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1 Introduction and Sketches

1.1 Rational Curves
Remark. In this talk we will usually restrict to varieties for simplicity which here means an inte-
gral separated scheme of finite type over an algebraically closed field k. However, we will, unless
otherwise stated, work over an base field k of arbitrary characteristic.

Definition 1.1.1. Let X be a proper variety. A rational curve on X is an integral closed subvariety
C ⊂ X of dimension 1 whose normalization is isomorphic to P1 (equivalently1 g(C) = 0).

Proposition 1.1.2. Rational curves on X correspond to non-constant morphisms f : P1 → X up
the equivalence induced by refinement meaning f1 ∼ f2 if there is a diagram of non-constant maps,

P1

P1 P1

X

g1 g2

f1 f2

Proof. Given f : P1 → X its scheme theoretic image C ⊂ X is clearly a rational curve. Conversely,
to any rational curve we have the normalization map ν : P1 → C → X. Now f : P1 → C factors
through ν : P1 → C because P1 is normal. �

1.2 The Method and Main Results
Definition 1.2.1. A variety X is Fano if −KX is an ample (Q-Cartier) divisor.

Remark. We will only consider smooth Fano varieties meaning KX is Cartier but we really only
need X to be Gorenstein (actually even KX being Q-Cartier is probably enough).
Remark. A major result we will be able to prove with the Bend and Break technique is the following.

Theorem 1.2.2. Let X be a smooth Fano variety of dimension n. Then every closed point of X
lies on a rational curve Cx such that,

−KX · Cx ≤ n+ 1

Definition 1.2.3. Let X be a Fano variety of dimension n. Let C ⊂ X be a rational curve. We
define the degree of C to be degC = (−KX) · C. By the main theorem, there is a covering family
of rational curves Cx. We define the degree of the covering family to be,

d = max (−KX) · Cx

Therefore, the main theorem proves that d ≤ n+ 1.
1Using crucially that k = k̄.
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Remark. Ugh, you say, another overloaded meaning of the word “degree”. Let me try to convince
you that this is reasonable. Given the morphism f : P1 → X with image C we have,

(−KX) · C = deg f ∗ωX
However, ωX is ample so after some tensor power ω⊗nX defines an embedding X ↪→ PN which I hope
you will agree is the most sensible way to embed X in projective space. Therefore,

n degC = deg f ∗ω⊗nX = degOC(1)

is the degree of the curve C ↪→ X ↪→ PN in the standard sense showing that degC agrees with our
usual notion up to the one-time choice of the universal (for curves on X) constant n.
Example 1.2.4. To see where this numerology comes from, consider the case X = Pn. Then
−KX = (n + 1)H where H is the hyperplane class. Then we know that Pn is covered by lines L
and H · L = 1. Therefore,

(−KX) · L = n+ 1
It turns out Pn is in this intersection sense “maximal” as a Fano variety. In fact, Mori proved the
following characterization of projective space.
Theorem 1.2.5 (Mori). Let X be a smooth projective Fano variety of dimension n. Suppose that
the smallest degree of a covering family of rational curves is n+ 1 then X ∼= Pn.
Corollary 1.2.6. Let X be a smooth projective variety. If on PX(TX)→ X the line bundle OX(1)
is ample then X ∼= Pn.

1.3 Examples
Example 1.3.1. Let X = (P1)n. The ruling lines L ⊂ X cut out by sections of the sheaves,

OX(1, . . . , 0), . . . ,OX(0, . . . , 1)

form a covering family of rational curves with degree 2 since ωX = OX(−2, . . . ,−2).
Example 1.3.2. Let λ = (n1, . . . , nk) be a partition of n. Then let X = Pn1 × · · · × Pnk which is
an n-dimensional Fano variety. Furthermore,

−KX =
k∑
i=1

(ni + 1)Hi

Then I can cover X by lines Li that lie inside Pni with the other coordinates fixed for some i. Thus,
Li ·Hj = δij. Then we see that,

(−KX) · Li = (ni + 1)
so we can achieve a covering family of any degree,

2 ≤ d ≤ n+ 1

Even better if we take a partition with smallest element nk = ` then we have minimal covering
degree for Lk with,

(−KX) · Lk = (`+ 1)
so we can achieve any minimal covering degree,

2 ≤ ` ≤ n+ 1

for a Fano of dimension n.
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Remark. Is is possible for a smooth Fano to have a covering family of degree 1? I don’t know but I
expect it is not possible. Here is a sketch of a proof in the surface case. Let C ⊂ X be a rational
curve which is a Cartier divisor. I will assume that C is smooth (I think in characteristic zero I can
do this for a general C and this will be enough for the proof). Suppose that C · (−KX) = 1. I will
show there are only finitely many C. By the adjunction formula,

C · (C +KX) = 2g − 2 = −2

and therefore C2 = −1. Therefore, by Castelnuovo’s contraction theorem, there exists a smooth
projective surface Y and a map π : X → Y which is a blowup at a smooth point with exceptional
fiber C. Then I can continue this process killing each of the rational curves onX with C ·(−KX) = 1.
Why must this terminate? At each contraction step we have dimH2(X) = dimH2(Y ) + 1 and
H2(X) is finite-dimensional so we win.

Example 1.3.3. If X is a smooth proper variety covered by rational curves it need not be Fano.
For example X = E × P1 for E an elliptic curve. Furthermore, ωX = π∗2OP1(−2) and the line
Lx = {x} × P1 is a divisor corresponding to π∗1OE(x) and therefore,

Lx · (−KX) = 2

so we cannot even expect X to be Fano if it is covered by rational curves with positive anticanonical
intersection.

Example 1.3.4. There are many 3-fold Fans that are not rational. A cubic 3-fold has,

ωX = OX(−1)

and thus is Fano but a nonsingular cubic 3-fold is not rational [Clemens and Griffiths, 1972].

Example 1.3.5. Most rational varieties you would think of are Fano. However, there are non-
projective toric varieties (which are always rational) which therefore cannot be Fano. Even better,
there are smooth projective toric surfaces which are not Fano. For example, the toric variety
associated to a lattice octagon (I THINK).

1.4 Outline of the Proof of the Main Theorem
Remark. The idea is to choose some morphism f : C → X from a curve mapping p0 7→ x0 and
prove that by modifying the curve we can ensure that it “bends” meaning that f deforms while
preserving the condition that p0 7→ x0. This will “break” the curve into rational curves all passing
though x0 because of rigidity lemmas.

1.5 Bend
1.5.1 The Hom Scheme

Remark. We want to deform a morphism f : C → X from a fixed curve X. To do this, we need to
ask: what is a family of morphisms? How do we parameterize them?

Definition 1.5.1. Let X and Y be schemes over S. Then the functor HomS (X, Y ) is defined as:

T 7→ HomT (XT , YT ) = HomS (X ×S T, Y )

4



Proposition 1.5.2. This is a sheaf in the Zariski (étale, fppf, ... any subcanonical) topology.

Proof. For any cover {Ti → T} we get a cover {X×S Ti → X×S T} and we know that HomS (−, Y )
is a sheaf so we conclude that,

HomS (X ×S T, Y ) ∏HomS (X ×S Ti, Y ) ∏HomS (X ×S Ti ×S Tj, Y )

is an equalizer. �

Proposition 1.5.3. If S is the spectrum of a field, X is quasi-projective over S and Y is projective
over S then HomS (X, Y ) is representable by a locally Noetherian scheme HomS (X, Y ) which is a
countable disjoint union of quasi-projective (and hence finite type) S-schemes. In particular, there
is a universal “evaluation” morphism:

ev : X ×S HomS (X, Y )→ Y

Remark. This is an “exponential object” in the category of S-schemes: morphisms f : X×S T → Y
correspond to λf : T → HomS (X, Y ) such that ev ◦ (idX × λf) = f .
Remark. Without Y being projective this is very false. For example,

Homk

(
A1,A1

)
= A∞

Sketch: We will identify HomS (X, Y ) with an open subfunctor of the Hilbert scheme HilbX×SY/S.
The idea is that a morphism f : X×ST → Y is defined by its graph Γ ⊂ (X×SY )×ST . Morphisms
correspond to closed subschemes Γ ⊂ (X ×S Y ) ×S T such that Γ → X ×S T is an isomorphism.
Since X → S is fppf this in particular implies that Γ→ T is fppf and hence Γ ∈ HilbX×SY/S(T ). It
suffices to show that,

HomS (X, Y )→ HilbX×SY/S

is a closed immersion. This is because for proper Y , the “locus over T on which a morphism of
T -schemes is an isomorphism is open”. �

1.5.2 Local Structure of the Hom Scheme

Remark. In order to bend a morphism f : C → X we want to find a curve T → Hom (C,X) passing
through [f ] since then ev : C × T → X gives a nontrivial family of curves. To do this, we would
like to know about the tangent space and local structure of Hom (C,X).

Proposition 1.5.4. Canonically (even when it’s not representable) for a k-point [f ] ∈ HomS (X, Y ) (k),

T[f ]HomS (X, Y ) ∼= HomOXs

(
f ∗ΩY/S,OXs

)
Proof. Let s→ S be the k-point Spec (k)→ S. This is a classic sort of deformation theory argument
about maps fitting into the diagram,

Xs Y

Xs ×s D S

f

f̃

where D = Spec (k[ε]). Since s → D is a split extension there exists a canonical lift f̃ . Last
quarter we proved that the set of lifts is a torsor over HomOXs

(
f ∗ΩY/S, εOXs

)
and thus canonically

isomorphic to it because there is a canonical choice of base point. �
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Corollary 1.5.5. If f : Xs → Ys lands in the smooth locus of Y/S then,

T[f ]HomS (X, Y ) = H0(Xs, f
∗TY/S)

Remark. This says Y -valued vector fields on X are really infinitesimal deformations of a morphism.
Remark. Knowing the tangent space is not quite enough to locally find a curve on a highly singular
scheme. Therefore, we need to somehow bound dimT[f ]HomS (X, Y )− dim HomS (X, Y ).

Proposition 1.5.6. Let S = Spec (k) and X a projective variety over k and Y a quasi-projective
variety over k and f : X → Y a k-morphism mapping into the smooth locus of Y . Then,

dimT[f ]HomS (X, Y )− dim HomS (X, Y ) ≤ dimH1(X, f ∗TY )

and therefore,
dim[f ] HomS (X, Y ) ≥ dimH0(X, f ∗TY )− dimH1(X, f ∗TY )

1.5.3 Bending in Positive Characteristic

The previous discussion takes a particularly simple form for Homk (C,X) where C is a smooth
complete curve and X is a smooth proper k-variety. Then,

dim[f ] Homk (C,X) ≥ h0(C, f ∗TX)− h1(C, f ∗TX) = χ(C, f ∗TX) = (1− g(C)) · dimX + deg f ∗TX

At first we are very sad because producing curves of bounded genus is really really hard. Then
Mori has the brilliant insight: why can’t I pump up the degree of f ∗TX by pumping up the degree
of f as long as deg f ∗TX > 0.
Remark. This positivity is where X being Fano will enter since det TX is ample so f ∗ det TX is also
ample (since f is non-constant) and hence deg f ∗TX > 0. In terms of intersection theory,

deg f ∗TX = (−KX) · f∗C

where f∗C is the cycle corresponding to the scheme theoretic image of f : C → X.
If I can replace f by fn : C → X with deg fn = n det f (without increasing the genus) then
deg f ∗nTX = n deg f ∗TX so we can make sure there are lots of deformations.

Example 1.5.7. If g(C) = 1 then there are multiplication by n maps [n] : C → C so we let
fnn = f ◦ [n] and we win, there is always f : C → X that bends.

However, if g(C) > 0 it is not at all clear we can do this. Non-constant separable maps g : C ′ → C
of smooth curves satisfy Riemann-Hurwitz so the best we can hope for is the étale case in which,

g(C ′) = n(g(C)− 1) + 1

and therefore,

χ(C ′, g∗f ∗TX) = (1−g′(C))·dimX+deg g∗f ∗TX = n(1−g(C))·dimX+n deg f ∗TX = n·χ(C, f ∗TX)

so if χ(C, f ∗TX) = 0 this cannot help. There is nothing that can be done ... unless we drop the
separability condition. That’s right we need to use the Frobenius in positive characteristic! Then
notice we get F n : C → C composes to gives deg (f ◦ F n) = pn deg f keeping the genus g(C) fixed.
Therefore, we can always pump up the degree term so that χ(C, (f ◦ F n)∗TX) ≥ 1 for n� 0.

6



Proposition 1.5.8. Let k have positive characteristic. For any smooth curve C with a map
f0 : C → X there exist an n0 such that for all n ≥ n0,

dim[f◦Fn] Homk (C,X) ≥ 1

and hence there exists a non-constant map T → Homk (C,X) through f ◦ F n from a smooth curve
T producing a morphism,

f : C × T → X

such that f(−, t0) = f0 ◦ F n.

Proof. Choose a locally closed curve T0 ↪→ Homk (C,X) passing through [f0 ◦ F n] which exists
because there is a finite type k-scheme open of positive dimension. Then let ν : T → T0 be the
normalization. Then let f0 be T → T0 → X which is non-constant. Then,

C × T → C × T0
ev−→ X

gives the desired map. �

1.6 Break
Remark. What does it mean for a family to “break” and why does it break into rational curves.
Explicitly, the family is an extension of the map to f : C×T → X where T is a smooth affine curve.
Let T̄ be the unique smooth projective model of T . This defines a rational map f : C × T̄ X.
Rigidity tell us that this rational map must have some indeterminacy locus. At first, this observation
seems parochial: we shouldn’t expect a random rational map from a surface to extend. However,
in good circumstances, the indeterminacy locus will define rational curves on the target as the
“broken” limit of the bent curve C. This is morally because indeterminacy can be resolved through
blowups at smooth points which introduce exceptional fibers that are copies of P1 in the source.

Proposition 1.6.1. Let C be a smooth projective curve and T aa smooth curve. Choose fixed
points p0 ∈ C and t0 ∈ T . Let f : C × T → X be a morphism such that,

(a) f(p0,−) is constant at x0 ∈ X

(b) f(−, t0) is non-constant

(c) f(−, t) is different from f(−, t0) for general t ∈ T or equivalently there exists a point p ∈ C
such that f(p,−) is non-constant.

Let T be the unique smooth projective model of T . Then the rational map f : C × T X is not
everywhere defined. Indeed, there exists t1 ∈ T such that (p0, t1) is in the indeterminacy locus.

Remark. The picture is that f is a nontrivial (condition (c)) family of generically non-constant
(condition (b)) maps ft : C → X such that ft(p0) = x0 is fixed (condition (a)).
Remark. The importance of this result is in collaboration with the following result.

Proposition 1.6.2. Let Z be a smooth variety and f : Z X a rational map. If we resolve the
rational map via the graph,
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Ẑ

Z X

π
f̂

f

Let S ⊂ Z be the indeterminacy locus. Then f̃(π−1(S)) is a union of rational curves on X.

Remark. Vaguely: if π can be resolved by blowups at smooth centers. Therefore, π−1(S)→ S is a
projective bundle and therefore is covered by rational curves so its image f̃(π−1(S)) ⊂ X is covered
by rational curves. Unfortunately, we don’t know resolution of singularities in positive characteristic
(we need this result in positive characteristic to prove our main theorem even over C).

Corollary 1.6.3. In the hypotheses of Prop. 1.6.1 there exists a rational curve on X through x0.

1.7 Reduction to Positive Characteristic
We want to show that HomK (P1, X) is nonempty2. However, we only know how to do this in
positive characteristic.

Therefore, given a Fano variety X over a field K of characteristic zero we spread out to a smooth
and proper X → Spec (A) where A ⊂ K is a finite type Z-algebra and such that ωX /A is ample
since closed immersion spread out. The Hom scheme is well-defined over Z and respects base change
so we get HomA (P1

A,X ) → Spec (A). We know that this has nonempty fibers over every point of
positive residue characteristic. Since HomA (P1

A,X ) is finite type3 by Chevallay’s theorem its image
is constructible but also contains every closed point and hence is dense (since Spec (A) is Jacobson)
so it contains the generic point meaning that HomK (P1, X) is nonempty and we win.

2 Bend
Remark. In this lecture we will refine the Hom scheme to keep track of the data of a “fixed point”
and the “degree of the morphism” in order to make the proposed proof sketch actually go through.
Then we will prove the properties of the Hom scheme presented last time. Recall the Hom scheme
is defined as follows.

Definition 2.0.1. Let X and Y be schemes over S. Then the functor HomS (X, Y ) is defined as:

T 7→ HomT (XT , YT ) = HomS (X ×S T, Y )

Remark. First we recall the Hilbert scheme and its representability.

Definition 2.0.2. Let X → S be a morphism of schemes. Then the Hilbert functor HilbX/S is,

T 7→ {closed subschemes Z ⊂ X ×S T | Z → T is flat, proper, and finitely presented }
2The astute in the audience will notice this is not at all what we want: first, this is never empty because of

constant morphisms, second we want rational curves passing through a fixed point x ∈ X. To remedy both notions
we will refine our Hom scheme in the coming lectures to keep track both of the degree and of a fixed base-point.

3The astute in the audience will notice that this is totally false. This is another reason we need to introduce a
Hom scheme that keeps track of the degree of the morphism. The Hom scheme of morphism of uniformly bounded
degree will actually be finite type and a technical lemma will show we can arrange our curves to have uniformly
bounded degree (independent of the characteristic) so we win. Incidentally, this is also where the degree bound
≤ n + 1 in the conclusion of the theorem will come from.
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Remark. Let L be a line bundle on X. Because Z → T is flat and proper we see that for every
point t ∈ T the fiber Zt is a proper κ(t)-scheme so,

ΦZ,L
t (n) =

dimZ∑
i=0

(−1)i dimH i(Zt,L|⊗nZt
)

is a well-defined polynomial in n and is locally constant in t by flatness.

Definition 2.0.3. Let L be a line bundle on X. For a polynomial Φ ∈ Q[λ] we define HilbΦ,L
X/S via,

T 7→ {Z ∈ HilbX/S | ΦZ,L
t = Φ for all t ∈ T}

Proposition 2.0.4. As sheaves there is a natural decomposition,

HilbX/S =
∐

Φ∈Q[λ]
HilbΦ,L

X/S

Proof. Because t 7→ ΦZ,L
t is locally constant, we see that T decomposes into a disjoint union on

which ΦZ
t is constant and therefore naturally factors through the inclusion,∐

Φ∈Q[λ]
HilbΦ,L

X/S → HilbX/S

which is hence an isomorphism. �

Theorem 2.0.5 (Grothendieck). Let S be a Noetherian scheme. Let X → S be (quasi)-projective
with L a relatively ample line bundle for X → S. Then, HilbΦ,L

X/Y is represented by a (quasi)-
projective S-scheme HilbΦ,L

X/Y .

Proposition 2.0.6. Let X → S be flat, proper, and finitely presented and Y → S be separated.
Then the map taking a morphism to its graph,

Γ : HomS (X, Y )→ HilbX×SY/S

is an open immersion of sheaves.

Proof. The graph morphism takes f : XT → YT over T and sends it to the closed subscheme
Γf : XT → XT ×T YT = (X ×S Y ) ×S T . Notice that Γf is a closed immersion because Y → S is
separated and Γf is a base change of ∆Y/S. Since πXT

◦ Γf = idXT
the hypotheses on X → S show

that im Γf → T is flat, proper, and finitely presented and hence im Γf ∈ HilbX×SY/S(T ).

We need to show for any S-scheme T with a map T → HilbX×SY/S meaning a choice of a closed
subscheme Z ⊂ (X ×S Y )×S T flat and finitely presented over T that the diagram,

U T

HomS (X, Y ) HilbX×SY/S

produces an open immersion U → T . Explicitly, for any test scheme we want to show there is an
open U ⊂ T such that T ′ → T factors through U → T (meaning has image inside U) if and only
if Z → HilbX×SY/S factors through HomS (X, Y ) → HilbX×SY/S which is equivalent to saying that
ZT ′ → T ′ is an isomorphism. This is proven in the following lemma. �
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Lemma 2.0.7. If f : X → Y is a morphism of schemes proper and flat over a Noetherian base S
then there exist open subschemes Si ⊂ Sf ⊂ S such that,

(a) for any T → S the map fT : XT → YT is flat iff T → S factors through Sf

(b) for any T → S the map fT : XT → TY is an isomorphism iff T → S factors through Si.

Proof. The flat locus of f : X → Y is an open U . Since gX : X → S is proper the locus
Sf = S \ gX(X \ U) is open. By the local criterion for flatness, Sf is the set of points s ∈ S such
that f : Xs → Ys is flat. For T → S and t ∈ T we see that ft : Xt → Ys is exactly fs : Xs → Ys for
t 7→ s. Therefore, by the local criterion, fT is flat if and only if T → Sf .

Via the previous part, we may assume that f : X → Y is flat. If f : Xs → Ys is an isomorphism
then it spreads out to an isomorphism fU : XU → YU over an open of the base [EGAIII.4, Prop.
4.6.7]. Therefore we get a universal open in the same way as above. �

Corollary 2.0.8. Let S be a Noetherian scheme. Let X → S be projective and flat and Y → S
(quasi)-projective with relatively ample L. Then HomS (X, Y ) is representable as an open sub-
scheme of HilbX×SY/S and therefore decomposes as a disjoint union,

HomS (X, Y ) =
∐

Φ∈Q[λ]
HomΦ,L

S (X, Y )

where HomΦ,L
S (X, Y ) are (quasi)-projective (and hence finite type) S-schemes representing the

moduli problems,
T 7→ {f : XT → YT | Φf∗L

t = Φ for all t ∈ T}

Remark. For Φf∗L
t to be well-defined and locally constant explains why we need X → S to be flat

and proper.

2.1 Infinitesimal Deformation Theory
To study the local structure of a moduli space we employ the technique of probing via “infinitesimal
deformations”. For example, Spec (k[t]/(tn)) → X give “infinitesimal arcs”. The idea will be to
consider maps from Artin local rings Spec (A)→ X deforming a point meaning that A/mA = κ(x).

Definition 2.1.1. Let Artk be the category of Artin local rings with residue field k. A deformation
functor is a functor,

D : Artk → Set
such that D(k) is a singleton set.

Remark. We think of D(k) as the base object and D(A) its set of deformations over Spec (A). The
structure map k → A makes D(A) a pointed set via D(k)→ D(A). Furthermore k → A is a section
splitting the extension A→ A/mA → k.

Example 2.1.2. For a functor4 F : Schop
S → Set and a point p ∈ F (Spec (k)) we define the

associated deformation functor,

DF,p(A) = {α ∈ F (Spec (A)) | α|Spec(A/mA) = p}
4Thought of as representing some moduli problem
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For example, if F is representable, meaning F = hX for some scheme X, and p ∈ X(k) is a point
with residue field k then the infinitesimal information of X is captured in,

DX,p = DhX ,p

Remark. Every extension B � A of Artin local rings is automatically infinitesimal meaning
ker (B → A) is a nilpotent ideal. We can filter these into particular first-order extensions (thicken-
ings) which we call small extensions.

Definition 2.1.3. An extension B � A of local rings with kernel K is small if mBK = 0. Equiv-
alently, it is an exact sequence of B-modules,

0 K B A 0

such that A is a B-algebra and K is a B-module through B → B/mB.

Proposition 2.1.4. Every surjection in Artk can be factored into small extensions.

Remark. Small extensions in Artk have the agreeable property that K is determined by its k-
vectorspace structure.

Definition 2.1.5. Let Lock be the category of local k-algebras with residue field k and finite
dimensional tangent space. Let CLock be the full subcategory of complete local rings.

Definition 2.1.6. We say that a deformation functorD is pro-representable if there exists R ∈ Lock
such that D = hR where hR is the deformation functor,

hR(A) = Homk−loc (R,A)

Remark. Because Artin local rings are complete, any local map R→ A factors uniquely through the
completion as R → R̂ → A. Therefore, hR = hR̂ so we may assume that pro-representing objects
are in CLock hence the terminology.
Remark. The deformation functor DX,p for a scheme X is pro-representable by R = OX,p or ÔX,p.

Proposition 2.1.7. The functor R 7→ hR on CLock is fully faithful.

Definition 2.1.8. A deformation functor D is said to have tangent-obstruction theory if there are
finite-dimensional k-vector spaces T 1, T 2 such that every small extension,

0 K B A 0

gives rise to a natural exact sequence of pointed sets,

T 1 ⊗k K D(B) D(A) T 2 ⊗k Kob

which is exact on the left when A = k. A morphism of tangent-obstruction theories is a pair of
k-linear maps ϕ1 : T 1 → T ′1 and ϕ2 : T 2 → T ′2 natural in the sense that all such diagrams commute,

T 1 ⊗k K D(B) D(A) T 2 ⊗k K

T ′1 ⊗k K D(B) D(A) T ′2 ⊗k K

ϕ1⊗idK

ob

ϕ2⊗idK

ob′

11



We call a tangent-obstruction theory universal if it is initial for tangent-obstruction theories.

Remark. We think of T 1 as the tangent space and T 2 as the space of obstructions to lifting. If there
is a universal tangent-obstruction theory (T 1, T 2, ob) we say that T 1 is the tangent space of D and
T 2 is the obstruction space of D and ob : D → T 2 is the obstruction class.

Proposition 2.1.9. If D has tangent-obstruction theory then T 1 is unique up to unique isomor-
phism and is identified with the tangent space of D,

TD = ker (D(k[ε])→ D(k))

Therefore ϕ1 for any morphism of tangent-obstruction theories is an isomorphism.

Proof. This follows immediately from D(k) = ∗ and the sequence applied to the small extension,

0 εk k[ε] k 0

along with the fact that the functoriality of D determines a k-vectorspace structure on TD. �

Remark. The obstruction space T 2 is not uniquely determined but in suitable cases there will exist
a universal obstruction space. We will discuss this now in the representable case.

Lemma 2.1.10. Let R ∈ CLock and d = dimk TR. Then there exists a surjection k[[t1, . . . , td]] � R
so we can write R = k[[t1, . . . , td]]/J for some ideal J ⊂ k[[t1, . . . , td]] with J ⊂ m2

S.

Proof. Choosing a basis for mR/m
2
R gives a map, S → R. It suffices to prove that S → R is

surjective. Because these are complete local rings this follows from S/mn
S � R/mn

R which for n = 1
is because they both have residue field k. Then mn

S/m
n+1
S � mn

R/m
n+1
R is surjective because,

Symn(mS/m
2
S) mn

S/m
n+1
S

Symn(mR/m
2
R) mn

R/m
n+1
R

Then we conclude via induction and the five lemma,

0 mn
S/m

n+1
S S/mn+1

S S/mn
S 0

0 mn
R/m

n+1
R R/mn+1

R R/mn
R 0

This also shows that, S/m2
S → R/m2

R is an isomorphism so J ⊂ m2
S. �

Remark. Because of this lemma, we refer to d = dimk TR as the embedding dimension of R.

Theorem 2.1.11. If D is pro-representable then it admits a universal tangent-obstruction theory.
Explicitly, if D = hR for R ∈ CLock then write R = S/J for S = k[[t1, . . . , td]] let T 1

R = (mR/m
2
R)∨

and T 2
R = (J/mSJ)∨ then for any small extension,

0 K B A 0

there is a natural short exact sequence,

0 T 1
R ⊗K D(B) D(A) T 2

R ⊗K
ob

12



Furthermore, for any tangent-obstruction theory (T 1, T 2) for D there exists a unique morphism,

ϕ : (T 1
R, T

2
R)→ (T 1, T 2)

and additionally ϕ is injective.

Proof. Consider a small extension,

0 K B A 0
Consider a map ϕ : R → A. As S is a power series ring there is a lift ϕ̃ : S → B. Then D(B)
correspond to lifts S → B killing J .

First, if α, β : R → B are two lifts then α − β : R → K is a k-derivation and hence the lifts of ϕ
are an affine space over TR ⊗k K = Homk (mR/m

2
R, K) = Derk (R,K).

Now suppose that ϕ̃, ϕ̃′ : S → B are two lifts then h = ϕ̃ − ϕ̃′ is a derivation S → K. Since
J ⊂ m2

S and mSK = 0 we see that h|J = 0 so ob(ϕ) : J/mSJ → K is independent of the lift.
Thus ϕ̃ can be chosen such that ϕ̃|J = 0 i.e. a lift of ϕ : R → A to R → B exists if and only if
ob(ϕ) ∈ (J/mSJ)∨ ⊗k K is zero.

Finally we need to show that (T 1
R, T

2
R) is universal. Consider the small extension,

0 (J + mk
S)/(mSJ + mk

S) S/(mSJ + mk
S) R/mk

S 0

By Artin-Rees, for k � 0 we have mn
S ∩ J ⊂ mSJ and thus K = (J + mk

S)/(mSJ + mk
S) = J/mSJ .

Then we apply the tangent-obstruction theory,

T 1 ⊗k K D(B) D(A) T 2 ⊗k Kob′

The obstruction to lifting the canonical map ϕ : R→ R/mk
S is an element,

ob′(ϕ) ∈ (J/mSJ)⊗k T 2 = Homk

(
(J/mSJ)∨, T 2

)
Using our previous construction choose the canonical map ϕ̃ : S → S/(mSJ + mk

S) as the lift
then restricting to J gives id : J/mSJ → J/mSJ so ob(ϕ) = idJ/mSJ is universal so the map
ob′(ϕ) : T 2

R → T 2 commutes with obstruction classes.

Suppose that T 2
R → T 2 is not injective meaning some nonzero v ∈ T 2

R maps to zero. Then under
π : K → K/V for the codimension one subspace V = ker v the class ob′(ϕ) 7→ 0. But for the
extension,

0 K/V B/V A 0

the obstruction of ϕ : R→ A is constructed via taking a lift S → B/V which we can choose to be
the canonical quotient and then ob′(ϕ) = (K → K/V ) so this class does not vanish. �

Corollary 2.1.12. If D = hR for R ∈ CLock and (T 1, T 2) is a tangent-obstruction theory for D,

(a) dimk T
1 ≥ dimR ≥ dimk T

1 − dimk T
2

(b) if dimR = dimk T
1 then R is regular

(c) if dimR = dimk T
1 − dimk T

2 then (T 1, T 2) is universal and R is a complete intersection.
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Proof. We have,

dimk T
1
R dimR ≥ dimS − dimk (J/mSJ) = dimk T

1
R − dimk T

2
R ≥ dimk T

1
R − dimk T

2
R

Regularity by definition means dimk T
1
R = dimR. Furthermore, if dimR = dimk T

1
R− dimk T

2
R then

the above inequalities are equalities so,

dimk(J/mSJ) = dimS − dimR

proving that R is a complete intersection. �

2.2 Examples
Remark. It is clear from the definition that HomS (X, Y ) if it exists is compatible with base change
meaning for any T → X,

HomT (XT , YT ) = HomS (X, Y )×S T
In particular, HomS (X, Y ) respects taking fibers,

HomS (X, Y )s = Homs (Xs, Ys)

as we saw before. Furthermore, the infinitesimal deformation theory for an S-scheme X → S is
taken relative to a fixed point Spec (k) → X as an S-scheme meaning that we are only keeping
track of relative information meaning DX/S,p = DXs,p. For example, the tangent space defined as
maps Spec (k[ε])→ X extending Spec (k)→ X as S-schemes satisfies,

TX/S,x = TXs/s,x

Therefore, it suffices to work over a field.

Proposition 2.2.1. LetD be the deformation functor for Homk (X, Y ) at a point [f ] ∈ Homk (X, Y ) (k).
Assume that f : X → Y lands in the smooth locus. Then D has a tangent-obstruction theory with,

T i = Exti−1
OX

(
f ∗ΩY/S,OX

)
Proposition 2.2.2. Given a small extensions,

0 K B A 0

the question amounts to considering lifts,

X ×k Spec (A) Y

X ×k Spec (B) S

f

Because the right is a first-order infinitesimal extension and f lands in the smooth locus of Y → S
we proved last quarter there is a natural obstruction class,

ob(f) ∈ Ext1
OX

(
f ∗ΩY/S,OX ⊗B K

)
= Ext1

OX

(
f ∗ΩY/S,OX

)
⊗k K

vanishing exactly if there exists such a lift. If ob(f) = 0 then the set of lifts is a torsor over,

HomOX

(
f ∗ΩY/S,OX

)
⊗k K

These exactly say that the tangent-obstruction sequence is exact.
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Corollary 2.2.3. Let X a projective variety over k and Y a quasi-projective variety over k and
f : X → Y a k-morphism mapping into the smooth locus of Y . Then,

dimT[f ]HomS (X, Y )− dim HomS (X, Y ) ≤ dimH1(X, f ∗TY )

and therefore,
dim[f ] HomS (X, Y ) ≥ dimH0(X, f ∗TY )− dimH1(X, f ∗TY )

Remark. Another example is the infinitesimal deformation theory of a smooth schemeX → Spec (k).
Consider the deformation functor DefX taking A to the isomorphism classes of smooth lifts of X
over Spec (A). We showed that DefX admits tangent-obstruction theory,

T i = H i(X, TX)

and T 0 = H0(X, TX) is the space of automorphisms of a given lift. When the automorphism space is
nonzero, DefX cannot be representable by a scheme. Instead, this obstruction theory is describing
the local structure of the deformation stack.

2.3 Fixing a Base Point
Definition 2.3.1. Let X, Y be S-schemes and fix S-morphisms ι : Z → X and g : Z → Y . Then
we define the functor HomS (X, Y ; ι, g),

T 7→ {f : X ×S T → Y | f ◦ (ι× idT ) = g ◦ π1}

which is the set of mapping making the following diagram commute,

Z ×S T

X ×S T Y

ι×idT
g◦π1

f

Remark. We usually consider this is the case that ι : Z → X is a closed immersion identifying Z
with a closed subscheme of X and therefore omit ι from the notation.

Proposition 2.3.2. Let X,Z be projective and flat over S and Y → S be quasi-projective. Then
HomS (X, Y ; ι, g) is representable by a closed subscheme of HomS (X, Y ).

Proof. Let S → HomS (Z, Y ) be the point g : Z → Y . Then consider,

HomS (X, Y ; ι, g) S

HomS (X, Y ) HomS (Z, Y )

Since HomS (Z, Y ) is a quasi-projective S-scheme and hence separated the section S → HomS (Z, Y )
is a closed immersion and hence HomS (X, Y ; ι, g)→ HomS (X, Y ) is a closed immersion of functors
so HomS (X, Y ; ι, g) is representable by a closed subscheme. �
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Proposition 2.3.3. For a k-point [f ] ∈ Homk (X, Y ; g) (k), there is a canonical isomorphism,

T[f ]Homk (X, Y ; g) ∼= HomOX
(f ∗ΩY ,IZ)

Furthermore, when f maps to the smooth locus of Y then the deformation functor of Homk (X, Y ; g)
has tangent-obstruction theory with,

T i = Exti−1
OX

(f ∗ΩY ,IZ)

Proof. We can replace Y by Y sm because f maps into the open smooth locus and restricting to
open subsets does not affect the infinitesimal deformation theory. We need to consider lifts which
fit into the diagram,

Z ×k Spec (A) X ×k Spec (A)

Y

Z ×k Spec (B) X ×k Spec (B)

Spec (k)

f

f̃

Topologically, there is nothing to do because f̃ is defined by the same topological map as f which
already commutes with the maps from Z. Therefore, this is a question of maps of sheaves on X.
Consider,

0

IZ ⊗k K IZ ⊗k B

0 OX ⊗k K OX ⊗k B OX ⊗k A 0

ι∗OZ ⊗k B f−1OY

0
Therefore, because K2 = 0 as an ideal, the set of dashed maps forms a torsor over,

Derk
(
f−1OY ,IZ ⊗k K

)
= HomOX

(f ∗ΩY ,IZ)⊗k K

In particular, for A = k and B = k[ε] this computes the tangent space. Furthermore, it shows that
the sheaf of lifts over the Zariski topology on X is a pseudo-torsor over,

HomOX
(f ∗ΩY ,IZ)⊗k K

We need to show that it is locally nonempty. If X = Spec (R) is affine then by smoothness of
Y → Spec (k) there exists a lift f−1OY → OX ⊗k B. Consider,
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0 0 0

0 I ⊗k K I ⊗k B I ⊗k A 0

0 R⊗k K R⊗k B R⊗k A 0

0 R/I ⊗k K R/I ⊗k B R/I ⊗k A 0

0 0 0

We are given g : f−1OY → R/I and ϕ : f−1OY → R ⊗k A and ϕ̃ : f−1OY → R ⊗k B such
that applying R ⊗k B → R ⊗k A gives ϕ and applying π : R ⊗k A → (R/I) ⊗k A to ϕ gives
g ⊗ idA. We need to find a new lift such that furthermore applying R ⊗k B → R/I ⊗k B gives
g⊗ idB : f−1OY → (R/I)⊗kB. Consider π◦ϕ̃−g⊗ idB which is a derivation landing in (R/I)⊗kK.
Because f ∗ΩY is locally free, this lifts to a derivation q : f−1OY → R ⊗k K. Then ϕ̃ − q satisfies
the desired conditions.

Therefore, the obstruction to the sheaf of lifts having a global section is the class of this torsor,

ob(f) ∈ Ext1
OX

(f ∗ΩY ,IZ)⊗k K

where there is no sheaf-Ext term because f ∗ΩY is locally-free. �

Corollary 2.3.4. Let X be projective over k and Y be quasi-projective over k and f : X → Y a
k-morphism mapping into the smooth locus of Y . Furthermore, let Z ⊂ X be a closed subscheme
and fix g = f |Z : Z → Y . Then, Homk (X, Y ) g exists and,

dim[f ] HomS (X, Y ) ≥ dimH0(X, f ∗TY ⊗OX
IZ)− dimH1(X, f ∗TY ⊗OX

IZ)

3 Break (TODO Vaughan)

3.1 The Rigidity Lemma
Remark. References for this section:

(a) Olivier Debarre’s Notes Lemma 9

(b) [KM98, section 1.1, Corollary 1.7 and Lemma 1.9]

(c) [Kol99, Section II.5, Lemma 1.6].

Lemma 3.1.1. Let f : X → Y and g : X → Z be morphisms of varieties. If f∗OX = OY and there
is a point y ∈ Y such that g : Xy → Z is a constant map then there exists an open neighborhood
U ⊂ Y of y such that,

f−1(U) U

Z

g

f

h
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commutes. This says over an open of Y “g contracts all the fibers of f”.

Proof. TODO �

3.2 Rational Curves In The Indeterminacy Locus (TODO Vaughan)
Remark. Now that we have a rational map with an indeterminacy locus, what can we do with it.
It turns out a lot!
Remark. References for this section:

(a) Olivier Debarre’s Notes Section 1

(b) [KM98, section 1.1, p.8-9].

(c) [Kol99, section VI.1].

Theorem 3.2.1 (Zariski). Let f : X → Y be a birational morphism of varieties. If y ∈ Y is a nor-
mal point and f−1(y) is finite then there is an open neighborhood of y on which f is an isomorphism.
In particular either f−1(y) = {x} or every component of f−1(y) is positive dimensional.

Definition 3.2.2. Let π : X → Y be a birational morphism. The exceptional locus Exc (π) is the
subset of X on which π is not a local isomorphism.

Proposition 3.2.3. Let π : X → Y be a birational morphism of varities with Y normal. Set-
ting E = Exc (π), every component of E has positive dimension, π−1(π(E)) = E, and π(E) has
codimension at least 2. If π is proper then π−1 : Y X has domain Y \ π(E).

Remark. DO I NEED PROPERNESS HERE?

Proof. By Zariski’s main theorem, for each y ∈ π(E), every component of the fiber π−1(y) is positive
dimensional. Hence every x ∈ π−1(π(E)) lies in a positive dimensional fiber contracted by π so
x ∈ E proving π−1(π(E)) = E and every component of E is positive dimensional. By Chevallay’s
theorem, π(E) is constructible (since E is closed) and hence contains all the generic points of
Z = π(E) and hence dimE ≥ dim π(E) + 1 which proves5,

codim (Y, Z) ≥ codim (X,E) + 1 ≥ 2

because dimX = dim Y . Finally, π′ : X \ E → Y \ π(E) is an open immersion but if π is proper
then because π−1(π(E)) = E we have π′ is proper (by base change) so π′ is an isomorphism since
Y is irreducible. Therefore, π−1 is defined on Y \ π(E). Furthermore, if y ∈ dom(π−1) then π is a
local isomorphism at π−1(y) ∈ X so y /∈ π(E). �

Definition 3.2.4. Let f : X → Y be a generically étale morphism of smooth k-schemes. The
ramification divisor Ram (f) is the vanishing locus of f ∗ωY → ωX . Notice that f ∗ωY → ωX is
injective and hence defines a regular section s ∈ Γ(X,ωX ⊗ f ∗ω∨Y ) such that Ram (f) = V (s).

Proposition 3.2.5. Let π : X → Y be a birational morphism of smooth varieties. Then,

Ram (π)red = Exc (π)

Hence Exc (π) is an effective Cartier divisor.
5Using that if f : X → Y is dominant map of integral finite type k-schemes then dim X = dim Y + dim Xη.
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Proof. Consider the exact sequence,

0 π∗ΩY ΩX ΩX/Y 0

which is exact on the right because π∗ΩY → ΩX is a morphism of vector bundles and is an isomor-
phism at the generic point since π is birational. Notice that a map of locally free sheaves of the
same rank f : E → F is an isomorphism at x if and only if det f is an isomorphism at x. Therefore,
SuppOX

(
ΩX/Y

)
= Ram (π). On X \ Exc (π), the map f ∗ΩY → ΩX is an isomorphism so, as sets,

Ram (π) ⊂ Exc (π). By Zariski’s main theorem, for any x ∈ Exc (π) the fiber π−1(π(x)) has positive
dimension so (ΩX/Y )x 6= 0 meaning x ∈ Ram (π). �

Proposition 3.2.6. Let π : X → Y be a birational morphism of varieties with Y smooth. Through
every point of Exc (π) there is a rational curve contracted by π.

Proof. We only do the case that Y is a surface [REFERENCES]. Let E = Exc (π). We normalize
X̃ → X and let π̃ : X̃ → Y be the composition. Let U ⊂ X̃ be the smooth locus whose complement
is codimension 2 in X̃. By Zariski’s main theorem, every component of Ẽ = Exc (π̃) has positive
dimension. Thus because dim X̃ = 2 every component of Ẽ intersects U . Let f : U → Y be the
composite which is a birational morphism of smooth varieties. Thus Ef = Ẽ ∩ U = Exc (π) is a
Cartier divisor. Furthermore, f(E) ⊂ Y is codimension 2 and hence is a collection of points (and
is thus a smooth center). We blow up to get a factorization,

U
π1−→ Y1

ε1−→ Y

using that π−1(π(E)) = E. Suppose π1(E) is of codimension 2. Then we can repeat this process to
get a sequence,

U
πn−→ Yn

εn−→ Yn−1 → · · · → Y1
ε1−→ Y

We write Ei = Exc (εi). Then because these are blowups at smooth centers we see that Yi is smooth
and the canonical bundle satisfies,

ωYi
= ε∗iωYi−1 ⊗OYi

(Ei)

However, because πn is birational, we get an injection,

π∗nωYn ↪→ ωU

and therefore,
π∗ωY ⊗ π∗1OY1(E1)⊗ · · · ⊗ π∗nOYn(En) ↪→ ωU

Since πi(E) ⊂ Ei we see that OU(π∗iEi − E) is effective and therefore,

π∗ωY ⊗OU(nE) ↪→ ωU

However, this gives an ascending chain of subsheaves of ωU and hence the process must terminate
with πi(E) of codimension 1. Therefore, E 6⊂ Exc (πi) and therefore πi : E → πi(E) is a birational
morphism. However, π �

Corollary 3.2.7. Let X be a smooth variety and Y a proper variety containing no rational curves.
Then any rational map X Y is everywhere defined.
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3.3 The Main Breaking Results
Remark. References for this section:

(a) Olivier Debarre’s Notes Section 5

(b) [KM98, Section 1.1, Corollary 1.7 and Lemma 1.9].

(c) [Kol99, Section II.5].

Proposition 3.3.1. Let X be a projective variety. Let f : C → X be a smooth curve, and let
c0 ∈ C a point. If dim[f ] Homk (C,X; f |c0) ≥ 1 then there exists a rational curve on X through
f(c).

Proof. TODO �

Remark. In order to get the correct degree information for these newly produced rational curves,
we need the following refined version of the breaking result.

Proposition 3.3.2. Let X be a projective variety and let f : P1 → X be a rational curve. If
dim[f ] Homk (P1, X) f |{0,∞} ≥ 2 then the 1-cycle f∗P1 is numerically equivalent to a connected non-
integral effective rational 1-cycle passing through f(0) and f(∞).

4 Reduction to Positive Characteristic and Completion of
the Proof (TODO Vaughan)

(LOOK AT THE SKETCH OF THE PROOF IN THE INTRODUCTION)
Remark. References for this section:

(a) Olivier Debarre’s Notes Section 6

(b) [KM98, Theorem 1.10].

(c) [Kol99, Section II.5].

5 Applications of Bend and Break (TODO Spencer)

5.1 Ample Vector Bundles
Remark. References for this section:

(a) Hartshorne, Ample vector bundles [Har66].

Definition 5.1.1. A vector bundle E on a projective scheme X is ample if OX(1) on PX(E) is
ample.

Proposition 5.1.2. A quotient of an ample vector bundle is ample.

Proof. Let E0 � E1 be a surjection. This defines a closed immersion PX(E1) ↪→ PX(E0) such that
OPX(E0)(1)|PX(E1) = OPX(E1)(1) and therefore if OPX(E0)(1) is ample so is OPX(E1)(1). �
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Proposition 5.1.3. Let E and E ′ be ample vector bundles. Then, E1 ⊕ E2 is ample if and only if
E1 and E2 are ample.

Proof. TODO �

Proposition 5.1.4. Let E and E ′ be ample vector bundles. Then,

(a) E ⊕ E ′ is ample

(b) E ⊗ E ′ is ample

(c) ∧k E is ample

(d) Sk(E) is ample.

Proof. TODO �

5.2 Characterizing Pn, Hartshorne’s Conjecture
Remark. References for this section:

(a) Mori’s original paper. [Mor79].

(b) For historical interest: Mori’s earlier paper proving the n = 3 case [MS78].

Theorem 5.2.1 (Mori). Let X be a smooth projective Fano variety of dimension n. Suppose that
the smallest degree of a covering family of rational curves is n+ 1 then X ∼= Pn.

Proof. TODO �

Corollary 5.2.2. Let X be a smooth projective variety. If TX is ample then X ∼= Pn.

Proof. (FIX THIS PROOF) Since TX is ample this implies that ω∨X = det TX is ample and thus X
is Fano. Let C ⊂ X be a rational curve. Then we may compute,

(−KX) · C = deg (ω∨X |C)

However, ν : P1 → C is finite and birational and (DOES THIS ACTUALLY WORK)

(−KX) · C = deg ν∗ω∨X

However, by a theorem of Grothendieck, every vector bundle on P1 is split,

ν∗TX = OP1(a1)⊕ · · · ⊕ OP1(an)

Furthermore, ν is finite so ν∗TX is ample and therefore each ai ≥ 1. There is also a map TP1 → ν∗TX
and TP1 = OP1(2) so this implies that some ai ≥ 2 (WLOG let a1 ≥ 2). Thus,

−KX · C = deg ν∗ω∨X = deg ν∗ ∧ TX =
n∑
i=1

ai ≥ n+ 1

Therefore X is Fano with minimal rational covering degree d ≥ n + 1 so by the main theorems
d = n+ 1 and X ∼= Pn. �
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6 Feb. 9
What we need from Ben’s notes:

Let C be a smooth proper curve over k. Let B ⊂ C be a finite set of closed points. Given a
nonconstant morphism f : C → X nonconstant map,

dim[f ] HomS (X, Y ) f |B ≥ χ(C, f ∗TX ⊗IB) = χ(C, f ∗TX)−#B dimX

Therefore, by Riemann-Roch,

dim[f ] HomS (X, Y ) f |B ≥ −KX · f∗C + (1− g(C)−#B) dimX

We want this to be large. First, we will work out consequences for rational curves on X when
dim[f ] > 0.

6.1 Rigidity Lemma
Lemma 6.1.1. Let X, Y, Z be varieties and f : X → Y and g : X → Z be proper morphisms.
Suppose that f∗OX = OY and there is some y ∈ Y such that g : Xy → Z is a point. Then there
exists some open neighborhood U ⊂ Y of y such that there exists a factorization,

f−1(U) U

Z

g

f

Proof. There are three steps:

(a) Consider t = (f, g) : X → Y × Z. Set S = im t and let pY : S → Y and pZ : S → Z be
projections.

(b) There exists an open y ∈ U ⊂ Y the map p0 = pY |p−1
Y (U) : p−1

Y (U)→ Y is finite.
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(c) p0 is actually an isomorphism so can form the diagram,

f−1(U) p−1
Y (U) U

Z

g

t

pZ

p0

pZ◦p−1
0

thus proving the claim.

To show (b), by properness, the fiber dimension is upper semi-continuous on the target and thus
the quasi-finite locus is open and then proper + quasi-finite implies finite.

For step (c) it suffices to show that (p0)∗OS0 = OU where S0 = p−1
Y (U) and X0 = f−1(U). Notice

that p0 and t|S0 are surjective. Therefore,

OU ↪→ (p0)∗OS0 and OS0 ↪→ t∗OX0

because t : X → S is surjective by definition. Therefore,

(p0)∗OS0 ↪→ (p0)∗t∗OX0 = f∗OX0 = OU

Therefore (p0)∗OS0 = OU and thus by finiteness p0 is an isomorphism. �

6.2 Rational Curves in Indeterminacy Locus
Theorem 6.2.1. Let X and Y be projective varities and Y is smooth. Let π : X → Y be
birational and proper. Let E ⊂ X be the exceptional locus meaning the locus on which π is not an
isomorphism. Then E is covered by rational curves.

Proof. Let’s do the case that X and Y are surfaces. Then the exceptional locus of f−1 : Y X
can be resolved f̃ : Ỹ → X where Ỹ is a blowup of Y at finitely many smooth points. Then each
fiber f−1(y) ⊂ X is dominated by a collection of P1. �

Corollary 6.2.2. Let f : X Y be a rational map of smooth projective varieties, consider the
closure of the graph X̂ which has maps πX : X̄ → X and πY : X̄ → Y . Notice that pX : X̂ → X is
a proper birational morphisms. Let S ⊂ X be the indeterminacy locus. For every y ∈ pY (p−1

X (s))
with s ∈ S there exists a rational curve on Y contained in Y through y.

7 Feb. 16
Recall:

Theorem 7.0.1 (Bend and Break I). Let X be a projective variety, f : C → X a nonconstant
morphism. If,

dim[f ] Homk (C,X; f |0) ≥ 1

Then there exists a rational curve g : P1 → X passing through x.

23



Theorem 7.0.2 (Bend and Break II). Let X be a projective variety, f : P1 → X a rational curve.
Suppose that,

dim[f ] Homk (C,X) f |{0,∞} ≥ 2

Then,
f∗P1 ∼num C0 + C∞

where the RHS is a nonintegral conncected rational 1-cycle and f(0) ∈ C0 and f(∞) ∈ C∞.

Proof. Note {g ∈ Aut (P1) | g(0) = 0 and g(∞) =∞} = Gm. There is a silly family P1 ×Gm → X

sending (x, g) 7→ f(g ·x). Choose a curve T0 ⊂ Homk

(
P1, X; f |{0,∞}

)
not contained in the Gm-orbit

and let T = T̃0. Then we get a map ev : P1×T → X. I claim that im ev is 2-dimensional. Consider
the map F : P1 × T → X × T via F = ev × p2. This is a finite morphism because it is quasi-finite
and proper. Then we get a rational map P1 × T X × T . Resolve F to get a map S ′ → P1 × T
and S ′ → X × T . Take the Stein factorization

S ′ → S
F̄−→ X × T

where F̄ is finite. We now claim that F̄−1(X × T ) ∼= P1 × T . Therefore we have the diagram,

P1 × T S X

X × T

T T

p2 π

p2

p1

None of the fibers of π are contracted under ev : S → X because F̄ is finite. This is because F̄ (St)
is positive dimensional but would be contracted by both p1 and p2 which is impossible.

The ideal is to show that the giver of π over the boundary of T is a connected nonintegral 1-
cycle. S is integral and T is 1-dimensional and smooth and π is dominant and thus π is a flat
morphism [Hartshorne 3.9]. The fibers of π are 1-dimensional projective schemes with no embedded
components hence by constancy of the Hilbert poltnomial all the fibers have genus zero since
P1 × T ∼= F̄−1(X × T ). If C = St is a giber and C1 ⊂ C is an irreducible component then (C1)red
also has genus zero. Thus if a fiber π is integral, it is P1. Assume for contradiction that all fibers
are integral. Then π realizes S as a ruled surface over T . Then Pic (S) ∼= Zs ⊕ Pic

(
T
)
where s

is a section. Let T0 = {0} × T and T∞ = {∞} × T . By assumption, ev(S) is a surface. Then
we can consider an ample divisor H ⊂ ev(S). By assumption, ev∗H · T0 = ev∗H · T∞ = 0 and
(evH)2 > 0 so Hodge index theorem says that T 2

0 < 0 and T 2
∞ < 0. Then T0 − T∞ ∈ π∗Pic

(
T
)
.

Thus (T0 − T∞)2 = 0 but,
(T0 − T∞)2 = T 2

0 + T 2
∞ − 2T0 · T∞ < 0

because T0 and T∞ are disjoint and both have square zero. Therefore there must be a nonintegral
fiber so we conclude. �
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8 Ample Vector Bundles
Definition 8.0.1. Let E be a vector bundle on X/k then E is ample if the canonical line bundle
OP(E) on P(E) is ample.
Proposition 8.0.2. A vector bundle E is ample if and only if for all F ∈ Coh (X) and n� 0 the
sheaf Symn(E)⊗F is generated by global sections.
Proposition 8.0.3. The following hold,
(a) If E and F are ample then E ⊗F is ample

(b) all ∧nE and Symn(E) is ample

(c) for X and Y proper over Spec (A) noetherian and X → Y finite then a pullback of ample is
ample

(d) if X → Spec (A) is proper and A is noetherian then E is ample if and only if for all F ∈
Coh (X) and n� 0 we have Symn(F ) E ⊗F is acyclic

(e) E ⊕F is ample if and only if E and F are ample.
Remark. “Very ample” is not good for example X = P1 then E = O ⊕ O(1) which is not ample.
However it is globally generated and the associated map X ↪→ Gr(2, 3) is a closed immersion.
Proposition 8.0.4. Let E and F be locally and E � F surjective and E is ample then F is
ample.
Proof. We get a surjection Sn(E) � Sn(F ) and thus a surjection Sn(E) ⊗ G � Sn(F ) ⊗ G and
the right is generated by global sections for n � 0 so the right factor is also generated by global
sections. �

Direct Sums. We have,
Sn(E ⊕F ) =

⊕
Sn−k(E)⊗ Sk(F )

and then we tensor by G but ... �

Proposition 8.0.5. E is ample iff Sn(E) is ample for all n� 0.
Proof. E ⊗ Sn−1(E) � Sn(E) proves by induction that all symmetric powers big enough so that
Sn−1(E) is globally generated are ample.

Suppose that some Sn(E) is ample. Then there is a surjection,

Sm(Sn(E))⊗ Sr(E)⊗F � Smn+r(E)⊗F

we can twist enough to make all finitely many Sr(E)⊗F for 0 ≤ r < n and thus the left hand side
is generated by global sections and thus so is the right hand side. �

Proposition 8.0.6. Let E be be an ample vector bundle of rank r. Then ∧rE is ample.
Proof. Choose n > 0 such that Sn(E) is ample and generated by global sections. It has rank s.
Then we get a surjection,

Sn(E)⊗s �
s∧

(Sn(E))
and the RHS is ample because it is a tensor product of ample and globally generated vector bundles.
Now I claim that ∧s(Sn(E)) is a power of ∧n(E) and since the first is ample so is the second (since
these are line bundles). �
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8.1 Hartshorne’s Conjecture
Theorem 8.1.1. Let X be a smooth projective k-variety over k = k̄ of dimX = n. If TX is ample
then X ∼= Pnk .

Proposition 8.1.2. Let X satisfy the above conditions.

(a) Then there is a nonconstant map P1 → X such that f ∗ω∨X has degree n+ 1.

(b) Given such f we have,
f ∗TX ∼= O(2)⊕O(1)⊕n

Proof. The proof of 1 is bend and break and taking the normalization and we get deg f ∗TX ≤ n+1.
Thus we just need to understand the pullback of the tangent bundle. By Grothendieck, f ∗TX
splits and is ample and thus is a sum of ample line bundles. Furthermore, there is a nonzero map
TP1 → f ∗TX . Furthermore, deg f ∗TX ≤ n+ 1 so if we write,

f ∗TX ∼= O(a1)⊕ · · · ⊕ O(an)

and by ampleness all ai > 0 and a0 ≥ 2 so we conclude that deg f ∗TX = n + 1 and a0 = 2 and all
other ai = 1. �

of Thm. Let f be as above. Assuming n ≥ 2 (the cases n = 0 and n = 1 are trivial) then pick
p ∈ P1 the smooth locus of f and q = f(p). Let V be the connected component of Homk (P1, X; f |p)
containing [f ]. If v ∈ V then deg (v∗ω∨X) = n + 1 by connectedness. Then appling the previous
argument to v we know that,

v∗(TX) = O(2)⊕O(1)⊕n

The tangent-obstruction spaces of the Hom scheme is,

H i(P1, v∗(TX)⊗O(−p)) = H i(P1,O(1)⊕O⊕n)

and by vanishing of H1 we see that V is smooth of dimension n+ 1.

Let G be the group scheme of automorphisms of P1 fixing p. Then let Y = V/G using the geometric
quotient. �

Definition 8.1.3. Let fα : V → Chown+1
X defined by taking the image that gives a cycle C with

C ·KX = −(n+ 1).

Theorem 8.1.4. Y ∼= Pn−1.

Proof. Fix a tangent vector at p on P1. Then we get a morphism V → An \ {0} → Pn−1 which is
G-invariant where the map does not hit zero because we fixed p to be a smooth point (HMMM). �
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