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1 Groups

Definition: A group G is a set with a binary operation o which satisfies,
1. associativity, zo (yoz) = (zoy)oz
2. there exists an identity e € G such that eog=goe =g for any g € G

3. for each g € G there exists an inverse g~! € G such that gog™ ! =g log=ce

Example 1.1. The following are groups,
1. the integers Z with addition +
2. the nonzero rational numbers Q* with multiplication -
3. invertable matrices with matrix multiplication

4. the permutations of a set with composition of functions

Definition: We say that (G, o) is abelian if o is commutative, 2 oy = y o z. In this case we usually
write z + y for the binary operation, 0 for e and —x for z=! in analogy with the case of integers.

Definition: A group G is finitely generated if there exists a finite set S C G such that every element
in g € G can be expressed as a finite combination of elements of S (and the inverses of elements in
S)ie g=s10---0s, for s1,...,8, € SUS™! where S~ = {s7! | s € S}.

Example 1.2. The following are groups,
1. the integers Z are generated by one element, namely 1 so finitely generated.

2. the nonzero rational numbers Q* with multiplication - are not finitely generated since there
are infinitely many prime numbers

3. invertable matrices with matrix multiplication are not finitely generated because they contain
diagonal matrices with Q* entries and these special matrices cannot be finitely generated by
the above reason

4. the permutations of a finite are finite in number and thus are obviously finitely generated.

Remark 1.1. Notice that the notion of begin finitely generated is vacuous for finite groups.

Definition: A group that will be very important for us is the modular group SLy(Z) is defined the
group of matrices with integer coefficients and determinant one,

SLg(Z):{(i Z) ‘ a,b,c,dEZandad—bc:l}

Proposition 1.3. The modular group is finitely generated with two generators,

1 1 0 —1
0 1 1 0
Proof. Excercise for you. (I

Remark 1.2. If we have a group G and a subgroup H C G we would like a way to construct a
smaller group by “sending H to zero.” We acomplish this by quotienting. However, we can only do
this under the technical condition that the subgroup be normal.



Definition: Let H C G be a normal subgroup (meaning that gHg~! C G for any g € G) then we
define,
G/H ={gH | g€ G}

We call these sets gH cosets of H. Then they form a group via g1 H - goH = g192H, one can show
that this operation is well-defined exactly when H is normal in G. We define the index of H in G
to be the size of this group, [G : H] = |G/H]|.

Example 1.4. Modular arithmetic modulo n, taking the numbers 0,1,...,n — 1 and adding via
“clock arithmetic” where n maps back around to m is accomplished via taking the subgroup of
multiples of n in the integers nZ C Z and quotienting to get Z/nZ. This group has n elements so
we say [Z :nZ] = n.

2 Fields

Remark 2.1. A field is an object that has the same algebraic structure as the rational numbers
@ or the real numbers R or the complex numbers C. It is a structure were we can add, subtract,
multiply, and divide. In fields we can consider polynomials and if they have solutions. We will now
give a formal definition.

Definition: A field (F,+,-) is a set F with two binary operations +, - and distinguished elements
0,1 € F such that,

1. (F,+) is an abelian group with identity 0

2. (F*,-) is an abelian group with identiy 1 where F* = F'\ {0} (in particular, every element
but 0 has a multiplicative inverse)

3. Ve,y,ze€F:x-(y+2)=z-y+uz-z

3 Complex Analysis

3.1 Holomorphic Functions

Definition: A subset Q C C is a domain if  is open and connected.
Definition: A map f: Q — C is holomorphic at z € § if the limit,

)=t L = FC)

h—0 h

exists. The map f is holomorphic on 2 if it is holomorphic at each z € €.
Definition: We say a map f : C — C is entire if it is holomorphic on all of C.

Proposition 3.1. Let f : 2 — C be holomorphic at z € 2. Then we may write f as a function of
two real variables as, f(z,y) = f(z + t¢y). This done,

oy Of _10f
Fz) = or i 0y
and thus,
of of
o iy =0



Definition:
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Therefore, if f is holomorphic then

% = f'(z) and a5 =0
Remark 3.1. If we write f : Q — C in real form i.e. as a function F : R? — R? with F(z,y) =
(A(z,y), B(z,y)) and f(z +iy) = A(z,y) + iB(z,y) then,

of 1[of .0f] 1|0A 0B 0A 0B
0z 2{ i }2{

9z 2 |os oy ar o TTey oy
Therefore,
g—o — %—873 an 62—_%
0z or Oy or Oy

These are known as the Cauchy-Riemann equations. We will see that satisfying these equations
along with some weak regularity is necessary and sufficient for a function to be holomorphic.

Theorem 3.2. Let ) be a domain and f : 2 — C. Then the following are equivalent,
1. f:Q — C is holomorphic.

2. f is differentiable with continous derivative and,

of _

82*0

3. around the boundary of any disc D C 2 we have,

(2)dz =0
oD

Theorem 3.3. Let Q be a domain and f : Q — C. Then the following are equivalent,
1. f:Q — C is holomorphic.

2. feCH () and
of
5=

3. feC(Q) and for D C Q with piecewise C* () boundary we have

0

f(z)dz =0
oD

=g p L

N 271 8B, (w) C—Z

4. VB, (w) C 2 we have,

for all z € By(w).

ot

. [ is complex analytic: Yw € Q : 3r > 0 such that whenever |z — w| < r we have,

flz) = Z an(z —w)"
n=0



Theorem 3.4 (Cauchy). Let f: Q — C be holomorphic, for any disc D C Q and w € D° we have,

f(”)(w) - n!ng (f(z) dz

2mi z—w)ntl

In particular, the coefficients of the series expansion about w are,

o 1)
= 5 g

Lemma 3.5. For any 2y € Q, either f = 0 in a neighborhood of zy or we can express f = (z—z0)"u(z)
for u(z) holomorphic and u(z) # 0.

Proof. In a neighborhood of zy, we can write,

f(2) = nalz —z0)"
n=0

Either ¢, = 0 for each n so f =0 or ¢y # 0 for some n and ¢, — 0 for n < N. Therefore,

f(2) =3 enlz = 20)" = (2= 20)" (Z exsm(z = >) = (2= 20)Vu(2)
n>N m=0
Furthermore, u(zp) = ¢y # 0 so there exists a neighborhood of zy on which n(z) # 0. O

Proposition 3.6. Let f : O — C be holomorphic (and not identically zero) then the set of zeros,
F71(0) is discrete.

Proof. Let f vanish at zy. If f were identically zero on some open neighborhood of 2y then f would
be identically zero on . Thus, by the lemma, we can write f = (z — z9)"u(z) on some open
neighborhood U of zy where u(z) is nonvanishing on U. Furthermore, (z — zo)™ vanishes exactly at
2 so we have f~1(0)NU = {2} implying that f~1(0) is discrete. O

Corollary 3.7. Let f be a nonconstant holomorphic function. Then on any bounded set f has
finitely many zeros.

Theorem 3.8 (Liouville). Every bounded entire! function is constant.

Proof. Let f: C — C be entire and bounded everywhere by M. Take w € C and let C be a circle
arround z with radius R. Then applying the Cauchy integral formula,

/ _L]{ f(2) _ 177 fw+ Re')
Filw) = 21 Jo (2 — w)? dz = 27 Jo R2e%0 It do
Therefore,
, 1 7{ f(z) 1 /27T |f(w + Re')| 1 [ M M
= I < = AT N < = e ==
|7 w)l 21 | Jo (2 — w)? dz| < 27 Jo R? Rd < 2r Jo R a0 R

which goes to zero in the limit R — oco. Since R is arbitrarily large, f'(w) = 0 so f is constant since
it has zero derivative everywhere. (]

Tholomorphic on the entire complex plane



3.2 Meromorphic Functions
Definition: A function f : {2 — C is meromorphic if, near any zg € €2, it can be written as,
)= ) calz—20)"
n>—N

We call N the order of the pole (assuming that ¢, # 0) and c_; the residue at zy. This expansion
shows that f must have isolated poles and zeros.

Theorem 3.9. Meromorphic functions h : 2 — C are exactly ratios of holomorphic functions,

Since g is holomorphic it has isolated zeros and thus h has isolated poles.

Theorem 3.10 (Residue). Let f : Q — C be meromorphic and D C D C Q be a domain in 2 with
piecewise smooth boundary 0D such that no poles of g lie on dD. Then,

(2) dz = 2mi Z Res, f

oD peD

Proof. We can deform the path 0D to a sum of small circles of radius r surrounding each pole. Since
f is holomorphic on the region D minus these circles the two integrals along these paths (whose
difference is the integral over the boundary) are equal. Thus,

f(z)dz —2m'ZReSpf: Z [ng ( )f(p—i—z)dz — 2miRes, f

oD peD peD
2
= Z [/ i(f(p+ re?)ret — Res, f) dH]
peD 0
However,
Res, f = lim (= = p)f(2) = Jim f(p+ W)}
and thus, for each € > 0 we can choose some § such that r < ¢ implies that,

|f(z+ rr®)re’ — Res, fl <e

Therefore,

(2) dz —QWiZRespf SZ [/0%

pED pED

< Z/(JQW€:27TN€

peD

- f(p+re)re® — Res, g‘ dﬂ]

where N is the number of poles. Since € is arbitrary,

f(z)dz =2mi Z Res, f

oD peD

O

Theorem 3.11. Let f : Q — C be meromorphic and D C D C € be a domain in € with piecewise
smooth boundary 0D such that no poles of g lie on dD. Then,
1 f'(2)

2mi Jop f(2)

dz = (# of zeros) — (# of poles)



Proof. At each point p € D we can expand,

f(z) = (2 = p)"u(z)

where u is holomorphic and nonvanishing. Therefore,

f(2) d d N N u'(z)
frd 71 = — — frg

o = @ e ) = g (G- p)Vue)] = o

Thus when f has either a zero (N > 0) or a pole (IV < 0) the logarithmic derivative has residue,
f’)
Res, | =) =N
P (f

Therefore the result holds by the residue theorem. O

Corollary 3.12. Let f: 2 — C be holomorphic take w € C, then the number of solutions in D to
the equation f(z) —w = 0 is equal to,

f'(2)
#{zeD| f(z)=w :j{ ————dz
el =up=¢ I
Proof. Since f — w is holomorphic on €2 is has no poles. Therefore, the only residues are from roots
of f —w i.e. solutions to f(z) —w = 0. As above, the integral of the logarithmic derivative counts
the number of such poles. (|



