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What we will cover in this section:

• OLS regression (linear, log-log log-linear, linear-log)

• Interactions to show heterogeneity

1 OLS regressions

Here we are going to review how to interpret regressions, to do so, we are using a very simple example

of regressing earnings on years of schooling. We know there are several endogeneity problems with

regressing earnings on years of education, but let's not discuss them now. Suppose we are not

interested on the causal e�ect of earnings on education, we just want to know the relationship

between those two variables.

1.1 linear-linear

Let's start supposing we are regressing those two variables linearly:

earnit = β0 + β1educit + uit (1)

What does the coe�cients β0 and β1 mean? If we just apply the expectation operator to both sides

of these equation we get:

E(earnit|educit) = β0 + β1educit (2)

Let's calculate the average earnings for someone with zero education:

E(earnit|educit = 0) = β0 (3)

Now let's calculate the average earnings for someone with education e and for someone with edu-

cation e+ 1:

E(earnit|educit = e) = β0 + β1eE(earnit|educit = e+ 1) = β0 + β1(e+ 1) (4)

If we take the di�erence:

E(earnit|educit = e+ 1)− E(earnit|educit = e) = [β0 + β1(e+ 1)]− [β0 + β1(e+ 1)] = β1 (5)

So β1 is how much more earnings individuals with one more year of education have on average in

our data.
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Figure 1: Relationship between earnings and education - data from the HRS only individuals with more

than 50 years old

. reg riearn raedyrs, robust

Linear regression Number of obs = 233,396

F(1, 233394) = 7333.22

Prob > F = 0.0000

R-squared = 0.0408

Root MSE = 37873

------------------------------------------------------------------------------

| Robust

riearn | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

raedyrs | 2328.381 27.18985 85.63 0.000 2275.089 2381.672

_cons | -14836.95 275.2679 -53.90 0.000 -15376.47 -14297.43

------------------------------------------------------------------------------

1.2 linear-log

Now suppose we are taking the log of years of education, but still running earnings linearly:

earnit = β0 + β1 log(educ)it + uit (6)

as before, let's calculate the expectation:

E(earnit| log(educ)it) = β0 + β1 log(educ)it (7)
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If we calculate the average earnings for someone with one year of education we get that log(1) = 0:

E(earnit| log(educ)it = 0) = β0 (8)

and if we calculate the di�erence between the average earnings of someone with log(educ)it = le+1
and log(educ)it = le we also get the same as before:

E(earnit| log(educ)it = le+ 0.01)− E(earnit| log(educ)it = le) = 0.01β1 (9)

How much more education someone with log(educ)it = le+0.01, has than someone with log(educ)it =
le? Let's �rst de�ne log(educa) = le+ 0.01 and log(educb) = le and then take the di�erence:

log(educa)− log(educb) = 0.01⇒ log

(
educa
educb

)
= 0.01⇒ educa

educb
= exp(0.01) ≈ 1.01 (10)

If education increases by 1% we expect earnings to increase by 0.01β1 dollars.

Figure 2: Relationship between earnings and log-education - data from the HRS only individuals with

more than 50 years old
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. reg riearn leduc, robust

Linear regression Number of obs = 231,423

F(1, 231421) = 6868.41

Prob > F = 0.0000

R-squared = 0.0275

Root MSE = 38268

------------------------------------------------------------------------------

| Robust

riearn | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

leduc | 18351.09 221.4286 82.88 0.000 17917.1 18785.09

_cons | -31505.23 492.8452 -63.93 0.000 -32471.19 -30539.26

------------------------------------------------------------------------------

1.3 log-linear

Now suppose we will take log-earnings, but keep years of education linear:

log(earn)it = β0 + β1educit + uit (11)

What does the coe�cients β0 and β1 mean? If we just apply the expectation operator to both sides

of these equation we get:

E(log(earn)it|educit) = β0 + β1educit (12)

Let's calculate the average earnings for someone with zero education:

E(log(earn)it|educit = 0) = β0 (13)

Now let's take the di�erence, for people with one year of education apart:

E(log(earn)it|educit = e+ 1)− E(log(earn)it|educit = e) = β1 (14)

What does it mean? Let's de�ne the value of earnings such that E(log(earn)it|educit = e + 1) =
log(earna) and E(log(earn)it|educit = e) = log(earnb). So if we take the di�erence:

log(earna)− log(earnb) = β1 ⇒ log

[
earna
earnb

]
= β1 ⇒

earna
earnb

= exp(β1) (15)

let's transform this into percentages:(
earna
earnb

− 1

)
∗ 100 = 100 ∗ (exp(β1)− 1) ≈ 100 ∗ β1, if − 0.1 ≤ β1 ≤ 0.1 (16)

Individuals with one more year of education have 100 ∗ β1 percent more earnings.
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Figure 3: Relationship between log-earnings and education - data from the HRS only individuals with

more than 50 years old

. reg learn raedyrs, robust

Linear regression Number of obs = 83,342

F(1, 83340) = 6108.38

Prob > F = 0.0000

R-squared = 0.0748

Root MSE = 1.2299

------------------------------------------------------------------------------

| Robust

learn | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

raedyrs | .1182874 .0015135 78.16 0.000 .115321 .1212538

_cons | 8.409132 .0201424 417.48 0.000 8.369653 8.448611

------------------------------------------------------------------------------

1.4 log-log

Now let's do the log-log case:

log(earn)it = β0 + β1 log(educ)it + uit (17)

similar to before, if we calculate the di�erence between the average earnings of someone with

log(educ)it = le+ 1 and log(educ)it = le we also get the same as before:

E(log(earn)it| log(educ)it = le+ 0.01)− E(log(earn)it| log(educ)it = le) = 0.01β1 (18)
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we saw before that this is an 1% increase in education. Combining with what we saw in the log-

linear case, we expect to observe a 1% increase in education to re�ect in a 100 ∗ 0.01 ∗ β1 = β1
percent increase in earnings.

Figure 4: Relationship between log-earnings and log-education - data from the HRS only individuals

with more than 50 years old

. reg learn leduc, robust

Linear regression Number of obs = 83,032

F(1, 83030) = 3421.90

Prob > F = 0.0000

R-squared = 0.0568

Root MSE = 1.2408

------------------------------------------------------------------------------

| Robust

learn | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

leduc | 1.06233 .0181604 58.50 0.000 1.026736 1.097924

_cons | 7.258118 .0464536 156.24 0.000 7.167069 7.349166

------------------------------------------------------------------------------

2 Interactions to show heterogeneity

Suppose now that we are keeping the log-linear example (this is the one that made more sense in

the graph), but we want to see if there is any heterogeneity by gender on the earnings di�erence by
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years of education.

log(earn)it = β0 + β1educit + uit (19)

To do so, we run the following regression:

log(earn)it = β0 + β1educit + β2womeni ∗ educit + β3womeni + uit (20)

For men we have the same interpretation, men with one more year of education have 100∗β1 percent
more earnings.

E(log(earn)it|educit = e+ 1, womeni = 0)− E(log(earn)it|educit = e, womeni = 0) = β1 (21)

What about for women?

E(log(earn)it|educit = e+ 1, womeni = 1) = β0 + β3 + (β1 + β2)(e+ 1) (22)

E(log(earn)it|educit = e, womeni = 1) = β0 + β3 + (β1 + β2)e (23)

Taking the di�erence:

E(log(earn)it|educit = e+1, womeni = 1)−E(log(earn)it|educit = e, womeni = 1) = β1+β2 (24)

Women with one more year of education have 100 ∗ (β1 + β2) more earnings. The percent increase

in earnings for women with one more year of education is 100 ∗β2 percentage points bigger than for

men.

Figure 5: Relationship between log-earnings and education by gender - data from the HRS only

individuals with more than 50 years old
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. gen educWomen = raedyrs*female

.

. reg learn raedyrs educWomen female, robust

Linear regression Number of obs = 83,342

F(3, 83338) = 3118.08

Prob > F = 0.0000

R-squared = 0.1084

Root MSE = 1.2073

------------------------------------------------------------------------------

| Robust

learn | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

raedyrs | .1075845 .0019482 55.22 0.000 .1037661 .1114029

educWomen | .026473 .0030034 8.81 0.000 .0205864 .0323597

female | -.8092315 .0398843 -20.29 0.000 -.8874044 -.7310587

_cons | 8.789897 .0258254 340.36 0.000 8.73928 8.840515

------------------------------------------------------------------------------
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