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1 The Cauchy Integral Formula

Recall that if f(z) has a single simple pole at zy then for any path containing zy we get,

ﬁf(z) dz = 2mires,, (f)

In particular, suppose that f is holomorphic everywhere inside the disk bounded by 7. Then the
function,
f(z)
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has a simple pole at zg. Therefore, by the residue theorem,
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This gives us the following incredible formula.

Theorem 1.1 (Cauchy). Let «y: [0,1] — C be a closed curve bounding a disk D C C. Suppose that
f : € — C is holomorphic on all of D then for any w € D° (in the interior of D),
1
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This amazing theorem tells us that we can compute the values of a holomorphic function everywhere
on a disk just given its values on the boundary.

2 Power Series Expansion

The Cauchy integral formula has another possibly even more amazing implication: that all holo-
morphic functions are analytic i.e. can be expressed as a convergent power series. The argument
goes as follows. Suppose that f : C — C is holomorphic. Then for any point w € C we can choose
a fixed circle « centered at wy and enclosing w. Then by Cauchy’s formula,
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Now the trick! Notice that the right hand side only depends on w through the function,
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which we already know has a convergent Laurent series as follows,
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Why does this converge? Well because w is inside the circle centered at wy (say of radius r) so
|w —wp| < r and z is on the boundary of this circle so |z — wg| = r. Therefore,
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and thus we know this power series converges. Now here comes the analysis black magic. Because
convergent power series converge uniformly, we can exchange sums and integrals to get,
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Bam a convergent power series expression for f centered at wy. Even better we get a formula for
the coefficients,
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In particular, these coefficients again only depend on the values of f on the boundary of the disk.
Amazing! Since any power series expansion for f must be the taylor series,
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Therefore, we can identify the coefficients a,, from our integral formulae with the derivates of f at
wo,
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Therefore, we conclude,

This generalizes the Cauchy integral formula which the above reduces to in the case n = 0.

3 Elliptic Functions

On the real line, analytic periodic functions like sinusoids have wonderful properties are are inti-
mately related to the points quadratic curves i.e. circles. We might naturally ask: “what is the
analogue of a periodic function on the complex plane?” The following is one such notion.

Definition: A function f : C — C is doubly periodic or elliptic if there exits two independent (not
real multiples of each other) complex numbers w; and wy such that,

fz+w)=f(z) and f(z+ws)=f(2)
We define the lattice of periods,
A = {nw; + mwsy | n,m € Z}

so that f(z 4+ w) = f(z) for all w € A so f factors as a function on the quotient f : C/A — C.



Remark 3.1. The space C/A is topologically a torus. It is equivalent to the “fundamental paral-
lelogram”
{awr + pws | a, B € [0,1]}

with opposite edges identified. This is the standard construction of a torus. However, different
lattices A will put a different complex structure on C/A which we therefore call a complex torus.

We would want to consider elliptic homomorphic functions. However, a classical theorem in complex
analysis poses a difficulty.

Theorem 3.1 (Liouville). Every bounded entire! function is constant.

Proof. Let f: C — C be entire and bounded everywhere by M. Take w € C and let C be a circle
arround z with radius R. Then applying the Cauchy integral formula,
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which goes to zero in the limit R — oco. Since R is arbitrarily large, f'(w) = 0 so f is constant since
it has zero derivative everywhere. (]

Corollary 3.2. There do not exist nonconstant doubly periodic holomorphic functions.

Proof. Suppose that f : C — C is holomorphic and doubly periodic with periods w; and wo. Consider
f restricted to the so-called “fundamental domain”

D = {aw; + fws | a, B € [0,1]}

By using the periodicity, the behavior of f everywhere is determined by its values on D. Since D is
compact? and f is continuous (since it is holomorphic) it must be bounded® on D. Therefore, f is
entire and bounded and thus, by Liouville’s theorem, constant. ([l

Our plan has been thwarted as soon as it was devised. Since we cannot find interesting holo-
morphic examples of elliptic functions we now ask for the next best thing. We want to consider
elliptic meromorphic functions. That is, meromorphic functions f : C/A — C. It turns out that
now were are in luck. A canonical example of a meromorphic function is 272, think about how we
might modify such a function such that it is doubly periodic.

Tholomorphic on the entire complex plane

2closed and bounded for subsets of Euclidean space

3 A continuous function on a compact set cannot diverge approaching a point because the set is closed nor diverge
off to infinity because the set is bounded.



