

Foundational Material for the Study of Elliptic Curves

Benjamin Church

December 3, 2022

Contents

1 Groups	2
2 Fields	3
3 Complex Analysis	3
3.1 Holomorphic Functions	3
3.2 Meromorphic Functions	6

1 Groups

Definition: A group G is a set with a binary operation \circ which satisfies,

1. associativity, $x \circ (y \circ z) = (x \circ y) \circ z$
2. there exists an identity $e \in G$ such that $e \circ g = g \circ e = g$ for any $g \in G$
3. for each $g \in G$ there exists an inverse $g^{-1} \in G$ such that $g \circ g^{-1} = g^{-1} \circ g = e$

Example 1.1. The following are groups,

1. the integers \mathbb{Z} with addition $+$
2. the nonzero rational numbers \mathbb{Q}^\times with multiplication \cdot
3. invertible matrices with matrix multiplication
4. the permutations of a set with composition of functions

Definition: We say that (G, \circ) is *abelian* if \circ is commutative, $x \circ y = y \circ x$. In this case we usually write $x + y$ for the binary operation, 0 for e and $-x$ for x^{-1} in analogy with the case of integers.

Definition: A group G is *finitely generated* if there exists a finite set $S \subset G$ such that every element in $g \in G$ can be expressed as a finite combination of elements of S (and the inverses of elements in S) i.e. $g = s_1 \circ \dots \circ s_n$ for $s_1, \dots, s_n \in S \cup S^{-1}$ where $S^{-1} = \{s^{-1} \mid s \in S\}$.

Example 1.2. The following are groups,

1. the integers \mathbb{Z} are generated by one element, namely 1 so finitely generated.
2. the nonzero rational numbers \mathbb{Q}^\times with multiplication \cdot are not finitely generated since there are infinitely many prime numbers
3. invertible matrices with matrix multiplication are not finitely generated because they contain diagonal matrices with \mathbb{Q}^\times entries and these special matrices cannot be finitely generated by the above reason
4. the permutations of a finite are finite in number and thus are obviously finitely generated.

Remark 1.1. Notice that the notion of begin finitely generated is vacuous for finite groups.

Definition: A group that will be very important for us is the modular group $\mathrm{SL}_2(\mathbb{Z})$ is defined the group of matrices with integer coefficients and determinant one,

$$\mathrm{SL}_2(\mathbb{Z}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid a, b, c, d \in \mathbb{Z} \text{ and } ad - bc = 1 \right\}$$

Proposition 1.3. The modular group is finitely generated with two generators,

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \quad \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

Proof. Excercise for you. □

Remark 1.2. If we have a group G and a subgroup $H \subset G$ we would like a way to construct a smaller group by “sending H to zero.” We accomplish this by quotienting. However, we can only do this under the technical condition that the subgroup be normal.

Definition: Let $H \subset G$ be a normal subgroup (meaning that $gHg^{-1} \subset G$ for any $g \in G$) then we define,

$$G/H = \{gH \mid g \in G\}$$

We call these sets gH cosets of H . Then they form a group via $g_1H \cdot g_2H = g_1g_2H$, one can show that this operation is well-defined exactly when H is normal in G . We define the index of H in G to be the size of this group, $[G : H] = |G/H|$.

Example 1.4. Modular arithmetic modulo n , taking the numbers $0, 1, \dots, n-1$ and adding via “clock arithmetic” where n maps back around to n is accomplished via taking the subgroup of multiples of n in the integers $n\mathbb{Z} \subset \mathbb{Z}$ and quotienting to get $\mathbb{Z}/n\mathbb{Z}$. This group has n elements so we say $[\mathbb{Z} : n\mathbb{Z}] = n$.

2 Fields

Remark 2.1. A field is an object that has the same algebraic structure as the rational numbers \mathbb{Q} or the real numbers \mathbb{R} or the complex numbers \mathbb{C} . It is a structure where we can add, subtract, multiply, and divide. In fields we can consider polynomials and if they have solutions. We will now give a formal definition.

Definition: A *field* $(F, +, \cdot)$ is a set F with two binary operations $+$, \cdot and distinguished elements $0, 1 \in F$ such that,

1. $(F, +)$ is an abelian group with identity 0
2. (F^\times, \cdot) is an abelian group with identity 1 where $F^\times = F \setminus \{0\}$ (in particular, every element but 0 has a multiplicative inverse)
3. $\forall x, y, z \in F : x \cdot (y + z) = x \cdot y + x \cdot z$.

3 Complex Analysis

3.1 Holomorphic Functions

Definition: A subset $\Omega \subset \mathbb{C}$ is a domain if Ω is open and connected.

Definition: A map $f : \Omega \rightarrow \mathbb{C}$ is *holomorphic* at $z \in \Omega$ if the limit,

$$f'(z) = \lim_{h \rightarrow 0} \frac{f(z+h) - f(z)}{h}$$

exists. The map f is holomorphic on Ω if it is holomorphic at each $z \in \Omega$.

Definition: We say a map $f : \mathbb{C} \rightarrow \mathbb{C}$ is *entire* if it is holomorphic on all of \mathbb{C} .

Proposition 3.1. Let $f : \Omega \rightarrow \mathbb{C}$ be holomorphic at $z \in \Omega$. Then we may write f as a function of two real variables as, $f(x, y) = f(x + iy)$. This done,

$$f'(z) = \frac{\partial f}{\partial x} = \frac{1}{i} \frac{\partial f}{\partial y}$$

and thus,

$$\frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y} = 0$$

Definition:

$$\frac{\partial f}{\partial z} = \frac{1}{2} \left[\frac{\partial f}{\partial x} - i \frac{\partial f}{\partial y} \right] \quad \text{and} \quad \frac{\partial f}{\partial \bar{z}} = \frac{1}{2} \left[\frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y} \right]$$

Therefore, if f is holomorphic then

$$\frac{\partial f}{\partial z} = f'(z) \quad \text{and} \quad \frac{\partial f}{\partial \bar{z}} = 0$$

Remark 3.1. If we write $f : \Omega \rightarrow \mathbb{C}$ in real form i.e. as a function $F : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ with $F(x, y) = (A(x, y), B(x, y))$ and $f(x + iy) = A(x, y) + iB(x, y)$ then,

$$\frac{\partial f}{\partial \bar{z}} = \frac{1}{2} \left[\frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y} \right] = \frac{1}{2} \left[\frac{\partial A}{\partial x} + i \frac{\partial B}{\partial x} + i \frac{\partial A}{\partial y} - \frac{\partial B}{\partial y} \right]$$

Therefore,

$$\frac{\partial f}{\partial \bar{z}} = 0 \iff \frac{\partial A}{\partial x} = \frac{\partial B}{\partial y} \quad \text{and} \quad \frac{\partial B}{\partial x} = -\frac{\partial A}{\partial y}$$

These are known as the Cauchy-Riemann equations. We will see that satisfying these equations along with some weak regularity is necessary and sufficient for a function to be holomorphic.

Theorem 3.2. Let Ω be a domain and $f : \Omega \rightarrow \mathbb{C}$. Then the following are equivalent,

1. $f : \Omega \rightarrow \mathbb{C}$ is holomorphic.
2. f is differentiable with continuous derivative and,

$$\frac{\partial f}{\partial \bar{z}} = 0$$

3. around the boundary of any disc $D \subset \Omega$ we have,

$$\oint_{\partial D} f(z) dz = 0$$

Theorem 3.3. Let Ω be a domain and $f : \Omega \rightarrow \mathbb{C}$. Then the following are equivalent,

1. $f : \Omega \rightarrow \mathbb{C}$ is holomorphic.
2. $f \in \mathcal{C}^1(\Omega)$ and

$$\frac{\partial f}{\partial \bar{z}} = 0$$

3. $f \in \mathcal{C}^1(\Omega)$ and for $D \subseteq \Omega$ with piecewise $\mathcal{C}^1(\Omega)$ boundary we have

$$\oint_{\partial D} f(z) dz = 0$$

4. $\forall B_r(w) \subsetneq \Omega$ we have,

$$f(z) = \frac{1}{2\pi i} \oint_{\partial B_r(w)} \frac{f(\zeta)}{\zeta - z} d\zeta$$

for all $z \in B_r(w)$.

5. f is complex analytic: $\forall w \in \Omega : \exists r > 0$ such that whenever $|z - w| < r$ we have,

$$f(z) = \sum_{n=0}^{\infty} a_n (z - w)^n$$

Theorem 3.4 (Cauchy). Let $f : \Omega \rightarrow \mathbb{C}$ be holomorphic, for any disc $D \subset \Omega$ and $w \in D^\circ$ we have,

$$f^{(n)}(w) = \frac{n!}{2\pi i} \oint_{\partial D} \frac{f(z)}{(z-w)^{n+1}} dz$$

In particular, the coefficients of the series expansion about w are,

$$a_n = \frac{1}{2\pi i} \oint_{\partial D} \frac{f(z)}{(z-w)^{n+1}} dz$$

Lemma 3.5. For any $z_0 \in \Omega$, either $f \equiv 0$ in a neighborhood of z_0 or we can express $f = (z-z_0)^n u(z)$ for $u(z)$ holomorphic and $u(z) \neq 0$.

Proof. In a neighborhood of z_0 , we can write,

$$f(z) = \sum_{n=0}^{\infty} n_n (z-z_0)^n$$

Either $c_n = 0$ for each n so $f = 0$ or $c_N \neq 0$ for some n and $c_n = 0$ for $n < N$. Therefore,

$$f(z) = \sum_{n \geq N}^{\infty} c_n (z-z_0)^n = (z-z_0)^N \left(\sum_{m=0}^{\infty} c_{N+m} (z-z_0)^m \right) = (z-z_0)^N u(z)$$

Furthermore, $u(z_0) = c_N \neq 0$ so there exists a neighborhood of z_0 on which $u(z) \neq 0$. \square

Proposition 3.6. Let $f : \Omega \rightarrow \mathbb{C}$ be holomorphic (and not identically zero) then the set of zeros, $f^{-1}(0)$ is discrete.

Proof. Let f vanish at z_0 . If f were identically zero on some open neighborhood of z_0 then f would be identically zero on Ω . Thus, by the lemma, we can write $f = (z-z_0)^n u(z)$ on some open neighborhood U of z_0 where $u(z)$ is nonvanishing on U . Furthermore, $(z-z_0)^n$ vanishes exactly at z_0 so we have $f^{-1}(0) \cap U = \{z_0\}$ implying that $f^{-1}(0)$ is discrete. \square

Corollary 3.7. Let f be a nonconstant holomorphic function. Then on any bounded set f has finitely many zeros.

Theorem 3.8 (Liouville). Every bounded entire¹ function is constant.

Proof. Let $f : \mathbb{C} \rightarrow \mathbb{C}$ be entire and bounded everywhere by M . Take $w \in \mathbb{C}$ and let C be a circle around w with radius R . Then applying the Cauchy integral formula,

$$f'(w) = \frac{1}{2\pi i} \oint_C \frac{f(z)}{(z-w)^2} dz = \frac{1}{2\pi} \int_0^{2\pi} \frac{f(w+Re^{i\theta})}{R^2 e^{2i\theta}} R d\theta$$

Therefore,

$$|f'(w)| = \frac{1}{2\pi} \left| \oint_C \frac{f(z)}{(z-w)^2} dz \right| \leq \frac{1}{2\pi} \int_0^{2\pi} \frac{|f(w+Re^{i\theta})|}{R^2} R d\theta \leq \frac{1}{2\pi} \int_0^{2\pi} \frac{M}{R} d\theta = \frac{M}{R}$$

which goes to zero in the limit $R \rightarrow \infty$. Since R is arbitrarily large, $f'(w) = 0$ so f is constant since it has zero derivative everywhere. \square

¹holomorphic on the entire complex plane

3.2 Meromorphic Functions

Definition: A function $f : \Omega \rightarrow \mathbb{C}$ is meromorphic if, near any $z_0 \in \Omega$, it can be written as,

$$f(z) = \sum_{n \geq -N} c_n(z - z_0)^n$$

We call N the order of the pole (assuming that $c_n \neq 0$) and c_{-1} the residue at z_0 . This expansion shows that f must have isolated poles and zeros.

Theorem 3.9. Meromorphic functions $h : \Omega \rightarrow \mathbb{C}$ are exactly ratios of holomorphic functions,

$$h(z) = \frac{f(z)}{g(z)}$$

Since g is holomorphic it has isolated zeros and thus h has isolated poles.

Theorem 3.10 (Residue). Let $f : \Omega \rightarrow \mathbb{C}$ be meromorphic and $D \subset \overline{D} \subset \Omega$ be a domain in Ω with piecewise smooth boundary ∂D such that no poles of f lie on ∂D . Then,

$$\oint_{\partial D} f(z) dz = 2\pi i \sum_{p \in D} \text{Res}_p f$$

Proof. We can deform the path ∂D to a sum of small circles of radius r surrounding each pole. Since f is holomorphic on the region D minus these circles the two integrals along these paths (whose difference is the integral over the boundary) are equal. Thus,

$$\begin{aligned} \oint_{\partial D} f(z) dz - 2\pi i \sum_{p \in D} \text{Res}_p f &= \sum_{p \in D} \left[\oint_{\partial B_r(p)} f(p+z) dz - 2\pi i \text{Res}_p f \right] \\ &= \sum_{p \in D} \left[\int_0^{2\pi} i \left(f(p + re^{i\theta}) re^{i\theta} - \text{Res}_p f \right) d\theta \right] \end{aligned}$$

However,

$$\text{Res}_p f = \lim_{z \rightarrow p} (z - p) f(z) = \lim_{h \rightarrow 0} f(p + h) h$$

and thus, for each $\epsilon > 0$ we can choose some δ such that $r < \delta$ implies that,

$$|f(z + rr^{i\theta}) re^{i\theta} - \text{Res}_p f| < \epsilon$$

Therefore,

$$\begin{aligned} \left| \oint_{\partial D} f(z) dz - 2\pi i \sum_{p \in D} \text{Res}_p f \right| &\leq \sum_{p \in D} \left[\int_0^{2\pi} |f(p + re^{i\theta}) re^{i\theta} - \text{Res}_p f| d\theta \right] \\ &\leq \sum_{p \in D} \int_0^{2\pi} \epsilon = 2\pi N \epsilon \end{aligned}$$

where N is the number of poles. Since ϵ is arbitrary,

$$\oint_{\partial D} f(z) dz = 2\pi i \sum_{p \in D} \text{Res}_p f$$

□

Theorem 3.11. Let $f : \Omega \rightarrow \mathbb{C}$ be meromorphic and $D \subset \overline{D} \subset \Omega$ be a domain in Ω with piecewise smooth boundary ∂D such that no poles of f lie on ∂D . Then,

$$\frac{1}{2\pi i} \oint_{\partial D} \frac{f'(z)}{f(z)} dz = (\# \text{ of zeros}) - (\# \text{ of poles})$$

Proof. At each point $p \in D$ we can expand,

$$f(z) = (z - p)^N u(z)$$

where u is holomorphic and nonvanishing. Therefore,

$$\frac{f'(z)}{f(z)} = \frac{d}{dz} \log f(z) = \frac{d}{dz} [(z - p)^N u(z)] = \frac{N}{z - p} + \frac{u'(z)}{u(z)}$$

Thus when f has either a zero ($N > 0$) or a pole ($N < 0$) the logarithmic derivative has residue,

$$\text{Res}_p \left(\frac{f'}{f} \right) = N$$

Therefore the result holds by the residue theorem. \square

Corollary 3.12. Let $f : \Omega \rightarrow \mathbb{C}$ be holomorphic take $w \in \mathbb{C}$, then the number of solutions in D to the equation $f(z) - w = 0$ is equal to,

$$\#\{z \in D \mid f(z) = w\} = \oint_{\partial D} \frac{f'(z)}{f(z) - w} dz$$

Proof. Since $f - w$ is holomorphic on Ω it has no poles. Therefore, the only residues are from roots of $f - w$ i.e. solutions to $f(z) - w = 0$. As above, the integral of the logarithmic derivative counts the number of such poles. \square