World Food Economy Economics Review

April 21, 2020 Beatriz Pousada

1. Demand and Supply

1.1 Demand

- Movement along the demand curve...

Know the difference!

- Shift in the demand curve...

Examples?

1. Demand and Supply (ct'd)

- 1.2 Supply

Movement along the supply curve...

...versus a shift in supply

2. Elasticities

The elasticity of Y with respect to X is the percentage change in Y associated with a 1% increase in X :

$$
\eta=\frac{\% \Delta Y}{\% \Delta X}=\frac{\frac{\Delta Y}{Y}}{\frac{\Delta X}{X}}=\frac{X}{Y} \frac{\Delta Y}{\Delta X}
$$

2.1 Elasticities of Demand

- The aggregate income elasticity of demand is $\eta=\frac{\% \Delta E_{F O O D}}{\% \Delta T E}=\frac{T E}{E_{F O O D}} \frac{\Delta E_{F O O D}}{\Delta T E}$
- The income elasticity of demand for good i is $\eta_{i}=\frac{\% \Delta E_{i}}{\% \Delta T E}=\frac{T E}{E_{i}} \frac{\Delta E_{i}}{\Delta T E}$
$-\eta_{i} \leq 0$: inferior good
$-0 \leq \eta_{i} \leq 1$: normal good
$-\eta_{i}>1$: luxury good
- Own-price elasticity of demand for good $i: \epsilon_{i i}=\frac{\% \Delta Q_{i}^{d}}{\% \Delta P_{i}}$
- Always negative
- More vs less elastic:

(A)

(B)

2.1 Elasticities of Demand

- The aggregate income elasticity of demand is $\eta=\frac{\% \Delta E_{F O O D}}{\% \Delta T E}=\frac{T E}{E_{F O O D}} \frac{\Delta E_{F O O D}}{\Delta T E}$
- The income elasticity of demand for good i is $\eta_{i}=\frac{\% \Delta E_{i}}{\% \Delta T E}=\frac{T E}{E_{i}} \frac{\Delta E_{i}}{\Delta T E}$
$-\eta_{i} \leq 0$: inferior good
$-0 \leq \eta_{i} \leq 1$: normal good
$-\eta_{i}>1$: luxury good
- Own-price elasticity of demand for good $i: \epsilon_{i i}=\frac{\% \Delta Q_{i}^{d}}{\% \Delta P_{i}}$
- Always negative
- More vs less elastic:

(more elastic)

(less elastic)

2.1 Elasticities of Demand (ct’d)

- Cross-price elasticity of demand for good $i: \epsilon_{i j}=\frac{\% \Delta Q_{i}^{d}}{\% \Delta P_{j}}$
$-\epsilon_{i j}>0$: goods i and j are substitutes
$-\epsilon_{i j}<0$: goods i and j are complements

Examples?

2.2 Elasticities of Supply

- Own-price elasticity of supply for good $i: \epsilon_{i i}=\frac{\% \Delta Q_{i}^{s}}{\% \Delta P_{i}}$
- Always positive
- Cross-price elasticity of supply for good $i: \epsilon_{i j}=\frac{\% \Delta Q_{i}^{s}}{\% \Delta P_{j}}$
$-\epsilon_{i j}>0$: crops i and j are complements in production
- $\epsilon_{i j}<0$: crops i and j are substitutes

Examples?

2.3 Elasticity Examples

Example 1:

Suppose the own-price elasticity for rice is -0.9 , and a household buys 4 lbs ofrice when the price is $\$ 0.5$ per lb. How much rice does the household buy when the price ofrice is $\$ 0.75$ per lb?

2.3 Elasticity Examples

Example 1 (ct'd):

Suppose the own-price elasticity for rice is -0.9 , and a household buys 4 lbs of rice when the price is $\$ 0.5$ per lb. How much rice does the household buy when the price ofrice is $\$ 0.75$ per lb?

- Own price elasticity for rice: $\eta_{i i}=\frac{P_{i}}{Q_{i}} \Delta Q_{i}=-0.9$

2.3 Elasticity Examples

Example 1 (ct'd):

Suppose the own-price elasticity for rice is -0.9 , and a household buys 4 lbs of rice when the price is $\$ 0.5$ per lb . How much rice does the household buy when the price of rice is $\$ 0.75$ per lb ?

- Own price elasticity for rice: $\eta_{i i}=\frac{P_{i} \Delta Q_{i}}{Q_{i}} \Delta P_{i}=-0.9$
- Own price elasticity for rice: $\eta_{i i}=\frac{0.5}{4} \frac{\Delta Q_{i}}{\Delta P_{i}}=-0.9$

2.3 Elasticity Examples

Example 1 (ct'd):

Suppose the own-price elasticity for rice is -0.9 , and a household buys 4lbs of rice when the price is $\$ 0.5$ per lb. How much rice does the household buy when the price of rice is $\$ 0.75$ per lb ?

- Own price elasticity for rice: $\eta_{i i}=\frac{P_{i}}{Q_{i}} \Delta Q_{i}=-0.9$
- Own price elasticity for rice: $\eta_{i i}=\frac{0.5}{4} \frac{\Delta Q_{i}}{\Delta P_{i}}=-0.9$
- Own price elasticity for rice: $\eta_{i i}=\frac{0.5}{4} \frac{\Delta Q_{i}}{(0.75-0.5)}=-0.9$

2.3 Elasticity Examples

Example 1 (ct'd):

Suppose the own-price elasticity for rice is -0.9 , and a household buys 4 lbs of rice when the price is $\$ 0.5$ per lb. How much rice does the household buy when the price of rice is $\$ 0.75$ per lb?

- Own price elasticity for rice: $\eta_{i i}=\frac{P_{i}}{Q_{i}} \Delta Q_{i}=-0.9$
- Own price elasticity for rice: $\eta_{i i}=\frac{0.5}{4} \frac{\Delta Q_{i}}{\Delta P_{i}}=-0.9$
- Own price elasticity for rice: $\eta_{i i}=\frac{0.5}{4} \frac{\Delta Q_{i}}{(0.75-0.5)}=-0.9$
$-\Delta Q_{i}=Q_{i}^{\text {new }}-4=-1.8 \Rightarrow Q_{i}^{\text {new }}=2.2$

2.3 Elasticity Examples

Example 2:

Given:

- Own-price elasticity of corn = -0.1
- Cross-price elasticity of rice to corn $=0.05$
- Own-price elasticity of rice $=-0.2$

What will be the percent change in quantity demanded of corn if the price of rice increases by 20\%?

2.3 Elasticity Examples

Example 2:

Given:

- Own-price elasticity of corn = -0.1
- Cross-price elasticity of rice to corn $=0.05$
- Own-price elasticity of rice $=-0.2$

What will be the percent change in quantity demanded of corn if the price of rice increases by 20\%?

$$
\begin{aligned}
& \eta_{\text {corn,corn }}=-0.1=\frac{\% \Delta Q_{\text {corn }}}{\% \Delta P_{\text {corn }}} \\
& \eta_{\text {rice }, \text { corn }}=0.05=\frac{\% \Delta Q_{\text {rice }}}{\% \Delta P_{\text {corn }}} \\
& \eta_{\text {rice,rice }}=-0.2=\frac{\% \Delta Q_{\text {rice }}}{\% \Delta P_{\text {rice }}}
\end{aligned}
$$

2.3 Elasticity Examples

Example 2:

Given:

- Own-price elasticity of corn $=-0.1$
- Cross-price elasticity of rice to corn $=0.05$
- Own-price elasticity of rice $=-0.2$

What will be the percent change in quantity demanded of corn if the price of rice increases by 20\%?

$$
\begin{gathered}
\eta_{\text {corn }, \text { corn }}=-0.1=\frac{\% \Delta Q_{\text {corn }}}{\% \Delta P_{\text {corn }}} \\
\eta_{\text {rice,corn }}=0.05=\frac{\% \Delta Q_{\text {rice }}}{\% \Delta P_{\text {corn }}} \\
\eta_{\text {rice,rice }}=-0.2=\frac{\% \Delta Q_{\text {rice }}}{0.2} \Rightarrow \% \Delta Q_{\text {rice }}=-0.04
\end{gathered}
$$

2.3 Elasticity Examples

Example 2:

Given:

- Own-price elasticity of corn = -0.1
- Cross-price elasticity of rice to corn $=0.05$
- Own-price elasticity of rice $=-0.2$

What will be the percent change in quantity demanded of corn if the price of rice increases by 20\%?

$$
\begin{gathered}
\eta_{\text {corn,corn }}=-0.1=\frac{\% \Delta Q_{\text {corn }}}{\% \Delta P_{\text {corn }}} \\
\eta_{\text {rice,corn }}=0.05=\frac{-0.04}{\% \Delta P_{\text {corn }}} \Rightarrow \% \Delta P_{\text {corn }}=-0.8 \\
\eta_{\text {rice,rice }}=-0.2=\frac{\% \Delta Q_{\text {rice }}}{0.2} \Rightarrow \% \Delta Q_{\text {rice }}=-0.04
\end{gathered}
$$

2.3 Elasticity Examples

Example 2:

Given:

- Own-price elasticity of corn = -0.1
- Cross-price elasticity of rice to corn $=0.05$
- Own-price elasticity of rice $=-0.2$

What will be the percent change in quantity demanded of corn if the price of rice increases by 20% ?

$$
\begin{aligned}
& \eta_{\text {corn,corn }}=-0.1=\frac{\% \Delta Q_{\text {corn }}}{-0.8} \Rightarrow \% \Delta Q_{\text {corn }}=0.08 \\
& \eta_{\text {rice,corn }}=0.05=\frac{-0.04}{\% \Delta P_{\text {corn }}} \Rightarrow \% \Delta P_{\text {corn }}=-0.8 \\
& \eta_{\text {rice,rice }}=-0.2=\frac{\% \Delta Q_{\text {rice }}}{0.2} \Rightarrow \% \Delta Q_{\text {rice }}=-0.04
\end{aligned}
$$

2.3 Elasticity Examples

Example 3:

- Own-price elasticity of corn: $\eta_{C, C}=-0.4$
- Cross-price elasticity of corn to wheat: $\eta_{C, W}=0.1$

Suppose initial quantity demanded of corn is $Q_{0}=100$ (million metric tons). The next period, the price of corn increases by 20% and the price of wheat increases by 30%. Given these two changes, what is the quantity demanded of corn in period 1?

2.3 Elasticity Examples

Example 3:

- Own-price elasticity of corn: $\eta_{C, C}=-0.4$
- Cross-price elasticity of corn to wheat: $\eta_{C, W}=0.1$

Suppose initial quantity demanded of corn is $Q_{0}=100$ (million metric tons). The next period, the price of corn increases by 20% and the price of wheat increases by 30%. Given these two changes, what is the quantity demanded of corn in period 1 ?

$$
\begin{gathered}
\eta_{C, C}=-0.4=\frac{\% \Delta Q_{C}}{\% \Delta P_{C}} \\
\eta_{C, W}=0.1=\frac{\% \Delta Q_{C}}{\% \Delta P_{W}}
\end{gathered}
$$

2.3 Elasticity Examples

Example 3:

- Own-price elasticity of corn: $\eta_{C, C}=-0.4$
- Cross-price elasticity of corn to wheat: $\eta_{C, W}=0.1$

Suppose initial quantity demanded of corn is $Q_{0}=100$ (million metric tons). The next period, the price of corn increases by 20% and the price of wheat increases by 30%. Given these two changes, what is the quantity demanded of corn in period 1?

$$
\begin{gathered}
\eta_{C, C}=-0.4=\frac{\% \Delta Q_{C}}{0.2} \Rightarrow \% \Delta Q_{C}=-0.08 \\
\eta_{C, W}=0.1=\frac{\% \Delta Q_{C}}{\% \Delta P_{W}}
\end{gathered}
$$

2.3 Elasticity Examples

Example 3:

- Own-price elasticity of corn: $\eta_{C, C}=-0.4$
- Cross-price elasticity of corn to wheat: $\eta_{C, W}=0.1$

Suppose initial quantity demanded of corn is $Q_{0}=100$ (million metric tons). The next period, the price of corn increases by 20% and the price of wheat increases by 30%. Given these two changes, what is the quantity demanded of corn in period 1?

$$
\begin{gathered}
\eta_{C, C}=-0.4=\frac{\% \Delta Q_{C}}{0.2} \Rightarrow \% \Delta Q_{C}=-0.08 \\
\eta_{C, W}=0.1=\frac{\% \Delta Q_{C}}{0.3} \Rightarrow \% \Delta Q_{C}=0.03
\end{gathered}
$$

2.3 Elasticity Examples

Example 3:

- Own-price elasticity of corn: $\eta_{C, C}=-0.4$
- Cross-price elasticity of corn to wheat: $\eta_{C, W}=0.1$

Suppose initial quantity demanded of corn is $Q_{0}=100$ (million metric tons). The next period, the price of corn increases by 20% and the price of wheat increases by 30%. Given these two changes, what is the quantity demanded of corn in period 1?

$$
\begin{gathered}
\eta_{C, C}=-0.4=\frac{\% \Delta Q_{C}}{0.2} \Rightarrow \% \Delta Q_{C}=-0.08 \\
\eta_{C, W}=0.1=\frac{\% \Delta Q_{C}}{0.3} \Rightarrow \% \Delta Q_{C}=0.03 \\
Q_{C}^{\text {new }}=100(1-0.08)(1+0.03)=94.76
\end{gathered}
$$

3. Consumer Choice

Budget Constraint

Given two goods Food (F) and Non-Food (NF) with prices P_{F} and $P_{N F}$, the consumer's budget constraint is

$$
P_{F} Q_{F}+P_{N F} Q_{N F}=\text { Total Expenditures }
$$

Draw the budget line and budget set for Total Expenditures = $\$ 10, \mathrm{P}_{\mathrm{F}}=\$ 1, \mathrm{P}_{\mathrm{NF}}=\$ 2$.
What happens when the price of food increases to $P_{F}=\$ 2$?

What happens when

the price of food increases?

In state 1, assume:

- Income = \$10
- $\mathrm{P}_{\mathrm{F}}=\$ 1$
- $\mathrm{P}_{\mathrm{NF}}=\$ 2$

In state 2, assume:

- Income = \$10 (same)
- $\mathrm{P}_{\mathrm{F}}=\$ 2$ (increased)
- $\mathrm{P}_{\mathrm{N}}=\$ 2$ (same)

You can buy less food with the same budget

Budget Line 2
Slope $=-P_{N F} / P_{F}=-1$

Where on the budget line do consumers choose to operate?

Food (in the

aggregate)

Indifference Curves: equally satisfied along all points on the curve

- Indicate trade-offs, substitution
- Slope at given point $=\Delta F / \Delta N F$

Where on the budget line do consumers choose to operate?

Indifference Curves: equally satisfied along all points on the curve

- Indicate trade-offs, substitution
- Slope at given point $=\Delta F / \Delta N F$

Operate where the indifference curve is tangent to the BL

- Highest (best) possible indifference curve

Substitution and Income Effects

Income

Engel's Law

The proportion of household income spent on food in the aggregate declines as income rises
n = income elasticity of demand for food in the aggregate: $n=\left(\% \Delta E_{\text {FOOD }}\right) /(\% \Delta T E)$

$n<1$ and $n \Longrightarrow 0$ as Y increases

Income

Bennett's Law

The proportion of calories derived from starchy staples declines as income increases

Redatime Drices

Timmer's Law: Poor households are more sensitive to price changes than rich households (and often have fewer substitution options other than eating less)

What does this imply for demand price elasticities?

Consider the demand for corn, and let the own-price demand elasticity be η_{R} for rich households and $\eta_{P \text { for poor households. How does }} \eta_{R \text { compare to }} \eta_{P \text { ? }}$

Relative Prices

Timmer's Law: Poor households are more sensitive to price changes than rich households (and often have fewer substitution options other than eating less)

What does this imply for demand price elasticities?

Consider the demand for corn, and let the own-price demand elasticity be η_{R} for rich households and $\eta_{P \text { for poor households. How does }} \eta_{R \text { compare to }} \eta_{P \text { ? }}$

Answer: $\left|\boldsymbol{\eta}_{\boldsymbol{R}}\right|<\left|\boldsymbol{\eta}_{\boldsymbol{P}}\right|$

4. Producer Theory

Producers operate at the margin (where MRTS = Price Ratio)

- Product-Product: what crops maximize revenue?
$(\Delta$ corn $) /(\Delta$ soy $)=-\left(P_{s} / P_{c}\right)$
- Factor-Factor: what inputs minimize costs?
$(\Delta$ labor $) /(\Delta$ capital $)=-\left(P_{C} / P_{L}\right)$
- Factor-Product: for a given crop, what inputs lead the the highest profits?
$(\Delta$ wheat $) /(\Delta$ fertilzer $)=\left(P_{f} / P_{w}\right)$

4.1 Product - Product Decisions

Technical feasibility

- PPF = Production Possibilities Frontier
- Curvature related to degree of substitutability

Economic profitability

- Depends on prices and opportunity costs
- Produce where profit from growing last unit of corn = revenue lost from not growing soy

Social desirability

- If tangency is not socially desirable, you can raise the price of a good to change the outcome
- How much to change price depends on elasticities of supply

4.2 Factor - Factor Decisions

Isoquant: each point of curve represents a different combination of inputs that can produce a fixed level of output (Qs) with given technology

- Indicate trade-offs, substitution
- Slope at given point $=\Delta \mathrm{L} / \Delta \mathrm{C}$

Operate where the isoquant is tangent to the Budget Line

- Highest possible level of output subject to the budget constraint

4.3 Factor - Product Decisions

Yield

The last unit of fertilizer should exactly pay for itself; that is, the cost of the last unit of fertilizer = revenue from last unit of wheat

Fertilizer

Questions?

