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1 Holomorphic Functions

Definition: We say that a complex function f : C→ C is holomorphic at z ∈ C if the limit,

f ′(z) = lim
w→0

f(z + w)− f(z)

w

exists in which case we call its value f ′(z) the complex derivative of f at z.

Remark 1.1. Notice that the limit here means that |h| → 0 so h can go to zero from any direction.

Example 1.1. Consider f = z2. Then,

f ′(z) = lim
w→0

(z + w)2 − z2

w
= lim
w→0

z2 + 2zw + w2 − z2

w
= lim
w→0

2zw + w2

w
= lim
w→0

(2z + w) = 2z

as expected.

Example 1.2. Consider f(z) = z. Then,

f ′(z) = lim
w→0

z + w − z
w

= lim
w→0

z + w − z
w

= lim
w→0

w

w

However, suppose we send w to zero along the real axis i.e. w = t for t ∈ R and take,

f ′(z) = lim
t→0

t

t
= lim
t→0

t

t
= 1

However, if we send w to zero along the imaginary axis i.e. w = it t ∈ R and take,

f ′(z) = lim
t→0

it

t
= lim
t→0

−it
it

= −1

Oh no. These do not agree so the limit cannot exist. Therefore f(z) = z is not holomorphic
anywhere.

Theorem 1.3 (Cauchy). Let γ : [0, 1] → C be a closed curve (γ(0) = γ(1)) in the complex plane
and f : C→ C be holomorphic everywhere on the region bounded by γ. Then,∮

γ

f(z) dz = 0

Proof. Look up the proof of Green’s theorem and the Cauchy-Riemann equations. It is a good
exercise to try and prove Cauchy’s theorem from these facts. �

Remark 1.2. The integral, ∮
γ

f(z) dz

can be defined as follows. Parametrize the loop as γ(t) for t ∈ [0, 1] and take “by the chain rule”,∮
γf(z) dz =

∫ 1

0

f(γ(t))γ′(t) dt

this may serve as a definition of the loop integral.
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Example 1.4. Let’s take f(z) = z2 and consider a loop tracing out a circle of radius r around the
origin. Explicitly,

γ(t) = re2πit

Then we can compute,∮
γ

f(z) dz =

∫ 1

0

(re2πi)2(re2πit) · (2πi) dt = (2πi)r3
∫ 1

0

e3·(2πit) dt = 0

Think about why this integral is zero!

2 Meromorphic Functions

Example 2.1. Consider the function f(z) = 1
z . It is not difficult to show that f is holomorphic

everywhere except at z = 0 where it blows up. We say f has a pole at z = 0. Let’s compute the
loop integral for the same circular path γ,∮

γ

f(z) dz =

∫ 1

0

1

re2πit
(re2πit(2πi) dt =

∫ 1

0

(2πi) dt = 2πi

Interesting! We might hypothesize that each pole in the interior of γ contributes a factor of 2πi to
the loop integral. Indeed this is true if we include the “residue” at the pole.

Definition: We say a function f : C → C has a pole of order n at z0 if closed to z0 we can write
f = (z − z0)−nu(z) where u(z) is some nonvanishing holomorphic function near z0.

Remark 2.1. We say the pole is simple if its order is 1. For example,

f(z) =
1

z

has a simple pole at z = 0.

Definition: Let f have a simple pole at z0. Then the residue of f at z0 is,

resz0(f) = lim
z→z0

(z − z0)f(z)

Since, by definition, closed to z0 we can write,

f(z) = (z − z0)−1u(z)

and u is holomorphic (hence continuous in the complex plane) we see that,

resz0(f) = lim
z→z0

(z − z0)(z − z0)u(z) = lim
z→z0

u(z) = u(z0)

Definition: We say a function f : Ω → C for Ω ⊂ C is meromorphic if there is a set of isolated
poles P ⊂ Ω such that f is holomorphic on Ω \ P and f has a pole at each point p ∈ P .

Remark 2.2. It is equivalent to say that a meromorphic function f is a ratio of two holomorphic
functions g, h i.e.

f(z) =
g(z)

h(z)

Think about how you would prove this?

Theorem 2.2 (Residue). Let γ : [0, 1]→ C be a closed curve bouding a region D ⊂ C and let f be
meromorphic on D. Then, ∮

γ

f(z) dz = 2πi
∑
p∈D

resp(f)
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