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1 The Cauchy Integral Formula

Recall that if f(z) has a single simple pole at z0 then for any path containing z0 we get,∮
γ

f(z) dz = 2πiresz0(f)

In particular, suppose that f is holomorphic everywhere inside the disk bounded by γ. Then the
function,

g(z) =
f(z)

z − z0
has a simple pole at z0. Therefore, by the residue theorem,∮

γ

f(z)

z − z0
dz = 2πiresz0(g) = 2πif(z0)

This gives us the following incredible formula.

Theorem 1.1 (Cauchy). Let γ : [0, 1]→ C be a closed curve bounding a disk D ⊂ C. Suppose that
f : C→ C is holomorphic on all of D then for any w ∈ D◦ (in the interior of D),

f(w) =
1

2πi

∮
γ

f(z)

z − w
dz

This amazing theorem tells us that we can compute the values of a holomorphic function everywhere
on a disk just given its values on the boundary.

2 Power Series Expansion

The Cauchy integral formula has another possibly even more amazing implication: that all holo-
morphic functions are analytic i.e. can be expressed as a convergent power series. The argument
goes as follows. Suppose that f : C → C is holomorphic. Then for any point w ∈ C we can choose
a fixed circle γ centered at w0 and enclosing w. Then by Cauchy’s formula,

f(w) =
1

2πi

∮
γ

f(z)

z − w
dz

Now the trick! Notice that the right hand side only depends on w through the function,

1

z − w
which we already know has a convergent Laurent series as follows,

1

z − w
=

1

(z − w0) + (w0 − w)
=

1

z − w0
· 1

1− w−w0

z−w0

=
1

z − w0

(
1 +

(
w − w0

z − w0

)
+

(
w − w0

z − w0

)2

+ · · ·

)
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Why does this converge? Well because w is inside the circle centered at w0 (say of radius r) so
|w − w0| < r and z is on the boundary of this circle so |z − w0| = r. Therefore,∣∣∣∣w − w0

z − w0

∣∣∣∣ < 1

and thus we know this power series converges. Now here comes the analysis black magic. Because
convergent power series converge uniformly, we can exchange sums and integrals to get,

f(w) =
1

2πi

∮
γ

f(z)

z − w
dz =

1

2πi

∮
γ

f(z)

z − w0

(
1 +

(
w − w0

z − w0

)
+

(
w − w0

z − w0

)2

+ · · ·

)
dz

=

∞∑
n=0

1

2πi

∮
γ

f(z)

z − w0
·
(
w − w0

z − w0

)n
dz

=

∞∑
n=0

(w − w0)n
[

1

2πi

∮
γ

f(z)

(z − w0)n+1
dz

]
Bam a convergent power series expression for f centered at w0. Even better we get a formula for
the coefficients,

f(w) =

∞∑
n=0

an(w − w0)n where an =
1

2πi

∮
γ

f(z)

(z − w0)n+1
dz

In particular, these coefficients again only depend on the values of f on the boundary of the disk.
Amazing! Since any power series expansion for f must be the taylor series,

f(w) =

∞∑
n=0

an(w − w0)n =

∞∑
n=0

f (n)(w0)

n!
(w − w0)n

Therefore, we can identify the coefficients an from our integral formulae with the derivates of f at
w0,

an =
f (n)(w0)

n!

Therefore, we conclude,

f (n)(w0) =
n!

2πi

∮
γ

f(z)

(z − w0)n+1
dz

This generalizes the Cauchy integral formula which the above reduces to in the case n = 0.

3 Elliptic Functions

On the real line, analytic periodic functions like sinusoids have wonderful properties are are inti-
mately related to the points quadratic curves i.e. circles. We might naturally ask: “what is the
analogue of a periodic function on the complex plane?” The following is one such notion.

Definition: A function f : C→ C is doubly periodic or elliptic if there exits two independent (not
real multiples of each other) complex numbers ω1 and ω2 such that,

f(z + ω1) = f(z) and f(z + ω2) = f(z)

We define the lattice of periods,

Λ = {nω1 +mω2 | n,m ∈ Z}

so that f(z + ω) = f(z) for all ω ∈ Λ so f factors as a function on the quotient f : C/Λ→ C.
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Remark 3.1. The space C/Λ is topologically a torus. It is equivalent to the “fundamental paral-
lelogram”

{αω1 + βω2 | α, β ∈ [0, 1]}

with opposite edges identified. This is the standard construction of a torus. However, different
lattices Λ will put a different complex structure on C/Λ which we therefore call a complex torus.

We would want to consider elliptic homomorphic functions. However, a classical theorem in complex
analysis poses a difficulty.

Theorem 3.1 (Liouville). Every bounded entire1 function is constant.

Proof. Let f : C → C be entire and bounded everywhere by M . Take w ∈ C and let C be a circle
arround z with radius R. Then applying the Cauchy integral formula,

f ′(w) =
1

2πi

∮
C

f(z)

(z − w)2
dz =

1

2π

∫ 2π

0

f(w +Reiθ)

R2e2iθ
R dθ

Therefore,

|f ′(w)| = 1

2π

∣∣∣∣∮
C

f(z)

(z − w)2
dz

∣∣∣∣ ≤ 1

2π

∫ 2π

0

|f(w +Reiθ)|
R2

R dθ ≤ 1

2π

∫ 2π

0

M

R
dθ =

M

R

which goes to zero in the limit R→∞. Since R is arbitrarily large, f ′(w) = 0 so f is constant since
it has zero derivative everywhere. �

Corollary 3.2. There do not exist nonconstant doubly periodic holomorphic functions.

Proof. Suppose that f : C→ C is holomorphic and doubly periodic with periods ω1 and ω2. Consider
f restricted to the so-called “fundamental domain”

D = {αω1 + βω2 | α, β ∈ [0, 1]}

By using the periodicity, the behavior of f everywhere is determined by its values on D. Since D is
compact2 and f is continuous (since it is holomorphic) it must be bounded3 on D. Therefore, f is
entire and bounded and thus, by Liouville’s theorem, constant. �

Our plan has been thwarted as soon as it was devised. Since we cannot find interesting holo-
morphic examples of elliptic functions we now ask for the next best thing. We want to consider
elliptic meromorphic functions. That is, meromorphic functions f : C/Λ → C. It turns out that
now were are in luck. A canonical example of a meromorphic function is z−2, think about how we
might modify such a function such that it is doubly periodic.

1holomorphic on the entire complex plane
2closed and bounded for subsets of Euclidean space
3A continuous function on a compact set cannot diverge approaching a point because the set is closed nor diverge

off to infinity because the set is bounded.
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