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What we will cover in this section:

• OLS regression (linear, log-log log-linear, linear-log)

• Interactions to show heterogeneity

• �xed e�ects

• di� in di� - only in the code

• RDD - only in the code

1 OLS regressions

Here we are going to review how to interpret regressions, to do so, we are using a very simple example

of regressing earnings on years of schooling. We know there are several endogeneity problems with

regressing earnings on years of education, but let's not discuss them now. Suppose we are not

interested on the causal e�ect of earnings on education, we just want to know the relationship

between those two variables.

1.1 linear-linear

Let's start supposing we are regressing those two variables linearly:

earnit = β0 + β1educit + uit (1)

What does the coe�cients β0 and β1 mean? If we just apply the expectation operator to both sides

of these equation we get:

E(earnit|educit) = β0 + β1educit (2)

Let's calculate the average earnings for someone with zero education:

E(earnit|educit = 0) = β0 (3)

Now let's calculate the average earnings for someone with education e and for someone with edu-

cation e+ 1:

E(earnit|educit = e) = β0 + β1eE(earnit|educit = e+ 1) = β0 + β1(e+ 1) (4)

If we take the di�erence:

E(earnit|educit = e+ 1)− E(earnit|educit = e) = [β0 + β1(e+ 1)]− [β0 + β1(e+ 1)] = β1 (5)

So β1 is how much more earnings individuals with one more year of education have on average in

our data.
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1.2 linear-log

Now suppose we are taking the log of years of education, but still running earnings linearly:

earnit = β0 + β1 log(educ)it + uit (6)

as before, let's calculate the expectation:

E(earnit| log(educ)it) = β0 + β1 log(educ)it (7)

If we calculate the average earnings for someone with one year of education we get that log(1) = 0:

E(earnit| log(educ)it = 0) = β0 (8)

and if we calculate the di�erence between the average earnings of someone with log(educ)it = le+1
and log(educ)it = le we also get the same as before:

E(earnit| log(educ)it = le+ 0.01)− E(earnit| log(educ)it = le) = 0.01β1 (9)

How much more education someone with log(educ)it = le+0.01, has than someone with log(educ)it =
le? Let's �rst de�ne log(educa) = le+ 0.01 and log(educb) = le and then take the di�erence:

log(educa)− log(educb) = 0.01⇒ log

(
educa
educb

)
= 0.01⇒ educa

educb
= exp(0.01) ≈ 1.01 (10)

If education increases by 1% we expect earnings to increase by 0.01β1 dollars.

1.3 log-linear

Now suppose we will take log-earnings, but keep years of education linear:

log(earn)it = β0 + β1educit + uit (11)

What does the coe�cients β0 and β1 mean? If we just apply the expectation operator to both sides

of these equation we get:

E(log(earn)it|educit) = β0 + β1educit (12)

Let's calculate the average earnings for someone with zero education:

E(log(earn)it|educit = 0) = β0 (13)

Now let's take the di�erence, for people with one year of education apart:

E(log(earn)it|educit = e+ 1)− E(log(earn)it|educit = e) = β1 (14)

What does it mean? Let's de�ne the value of earnings such that E(log(earn)it|educit = e + 1) =
log(earna) and E(log(earn)it|educit = e) = log(earnb). So if we take the di�erence:

log(earna)− log(earnb) = β1 ⇒ log

[
earna
earnb

]
= β1 ⇒

earna
earnb

= exp(β1) (15)

let's transform this into percentages:(
earna
earnb

− 1

)
∗ 100 = 100 ∗ (exp(β1)− 1) ≈ 100 ∗ β1, if − 0.1 ≤ β1 ≤ 0.1 (16)

Individuals with one more year of education have 100 ∗ β1 percent more earnings.
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1.4 log-log

Now let's do the log-log case:

log(earn)it = β0 + β1 log(educ)it + uit (17)

similar to before, if we calculate the di�erence between the average earnings of someone with

log(educ)it = le+ 1 and log(educ)it = le we also get the same as before:

E(log(earn)it| log(educ)it = le+ 0.01)− E(log(earn)it| log(educ)it = le) = 0.01β1 (18)

we saw before that this is an 1% increase in education. Combining with what we saw in the log-

linear case, we expect to observe a 1% increase in education to re�ect in a 100 ∗ 0.01 ∗ β1 = β1

percent increase in earnings.

2 Interactions to show heterogeneity

Suppose now that we are keeping the log-linear example (this is the one that made more sense in

the graph), but we want to see if there is any heterogeneity by gender on the earnings di�erence by

years of education.

log(earn)it = β0 + β1educit + uit (19)

To do so, we run the following regression:

log(earn)it = β0 + β1educit + β2womeni ∗ educit + β3womeni + uit (20)

For men we have the same interpretation, men with one more year of education have 100∗β1 percent

more earnings.

E(log(earn)it|educit = e+ 1, womeni = 0)− E(log(earn)it|educit = e, womeni = 0) = β1 (21)

What about for women?

E(log(earn)it|educit = e+ 1, womeni = 1) = β0 + β3 + (β1 + β2)(e+ 1) (22)

E(log(earn)it|educit = e, womeni = 1) = β0 + β3 + (β1 + β2)e (23)

Taking the di�erence:

E(log(earn)it|educit = e+1, womeni = 1)−E(log(earn)it|educit = e, womeni = 1) = β1+β2 (24)

Women with one more year of education have 100 ∗ (β1 + β2) more earnings. The percent increase

in earnings for women with one more year of education is 100 ∗β2 percentage points bigger than for

men.

3 Fixed-E�ects

There are many reasons why regressing earnings on years of education is not causal, but some of

those reasons we can control for. One example of those variables is age, older individuals might have

less years of education because when they were young staying school was less common. Moreover,
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older individuals might have smaller earnings because they are not able to work anymore. One way

of tackling this issue is to simply include an age variable in the regression.

log(earn)it = β0 + β1educit + β3ageit + uit (25)

However, when we do this, we are assuming that the relationship between age and earnings and the

relationship between age and education is linear. To relax the linearity assumption we can simply

include age �xed e�ects in the regression.

log(earn)it = β0 + β1educit +

ā∑
a=a

δa1(ageit == a) + uit (26)

When including �xed e�ects it's important to make sure you are not including one dummy for each

observation in the data-set and that all the variables in your regression vary within the �xed e�ect

groups. That's why when we add household id �xed e�ects we don't get a result, because education

doesn't vary within household id.

Notice that another problem with our earnings regressions is that we didn't de�ate the earnings

variable. One easy way to account for that without having to go to the cpi is to include year �xed

e�ects in the regression.

log(earn)it = β0 + β1educit +
ā∑

a=a

δa1(ageit == a) +
T∑

w=0

θw1(t == w) + uit (27)

4


