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1 Groups

Definition: A group G is a set with a binary operation ◦ which satisfies,

1. associativity, x ◦ (y ◦ z) = (x ◦ y) ◦ z

2. there exists an identity e ∈ G such that e ◦ g = g ◦ e = g for any g ∈ G

3. for each g ∈ G there exists an inverse g−1 ∈ G such that g ◦ g−1 = g−1 ◦ g = e

Example 1.1. The following are groups,

1. the integers Z with addition +

2. the nonzero rational numbers Q× with multiplication ·

3. invertable matrices with matrix multiplication

4. the permutations of a set with composition of functions

Definition: We say that (G, ◦) is abelian if ◦ is commutative, x ◦ y = y ◦ x. In this case we usually
write x+ y for the binary operation, 0 for e and −x for x−1 in analogy with the case of integers.

Definition: A group G is finitely generated if there exists a finite set S ⊂ G such that every element
in g ∈ G can be expressed as a finite combination of elements of S (and the inverses of elements in
S) i.e. g = s1 ◦ · · · ◦ sn for s1, . . . , sn ∈ S ∪ S−1 where S−1 = {s−1 | s ∈ S}.

Example 1.2. The following are groups,

1. the integers Z are generated by one element, namely 1 so finitely generated.

2. the nonzero rational numbers Q× with multiplication · are not finitely generated since there
are infinitely many prime numbers

3. invertable matrices with matrix multiplication are not finitely generated because they contain
diagonal matrices with Q× entries and these special matrices cannot be finitely generated by
the above reason

4. the permutations of a finite are finite in number and thus are obviously finitely generated.

Remark 1.1. Notice that the notion of begin finitely generated is vacuous for finite groups.

Definition: A group that will be very important for us is the modular group SL2(Z) is defined the
group of matrices with integer coefficients and determinant one,

SL2(Z) =
{(

a b
c d

) ∣∣∣∣ a, b, c, d ∈ Z and ad− bc = 1

}
Proposition 1.3. The modular group is finitely generated with two generators,(

1 1
0 1

) (
0 −1
1 0

)
Proof. Excercise for you. □

Remark 1.2. If we have a group G and a subgroup H ⊂ G we would like a way to construct a
smaller group by “sending H to zero.” We acomplish this by quotienting. However, we can only do
this under the technical condition that the subgroup be normal.
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Definition: Let H ⊂ G be a normal subgroup (meaning that gHg−1 ⊂ G for any g ∈ G) then we
define,

G/H = {gH | g ∈ G}

We call these sets gH cosets of H. Then they form a group via g1H · g2H = g1g2H, one can show
that this operation is well-defined exactly when H is normal in G. We define the index of H in G
to be the size of this group, [G : H] = |G/H|.

Example 1.4. Modular arithmetic modulo n, taking the numbers 0, 1, . . . , n − 1 and adding via
“clock arithmetic” where n maps back around to n is accomplished via taking the subgroup of
multiples of n in the integers nZ ⊂ Z and quotienting to get Z/nZ. This group has n elements so
we say [Z : nZ] = n.

2 Fields

Remark 2.1. A field is an object that has the same algebraic structure as the rational numbers
Q or the real numbers R or the complex numbers C. It is a structure were we can add, subtract,
multiply, and divide. In fields we can consider polynomials and if they have solutions. We will now
give a formal definition.

Definition: A field (F,+, ·) is a set F with two binary operations +, · and distinguished elements
0, 1 ∈ F such that,

1. (F,+) is an abelian group with identity 0

2. (F×, ·) is an abelian group with identiy 1 where F× = F \ {0} (in particular, every element
but 0 has a multiplicative inverse)

3. ∀x, y, z ∈ F : x · (y + z) = x · y + x · z.

3 Complex Analysis

3.1 Holomorphic Functions

Definition: A subset Ω ⊂ C is a domain if Ω is open and connected.

Definition: A map f : Ω → C is holomorphic at z ∈ Ω if the limit,

f ′(z) = lim
h→0

f(z + h)− f(z)

h

exists. The map f is holomorphic on Ω if it is holomorphic at each z ∈ Ω.

Definition: We say a map f : C → C is entire if it is holomorphic on all of C.

Proposition 3.1. Let f : Ω → C be holomorphic at z ∈ Ω. Then we may write f as a function of
two real variables as, f(x, y) = f(x+ iy). This done,

f ′(z) =
∂f

∂x
=

1

i

∂f

∂y

and thus,
∂f

∂x
+ i

∂f

∂y
= 0
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Definition:
∂f

∂z
=

1

2

[
∂f

∂x
− i

∂f

∂y

]
and

∂f

∂z̄
=

1

2

[
∂f

∂x
+ i

∂f

∂y

]
Therefore, if f is holomorphic then

∂f

∂z
= f ′(z) and

∂f

∂z̄
= 0

Remark 3.1. If we write f : Ω → C in real form i.e. as a function F : R2 → R2 with F (x, y) =
(A(x, y), B(x, y)) and f(x+ iy) = A(x, y) + iB(x, y) then,

∂f

∂z̄
=

1

2

[
∂f

∂x
+ i

∂f

∂y

]
=

1

2

[
∂A

∂x
+ i

∂B

∂x
+ i

∂A

∂y
− ∂B

∂y

]
Therefore,

∂f

∂z̄
= 0 ⇐⇒ ∂A

∂x
=

∂B

∂y
and

∂B

∂x
= −∂A

∂y

These are known as the Cauchy-Riemann equations. We will see that satisfying these equations
along with some weak regularity is necessary and sufficient for a function to be holomorphic.

Theorem 3.2. Let Ω be a domain and f : Ω → C. Then the following are equivalent,

1. f : Ω → C is holomorphic.

2. f is differentiable with continous derivative and,

∂f

∂z̄
= 0

3. around the boundary of any disc D ⊂ Ω we have,∮
∂D

f(z) dz = 0

Theorem 3.3. Let Ω be a domain and f : Ω → C. Then the following are equivalent,

1. f : Ω → C is holomorphic.

2. f ∈ C1 (Ω) and
∂f

∂z̄
= 0

3. f ∈ C1 (Ω) and for D ⊆ Ω with piecewise C1 (Ω) boundary we have∮
∂D

f(z) dz = 0

4. ∀Br(w) ⊊ Ω we have,

f(z) =
1

2πi

∮
∂Br(w)

f(ζ)

ζ − z
dζ

for all z ∈ Br(w).

5. f is complex analytic: ∀w ∈ Ω : ∃r > 0 such that whenever |z − w| < r we have,

f(z) =

∞∑
n=0

an(x− w)n
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Theorem 3.4 (Cauchy). Let f : Ω → C be holomorphic, for any disc D ⊂ Ω and w ∈ D◦ we have,

f (n)(w) =
n!

2πi

∮
∂D

f(z)

(z − w)n+1
dz

In particular, the coefficients of the series expansion about w are,

an =
1

2πi

∮
∂D

f(z)

(z − w)n+1
dz

Lemma 3.5. For any z0 ∈ Ω, either f ≡ 0 in a neighborhood of z0 or we can express f = (z−z0)
nu(z)

for u(z) holomorphic and u(z) ̸= 0.

Proof. In a neighborhood of z0, we can write,

f(z) =

∞∑
n=0

nn(z − z0)
n

Either cn = 0 for each n so f = 0 or cN ̸= 0 for some n and cn − 0 for n < N . Therefore,

f(z) =

∞∑
n≥N

cn(z − z0)
n = (z − z0)

N

( ∞∑
m=0

cN+m(z − z0)
m

)
= (z − z0)

Nu(z)

Furthermore, u(z0) = cN ̸= 0 so there exists a neighborhood of z0 on which n(z) ̸= 0. □

Proposition 3.6. Let f : Ω → C be holomorphic (and not identically zero) then the set of zeros,
f−1(0) is discrete.

Proof. Let f vanish at z0. If f were identically zero on some open neighborhood of z0 then f would
be identically zero on Ω. Thus, by the lemma, we can write f = (z − z0)

nu(z) on some open
neighborhood U of z0 where u(z) is nonvanishing on U . Furthermore, (z − z0)

n vanishes exactly at
z0 so we have f−1(0) ∩ U = {z0} implying that f−1(0) is discrete. □

Corollary 3.7. Let f be a nonconstant holomorphic function. Then on any bounded set f has
finitely many zeros.

Theorem 3.8 (Liouville). Every bounded entire1 function is constant.

Proof. Let f : C → C be entire and bounded everywhere by M . Take w ∈ C and let C be a circle
arround z with radius R. Then applying the Cauchy integral formula,

f ′(w) =
1

2πi

∮
C

f(z)

(z − w)2
dz =

1

2π

∫ 2π

0

f(w +Reiθ)

R2e2iθ
R dθ

Therefore,

|f ′(w)| = 1

2π

∣∣∣∣∮
C

f(z)

(z − w)2
dz

∣∣∣∣ ≤ 1

2π

∫ 2π

0

|f(w +Reiθ)|
R2

R dθ ≤ 1

2π

∫ 2π

0

M

R
dθ =

M

R

which goes to zero in the limit R → ∞. Since R is arbitrarily large, f ′(w) = 0 so f is constant since
it has zero derivative everywhere. □

1holomorphic on the entire complex plane
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3.2 Meromorphic Functions

Definition: A function f : Ω → C is meromorphic if, near any z0 ∈ Ω, it can be written as,

f(z) =
∑

n≥−N

cn(z − z0)
n

We call N the order of the pole (assuming that cn ̸= 0) and c−1 the residue at z0. This expansion
shows that f must have isolated poles and zeros.

Theorem 3.9. Meromorphic functions h : Ω → C are exactly ratios of holomorphic functions,

h(z) =
f(z)

g(z)

Since g is holomorphic it has isolated zeros and thus h has isolated poles.

Theorem 3.10 (Residue). Let f : Ω → C be meromorphic and D ⊂ D ⊂ Ω be a domain in Ω with
piecewise smooth boundary ∂D such that no poles of g lie on ∂D. Then,∮

∂D

f(z) dz = 2πi
∑
p∈D

Resp f

Proof. We can deform the path ∂D to a sum of small circles of radius r surrounding each pole. Since
f is holomorphic on the region D minus these circles the two integrals along these paths (whose
difference is the integral over the boundary) are equal. Thus,∮

∂D

f(z) dz − 2πi
∑
p∈D

Resp f =
∑
p∈D

[∮
∂Br(p)

f(p+ z) dz − 2πiResp f

]

=
∑
p∈D

[∫ 2π

0

i

(
f(p+ reiθ)reiθ − Resp f

)
dθ

]
However,

Resp f = lim
z→p

(z − p)f(z) = lim
h→0

f(p+ h)h

and thus, for each ϵ > 0 we can choose some δ such that r < δ implies that,∣∣f(z + rriθ)reiθ − Resp f
∣∣ < ϵ

Therefore, ∣∣∣∣∣∣
∮
∂D

f(z) dz − 2πi
∑
p∈D

Resp f

∣∣∣∣∣∣ ≤
∑
p∈D

[∫ 2π

0

∣∣∣f(p+ reiθ)reiθ − Resp g
∣∣∣ dθ ]

≤
∑
p∈D

∫ 2π

0

ϵ = 2πNϵ

where N is the number of poles. Since ϵ is arbitrary,∮
∂D

f(z) dz = 2πi
∑
p∈D

Resp f

□

Theorem 3.11. Let f : Ω → C be meromorphic and D ⊂ D ⊂ Ω be a domain in Ω with piecewise
smooth boundary ∂D such that no poles of g lie on ∂D. Then,

1

2πi

∮
∂D

f ′(z)

f(z)
dz = (# of zeros)− (# of poles)
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Proof. At each point p ∈ D we can expand,

f(z) = (z − p)Nu(z)

where u is holomorphic and nonvanishing. Therefore,

f ′(z)

f(z)
=

d

dz
log f(z) =

d

dz

[
(z − p)Nu(z)

]
=

N

x− p
+

u′(z)

u(z)

Thus when f has either a zero (N > 0) or a pole (N < 0) the logarithmic derivative has residue,

Resp

(
f ′

f

)
= N

Therefore the result holds by the residue theorem. □

Corollary 3.12. Let f : Ω → C be holomorphic take w ∈ C, then the number of solutions in D to
the equation f(z)− w = 0 is equal to,

#{z ∈ D | f(z) = w} =

∮
∂D

f ′(z)

f(z)− w
dz

Proof. Since f −w is holomorphic on Ω is has no poles. Therefore, the only residues are from roots
of f − w i.e. solutions to f(z)− w = 0. As above, the integral of the logarithmic derivative counts
the number of such poles. □
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