0.34 0.54;
0.87 0.26 0.62;
1.10 0.16 0.48;
1.92 0.22 0.71;
1.29 0.12 0.62];

julia> m, n = size(R);
julia> vdes = 1e3 * ones(m);
julia> s = R \ vdes
3-element Vector{Float64}:

62.0766
99.985

1442.84
julia> rms(R*s - vdes)
132.63819026326527

Illumination. The following code constructs and solves the illumination problem
on page 234, and plots two histograms with the pixel intensity distributions (Fig-
ure 12.1).

https://web.stanford.edu/\%7Eboyd/vmls/vmls.pdf#section*.284
https://web.stanford.edu/\%7Eboyd/vmls/vmls.pdf#section*.285

12.4 Examples 99

julia> n = 10; # number of lamps
julia> lamps = [# x, y positions of lamps and height above floor

4.1 20.4 4;
14.1 21.3 3.5;
22.6 17.1 6;
5.5 12.3 4.0;

12.2 9.7 4.0;
15.3 13.8 6;
21.3 10.5 5.5;
3.9 3.3 5.0;

13.1 4.3 5.0;
20.3 4.2 4.5];

julia> N = 25; # grid size
julia> m = N*N; # number of pixels
julia> # construct m x 2 matrix with coordinates of pixel centers
julia> pixels = hcat(

reshape(collect(0.5: 1 : N) * ones(1,N), m, 1),
reshape(ones(N,1) * collect(0.5: 1 : N)', m, 1));

julia> # The m x n matrix A maps lamp powers to pixel intensities.
julia> # A[i,j] is inversely proportional to the squared distance of
julia> # lamp j to pixel i.
julia> A = zeros(m,n);
julia> for i=1:m

for j=1:n
A[i,j] = 1.0 / norm([pixels[i,:]; 0] - lamps[j,:])^2;

end;
end;

julia> A = (m/sum(A)) * A; # scale elements of A
julia> # Least squares solution
julia> x = A \ ones(m,1);
julia> rms_ls = rms(A*x .- 1)
0.1403904813427606
julia> using Plots
julia> histogram(A*x, bins = (0.375:0.05:1.625),

legend = false, ylim = (0,120))
julia> # Intensity if all lamp powers are one
julia> rms_uniform = rms(A*ones(n,1) .- 1)
0.24174131853807881
julia> histogram(A*ones(n,1), bins = (0.375:0.05:1.625),

legend = false, ylim = (0,120))

100 12 Least squares

0.50 0.75 1.00 1.25 1.50
0

20

40

60

80

100

120

0.50 0.75 1.00 1.25 1.50
0

20

40

60

80

100

120

Figure 12.1 Histogram of pixel illumination values using p = 1 (top) and p̂
(bottom). The target intensity value is one.

Chapter 13

Least squares data fitting

13.1 Least squares data fitting
Straight-line fit. A straight-line fit to time series data gives an estimate of a
trend line. In Figure 13.3 of VMLS we apply this to a time series of petroleum
consumption. The figure is reproduced here as Figure 13.1.

julia> # Petroleum consumption in thousand barrels/day
julia> consumption = petroleum_consumption_data()
julia> n = length(consumption);
julia> A = [ones(n) 1:n];
julia> x = A \ consumption;
julia> using Plots
julia> scatter(1980:2013, consumption, legend=false)
julia> plot!(1980:2013, A*x)

Estimation of trend and seasonal component. The next example is the least
squares fit of a trend plus a periodic component to a time series. In VMLS this
was illustrated with a time series of vehicle miles traveled in the US, per month,
for 15 years (2000–2014). The following Julia code replicates Figure 13.5 in VMLS.
It imports the data via the function vehicle_miles_data, which creates a 15× 12
matrix vmt, with the monthly values for each of the 15 years.

julia> vmt = vehicle_miles_data(); # creates 15x12 matrix vmt
julia> m = 15*12;
julia> A = [0:(m-1) vcat([eye(12) for i=1:15]...)];
julia> b = reshape(vmt', m, 1);
julia> x = A \ b;
julia> using Plots

https://web.stanford.edu/\%7Eboyd/vmls/vmls.pdf#figure.13.3
https://web.stanford.edu/\%7Eboyd/vmls/vmls.pdf#figure.13.5

102 13 Least squares data fitting

1980 1990 2000 2010

6×104

7×104

8×104

9×104

Figure 13.1 World petroleum consumption between 1980 and 2013 (dots)
and least squares straight-line fit (data from www.eia.gov).

julia> scatter(1:m, b, markersize = 2, legend =false);
julia> plot!(1:m, A*x)

The matrix A in this example has size m×n where m = 15 · 12 = 180 and n = 13.
The first column has entries 0, 1, 2, . . . , 179. The remaining columns are formed
by vertical stacking of 15 identity matrices of size 12 × 12. The Julia expression
vcat([eye(12) for i=1:15]...) creates an array of 15 identity matrices, and
then stacks them vertically. The plot produced by the code is shown in Figure 13.2.

Polynomial fit. We now discuss the polynomial fitting problem on page 255 in
VMLS and the results shown in Figure 13.6. We first generate a training set of 100
points and plot them (Figure 13.3).

julia> # Generate training data in the interval [-1, 1].
julia> m = 100;
julia> t = -1 .+ 2*rand(m,1);
julia> y = t.^3 - t + 0.4 ./ (1 .+ 25*t.^2) + 0.10*randn(m,1);
julia> using Plots
julia> scatter(t,y,legend=false)

Next we define a function that fits the polynomial coefficients using least squares.
We apply the function to fit polynomials of degree 2, 6, 10, 15 to our training set.

julia> polyfit(t, y, p) = vandermonde(t, p) \ y
julia> theta2 = polyfit(t,y,3)

https://web.stanford.edu/\%7Eboyd/vmls/vmls.pdf#section*.300
https://web.stanford.edu/\%7Eboyd/vmls/vmls.pdf#figure.13.6

13.1 Least squares data fitting 103

0 50 100 150

2.0×105

2.2×105

2.4×105

2.6×105

Figure 13.2 The dots show vehicle miles traveled in the US, per month, in
the period January 2000–December 2014. The line shows the least squares
fit of a linear trend and a seasonal component with a 12-month period.

-1.0 -0.5 0.0 0.5 1.0

-0.50

-0.25

0.00

0.25

0.50

Figure 13.3 Training set used in the polynomial fitting example.

104 13 Least squares data fitting

julia> theta6 = polyfit(t,y,7)
julia> theta10 = polyfit(t,y,11)
julia> theta15 = polyfit(t,y,16)

Finally, we plot the four polynomials. To simplify this, we first write a function
that evaluates a polynomial at all points specified in a vector x. The plots are in
Figure 13.4.

julia> polyeval(theta, x) = vandermonde(x,length(theta))*theta;
julia> t_plot = linspace(-1,1,1000);
julia> using Plots
julia> p = plot(layout=4, legend=false, ylim=(-0.7, 0.7))
julia> scatter!(t, y, subplot=1, markersize = 2)
julia> plot!(t_plot, polyeval(theta2,t_plot), subplot=1)
julia> scatter!(t, y, subplot=2, markersize = 2)
julia> plot!(t_plot, polyeval(theta6,t_plot), subplot=2)
julia> scatter!(t, y, subplot=3, markersize = 2)
julia> plot!(t_plot, polyeval(theta10,t_plot), subplot=3)
julia> scatter!(t, y, subplot=4, markersize = 2)
julia> plot!(t_plot, polyeval(theta15,t_plot), subplot=4)

Piecewise-linear fit. In the following code least squares is used to fit a piecewise-
linear function to 100 points. It produces Figure 13.5, which is similar to Figure 13.8
in VMLS.

julia> # generate random data
julia> m = 100;
julia> x = -2 .+ 4*rand(m,1);
julia> y = 1 .+ 2*(x.-1) - 3*max.(x.+1,0) + 4*max.(x.-1,0)

+ 0.3*randn(m,1);
julia> # least squares fitting
julia> theta = [ones(m) x max.(x.+1,0) max.(x.-1,0)] \ y;
julia> # plot result
julia> using Plots
julia> t = [-2.1, -1, 1, 2.1];
julia> yhat = theta[1] .+ theta[2]*t + theta[3]*max.(t.+1,0) +

theta[4]*max.(t.-1,0);
julia> scatter(x, y, legend=false)
julia> plot!(t, yhat)

https://web.stanford.edu/\%7Eboyd/vmls/vmls.pdf#figure.13.8

13.1 Least squares data fitting 105

-1.0 -0.5 0.0 0.5 1.0

-0.50

-0.25

0.00

0.25

0.50

-1.0 -0.5 0.0 0.5 1.0

-0.50

-0.25

0.00

0.25

0.50

-1.0 -0.5 0.0 0.5 1.0

-0.50

-0.25

0.00

0.25

0.50

-1.0 -0.5 0.0 0.5 1.0

-0.50

-0.25

0.00

0.25

0.50

Figure 13.4 Least squares polynomial fits of degree 1, 6, 10, and 15 to 100
points

-2 -1 0 1 2

-5

-4

-3

-2

;

Figure 13.5 Piecewise-linear fit to 100 points.

106 13 Least squares data fitting

House price regression. We calculate the simple regression model for predicting
house sales price from area and number of bedrooms, using the data of 774 house
sales in Sacramento.

julia> D = house_sales_data(); # creates 3 vectors: area, beds, price
julia> area = D["area"];
julia> beds = D["beds"];
julia> price = D["price"];
julia> m = length(price);
julia> A = [ones(m) area beds];
julia> x = A \ price
3-element Vector{Float64}:
54.4017
148.725
-18.8534

julia> rms_error = rms(price - A*x)
74.84571649590146
julia> std_prices = stdev(price)
112.7821615975651

Auto-regressive time series model. In the following Julia code we fit an auto-
regressive model to the temperature time series discussed on page 259 of VMLS. In
Figure 13.6 we compare the first five days of the model predictions with the data.

julia> # import time series of temperatures t
julia> t = temperature_data();
julia> N = length(t)
744
julia> stdev(t) # Standard deviation
3.05055928562933
julia> # RMS error for simple predictor zhat_{t+1} = z_t
rms(t[2:end] - t[1:end-1])
1.1602431638206119
julia> # RMS error for simple predictor zhat_{t+1} = z_{t-23}
rms(t[25:end] - t[1:end-24])
1.7338941400468744
julia> # Least squares fit of AR predictor with memory 8
julia> M = 8
julia> y = t[M+1:end];
julia> A = hcat([t[i:i+N-M-1] for i = M:-1:1]...);
julia> theta = A \ y;
julia> ypred = A*theta;
julia> # RMS error of LS AR fit

https://web.stanford.edu/\%7Eboyd/vmls/vmls.pdf#section*.304

13.2 Validation 107

0 25 50 75 100

57.5

60.0

62.5

65.0

67.5

Figure 13.6 Hourly temperature at Los Angeles International Airport be-
tween 12:53AM on May 1, 2016, and 11:53PM on May 5, 2016, shown as
circles. The solid line is the prediction of an auto-regressive model with eight
coefficients.

julia> rms(ypred - y)
1.0129632612687514
julia> # Plot first five days
julia> using Plots
julia> Nplot = 24*5
julia> scatter(1:Nplot, t[1:Nplot], legend =false)
julia> plot!(M+1:Nplot, ypred[1:Nplot-M])

13.2 Validation
Polynomial approximation. We return to the polynomial fitting example of page 102.
We continue with the data vectors t and y in the code on page 102 as the training
set, and generate a test set of 100 randomly chosen points generated by the same
method as used for the training set. We then fit polynomials of degree 0,…, 20 (i.e.,
with p = 1, . . . , 21 coefficients) and compute the RMS errors on the training set
and the test set. This produces a figure similar to Figure 13.11 in VMLS, shown
here as Figure 13.7.

julia> # Generate the test set.
julia> m = 100;
julia> t_test = -1 .+ 2*rand(m,1);

https://web.stanford.edu/\%7Eboyd/vmls/vmls.pdf#figure.13.11

108 13 Least squares data fitting

0 5 10 15 20

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Degree

R
el

at
iv

e
R

M
S

 e
rr

or

Train
Test

;

Figure 13.7 RMS error versus polynomial degree for the fitting example in
figure 13.4.

julia> y_test = t_test.^3 - t_test + 0.4 ./ (1 .+ 25*t_test.^2)
+ 0.10*randn(m,1);

julia> error_train = zeros(21);
julia> error_test = zeros(21);
julia> for p = 1:21

A = vandermonde(t,p)
theta = A \ y
error_train[p] = norm(A*theta - y) / norm(y)
error_test[p] = norm(vandermonde(t_test, p) * theta

- y_test) / norm(y_test);
end

julia> using Plots
julia> plot(0:20, error_train, label = "Train", marker = :circle)
julia> plot!(0:20, error_test, label = "Test", marker = :square)
julia> plot!(xlabel="Degree", ylabel = "Relative RMS error")

House price regression model. On page 13.1 we used a data set of 774 house
sales data to fit a simple regression model

ŷ = v + β1x1 + β2x2,

where ŷ is the predicted sales price, x1 is the area, and x2 is the number of bed-
rooms. Here we apply cross-validation to assess the generalization ability of the
simple model. We use five folds, four of size 155 (Nfold in the code below) and one
of size 154. To choose the five folds, we create a random permutation of the indices

13.2 Validation 109

1, . . . , 774. (We do this by calling the randperm function in the Random package.)
We choose the data points indexed by the first 155 elements in the permuted list as
fold 1, the next 155 as fold 2, et cetera. The output of the following code outputs
is similar to Table 13.1 in VMLS (with different numbers because of the random
choice of folds).

julia> D = house_sales_data();
julia> price = D["price"]; area = D["area"]; beds = D["beds"];
julia> N = length(price);
julia> X = [ones(N) area beds];
julia> nfold = div(N,5); # size of first four folds
julia> import Random
julia> I = Random.randperm(N); # random permutation of numbers 1...N
julia> coeff = zeros(5,3); errors = zeros(5,2);
julia> for k = 1:5

if k == 1
Itrain = I[nfold+1:end];
Itest = I[1:nfold];

elseif k == 5
Itrain = I[1:4*nfold];
Itest = I[4*nfold+1:end];

else
Itrain = I[[1:(k-1)*nfold ; k*nfold+1 : N]]
Itest = I[[(k-1)*nfold+1 ; k*nfold]];

end;
Ntrain = length(Itrain)
Ntest = length(Itest)
theta = X[Itrain,:] \ price[Itrain];
coeff[k,:] = theta;
rms_train = rms(X[Itrain,:] * theta - price[Itrain])
rms_test = rms(X[Itest,:] * theta - price[Itest])

end;
julia> coeff # 3 coefficients for the five folds
5×3 Matrix{Float64}:
56.4566 150.822 -20.1493
59.4955 148.725 -20.0837
53.7978 154.69 -21.577
56.1279 145.629 -18.2875
46.2149 144.207 -14.4336
julia> [rms_train rms_test] # RMS errors for five folds
5×2 Matrix{Float64}:
76.0359 69.9312
75.4704 74.0014

https://web.stanford.edu/\%7Eboyd/vmls/vmls.pdf#table.13.1

110 13 Least squares data fitting

76.194 94.3307
73.3722 27.6299
72.9218 82.1444

Validating time series predictions. In the next example, we return to the AR
model of hourly temperatures at LAX. We divide the time series in a training set
of 24 days and a test set of 7 days. We fit the AR model to the training set and
calculate the RMS prediction errors on the training and test sets. Figure 13.8
shows the model predictions and the the data for the first five days of the test set.

julia> t = temperature_data();
julia> N = length(t);
julia> # use first 24 days as training set
julia> Ntrain = 24 * 24; t_train = t[1:Ntrain];
julia> # use the rest as test set
julia> Ntest = N-Ntrain; t_test = t[Ntrain+1:end];
julia> # Least squares fit of AR predictor with memory 8
julia> M = 8;
julia> m = Ntrain - M;
julia> y = t_train[M+1:M+m];
julia> A = hcat([t_train[i:i+m-1] for i=M:-1:1]...);
julia> coeff = A \ y;
julia> rms_train = rms(A*coeff-y)
1.0253577259862334
julia> ytest = t_test[M+1:end];
julia> mtest = length(ytest);
julia> ypred = hcat([t_test[i:i+mtest-1] for i=M:-1:1]...) * coeff;
julia> rms_test = rms(ypred - ytest)
0.9755113632200967
julia> using Plots
julia> Nplot = 24*5
julia> scatter(1:Nplot, t_test[1:Nplot], legend=false)
julia> plot!(M+1:Nplot, ypred[1:Nplot-M])

13.3 Feature engineering
Next we compute the more complicated house price regression model of §13.3.5 of
VMLS. The data are imported via the function house_sales_data, which returns
a dictionary containing the following five vectors of length 774:

• price: price in thousand dollars,

https://web.stanford.edu/\%7Eboyd/vmls/vmls.pdf#subsection.13.3.5

13.3 Feature engineering 111

0 25 50 75 100

57.5

60.0

62.5

65.0

67.5

Figure 13.8 Hourly temperature at Los Angeles International Airport be-
tween 12:53AM on May 25, 2016, and 11:53PM on May 29, 2016, shown
as circles. The solid line is the prediction of an auto-regressive model with
eight coefficients, developed using training data from May 1 to May 24.

• area: house area in 1000 square feet,

• beds: number of bedrooms,

• condo: 1 if a condo, 0 otherwise,

• location: a number from 1–4, for the four sets of ZIP codes in Table 13.4
of VMLS.

The code computes the model and makes a scatter plot of actual and predicted
prices (Figure 13.9). Note that the last three columns of the matrix X contain
Boolean variables (true or false). We rely on the fact that Julia treats this as
integers 1 and 0.

julia> D = house_sales_data();
julia> price = D["price"];
julia> area = D["area"];
julia> beds = D["beds"];
julia> condo = D["condo"];
julia> location = D["location"];
julia> N = length(price);
julia> X = hcat(ones(N), area, max.(area.-1.5, 0), beds, condo,

location .== 2, location .== 3, location .== 4);
julia> theta = X \ price
8-element Vector{Float64}:
115.617
175.413

https://web.stanford.edu/\%7Eboyd/vmls/vmls.pdf#table.13.4

112 13 Least squares data fitting

0 200 400 600 800
0

200

400

600

800

Actual price

P
re

di
ct

ed
 p

ric
e

Figure 13.9 Scatter plot of actual and predicted prices for a model with eight
parameters.

-42.7478
-17.8784
-19.0447
-100.911
-108.791
-24.7652

julia> rms(X*theta - price) # RMS prediction error
68.34428699036884
julia> using Plots
julia> scatter(price, X*theta, lims = (0,800));
julia> plot!([0, 800], [0, 800], linestyle = :dash, legend = false);
julia> plot!(xlims = (0,800), ylims = (0,800), size = (500,500));
julia> plot!(xlabel = "Actual price", ylabel = "Predicted price");

We finish by a cross-validation of this method. We follow the same approach as for
the simple regression model on page 108, using five randomly chosen folds. The
code shows the eight coefficients, and the RMS training and test errors for each
fold.

13.3 Feature engineering 113

julia> nfold = div(N,5);
julia> import Random;
julia> I = Random.randperm(N);
julia> models = zeros(8,5); # store 8 coefficients for the 5 models
julia> errors = zeros(2,5); # prediction errors
julia> for k = 1:5

if k == 1
Itrain = I[nfold+1:end];
Itest = I[1:nfold];

elseif k == 5
Itrain = I[1:4*nfold];
Itest = I[4*nfold+1:end];

else
Itrain = I[[1:(k-1)*nfold ; k*nfold+1 : N]]
Itest = I[[(k-1)*nfold+1 ; k*nfold]];

end;
Ntrain = length(Itrain)
Ntest = length(Itest)
theta = X[Itrain,:] \ price[Itrain];
errors[1,k] = rms(X[Itrain,:] * theta - price[Itrain]);
errors[2,k] = rms(X[Itest,:] * theta - price[Itest]);
models[:,k] = theta;

end;
julia> # display the eigth coefficients for each of the 5 folds
julia> models
8×5 Matrix{Float64}:
121.294 110.602 142.51 103.589 101.677
170.343 167.999 165.442 187.179 184.096
-32.3645 -39.6754 -35.3901 -51.6821 -52.7473
-21.0324 -16.5711 -15.0365 -17.972 -17.9788
-17.6111 -27.6004 -19.4401 -13.7243 -16.2317
-92.5554 -87.638 -124.744 -103.573 -97.4796
-98.3588 -97.6417 -131.886 -111.991 -105.518
-7.77581 -13.3224 -58.3521 -33.7546 -13.7175

julia> # display training errors (1st row) and test errors (2nd row)
julia> errors
2×5 Matrix{Float64}:
66.1225 69.3897 66.0522 70.2625 69.16
77.193 42.2776 115.636 73.5962 65.4291

114 13 Least squares data fitting

Chapter 14

Least squares classification

14.1 Classification

Boolean values. Julia has the Boolean values true and false. These are au-
tomatically converted to the numbers 1 and 0 when they combined in numerical
expressions. In VMLS we use the encoding (for classifiers) where True corresponds
to +1 and False corresponds to −1. We can get our encoding from a Julia Boolean
value b using 2*b-1, or via the ternary conditional operation b ? 1 : -1.

julia> tf2pm1(b) = 2*b-1
julia> b = true
true
julia> tf2pm1(b)
1
julia> b = false
false
julia> tf2pm1(b)
-1
julia> b = [true, false, true]
3-element Vector{Bool}:
true

false
true

julia> tf2pm1.(b)
3-element Vector{Int64}:
1

-1
1

116 14 Least squares classification

Confusion matrix. Let’s see how we would evaluate the prediction errors and
confusion matrix, given a set of data y and predictions yhat, both stored as arrays
(vectors) of Boolean values, of length N.

julia> # Count errors and correct predictions
julia> Ntp(y,yhat) = sum((y .== true) .& (yhat .== true));
julia> Nfn(y,yhat) = sum((y .== true) .& (yhat .== false));
julia> Nfp(y,yhat) = sum((y .== false) .& (yhat .== true));
julia> Ntn(y,yhat) = sum((y .== false) .& (yhat .== false));
julia> error_rate(y,yhat) = (Nfn(y,yhat) + Nfp(y,yhat)) / length(y);
julia> confusion_matrix(y,yhat) = [Ntp(y,yhat) Nfn(y,yhat);

Nfp(y,yhat) Ntn(y,yhat)];
julia> y = rand(Bool,100); yhat = rand(Bool,100);
julia> confusion_matrix(y,yhat)
2×2 Matrix{Int64}:
25 23
29 23

julia> error_rate(y,yhat)
0.52

The dots that precede == and & cause them to be evaluated elementwise. When
we sum the Boolean vectors, they are converted to integers. In the last section
of the code we generate two random Boolean vectors, so we expect the error
rate to be around 50%. In the code above, we compute the error rate from
the numbers of false negatives and false positives. A more compact expression
for the error rate is avg(y .!= yhat). The VMLS package contains the function
confusion_matrix(y, yhat).

14.2 Least squares classifier

We can evaluate f̂(x) = sign(f̃(x)) using ftilde(x)>0, which returns a Boolean
value.

julia> ftilde(x) = x'*beta .+ v # Regression model
julia> fhat(x) = ftilde(x) > 0 # Regression classifier

Iris flower classification. The Iris data set contains of 150 examples of three
types of iris flowers. There are 50 examples of each class. For each example, four
features are provided. The following code reads in a dictionary containing three
50× 4 matrices setosa, versicolor, virginica with the examples for each class,
and then computes a Boolean classifier that distinguishes Iris Virginica from the
the other two classes.

14.3 Multi-class classifiers 117

julia> D = iris_data();
julia> # Create 150x4 data matrix
julia> iris = vcat(D["setosa"], D["versicolor"], D["virginica"])
julia> # y[k] is true (1) if virginica, false (0) otherwise
julia> y = [zeros(Bool, 50); zeros(Bool, 50); ones(Bool, 50)];
julia> A = [ones(150) iris]
julia> theta = A \ (2*y .- 1)
5×1 Vector{Float64}:
-2.39056
-0.0917522
0.405537
0.00797582
1.10356

julia> yhat = A*theta .> 0;
julia> C = confusion_matrix(y,yhat)
2×2 Matrix{Int64}:
46 4
7 93

julia> err_rate = (C[1,2] + C[2,1]) / length(y)
0.07333333333333333
julia> avg(y .!= yhat)
0.07333333333333333

14.3 Multi-class classifiers
Multi-class error rate and confusion matrix. The overall error rate is easily eval-
uated as avg(y .!= yhat). We can form the K×K confusion matrix from a set of
N true outcomes y and N predictions yhat (each with entries among {1, . . . ,K})
by counting the number of times each pair of values occurs.

julia> error_rate(y, yhat) = avg(y .!= yhat);
julia> function confusion_matrix(y, yhat, K)

C = zeros(K,K)
for i in 1:K for j in 1:K

C[i,j] = sum((y .== i) .& (yhat .== j))
end end
return C
end;

julia> # test for K=4 on random vectors of length 100
julia> K = 4;

118 14 Least squares classification

julia> y = rand(1:K, 100); yhat = rand(1:K, 100);
julia> C = confusion_matrix(y, yhat, K)
4×4 Matrix{Float64}:
4.0 9.0 8.0 5.0
5.0 4.0 4.0 13.0
3.0 8.0 7.0 11.0
7.0 2.0 7.0 3.0

julia> error_rate(y, yhat), 1-sum(diag(C))/sum(C)
(0.82, 0.8200000000000001)

The function confusion_matrix is included in the VMLS package.

Least squares multi-class classifier. A K-class classifier (with regression model)
can be expressed as

f̂(x) = argmax
k=1,...,K

f̃k(x),

where f̃k(x) = xT θk. The n-vectors θ1, . . . , θK are the coefficients or parameters
in the model. We can express this in matrix-vector notation as

f̂(x) = argmax(xTΘ),

where Θ = [θ1 · · · θK] is the n × K matrix of model coefficients, and the
argmax of a row vector has the obvious meaning.

Let’s see how to express this in Julia. In Julia the function argmax(u) finds
the index of the largest entry in the row or column vector u, i.e., argmaxk uk. To
extend this to matrices, we define a function row_argmax that returns a vector
with, for each row, the index of the largest entry in that row.

julia> row_argmax(u) = [argmax(u[i,:]) for i = 1:size(u,1)]
julia> A = randn(4,5)
4×5 Matrix{Float64}:
1.42552 0.766725 1.7106 -1.08668 -0.492051
-0.507653 -0.158288 -1.37703 -0.388304 0.00290895
-1.43499 -1.18238 -0.182795 -0.428589 -0.87592
-2.18407 1.28363 0.749702 -0.304138 0.0165654

julia> row_argmax(A)
4-element Vector{Int64}:
3
5
3
2

If a data set with N examples is stored as an n ×N data matrix X, and Theta is
an n × K matrix with the coefficient vectors θk as its columns, then we can now
define a function

14.3 Multi-class classifiers 119

fhat(X,Theta) = row_argmax(X'*Theta)

to find the N -vector of predictions.

Matrix least squares. Let’s use least squares to find the coefficient matrix Θ for a
multi-class classifier with n features and K classes, from a data set of N examples.
We will assume the data is given as an n × N matrix X and an N -vector ycl

with entries in {1, . . . ,K} that give the classes of the examples. The least squares
objective can be expressed as a matrix norm squared,

‖XTΘ− Y ‖2,

where Y is the N ×K vector with

Yij =

{
1 ycli = j

−1 ycli 6= j.

In other words, the rows of Y describe the classes using one-hot encoding, converted
from 0/1 to −1/+ 1 values. The least squares solution is given by Θ̂ = (XT)†Y .

Let’s see how to express this in Julia.

julia> function one_hot(ycl,K)
N = length(ycl)
Y = zeros(N,K)
for j in 1:K

Y[findall(ycl .== j), j] .= 1
end
return Y
end;

julia> K = 4;
julia> ycl = rand(1:K,6)
6-element Vector{Int64}:
4
2
3
1
2
1
julia> Y = one_hot(ycl, K)
6×4 MatrixFloat64:
0.0 0.0 0.0 1.0
0.0 1.0 0.0 0.0
0.0 0.0 1.0 0.0
1.0 0.0 0.0 0.0
0.0 1.0 0.0 0.0

120 14 Least squares classification

1.0 0.0 0.0 0.0
julia> 2*Y .- 1
6×4 Matrix{Float64}:
-1.0 -1.0 -1.0 1.0
-1.0 1.0 -1.0 -1.0
-1.0 -1.0 1.0 -1.0
1.0 -1.0 -1.0 -1.0
-1.0 1.0 -1.0 -1.0
1.0 -1.0 -1.0 -1.0

Using the functions we have defined, the matrix least squares multi-class classifier
can be computed in a few lines.

julia> function ls_multiclass(X,ycl,K)
n, N = size(X)
Theta = X' \ (2*one_hot(ycl,K) .- 1)
yhat = row_argmax(X'*theta)
return Theta, yhat
end

Iris flower classification. We compute a 3-class classifier for the iris flower data
set. We split the data set of 150 examples in a training set of 120 (40 per class)
and a test set of 30 (10 per class). The code calls the functions we defined above.

julia> D = iris_data();
julia> setosa = D["setosa"];
julia> versicolor = D["versicolor"];
julia> virginica = D["virginica"];
julia> # pick three random permutations of 1,..., 50
julia> import Random
julia> I1 = Random.randperm(50);
julia> I2 = Random.randperm(50);
julia> I3 = Random.randperm(50);
julia> # training set is 40 randomly picked examples per class
julia> Xtrain = [setosa[I1[1:40],:];

versicolor[I2[1:40],:];
virginica[I3[1:40],:]]'; # 4x120 data matrix

julia> # add constant feature one
julia> Xtrain = [ones(1,120); Xtrain]; # 5x120 data matrix
julia> ytrain = [ones(40); 2*ones(40); 3*ones(40)];
julia> # test set is remaining 10 examples for each class
julia> Xtest = [setosa[I1[41:end],:];

14.3 Multi-class classifiers 121

versicolor[I2[41:end],:]
virginica[I3[41:end],:]]'; # 4x30 data matrix

julia> Xtest = [ones(1,30); Xtest]; # 5x30 data matrix
julia> ytest = [ones(10); 2*ones(10); 3*ones(10)];
julia> Theta, yhat = ls_multiclass(Xtrain, ytrain, 3);
julia> Ctrain = confusion_matrix(ytrain, yhat, 3)
3×3 Matrix{Float64}:
40.0 0.0 0.0
0.0 28.0 12.0
0.0 6.0 34.0

julia> error_train = error_rate(ytrain, yhat)
0.15
julia> yhat = row_argmax(Xtest'*theta)
julia> Ctest = confusion_matrix(ytest, yhat, 3)
3×3 Matrix{Float64}:
10.0 0.0 0.0
0.0 7.0 3.0
0.0 2.0 8.0

julia> error_test = error_rate(ytest, yhat)
0.16666666666666666

122 14 Least squares classification

Chapter 15

Multi-objective least squares

15.1 Multi-objective least squares
Let’s write a function that solves the multi-objective least squares problem, with
given positive weights. The data are a list (or array) of coefficient matrices (of
possibly different heights) As, a matching list of (right-hand side) vectors bs, and
the weights, given as an array or list, lambdas.

julia> function mols_solve(As,bs,lambdas)
k = length(lambdas);
Atil = vcat([sqrt(lambdas[i])*As[i] for i=1:k]...)
btil = vcat([sqrt(lambdas[i])*bs[i] for i=1:k]...)
return Atil \ btil
end

Simple example. We use the function mols_solve to work out a bi-criterion
example similar to Figures 15.1, 15.2, and 15.3 in VMLS. We minimize the weighted
sum objective

J1 + λJ2 = ‖A1x− b1‖2 + λ‖A2x− b2‖2

for randomly chosen 10× 5 matrices A1, A2 and 10-vectors b1, b2. The expression
lambdas = 10 .^ linspace(-4,4,200) generates 200 values of λ ∈ [10−4, 104],
equally spaced on a logarithmic scale. The code creates the three plots in Fig-
ures 15.1, 15.2, and 15.3.

julia> As = [randn(10,5), randn(10,5)];
julia> bs = [randn(10), randn(10)];
julia> N = 200;
julia> lambdas = 10 .^ linspace(-4,4,200);
julia> x = zeros(5,N); J1 = zeros(N); J2 = zeros(N);
julia> for k = 1:N

https://web.stanford.edu/\%7Eboyd/vmls/vmls.pdf#figure.15.1
https://web.stanford.edu/\%7Eboyd/vmls/vmls.pdf#figure.15.2
https://web.stanford.edu/\%7Eboyd/vmls/vmls.pdf#figure.15.3

124 15 Multi-objective least squares

10-4 10-2 100 102 104

-0.50

-0.25

0.00

0.25

lambda

y1
y2
y3
y4
y5

Figure 15.1 Weighted-sum least squares solution x̂(λ) as a function of λ for
a bi-criterion least squares problem with five variables.

x[:,k] = mols_solve(As, bs, [1, lambdas[k]])
J1[k] = norm(As[1]*x[:,k] - bs[1])^2
J2[k] = norm(As[2]*x[:,k] - bs[2])^2

end;
julia> using Plots
julia> # plot solution versus lambda
julia> plot(lambdas, x', xscale = :log10, xlabel = "lambda");
julia> plot!(xlims = (1e-4,1e4));
julia> # plot two objectives versus lambda
julia> plot(lambdas, J1, xscale = :log10, label = "J_1");
julia> plot!(lambdas, J2, label = "J_2", xlabel = "lambda",

xlims = (1e-4,1e4));
julia> # plot trade-off curve
julia> plot(J1, J2, xlabel="J1", ylabel = "J2", legend=false);
julia> # add (single-objective) end points to trade-off curve
julia> x1 = As[1] \ bs[1];
julia> x2 = As[2] \ bs[2];
julia> J1 = [norm(As[1]*x1-bs[1])^2, norm(As[1]*x2-bs[1])^2];
julia> J2 = [norm(As[2]*x1-bs[2])^2, norm(As[2]*x2-bs[2])^2];
julia> scatter!(J1,J2);

15.1 Multi-objective least squares 125

10-4 10-2 100 102 104

5.0

7.5

10.0

12.5

15.0

17.5

lambda

J_1
J_2

Figure 15.2 Objective functions J1 = ‖A1x̂(λ)b1‖2 (blue line) and J2 =
‖A2x̂(λ)b2‖2 (red line) as functions of λ for the bi-criterion problem in fig-
ure 15.1.

7.5 10.0 12.5 15.0 17.5

5.0

7.5

10.0

12.5

15.0

17.5

J1

J2

Figure 15.3 Optimal trade-off curve for the bi-criterion least squares problem
of figures 15.1 and 15.2.

126 15 Multi-objective least squares

0 100 200 300

10-2.4

10-2.1

10-1.8

10-1.5

10-1.2

Figure 15.4 Hourly ozone level at Azusa, California, during the first 14 days
of July 2014 (California Environmental Protection Agency, Air Resources
Board, www.arb.ca.gov). Measurements start at 12AM on July 1st, and
end at 11PM on July 14. Note the large number of missing measurements.
In particular, all 4AM measurements are missing.

15.2 Control

15.3 Estimation and inversion
Estimating a periodic time series. We consider the example of Figure 15.4 in
VMLS. We start by loading the data, as a vector with hourly ozone levels, for a
period of 14 days. Missing measurements have a value NaN (for Not a Number).
The plot command skips those values (Figure 15.4).

julia> ozone = ozone_data(); # a vector of length 14*24 = 336
julia> k = 14; N = k*24;
julia> plot(1:N, ozone, yscale = :log10, marker = :circle,

legend=false)

Next we use the mols_solve function to make a periodic fit, for the values
λ = 1 and λ = 10. The Julia code isnan is used to find and discard the missing
measurements. The results are shown in Figures 15.5 and 15.6.

julia> A = vcat([eye(24) for i = 1:k]...)
julia> # periodic difference matrix
julia> D = -eye(24) + [zeros(23,1) eye(23); 1 zeros(1,23)];
julia> ind = [k for k in 1:length(ozone) if !isnan(ozone[k])];
julia> As = [A[ind,:], D]

https://web.stanford.edu/\%7Eboyd/vmls/vmls.pdf#figure.15.4

15.4 Regularized data fitting 127

0 100 200 300

10-2.4

10-2.1

10-1.8

10-1.5

10-1.2

Figure 15.5 Smooth periodic least squares fit to logarithmically transformed
measurements, using λ = 1.

julia> bs = [log.(ozone[ind]), zeros(24)]
julia> # solution for lambda = 1
julia> x = mols_solve(As, bs, [1, 1])
julia> scatter(1:N, ozone, yscale = :log10, legend=false)
julia> plot!(1:N, vcat([exp.(x) for i = 1:k]...))
julia> # solution for lambda = 100
julia> x = mols_solve(As, bs, [1, 100])
julia> scatter(1:N, ozone, yscale = :log10, legend=false)
julia> plot!(1:N, vcat([exp.(x) for i = 1:k]...))

15.4 Regularized data fitting
Example. Next we consider the small regularized data fitting example of page 329
of VMLS. We fit a model

f̂(x) =

5∑
k=1

θkfk(x)

with basis functions f1(x) = 1 and fk+1(x) = sin(ωkx + φk) for k = 1, . . . , 4 to
N = 20 data points. We use the values of ωk, φk given in the text. We fit the
model by solving a sequence of regularized least squares problems with objective

N∑
i=1

(y(i) −
5∑

k=1

θkfk(x
(i)))2 + λ

5∑
k=2

θ2k.

https://web.stanford.edu/\%7Eboyd/vmls/vmls.pdf#section*.367

128 15 Multi-objective least squares

0 100 200 300

10-2.4

10-2.1

10-1.8

10-1.5

10-1.2

Figure 15.6 Smooth periodic least squares fit to logarithmically transformed
measurements, using λ = 100.

The two plots are shown in Figures 15.7 and 15.8.

julia> # Import data as vectors xtrain, ytrain, xtest, ytest
julia> D = regularized_fit_data();
julia> xtrain = D["xtrain"]; ytrain = D["ytrain"];
julia> xtest = D["xtest"]; ytest = D["ytest"];
julia> N = length(ytrain);
julia> Ntest = length(ytest);
julia> p = 5;
julia> omega = [13.69; 3.55; 23.25; 6.03];
julia> phi = [0.21; 0.02; -1.87; 1.72];
julia> A = hcat(ones(N), sin.(xtrain*omega' + ones(N)*phi'));
julia> Atest = hcat(ones(Ntest),

sin.(xtest*omega' + ones(Ntest)*phi'));
julia> npts = 100;
julia> lambdas = 10 .^ linspace(-6,6,npts);
julia> err_train = zeros(npts);
julia> err_test = zeros(npts);
julia> thetas = zeros(p,npts);
julia> for k = 1:npts

theta = mols_solve([A, [zeros(p-1) eye(p-1)]],
[ytrain, zeros(p-1)], [1, lambdas[k]])

err_train[k] = rms(ytrain - A*theta);
err_test[k] = rms(ytest - Atest*theta);
thetas[:,k] = theta;

15.5 Complexity 129

10-6 10-4 10-2 100 102 104 106

0.2

0.4

0.6

0.8

1.0

lambda

R
M

S
 e

rr
or

Train
Test

Figure 15.7 RMS training and test errors as a function of the regularization
parameter λ.

end;
julia> using Plots
julia> # Plot RMS errors
julia> plot(lambdas, err_train, xscale = :log10, label = "Train")
julia> plot!(lambdas, err_test, xscale = :log10, label = "Test")
julia> plot!(xlabel = "lambda", ylabel = "RMS error",

xlim = (1e-6, 1e6));
julia> # Plot coefficients
julia> plot(lambdas, thetas', xscale = :log10)
julia> plot!(xlabel = "lambda", xlim = (1e-6, 1e6));

15.5 Complexity
The kernel trick. Let’s check the kernel trick, described in §15.5.2, to find x̂, the
minimizer of

‖Ax− b‖2 + λ‖x− xdes‖2,
where A is an m×n matrix and λ > 0. We’ll compute x̂ two ways. First, the naïve
way, and then, using the kernel trick. We use the fact that if[

AT
√
λI

]
= QR,

then
(AAT + λI)−1 = (RTQTQR)−1 = R−1R−T .

https://web.stanford.edu/\%7Eboyd/vmls/vmls.pdf#subsection.15.5.2

130 15 Multi-objective least squares

10-6 10-4 10-2 100 102 104 106

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

lambda

y1
y2
y3
y4
y5

Figure 15.8 The regularization path.

julia> m = 100; n = 5000;
julia> A = randn(m,n); b = randn(m); xdes = randn(n);
julia> lam = 2.0;
julia> # Find x that minimizes ||Ax-b||^2 + lambda ||x||^2
julia> @time xhat1 = [A; sqrt(lam)*eye(n)] \ [b; sqrt(lam)*xdes];
23.447045 seconds (40.08 k allocations: 1.130 GiB, 0.83% gc time)

julia> # Now use kernel trick
julia> @time begin

Q, R = qr([A' ; sqrt(lam)*eye(m)]);
Q = Matrix(Q);
xhat2 = A' * (R \ (R' \ (b-A*xdes))) + xdes;
end;

0.025105 seconds (42 allocations: 12.114 MiB)
julia> norm(xhat1-xhat2)
1.2742623007481903e-13

The naïve method requires the factorization of a 5100×5100 matrix. In the second
method we factor a matrix of size 5100× 100.

Chapter 16

Constrained least squares

16.1 Constrained least squares problem
In the examples in this section, we use the cls_solve function, given later, to find
the constrained least squares solution.

Piecewise polynomial. We fit a function f̂ : R → R to some given data, where
f̂(x) = p(x) for x ≤ a and f̂(x) = q(x) for x > a, subject to p(a) = q(a) and
p′(a) = q′(a), i.e., the two polynomials have matching value and slope at the
knot point a. We have data points x1, . . . , xM ≤ a and xM+1, . . . , xN > a and
corresponding values y1, . . . , yN . In the example we take a = 0, polynomials p and
q of degree 3, and N = 2M = 140. The code creates a figure similar to Figure 16.1
of VMLS (Figure 16.1). We use the vandermonde function from page 60.

julia> M = 70; N = 2*M;
julia> xleft = rand(M) .- 1; xright = rand(M);
julia> x = [xleft; xright]
julia> y = x.^3 - x + 0.4 ./ (1 .+ 25*x.^2) + 0.05*randn(N);
julia> n = 4;
julia> A = [vandermonde(xleft,n) zeros(M,n);

zeros(M,n) vandermonde(xright,n)]
julia> b = y;
julia> C = [1 zeros(1,n-1) -1 zeros(1,n-1);

0 1 zeros(1,n-2) 0 -1 zeros(1,n-2)];
julia> d = zeros(2);
julia> theta = cls_solve(A, b, C, d);
julia> using Plots
julia> # Evaluate and plot for 200 equidistant points on each side.
julia> Npl = 200;
julia> xpl_left = linspace(-1, 0, Npl);
julia> ypl_left = vandermonde(xpl_left, 4)*theta[1:n];

https://web.stanford.edu/\%7Eboyd/vmls/vmls.pdf#figure.16.1

132 16 Constrained least squares

-1.0 -0.5 0.0 0.5 1.0

-0.4

-0.2

0.0

0.2

0.4

Figure 16.1 Least squares fit of two cubic polynomials to 140 points, with
continuity constraints p(0) = q(0) and p′(0) = q′(0).

julia> xpl_right = linspace(0, 1, Npl);
julia> ypl_right = vandermonde(xpl_right, 4)*theta[n+1:end];
julia> scatter(x,y, legend=false)
julia> plot!(xpl_left, ypl_left)
julia> plot!(xpl_right, ypl_right)

Advertising budget. We continue the advertising example of page 98 and add a
total budget constraint 1T s = 1284.

julia> cls_solve(R, vdes, ones(1,n), [1284])
3-element Vector{Float64}:
315.16818459234986
109.86643348012254
858.9653819275276

Minimum norm force sequence. We compute the smallest sequence of ten forces,
each applied for one second to a unit frictionless mass originally at rest, that moves
the mass position one with zero velocity (VMLS page 343).

julia> A = eye(10); b = zeros(10);
julia> C = [ones(1,10); (9.5:-1:0.5)']
2×10 Matrix{Float64}:
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

https://web.stanford.edu/\%7Eboyd/vmls/vmls.pdf#section*.373

16.2 Solution 133

9.5 8.5 7.5 6.5 5.5 4.5 3.5 2.5 1.5 0.5
julia> d = [0,1];
julia> fln = cls_solve(A,b,C,d)
10-element Vector{Float64}:
0.0545455
0.0424242
0.030303
0.0181818
0.00606061

-0.00606061
-0.0181818
-0.030303
-0.0424242
-0.0545455

16.2 Solution

Let’s implement the function cls_solve_kkt, which finds the constrained least
squares solution by forming the KKT system and solving it. We allow the b and
d to be matrices, so one function call can solve mutiple problems with the same A
and C.

julia> function cls_solve_kkt(A,b,C,d)
m, n = size(A)
p, n = size(C)
G = A'*A # Gram matrix
KKT = [2*G C'; C zeros(p,p)] # KKT matrix
xzhat = KKT \ [2*A'*b; d]
return xzhat[1:n,:]
end;

julia> A = randn(10,5); b = randn(10);
julia> C = randn(2,5); d = randn(2);
julia> x = cls_solve_kkt(A,b,C,d);
julia> C*x - d # Check residual small
2×1 Matrix{Float64}:
-5.551115123125783e-17
-1.6653345369377348e-16

134 16 Constrained least squares

16.3 Solving contrained least squares problems
Solving constrained least squares via QR. Let’s implement VMLS algorithm 16.1
and then check it against our method above, which forms and solves the KKT
system.

julia> function cls_solve(A,b,C,d)
m, n = size(A)
p, n = size(C)
Q, R = qr([A; C])
Q = Matrix(Q)
Q1 = Q[1:m,:]
Q2 = Q[m+1:m+p,:]
Qtil, Rtil = qr(Q2')
Qtil = Matrix(Qtil)
w = Rtil \ (2*Qtil'*Q1'*b - 2*(Rtil'\d))
return xhat = R \ (Q1'*b - Q2'*w/2)
end

julia> # check with KKT method
julia> m = 10; n = 5; p = 2;
julia> A = randn(m,n); b = randn(m); C = randn(p,n); d = randn(p);
julia> xKKT = cls_solve_kkt(A,b,C,d);
julia> xQR = cls_solve(A,b,C,d);
julia> norm(xKKT-xQR)
1.4931525882746458e-15

The function cls_solve is included in the VMLS package.

Sparse constrained least squares. Let’s form and solve the system of linear equa-
tions in VMSL (16.11), and compare it to our basic method for constrained least
squares. This formulation will result in a sparse set of equations to solve if A and
C are sparse. (The code below just checks that the two methods agree; it does not
use sparsity. Unlike the earlier cls_solve, it assumes b and d are vectors.)

julia> function cls_solve_sparse(A,b,C,d)
m, n = size(A)
p, n = size(C)
bigA = [zeros(n,n) A' C';

A -I/2 zeros(m,p) ;
C zeros(p,m) zeros(p,p)]

xyzhat = bigA \ [zeros(n) ; b ; d]
return xhat = xyzhat[1:n]
end

julia> m = 100; n = 50; p = 10;

https://web.stanford.edu/\%7Eboyd/vmls/vmls.pdf#algorithmctr.16.1
https://web.stanford.edu/\%7Eboyd/vmls/vmls.pdf#equation.16.3.11

16.3 Solving contrained least squares problems 135

julia> A = randn(m,n); b = randn(m); C = randn(p,n); d = randn(p);
julia> x1 = cls_solve(A,b,C,d);
julia> x2 = cls_solve_sparse(A,b,C,d);
julia> norm(x1-x2)
1.3344943251376455e-14

Solving least norm problem. In Julia, the backslash operator is used to find the
least norm solution x̂ of an under-determined set of equations Cx = d. Thus the
backslash operator is overloaded to solve linear equations with a square coefficient
matrix, find a least squares approximate solution when the coefficient matrix is
tall, and find the least norm solution when the coefficient matrix is wide.

Let’s solve a least norm problem using several methods, to check that they
agree.

julia> p = 50; n = 500;
julia> C = randn(p,n); d = randn(p);
julia> x1 = C\d; # Solve using backslash
julia> # Solve using cls_solve, which uses KKT system
julia> x2 = cls_solve(eye(n), zeros(n), C, d);
julia> x3 = pinv(C)*d; # Using pseudo-inverse
julia> norm(x1-x2)
5.584943800596077e-15
julia> norm(x2-x3)
5.719694159427276e-15

136 16 Constrained least squares

Chapter 17

Constrained least squares
applications

17.1 Portfolio optimization
Compounded portfolio value. The cumulative value of a portfolio from a return
time series vector r, starting from the traditional value of $10000, is given by the
value time series vector v, where

vt = 10000(1 + r1) · · · (1 + rt−1), t = 1, . . . , T.

In other words, we form the cumulative product of the vector with entries 1 + rt.
Julia has a built-in function that does this, cumprod.

julia> # Portfolio value with re-investment, return time series r
julia> cum_value(r) = 10000 * cumprod(1 .+ r)
julia> # Generate random returns sequence with
julia> # 10% annualized return, 5% annualized risk
julia> mu = 0.10/250; sigma = 0.05/sqrt(250);
julia> T = 250; # One year's worth of trading days
julia> r = mu .+ sigma*randn(T);
julia> v = cum_value(r);
julia> # compare final value (compounded) and average return
julia> v[T] , v[1]*(1+sum(r))
(10313.854295827463, 10348.11585318395)
julia> # plot cumulative value over the year
julia> using Plots
julia> plot(1:T, v, legend=false)
julia> plot!(xlabel = "t", ylabel = "v_t")

The resulting figure for a particular choice of r is shown in Figure 17.1.

138 17 Constrained least squares applications

0 50 100 150 200 250

10000

10100

10200

10300

10400

10500

t

v_
t

Figure 17.1 Total portfolio value over time.

Portfolio optimization. We define a function port_opt that evaluates the solu-
tion (17.3) of the constrained least squares problem (17.2) in VMLS, and apply to
the return data in VMLS Section 17.1.3.

julia> function port_opt(R,rho)
T, n = size(R)
mu = sum(R, dims=1)'/T
KKT = [2*R'*R ones(n) mu; ones(n)' 0 0; mu' 0 0]
wz1z2 = KKT \ [2*rho*T*mu; 1; rho]
w = wz1z2[1:n]
return w
end;

julia> R, Rtest = portfolio_data();
julia> T, n = size(R)
(2000, 20)
julia> rho = 0.10/250; # Ask for 10% annual return
julia> w = port_opt(R,rho);
julia> r = R*w; # Portfolio return time series
julia> pf_return = 250*avg(r)
0.10000000000000003
julia> pf_risk = sqrt(250)*stdev(r)
0.0865018308685463
julia> using Plots
julia> plot(1:T, cum_value(r), label= "10%")

This produces the curve labeled “10%” in Figure 17.2. We also included the plots
for 20% and 40% annual return, and for the 1/n portfolio w = (1/n)1.

https://web.stanford.edu/\%7Eboyd/vmls/vmls.pdf#equation.17.1.3
https://web.stanford.edu/\%7Eboyd/vmls/vmls.pdf#equation.17.1.2
https://web.stanford.edu/\%7Eboyd/vmls/vmls.pdf#subsection.17.1.3

17.2 Linear quadratic control 139

0 500 1000 1500 2000

2.50×104

5.00×104

7.50×104

1.00×105

1.25×105
10%
20%
40%
1/n

Figure 17.2 Total value over time for four portfolios: the Pareto optimal
portfolios with 10%, 20%, and 40% return, and the uniform portfolio. The
total value is computed using the 2000× 20 daily return matrix R.

17.2 Linear quadratic control
We implement linear quadratic control, as described in VMLS §17.2, for a time-
invariant system with matrices A, B, and C.

Kronecker product. To create the big matrices Ã and C̃, we need to define block
diagonal matrices with the same matrix repeated a number of times along the
diagonal. There are many ways to do this in Julia. One of the simplest ways
uses the kron function, for the Kronecker product of two matrices. The Kronecker
product of an m × n matrix G and a p × q matrix H is defined as the mp × nq
block matrix 

G11H G12H · · · G1nH
G21H G22H · · · G2nH

...
...

...
Gm1H Gm2H · · · GmnH

 .

It is computed in Julia as kron(G,H). If G is an n× n identity matrix, we obtain
the block diagonal matrix with H repeated n times on the diagonal.

julia> H = randn(2,2)
2x2 Matrix{Float64}:
1.73065 -1.33313

-1.52245 0.0200201
julia> kron(eye(3),H)
6×6 Matrix{Float64}:
1.73065 -1.33313 0.0 -0.0 0.0 -0.0

https://web.stanford.edu/\%7Eboyd/vmls/vmls.pdf#section.17.2

140 17 Constrained least squares applications

-1.52245 0.0200201 -0.0 0.0 -0.0 0.0
0.0 -0.0 1.73065 -1.33313 0.0 -0.0
-0.0 0.0 -1.52245 0.0200201 -0.0 0.0
0.0 -0.0 0.0 -0.0 1.73065 -1.33313
-0.0 0.0 -0.0 0.0 -1.52245 0.0200201

An alternative method uses the Julia cat function for constructing block matrices:

julia> cat([H for k=1:3]..., dims=(1,2))
6×6 Matrix{Float64}:
1.73065 -1.33313 0.0 -0.0 0.0 -0.0
-1.52245 0.0200201 -0.0 0.0 -0.0 0.0
0.0 -0.0 1.73065 -1.33313 0.0 -0.0
-0.0 0.0 -1.52245 0.0200201 -0.0 0.0
0.0 -0.0 0.0 -0.0 1.73065 -1.33313
-0.0 0.0 -0.0 0.0 -1.52245 0.0200201

Linear quadratic control example. We start by writing a function lqr that con-
structs and solves the constrained least squares problem for linear quadratic control.
The function returns three arrays

x = [x[1], x[2], ..., x[T]],
u = [u[1], u[2], ..., u[T-1]],
y = [y[1], y[2], ..., y[T]].

The first two contain the optimal solution of the problem. The third array contains
yt = Cxt.

We allow the input arguments x_init and x_des to be matrices, so we can solve
the same problem for different pairs of initial and end states, with one function call.
If the number of columns in x_init and x_des is q, then the entries of the three
output sequences x, u, y are matrices with q columns. The ith columns are the
solution for the initial and end states specified in the ith columns of x_init and
x_des.

function lqr(A,B,C,x_init,x_des,T,rho)
n = size(A,1)
m = size(B,2)
p = size(C,1)
q = size(x_init,2)
Atil = [kron(eye(T), C) zeros(p*T,m*(T-1)) ;

zeros(m*(T-1), n*T) sqrt(rho)*eye(m*(T-1))]
btil = zeros(p*T + m*(T-1), q)
We'll construct Ctilde bit by bit
Ctil11 = [kron(eye(T-1), A) zeros(n*(T-1),n)] -

[zeros(n*(T-1), n) eye(n*(T-1))]

17.2 Linear quadratic control 141

Ctil12 = kron(eye(T-1), B)
Ctil21 = [eye(n) zeros(n,n*(T-1)); zeros(n,n*(T-1)) eye(n)]
Ctil22 = zeros(2*n,m*(T-1))
Ctil = [Ctil11 Ctil12; Ctil21 Ctil22]
dtil = [zeros(n*(T-1), q); x_init; x_des]
z = cls_solve(Atil,btil,Ctil,dtil)
x = [z[(i-1)*n+1:i*n,:] for i=1:T]
u = [z[n*T+(i-1)*m+1 : n*T+i*m, :] for i=1:T-1]
y = [C*xt for xt in x]
return x, u, y

end;

We apply the function to the example in §17.2.1.

julia> A = [0.855 1.161 0.667;
0.015 1.073 0.053;

-0.084 0.059 1.022];
julia> B = [-0.076; -0.139; 0.342];
julia> C = [0.218 -3.597 -1.683];
julia> n = 3; p = 1; m = 1;
julia> x_init = [0.496; -0.745; 1.394];
julia> x_des = zeros(n,1);

We first plot the open-loop response of VMLS figure 17.4 in figure 17.3.

julia> T = 100;
julia> yol = zeros(T,1);
julia> Xol = [x_init zeros(n, T-1)];
julia> for k=1:T-1

Xol[:,k+1] = A*Xol[:,k];
end;

julia> yol = C*Xol;
julia> using Plots
julia> plot(1:T, yol', legend = false)

We then solve the linear quadratic control problem with T = 100 and ρ = 0.2. The
result is shown in the second row of VMLS figure 17.6 and in figure 17.4.

julia> rho = 0.2;
julia> T = 100;
julia> x, u, y = lqr(A,B,C,x_init,x_des,T,rho)
julia> J_input = norm(u)^2
0.7738942551160318
julia> J_output = norm(y)^2

https://web.stanford.edu/\%7Eboyd/vmls/vmls.pdf#subsection.17.2.1
https://web.stanford.edu/\%7Eboyd/vmls/vmls.pdf#figure.17.4
https://web.stanford.edu/\%7Eboyd/vmls/vmls.pdf#figure.17.6

142 17 Constrained least squares applications

0 25 50 75 100

0.0

0.1

0.2

0.3

0.4

Figure 17.3 Open-loop response CAt−1xinit.

3.7829986463323224
julia> plot(1:T-1, vcat(u...), legend = false, xlabel="t",

ylabel= "u_t")
julia> plot(1:T, vcat(y...), legend=false, xlabel = "t",

ylabel = "y_t")

Linear state feedback control. To finish the example we implement the state
feedback method in VMLS section 17.2.3. The plots in figure 17.5 reproduce VMLS
figure 17.7.

julia> # Solve LQ problem with x_init = I, x_des = 0
julia> rho = 1.0;
julia> xsf, usf, ysf = lqr(A,B,C,eye(n),zeros(n,n),T,rho);
julia> K = usf[1];
julia> # Simulate over horizon 150
julia> TT = 150;
julia> Xsf = [x_init zeros(n,TT-1)];
julia> for k=1:TT-1

Xsf[:,k+1] = (A+B*K)*Xsf[:,k];
end;

julia> usf = K*Xsf[:, 1:TT-1];
julia> ysf = C*Xsf;
julia> # Also compute optimal LQ solution for rho = 1.0
julia> x, u, y = lqr(A,B,C,x_init,x_des,T,rho)
julia> # Plot the two inputs

https://web.stanford.edu/\%7Eboyd/vmls/vmls.pdf#subsection.17.2.3
https://web.stanford.edu/\%7Eboyd/vmls/vmls.pdf#figure.17.7

17.2 Linear quadratic control 143

0 25 50 75 100

-0.2

-0.1

0.0

0.1

0.2

0.3

t

u_
t

0 25 50 75 100

0.0

0.1

0.2

0.3

0.4

t

y_
t

Figure 17.4 Optimal input and output for ρ = 0.2.

144 17 Constrained least squares applications

0 50 100 150

-0.10

-0.05

0.00

0.05

0.10

t

u_
t

Optimal
State feedback

0 50 100 150

0.0

0.1

0.2

0.3

0.4

t

y_
t

Optimal
State feedback

Figure 17.5 The blue curves are the solutions of the linear quadratic control
problem for ρ = 1. The red curves are the inputs and outputs that result
from the constant state feedback ut = Kxt.

.

julia> plot([vcat(u...); zeros(TT-T,1)],
label="Optimal", xlabel = "t", ylabel = "u_t")

julia> plot!(usf', label = "State feedback")
julia> # Plot the two outputs
julia> plot_sf_y = plot([vcat(y...); zeros(TT-T,1)],

label="Optimal", xlabel = "t", ylabel = "y_t")
julia> plot!(ysf', label = "State feedback")

17.3 Linear quadratic state estimation 145

17.3 Linear quadratic state estimation
The code for the linear quadratic estimation method is very similar to the one for
linear quadratic control.

function lqe(A,B,C,y,T,lambda)
n = size(A,1)
m = size(B,2)
p = size(C,1)
Atil = [kron(eye(T), C) zeros(T*p, m*(T-1));

zeros(m*(T-1), n*T) sqrt(lambda)*eye(m*(T-1))]
We assume y is a p x T array, so we vectorize it
btil = [vcat(y...) ; zeros((T-1)*m)]
Ctil = [([kron(eye(T-1), A) zeros(n*(T-1), n)] +

[zeros(n*(T-1), n) -eye(n*(T-1))]) kron(eye(T-1), B)]
dtil = zeros(n*(T-1))
z = cls_solve(Atil, btil, Ctil, dtil)
x = [z[(i-1)*n+1:i*n] for i=1:T]
u = [z[n*T+(i-1)*m+1 : n*T+i*m] for i=1:T-1]
y = [C*xt for xt in x]
return x, u, y

end

We use the system matrices in §17.3.1 of VMLS. The output measurement data
are read from an input file estimation_data.jl, which creates a 2 × 100 matrix
ymeas. We compute the solution for λ = 103, shown in the lower-left plot of VMLS
figure 17.8.

julia> ymeas = lq_estimation_data();
julia> A = [eye(2) eye(2); zeros(2,2) eye(2)];
julia> B = [zeros(2,2); eye(2)];
julia> C = [eye(2) zeros(2,2)];
julia> T = 100;
julia> lambda = 1e3;
julia> xest, uest, yest = lqe(A,B,C,ymeas,T,lambda)
julia> using Plots
julia> scatter(ymeas[1,:], ymeas[2,:], legend = false, axis = false)
julia> plot!([yt[1] for yt in yest], [yt[2] for yt in yest])

The result can be seen in figure 17.6

https://web.stanford.edu/\%7Eboyd/vmls/vmls.pdf#subsection.17.3.1
https://web.stanford.edu/\%7Eboyd/vmls/vmls.pdf#figure.17.8

146 17 Constrained least squares applications

Figure 17.6 The circles show 100 noisy measurements in 2-D. The solid line
is the estimated trajectory Cx̂t for λ = 1000.

Chapter 18

Nonlinear least squares

18.1 Nonlinear equations and least squares

18.2 Gauss–Newton algorithm

Basic Gauss–Newton algorithm. Let’s first implement the basic Gauss–Newton
method (algorithm 18.1 in VMLS) in Julia. In Julia, you can pass a function as
an argument to another function, so we can pass f (the function) and also Df (the
derivative or Jacobian matrix) to our Gauss–Newton algorithm.

1 function gauss_newton(f, Df, x1; kmax = 10)
2 x = x1
3 for k = 1:kmax
4 x = x - Df(x) \ f(x)
5 end
6 return x
7 end

Here we simply run the algorithm for a fixed number of iterations kmax, specified
by an optional keyword argument with default value 10. The code does not verify
whether the final x is actually a solution, and it will break down when Df(x(k)) has
linearly dependent columns. This very simple implementation is only for illustrative
purposes; the Levenberg–Marquardt algorithm described in the next section is
better in every way.

Newton algorithm. The Gauss–Newton algorithm reduces to the Newton algo-
rithm when the function maps n-vectors to n-vectors, so the function above is also
an implementation of the Newton method for solving nonlinear equations. The
only difference with the following function is the stopping condition. In Newton’s
method one terminates when ‖f(x(k))‖ is sufficiently small.

https://web.stanford.edu/\%7Eboyd/vmls/vmls.pdf#algorithmctr.18.1

148 18 Nonlinear least squares

1 function newton(f, Df, x1; kmax = 20, tol = 1e-6)
2 x = x1
3 fnorms = zeros(0,1)
4 for k = 1:kmax
5 fk = f(x)
6 fnorms = [fnorms; norm(fk)]
7 if norm(fk) < tol
8 break
9 end;

10 x = x - Df(x) \ fk
11 end
12 return x, fnorms
13 end

We added a second optional argument with the tolerance in the stopping condition
on line 7. The default value is 10−6. We also added a second output argument
fnorms, with the sequence ‖f(x(k))‖, so we can examine the convergence in the
following examples.

Newton algorithm for n = 1. Our first example is a scalar nonlinear equation
f(x) = 0 with

f(x) =
ex − e−x

ex + e−x
(18.1)

(VMLS figures 18.3 and 18.4).

julia> f(x) = (exp(x)-exp(-x)) / (exp(x)+exp(-x));
julia> Df(x) = 4 / (exp(x) + exp(-x))^2;

We first try with x(1) = 0.95.

julia> x, fnorms = newton(f,Df,0.95);
julia> f(x)
4.3451974324200454e-7
julia> fnorms
5×1 Matrix{Float64}:
0.7397830512740042
0.5941663642651942
0.23011124550034218
0.00867002864500575
4.3451974324200454e-7

julia> Using Plots
julia> plot(fnorms, shape=:circle, legend = false, xlabel = "k",

ylabel = "|f|")

https://web.stanford.edu/\%7Eboyd/vmls/vmls.pdf#figure.18.3
https://web.stanford.edu/\%7Eboyd/vmls/vmls.pdf#figure.18.4

18.3 Levenberg–Marquardt algorithm 149

1 2 3 4 5

0.0

0.2

0.4

0.6

k

|f|

Figure 18.1 The first iterations in the Newton algorithm for solving f(x) = 0

for starting point x(1) = 0.95.

The method converges very quickly, as can also be seen in figure 18.1. However it
does not converge for a slightly larger starting point x(1) = 1.15.

julia> x, fnorms = newton(f,Df,1.15);
julia> f(x)
NaN
julia> fnorms[1:5]
5-element Vector{Float64}:

0.8177540779702877
0.8664056534177534
0.9735568532451108
0.9999999999999906

NaN

18.3 Levenberg–Marquardt algorithm

The Gauss–Newton algorithm can fail if the derivative matrix does not have in-
dependent columns. It also does not guarantee that ‖f(x(k))‖ decreases in each
iteration. Both of these shortcomings are addressed in the Levenberg–Marquardt
algorithm. Below is a Julia implementation of algorithm 18.3 in VMLS. This func-
tion is included in the Vmls package.

https://web.stanford.edu/\%7Eboyd/vmls/vmls.pdf#algorithmctr.18.3

150 18 Nonlinear least squares

1 function levenberg_marquardt(f, Df, x1, lambda1; kmax=100, tol=1e-6)
2 n = length(x1)
3 x = x1
4 lambda = lambda1
5 objectives = zeros(0,1)
6 residuals = zeros(0,1)
7 for k = 1:kmax
8 fk = f(x)
9 Dfk = Df(x)

10 objectives = [objectives; norm(fk)^2]
11 residuals = [residuals; norm(2*Dfk'*fk)]
12 if norm(2*Dfk'*fk) < tol
13 break
14 end;
15 xt = x - [Dfk; sqrt(lambda)*eye(n)] \ [fk; zeros(n)]
16 if norm(f(xt)) < norm(fk)
17 lambda = 0.8*lambda
18 x = xt
19 else
20 lambda = 2.0*lambda
21 end
22 end
23 return x, Dict([("objectives", objectives),
24 ("residuals", residuals)])
25 end

Line 12 is the second stopping criterion suggested on page 393 of VMLS, and checks
whether the optimality condition (18.3) is approximately satisfied. The default
tolerance 10−6 can vary with the scale of the problem and the desired accuracy.
Keep in mind that the optimality condition (18.3) is a necessary condition and
does not guarantee that the solution minimizes the nonlinear least squares objective
‖f(x)‖2. The code limits the number of iterations to kmax, after which it is assumed
that the algorithm is failing to converge.

The function returns a dictionary with information about the sequence of iter-
ates, including the value of ‖f(x(k)‖2 and ‖Df(x(k))T f(x(k))‖ at each iteration.

Nonlinear equation. We apply the algorithm to the scalar function (18.1) with
the starting point x(1) = 1.15.

julia> f(x) = (exp.(x) - exp.(-x)) / (exp.(x) + exp.(-x));
julia> Df(x) = 4 ./ (exp.(x) + exp.(-x)).^2;
julia> x, history = levenberg_marquardt(f, Df, [1.15], 1.0);
julia> plot(sqrt.(history["objectives"][1:10]), shape = :circle,

https://web.stanford.edu/\%7Eboyd/vmls/vmls.pdf#section*.408
https://web.stanford.edu/\%7Eboyd/vmls/vmls.pdf#equation.18.1.3
https://web.stanford.edu/\%7Eboyd/vmls/vmls.pdf#equation.18.1.3

18.3 Levenberg–Marquardt algorithm 151

2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

k

|f|

Figure 18.2 Values of |f(x(k))| versus the iteration number k for
the Levenberg–Marquardt algorithm applied to f(x) = (exp(x) −
exp(−x))/(exp(x)+exp(−x)). The starting point is x(1) = 1.15 and λ(1) = 1.

legend = false, xlabel = "k", ylabel = "|f|");

The result is shown in figure 18.2.
Note that we defined x(1) as the array [1.15], and use dot-operations in the

definitions of f and Df to ensure that these functions work with vector arguments.
This is important because Julia distinguishes between scalars and 1-vectors. If we
call the levenberg_marquardt function with a scalar argument x1, line 15 will
raise an error, because Julia does not accept subtractions of scalars and 1-vectors.

Equilibrium prices. We solve a nonlinear equation f(p) = 0 with two variables,
where

f(p) = exp(Es log p+ snom)− exp(Ed log p+ dnom). (18.2)
Here exp and log are interpreted as element-wise vector operations. The problem
parameters are snom = (2.2, 0.3), dnom = (3.1, 2.2),

Es =

[
0.5 −0.3

−0.15 0.8

]
, Ed =

[
−0.5 0.2
0 −0.5

]
.

julia> snom = [2.2, 0.3];
julia> dnom = [3.1, 2.2];
julia> Es = [0.5 -.3; -0.15 0.8];
julia> Ed = [-0.5 0.2; -0.00 -0.5];
julia> f(p) = exp.(Es * log.(p) + snom) - exp.(Ed * log.(p) + dnom);
julia> function Df(p)

S = exp.(Es * log.(p) + snom);

152 18 Nonlinear least squares

2.5 5.0 7.5 10.0 12.5

0

25

50

75

100

125

k

O
bj

ec
tiv

e

Figure 18.3 Cost function ‖f(p(k)‖2 versus iteration number k for the ex-
ample of equation (18.2).

D = exp.(Ed * log.(p) + dnom);
return [S[1]*Es[1,1]/p[1] S[1]*Es[1,2]/p[2];

S[2]*Es[2,1]/p[1] S[2]*Es[2,2]/p[2]] -
[D[1]*Ed[1,1]/p[1] D[1]*Ed[1,2]/p[2];
D[2]*Ed[2,1]/p[1] D[2]*Ed[2,2]/p[2]];

end;
julia> p, history = levenberg_marquardt(f, Df, [3, 9], 1);
julia> p
2-element Vector{Float64}:
5.379958476145877
4.996349602562754

julia> using Plots
julia> plot(history["objectives"], shape = :circle, legend =false,

xlabel = "k", ylabel = "Objective")

Figure 18.3 shows the plot of ‖f(p(k))‖2 versus iteration number k.

Location from range measurements. The next example is the location from
range measurements problem on page 396 in VMLS. The positions of the m = 5
points ai are given as rows in a 5 × 2 matrix A. The measurements are given in a
5-vector rhos. To simplify the code for the functions f(x) and Df(x) we add a
function dist(x) that computes the vector of distances (‖x− a1‖, . . . , ‖x− am‖).

https://web.stanford.edu/\%7Eboyd/vmls/vmls.pdf#section*.415

18.3 Levenberg–Marquardt algorithm 153

The expression for the derivative is

Df(x) =


x1 − (a1)1
‖x− a1‖

x2 − (a1)2
‖x− a1‖

...
...

x1 − (am)1
‖x− am‖

x2 − (am))2
‖x− am‖

 .

This can be evaluated as the product of a diagonal matrix with diagonal entries
1/‖x− ai‖ and the 5× 2 matrix with i, j entry (x− ai)j .

We run the Levenberg–Marquardt method for three starting points and λ(1) =
0.1. The plot is shown in figure 18.4.

julia> # Five locations ai in a 5x2 matrix.
julia> A = [1.8 2.5; 2.0 1.7; 1.5 1.5; 1.5 2.0; 2.5 1.5];
julia> # Vector of measured distances to five locations.
julia> rhos = [1.87288, 1.23950, 0.53672, 1.29273, 1.49353];
julia> # dist(x) returns a 5-vector with the distances ||x-ai||.
julia> dist(x) = sqrt.((x[1] .- A[:,1]).^2 + (x[2] .- A[:,2]).^2);
julia> # f(x) returns the five residuals.
julia> f(x) = dist(x) - rhos;
julia> # Df(x) is the 5x2 derivative.
julia> Df(x) = diagonal(1 ./ dist(x)) *

[(x[1] .- A[:,1]) (x[2] .- A[:,2])];
julia> # Solve with starting point (1.8,3.5) and lambda = 0.1.
julia> x1, history1 = levenberg_marquardt(f, Df, [1.8, 3.5], 0.1);
julia> x1
2-element Vector{Float64}:
1.1824859803827907
0.8242289367900364
julia> # Starting point (3.0,1.5).
julia> x2, history2 = levenberg_marquardt(f, Df, [3.0, 1.5], 0.1);
julia> x2
2-element Vector{Float64}:
1.1824857942435818
0.8242289466379732
julia> # Starting point (2.2,3.5).
julia> x3, history3 = levenberg_marquardt(f, Df, [2.2, 3.5], 0.1);
julia> x3
2-element Vector{Float64}:
2.9852664103617954
2.1215768036188956
julia> using Plots
julia> plot(history1["objectives"][1:10], shape = :circle,

154 18 Nonlinear least squares

2 4 6 8 10
0

1

2

3

k

O
bj

ec
tiv

e

Starting point 1
Starting point 2
Starting point 3

Figure 18.4 Cost function ‖f(x(k))‖2 versus iteration number k for the three
starting points in the location from range measurements example.

label = "Starting point 1")
julia> plot!(history2["objectives"][1:10], shape = :circle,

label = "Starting point 2")
julia> plot!(history3["objectives"][1:10], shape = :circle,

label = "Starting point 3")
julia> plot!(xlabel = "k", ylabel = "Objective")

18.4 Nonlinear model fitting
Example. We fit a model

f̂(x; θ) = θ1e
θ2x cos(θ3x+ θ4)

to N = 60 data points. We first generate the data.

julia> # Use these parameters to generate data.
julia> theta_ex = [1, -0.2, 2*pi/5, pi/3];
julia> # Choose 60 points x between 0 and 20.
julia> M = 30;
julia> xd = [5*rand(M); 5 .+ 15*rand(M)];
julia> # Evaluate function at these points.
julia> yd = theta_ex[1] * exp.(theta_ex[2]*xd) .*

18.4 Nonlinear model fitting 155

cos.(theta_ex[3] * xd .+ theta_ex[4])
julia> # Create a random perturbation of yd.
julia> N = length(xd);
julia> yd = yd .* (1 .+ 0.2*randn(N)) .+ 0.015 * randn(N);
julia> # Plot data points.
julia> using Plots
julia> scatter(xd, yd, legend=false)

The 60 points are shown in figure 18.5. We now run our Levenberg–Marquardt
code with starting point θ(1) = (1, 0, 1, 0) and λ(1) = 1. The fitted model is shown
in figure 18.5.

julia> f(theta) = theta[1] * exp.(theta[2]*xd) .*
cos.(theta[3] * xd .+ theta[4]) - yd;

julia> Df(theta) = hcat(
exp.(theta[2]*xd) .* cos.(theta[3] * xd .+ theta[4]),
theta[1] * (xd .* exp.(theta[2]*xd) .*

cos.(theta[3] * xd .+ theta[4])),
-theta[1] * (exp.(theta[2]*xd) .* xd .*

sin.(theta[3] * xd .+ theta[4])),
-theta[1] * (exp.(theta[2]*xd) .*

sin.(theta[3] * xd .+ theta[4])));
julia> theta1 = [1, 0, 1, 0];
julia> theta, history = levenberg_marquardt(f, Df, theta1, 1.0)
julia> theta
4-element Vector{Float64}:
1.0065969737811806

-0.23115179954434736
1.2697087881931268
1.0133243392186635

julia> # Plot the fitted model.
julia> x = linspace(0, 20, 500);
julia> y=theta[1]*exp.(theta[2]*x) .* cos.(theta[3]*x .+ theta[4]);
julia> plot!(x, y, legend = false);

Orthogonal distance regression. In figure 18.14 of VMLS we use orthogonal dis-
tance regression to fit a cubic polynomial

f̂(x; θ) = θ1 + θ2x+ θ3x
2 + θ4x

3

to N = 25 data points.
We first read in the data and compute the standard least squares fit.

https://web.stanford.edu/\%7Eboyd/vmls/vmls.pdf#figure.18.14

156 18 Nonlinear least squares

0 5 10 15 20

-0.50

-0.25

0.00

0.25

0.50

Figure 18.5 Least squares fit of a function f̂(x; θ) = θ1e
θ2x cos(θ3x+ θ4) to

N = 60 points (x(i), y(i)).

julia> xd, yd = orth_dist_reg_data(); # 2 vectors of length N = 25
julia> N = length(xd);
julia> p = 4;
julia> theta_ls = vandermonde(xd, p) \ yd;

The nonlinear least squares formulation on page 400 of VMLS has p+N variables
θ1, …, θp, u(1), …, u(N). We will store them in that order in the nonlinear least
squares vector variable. The objective is to minimize the squared norm of the
2N -vector 

f̂(u(1); θ)− y(1)

...
f̂(u(N); θ)− y(N)

u(1) − x(1)

...
u(N) − x(N)


function f(x)

theta = x[1:p];
u = x[p+1:end];
f1 = vandermonde(u,p)*theta - yd
f2 = u - xd
return [f1; f2]

end;

https://web.stanford.edu/\%7Eboyd/vmls/vmls.pdf#figure.18.14

18.5 Nonlinear least squares classification 157

function Df(x)
theta = x[1:p]
u = x[p+1:end]
D11 = vandermonde(u,p)
D12 = diagonal(theta[2] .+ 2*theta[3]*u .+ 3*theta[4]*u.^2)
D21 = zeros(N,p)
D22 = eye(N)
return [D11 D12; D21 D22]

end

We now call levenberg_marquardt with these two functions. A natural choice for
the initial point is to use the least squares solution for the variables θ and the data
points x(i) for the variables u(i). We use λ(1) = 0.01.

julia> sol, hist = levenberg_marquardt(f, Df, [theta_ls; xd], 0.01);
julia> theta_od = sol[1:p];

Figure 18.6 shows the two fitted polynomials.

julia> using Plots
julia> scatter(xd,yd, label="", legend = :topleft);
julia> x = linspace(minimum(xd), maximum(xd), 500);
julia> y_ls = vandermonde(x, p) * theta_ls;
julia> y_od = vandermonde(x, p) * theta_od;
julia> plot!(x, y_ls, label = "LS");
julia> plot!(x, y_od, label = "Orth. dist.");

18.5 Nonlinear least squares classification

158 18 Nonlinear least squares

0.2 0.4 0.6 0.8 1.0

-0.2

-0.1

0.0

0.1

0.2

LS
Orth. dist.

Figure 18.6 Least squares and orthogonal distance regression fit of a cubic
polynomial to 25 data points.

Chapter 19

Constrained nonlinear least
squares

19.1 Constrained nonlinear least squares

19.2 Penalty algorithm

Let’s implement the penalty algorithm (algorithm 19.1 in VMLS).

1 function penalty_method(f, Df, g, Dg, x1, lambda1; kmax = 100,
2 feas_tol = 1e-4, oc_tol = 1e-4)
3 x = x1
4 mu = 1.0
5 feas_res = [norm(g(x))]
6 oc_res = [norm(2*Df(x)'*f(x) + 2*mu*Dg(x)'*g(x))]
7 lm_iters = zeros(Int64,0,1);
8 for k=1:kmax
9 F(x) = [f(x); sqrt(mu)*g(x)]

10 DF(x) = [Df(x); sqrt(mu)*Dg(x)]
11 x, hist = levenberg_marquardt(F,DF,x,lambda1,tol=oc_tol)
12 feas_res = [feas_res; norm(g(x))]
13 oc_res = [oc_res; hist["residuals"][end]]
14 lm_iters = [lm_iters; length(hist["residuals"])]
15 if norm(g(x)) < feas_tol
16 break
17 end
18 mu = 2*mu
19 end
20 return x, Dict([("lm_iterations", lm_iters),

https://web.stanford.edu/\%7Eboyd/vmls/vmls.pdf#algorithmctr.19.1

160 19 Constrained nonlinear least squares

21 ("feas_res", feas_res), ("oc_res", oc_res)])
22 end

On line 11 we call the function levenberg_marquardt of the previous chapter to
minimize ‖F (x)‖2 where

F (x) =

[
f(x)√
µg(x)

]
.

We evaluate two residuals. The “feasibility” residual ‖g(x(k))‖ is the error in the
constraint g(x) = 0. The “optimality condition” residual is defined as

‖2Df(x(k))T f(x(k)) + 2Dg(x(k))T z(k)‖

where z(k) = 2µ(k−1)g(x(k)) (and we take µ(0) = µ(1)). On line 13, we obtain
the optimality condition residual as the last residual in the Levenberg–Marquardt
method. On line 20 we return the final x, and a dictionary containing the two se-
quences of residuals and the number of iterations used in each call to the Levenberg–
Marquardt algorithm.

Example. We apply the method to a problem with two variables

f(x1, x2) =

[
x1 + exp(−x2)
x2
1 + 2x2 + 1

]
, g(x1, x2) = x1 + x3

1 + x2 + x2
2.

julia> f(x) = [x[1] + exp(-x[2]), x[1]^2 + 2*x[2] + 1];
julia> Df(x) = [1.0 -exp(-x[2]); 2*x[1] 2];
julia> g(x) = [x[1] + x[1]^3 + x[2] + x[2]^2];
julia> Dg(x) = [1 + 3*x[1]^2 1 + 2*x[2]];
julia> x, hist = penalty_method(f, Df, g, Dg, [0.5, -0.5], 1.0);
julia> x
2-element Vector{Float64}:
-3.334955140841332e-5
-2.7682497163944097e-5

The following lines create a staircase plot with the residuals versus the cumulative
number of Levenberg–Marquardt iterations as in VMLS figure 19.4. The result is
in figure 19.1.

julia> using Plots
julia> cum_lm_iters = cumsum(hist["lm_iterations"], dims=1);
julia> itr = vcat([0], [[i; i] for i in cum_lm_iters]...)
julia> feas_res = vcat([

[r;r] for r in hist["feas_res"][1:end-1]]...,
hist["feas_res"][end]);

julia> oc_res = vcat([
[r;r] for r in hist["oc_res"][1:end-1]]...,

https://web.stanford.edu/\%7Eboyd/vmls/vmls.pdf#figure.19.4

19.3 Augmented Lagrangian algorithm 161

0 20 40 60 80 100 120

10-5

10-4

10-3

10-2

10-1

100

101

Cumulative Levenberg-Marquardt iterations

R
es

id
ua

l

Feasibility
Opt. cond.

Figure 19.1 Feasibility and optimality condition errors versus the cumulative
number of Levenberg–Marquardt iterations in the penalty algorithm.

hist["oc_res"][end]);
julia> plot(itr, feas_res, shape=:circle, label = "Feasibility")
julia> plot!(itr, oc_res, shape=:circle, label = "Opt. cond.")
julia> plot!(yscale = :log10,

xlabel = "Cumulative Levenberg--Marquardt iterations",
ylabel = "Residual")

19.3 Augmented Lagrangian algorithm

1 function aug_lag_method(f, Df, g, Dg, x1, lambda1; kmax = 100,
2 feas_tol = 1e-4, oc_tol = 1e-4)
3 x = x1
4 z = zeros(length(g(x)))
5 mu = 1.0
6 feas_res = [norm(g(x))]
7 oc_res = [norm(2*Df(x)'*f(x) + 2*mu*Dg(x)'*z)]
8 lm_iters = zeros(Int64,0,1);
9 for k=1:kmax

10 F(x) = [f(x); sqrt(mu)*(g(x) + z/(2*mu))]
11 DF(x) = [Df(x); sqrt(mu)*Dg(x)]

162 19 Constrained nonlinear least squares

12 x, hist = levenberg_marquardt(F, DF, x, lambda1, tol=oc_tol)
13 z = z + 2*mu*g(x)
14 feas_res = [feas_res; norm(g(x))]
15 oc_res = [oc_res; hist["residuals"][end]]
16 lm_iters = [lm_iters; length(hist["residuals"])]
17 if norm(g(x)) < feas_tol
18 break
19 end
20 mu = (norm(g(x)) < 0.25*feas_res[end-1]) ? mu : 2*mu
21 end
22 return x, z, Dict([("lm_iterations", lm_iters),
23 ("feas_res", feas_res), ("oc_res", oc_res)])
24 end

Here the call to the Levenberg–Marquardt algorithm on line 12 is to minimize
‖F (x)‖2 where

F (x) =

[
f(x)√

µ(k)(g(x) + z(k)/(2µ(k)))

]
.

We again record the feasibility residuals ‖g(x(k)‖ and the optimality conditions
residuals

‖2Df(x(k))T f(x(k)) + 2Dg(x(k))T z(k)‖,

and return them in a dictionary.

Example. We continue the small example.

julia> x, z, hist = aug_lag_method(f, Df, g, Dg, [0.5, -0.5], 1.0);
julia> x
2-element Vector{Float64}:
-1.8646614856169702e-5
-1.5008567819930016e-5

julia> z
1-element Vector{Float64}:
-1.9999581273499105

The following code shows the convergence as in VMLS figure 19.4. The plot is
given in figure 19.2.

julia> using Plots
julia> cum_lm_iters = cumsum(hist["lm_iterations"],dims=1);
julia> itr = vcat([0], [[i; i] for i in cum_lm_iters]...)
julia> feas_res = vcat([

[r;r] for r in hist["feas_res"][1:end-1]]...,
hist["feas_res"][end]);

https://web.stanford.edu/\%7Eboyd/vmls/vmls.pdf#figure.19.4

19.4 Nonlinear control 163

0 25 50 75 100

10-4

10-3

10-2

10-1

100

101

Cumulative Levenberg-Marquardt iterations

R
es

id
ua

l

Feasibility
Opt. cond.

Figure 19.2 Feasibility and optimality condition errors versus the cumulative
number of Levenberg–Marquardt iterations in the augmented Lagrangian
algorithm.

julia> oc_res = vcat([
[r;r] for r in hist["oc_res"][1:end-1]]...,
hist["oc_res"][end]);

julia> plot(itr, feas_res, shape=:circle, label = "Feasibility")
julia> plot!(itr, oc_res, shape=:circle, label = "Opt. cond.")
julia> plot!(yscale = :log10,

xlabel = "Cumulative Levenberg-Marquardt iterations",
ylabel = "Residual")

19.4 Nonlinear control

164 19 Constrained nonlinear least squares

Appendices

Appendix A

The VMLS package

After installing the VMLS package as described on page ix, you can use it by typing
using VMLS at the Julia prompt. Typing ? followed by a function name gives a
short description of the function.

The VMLS package includes three types of functions: simple utility functions
that match the VMLS notation or are simpler to use than the corresponding Julia
functions, implementations of some algorithms in VMLS, and functions that gen-
erate data for some of the examples. The algorithm implementations are meant
for use in the examples of this companion and for exercises in VMLS. They are
not optimized for efficiency or robustness, and do not perform any error checking
of the input arguments.

A.1 Utility functions
Vector utility functions.

avg(x). Returns the average of the elements of a vector or matrix (page 18).

rms(x). Returns the RMS value of the elements of a vector or matrix (page 23).

stdev(x). Returns the standard deviation of the elements of a vector or matrix
(page 26).

ang(x,y). Returns the angle in radians between non-zero vectors (page 27).

correl_coeff(x,y). Returns the correlation coefficient between non-constant
vectors (page 28).

Matrix utility functions.

eye(n). Returns an n× n identity matrix (page 52).

diagonal(x). Returns a diagonal matrix with the entries of the vector x on its
diagonal (page 54).

168 A The VMLS package

speye(n). Returns an n× n sparse identity matrix (page 56).

spdiagonal(x). Returns a sparse diagonal matrix with the entries of the vector
x on its diagonal (page 56).

vandermonde(t,n). Returns the Vandermonde matrix with n columns and ith
column ti−1 (page 60).

toeplitz(a,n). Returns the Toeplitz matrix with n columns and the vector a in
the leading positions of the first column (page 67).

Range function.

linspace(a,b,n). Returns a vector with n equally spaced numbers between a
and b (page 92).

Utility functions for classification.

confusion_matrix(y,yhat,K=2). Returns the confusion matrix for a data vector
y and the vector of predictions ŷ. If K = 2, the vectors y and ŷ are Boolean.
If K > 2, they contain integers in {1, . . . ,K} (pages 116, 117).

row_argmax(X). If X is an m × n matrix, returns an m-vector with ith element
argmaxj Xij (page 118).

one_hot(x,K). Returns the one-hot encoding of the vector x, which must have
elements in {1, . . . ,K}. The one-hot encoding of an n-vector x is the n×K
matrix X with Xij = 1 if xi = j and Xij = 0 otherwise (page 119).

A.2 Algorithms
kmeans(X,k;maxiters=100,tol=1e-5). Applies the k-means algorithm for k

clusters to the vectors stored in X. The argument X is a one-dimensional
array of N n-vectors, or an n × N -matrix. The function returns a tuple
with two elements. The first output argument is an array of N integers in
{1, . . . , k} with the cluster assignments for the N data points. The second
output argument is an array of k n-vectors with the k cluster representatives
(page 32).

gram_schmidt(a;tol=1e-10). Applies the Gram–Schmidt algorithm to the vec-
tor stored in the array a and returns the result as an array of vectors (page 43).

mols_solve(As,Bs,lambdas). Returns the solution of the multi-objective least
squares problem with coefficient matrices in the array As, right-hand side
vectors in the array bs, and weights in the array lambdas (page 123).

cls_solve(A,b,C,d). Returns the solution of the constrained least squares prob-
lem with coefficient matrices A and C, and right-hand side vectors or matrices
b and d (page 134).

A.3 Data sets 169

levenberg_marquardt(f,Df,x1,lambda1;kmax=100,tol=1e-6). Applies the Levenberg–
Marquardt algorithm to the function defined in f and Df, with starting point
x(1) and initial regularization parameter λ(1). The function returns the final
iterate x and a dictionary with the convergence history (page 149).

aug_lag_method(f,Df,g,Dg,x1,lambda1;kmax=100,feas_tol=1e-4,oc_tol=1e-
4). Applies the augmented Lagrangian method to the constrained nonlinear
least squares problem defined by f, Df, g, Dg, with starting point x(1). The
subproblems are solved using the Levenberg–Marquardt method with initial
regularization parameter λ(1). Returns the final iterate x, multiplier z, and
a dictionary with the convergence history (page 161).

A.3 Data sets
house_sales_data(). Returns a dictionary D with the Sacramento house sales

data used in section 2.3 and chapter 13 of VMLS. The 6 items in the dictionary
are vectors of length 774, with data for 774 house sales.

D["price"]: selling price in 1000 dollars
D["area"]: area in 1000 square feet
D["beds"]: number of bedrooms
D["baths"]: number of bathrooms
D["condo"]: 1 if a condo, 0 otherwise
D["location"]: an integer between 1 and 4 indicating the location.

wikipedia_data(). Returns a tuple (articles, dictionary, titles) with
the data used in section 4.4.2 of VMLS. articles is an array of length 500
with the word histograms of the 500 articles. Each histogram is an array of
length 4423. dictionary is an array of length 4423 with the words in the
dictionary. titles is an array of length 500 with the article titles.

population_data(). Returns a dictionary D with the US population data used in
section 9.2 of VMLS. The items in the dictionary are three vectors of length
100.

D["population"]: 2010 population in millions for ages 0,…,99
D["birth_rate"]: birth rate
D["death_rate"]: death rate.

petroleum_consumption_data(). Returns a 34-vector with the world annual
petroleum consumption between 1980 and 2013, in thousand barrels/day (dis-
cussed on page 252 in VMLS).

vehicle_miles_data(). Returns a 15×12 matrix with the vehicle miles traveled
in the US (in millions), per month, for the years 2000, . . . , 2014 (discussed on
page 252 in VMLS).

temperature_data(). Returns a vector of length 774 = 31 · 24 with the hourly
temperature at LAX in May 2016 (discussed on pages 259 and 266 in VMLS).

https://web.stanford.edu/\%7Eboyd/vmls/vmls.pdf#section*.56
https://web.stanford.edu/\%7Eboyd/vmls/vmls.pdf#chapter.13
https://web.stanford.edu/\%7Eboyd/vmls/vmls.pdf#subsection.4.4.2
https://web.stanford.edu/\%7Eboyd/vmls/vmls.pdf#section.9.2
https://web.stanford.edu/\%7Eboyd/vmls/vmls.pdf#section*.298
https://web.stanford.edu/\%7Eboyd/vmls/vmls.pdf#section*.298
https://web.stanford.edu/\%7Eboyd/vmls/vmls.pdf#section*.304
https://web.stanford.edu/\%7Eboyd/vmls/vmls.pdf#section*.313

170 A The VMLS package

iris_data(). Returns a dictionary D with the Iris flower data set, discussed in
sections 14.2.1 and 14.3.2 of VMLS. The items in the dictionary are:

D["setosa"] a 50× 4 matrix with 50 examples of Iris Setosa
D["versicolor"]: a 50× 4 matrix with 50 examples of Iris Versicolor
D["virginica"]: a 50× 4 matrix with 50 examples of Iris Virginica.

The columns give values for four features: sepal length in cm, sepal width in
cm, petal length in cm, petal width in cm.

ozone_data(). Returns a vector of length 336 = 14 · 24 with the hourly ozone
levels at Azusa, California, during the first 14 days of July 2014 (discussed
on page 319 in VMLS).

regularized_fit_data(). Returns a dictionary D with data for the regularized
data fitting example on page 329 of VMLS. The items in the dictionary are:

D["xtrain"]: vector of length 10
D["ytrain"]: vector of length 10
D["xtest"]: vector of length 20
D["ytest"]: vector of length 20.

portfolio_data(). Returns a tuple (R, Rtest) with data for the portfolio op-
timization example in section 17.1.3 of VMLS. R is a 2000× 20 matrix with
daily returns over a period of 2000 days. The first 19 columns are returns for
19 stocks; the last column is for a risk-free asset. Rtest is a 500× 20 matrix
with daily returns over a different period of 500 days.

lq_estimation_data(). Returns a 2 × 100 matrix with the measurement data
for the linear quadratic state estimation example of section 17.3.1 of VMLS.

orth_dist_reg_data() Returns a tuple (xd, yd) with the data for the orthog-
onal distance regression example on page 400 in VMLS.

https://web.stanford.edu/\%7Eboyd/vmls/vmls.pdf#subsection.14.2.1
https://web.stanford.edu/\%7Eboyd/vmls/vmls.pdf#subsection.14.3.2
https://web.stanford.edu/\%7Eboyd/vmls/vmls.pdf#section*.358
https://web.stanford.edu/\%7Eboyd/vmls/vmls.pdf#figure.15.11
https://web.stanford.edu/\%7Eboyd/vmls/vmls.pdf#subsection.17.1.3
https://web.stanford.edu/\%7Eboyd/vmls/vmls.pdf#subsection.17.3.1
https://web.stanford.edu/\%7Eboyd/vmls/vmls.pdf#section*.417

	Preface
	Getting started with Julia
	Vectors
	Vectors
	Vector addition
	Scalar-vector multiplication
	Inner product
	Complexity of vector computations

	Linear functions
	Linear functions
	Taylor approximation
	Regression model

	Norm and distance
	Norm
	Distance
	Standard deviation
	Angle
	Complexity

	Clustering
	Clustering
	A clustering objective
	The k-means algorithm
	Examples
	Applications

	Linear independence
	Linear dependence
	Basis
	Orthonormal vectors
	Gram–Schmidt algorithm

	Matrices
	Matrices
	Zero and identity matrices
	Transpose, addition, and norm
	Matrix-vector multiplication
	Complexity

	Matrix examples
	Geometric transformations
	Selectors
	Incidence matrix
	Convolution

	Linear equations
	Linear and affine functions
	Linear function models
	Systems of linear equations

	Linear dynamical systems
	Linear dynamical systems
	Population dynamics
	Epidemic dynamics
	Motion of a mass
	Supply chain dynamics

	Matrix multiplication
	Matrix-matrix multiplication
	Composition of linear functions
	Matrix power
	QR factorization

	Matrix inverses
	Left and right inverses
	Inverse
	Solving linear equations
	Examples
	Pseudo-inverse

	Least squares
	Least squares problem
	Solution
	Solving least squares problems
	Examples

	Least squares data fitting
	Least squares data fitting
	Validation
	Feature engineering

	Least squares classification
	Classification
	Least squares classifier
	Multi-class classifiers

	Multi-objective least squares
	Multi-objective least squares
	Control
	Estimation and inversion
	Regularized data fitting
	Complexity

	Constrained least squares
	Constrained least squares problem
	Solution
	Solving contrained least squares problems

	Constrained least squares applications
	Portfolio optimization
	Linear quadratic control
	Linear quadratic state estimation

	Nonlinear least squares
	Nonlinear equations and least squares
	Gauss–Newton algorithm
	Levenberg–Marquardt algorithm
	Nonlinear model fitting
	Nonlinear least squares classification

	Constrained nonlinear least squares
	Constrained nonlinear least squares
	Penalty algorithm
	Augmented Lagrangian algorithm
	Nonlinear control
	Appendices
	The VMLS package
	Utility functions
	Algorithms
	Data sets

