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1 Introduction and Sketches

1.1 Rational Curves

Remark. In this talk we will usually restrict to varieties for simplicity which here means an inte-
gral separated scheme of finite type over an algebraically closed field k. However, we will, unless
otherwise stated, work over an base field k of arbitrary characteristic.

Definition 1.1.1. Let X be a proper variety. A rational curve on X is an integral closed subvariety
C C X of dimension 1 whose normalization is isomorphic to P! (equivalently’ g(C') = 0).

Proposition 1.1.2. Rational curves on X correspond to non-constant morphisms f : P! — X up
the equivalence induced by refinement meaning f; ~ fs if there is a diagram of non-constant maps,

]Pﬂ
2N
P! p!
N
X

Proof. Given f : P! — X its scheme theoretic image C' C X is clearly a rational curve. Conversely,
to any rational curve we have the normalization map v : P! — C — X. Now f : P! — C factors
through v : P! — C because P! is normal. O

1.2 The Method and Main Results
Definition 1.2.1. A variety X is Fano if —Kx is an ample (Q-Cartier) divisor.

Remark. We will only consider smooth Fano varieties meaning Kx is Cartier but we really only
need X to be Gorenstein (actually even Kx being Q-Cartier is probably enough).

Remark. A major result we will be able to prove with the Bend and Break technique is the following.

Theorem 1.2.2. Let X be a smooth Fano variety of dimension n. Then every closed point of X
lies on a rational curve C, such that,

Definition 1.2.3. Let X be a Fano variety of dimension n. Let C' C X be a rational curve. We
define the degree of C' to be degC' = (—Kx) - C. By the main theorem, there is a covering family
of rational curves C,. We define the degree of the covering family to be,

d=max (—Kx) - C,

Therefore, the main theorem proves that d < n + 1.

1Using crucially that k = k.



Remark. Ugh, you say, another overloaded meaning of the word “degree”. Let me try to convince
you that this is reasonable. Given the morphism f : P! — X with image C we have,

(=Kx)-C =deg ffwx

However, wx is ample so after some tensor power w%" defines an embedding X < PV which I hope
you will agree is the most sensible way to embed X in projective space. Therefore,

ndeg C = deg f*w$" = deg Oc(1)

is the degree of the curve C' < X < PV in the standard sense showing that deg C agrees with our
usual notion up to the one-time choice of the universal (for curves on X) constant n.

Example 1.2.4. To see where this numerology comes from, consider the case X = P". Then
—Kx = (n+ 1)H where H is the hyperplane class. Then we know that P" is covered by lines L
and H - L = 1. Therefore,

(—K X) -L=n+1

It turns out P" is in this intersection sense “maximal” as a Fano variety. In fact, Mori proved the
following characterization of projective space.

Theorem 1.2.5 (Mori). Let X be a smooth projective Fano variety of dimension n. Suppose that
the smallest degree of a covering family of rational curves is n + 1 then X = P".

Corollary 1.2.6. Let X be a smooth projective variety. If on Px(7yx) — X the line bundle Ox (1)
is ample then X = P".

1.3 Examples

Example 1.3.1. Let X = (P1)". The ruling lines L C X cut out by sections of the sheaves,
Ox(1,...,0),...,0x(0,...,1)

form a covering family of rational curves with degree 2 since wxy = Ox(-2,...,—2).

Example 1.3.2. Let A = (ny,...,nx) be a partition of n. Then let X = P™ X .. x P™ which is
an n-dimensional Fano variety. Furthermore,

k

i=1
Then I can cover X by lines L; that lie inside P™ with the other coordinates fixed for some i. Thus,
L;- H; = ¢;;. Then we see that,

so we can achieve a covering family of any degree,
2<d<n+1

Even better if we take a partition with smallest element n, = ¢ then we have minimal covering
degree for L, with,

(—Kx) Ly = ({+1)
so we can achieve any minimal covering degree,

2<l<n+1

for a Fano of dimension n.



Remark. Is is possible for a smooth Fano to have a covering family of degree 17 I don’t know but I
expect it is not possible. Here is a sketch of a proof in the surface case. Let C' C X be a rational
curve which is a Cartier divisor. I will assume that C' is smooth (I think in characteristic zero I can
do this for a general C' and this will be enough for the proof). Suppose that C'- (—=Kx) = 1. I will
show there are only finitely many C'. By the adjunction formula,

C-(C+Kx)=29g—2=-2

and therefore C? = —1. Therefore, by Castelnuovo’s contraction theorem, there exists a smooth
projective surface Y and a map 7 : X — Y which is a blowup at a smooth point with exceptional
fiber C'. Then I can continue this process killing each of the rational curves on X with C-(—Kx) = 1.
Why must this terminate? At each contraction step we have dim H?(X) = dim H*(Y) + 1 and
H?(X) is finite-dimensional so we win.

Example 1.3.3. If X is a smooth proper variety covered by rational curves it need not be Fano.
For example X = E x P! for E an elliptic curve. Furthermore, wy = m3Opi(—2) and the line
L, = {z} x P! is a divisor corresponding to 7;Og(z) and therefore,

Ly (—Ky) =2

so we cannot even expect X to be Fano if it is covered by rational curves with positive anticanonical
intersection.

Example 1.3.4. There are many 3-fold Fans that are not rational. A cubic 3-fold has,
Wx = Ox<—1)
and thus is Fano but a nonsingular cubic 3-fold is not rational [Clemens and Griffiths, 1972].

Example 1.3.5. Most rational varieties you would think of are Fano. However, there are non-
projective toric varieties (which are always rational) which therefore cannot be Fano. Even better,
there are smooth projective toric surfaces which are not Fano. For example, the toric variety
associated to a lattice octagon (I THINK).

1.4 Outline of the Proof of the Main Theorem

Remark. The idea is to choose some morphism f : C' — X from a curve mapping py — xo and
prove that by modifying the curve we can ensure that it “bends” meaning that f deforms while
preserving the condition that py — xg. This will “break” the curve into rational curves all passing
though zy because of rigidity lemmas.

1.5 Bend
1.5.1 The Hom Scheme

Remark. We want to deform a morphism f : C — X from a fixed curve X. To do this, we need to
ask: what is a family of morphisms? How do we parameterize them?

Definition 1.5.1. Let X and Y be schemes over S. Then the functor Homg (X, Y) is defined as:

T — Homrp (X7, Yr) = Homg (X xg T,Y)
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Proposition 1.5.2. This is a sheaf in the Zariski (étale, fppf, ... any subcanonical) topology.

Proof. For any cover {T; — T} we get a cover {X xXgT; — X x5T} and we know that Homg (—,Y)
is a sheaf so we conclude that,

Homg (X xgT,Y) —— [[Homg (X xsT;,Y) —= [THomg (X xsT; x5 7},Y)
is an equalizer. [l

Proposition 1.5.3. If S is the spectrum of a field, X is quasi-projective over S and Y is projective
over S then Homg (X,Y’) is representable by a locally Noetherian scheme Homg (X, Y’) which is a
countable disjoint union of quasi-projective (and hence finite type) S-schemes. In particular, there
is a universal “evaluation” morphism:

ev: X xgHomg (X,Y) =Y
Remark. This is an “exponential object” in the category of S-schemes: morphisms f: X x¢gT — Y

correspond to Af : T'— Homg (X, Y') such that evo (idx x Af) = f.

Remark. Without Y being projective this is very false. For example,
Hom, (Al, Al) = A®

Sketch: We will identify Homg (X,Y’) with an open subfunctor of the Hilbert scheme Hilby, y/s.
The idea is that a morphism f : X x T — Y is defined by its graph I' C (X xgY') xgT. Morphisms
correspond to closed subschemes I' C (X xgY) xg T such that I' — X xg 7T is an isomorphism.
Since X — S is fppf this in particular implies that I' — 7" is fppf and hence I' € Hilbx sy/s(T). It
suffices to show that,

Hoims (X, Y) — HﬂbXXSY/S

is a closed immersion. This is because for proper Y, the “locus over T" on which a morphism of
T-schemes is an isomorphism is open”. O

1.5.2 Local Structure of the Hom Scheme

Remark. In order to bend a morphism f : C' — X we want to find a curve T'— Hom (C, X) passing
through [f] since then ev : C'x T" — X gives a nontrivial family of curves. To do this, we would
like to know about the tangent space and local structure of Hom (C, X).

Proposition 1.5.4. Canonically (even when it’s not representable) for a k-point [f] € Homg (X, Y) (k),
TijHomg (X,Y) & Homoy, (f*Qys,Ox,)

Proof. Let s — S be the k-point Spec (k) — S. This is a classic sort of deformation theory argument
about maps fitting into the diagram,

XS%Y

B
l 0 l

XexgD —— S

where D = Spec (k[e]). Since s — D is a split extension there exists a canonical lift f. Last

quarter we proved that the set of lifts is a torsor over Homoe, ( I Qyys,€0 Xs) and thus canonically
isomorphic to it because there is a canonical choice of base point. U
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Corollary 1.5.5. If f: X, — Y lands in the smooth locus of Y/S then,
TipHomg (X,Y) = H*(X,, f*Ty/s)

Remark. This says Y-valued vector fields on X are really infinitesimal deformations of a morphism.

Remark. Knowing the tangent space is not quite enough to locally find a curve on a highly singular
scheme. Therefore, we need to somehow bound dim 7j;Homg (X, Y") — dim Homg (X, Y").

Proposition 1.5.6. Let S = Spec (k) and X a projective variety over k and Y a quasi-projective
variety over k and f: X — Y a k-morphism mapping into the smooth locus of Y. Then,

dim 775 Homg (X,Y) — dim Homg (X,Y) < dim H' (X, f*Ty)
and therefore,

dim(; Homg (X,Y) > dim H°(X, f*Ty) — dim H'(X, f*Ty)
1.5.3 Bending in Positive Characteristic

The previous discussion takes a particularly simple form for Homy (C; X) where C' is a smooth
complete curve and X is a smooth proper k-variety. Then,

dims Homy, (C, X) > hO(C, f*Tx) — h*(C, f*Tx) = x(C, f*Tx) = (1 — g(C)) - dim X + deg f*Tx

At first we are very sad because producing curves of bounded genus is really really hard. Then
Mori has the brilliant insight: why can’t I pump up the degree of f*7x by pumping up the degree
of f as long as deg f*Tx > 0.

Remark. This positivity is where X being Fano will enter since det Ty is ample so f* det Tx is also
ample (since f is non-constant) and hence deg f*7Tx > 0. In terms of intersection theory,

deg f*Tx = (—=Kx) - .C

where f,C' is the cycle corresponding to the scheme theoretic image of f: C' — X.

If T can replace f by f, : C — X with deg f,, = ndet f (without increasing the genus) then
deg f¥Tx = ndeg f*Tx so we can make sure there are lots of deformations.

Example 1.5.7. If g(C) = 1 then there are multiplication by n maps [n] : C' — C so we let
fan = [ o [n] and we win, there is always f : C' — X that bends.

However, if g(C) > 0 it is not at all clear we can do this. Non-constant separable maps g : C' — C
of smooth curves satisfy Riemann-Hurwitz so the best we can hope for is the étale case in which,

9(C") =n(g(C) = 1) +1
and therefore,
X(C g [ Tx) = (1—¢(C))-dim X +deg ¢* f*Tx = n(1—g(C))-dim X +ndeg f*Tx = n-x(C, f*Tx)

so if x(C, f*Tx) = 0 this cannot help. There is nothing that can be done ... unless we drop the
separability condition. That’s right we need to use the Frobenius in positive characteristic! Then
notice we get F : C' — C composes to gives deg (f o F™) = p™deg f keeping the genus ¢(C') fixed.
Therefore, we can always pump up the degree term so that x(C, (f o F")*Tx) > 1 for n > 0.
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Proposition 1.5.8. Let k have positive characteristic. For any smooth curve C' with a map
fo : C' — X there exist an ng such that for all n > ny,

dim[fopn] Homk (C, X) Z 1

and hence there exists a non-constant map 7" — Homy, (C, X') through f o F" from a smooth curve
T producing a morphism,
f:OCxT—X

such that f(—,ty) = foo F™.
Proof. Choose a locally closed curve Ty — Homy (C, X) passing through [fo o F] which exists

because there is a finite type k-scheme open of positive dimension. Then let v : T" — T be the
normalization. Then let fy be T"— Ty — X which is non-constant. Then,

CxT—-CxTy= X

gives the desired map. 0

1.6 Break

Remark. What does it mean for a family to “break” and why does it break into rational curves.
Explicitly, the family is an extension of the map to f : C' xT — X where T' is a smooth affine curve.
Let T be the unique smooth projective model of 7. This defines a rational map f : C' x T --» X.
Rigidity tell us that this rational map must have some indeterminacy locus. At first, this observation
seems parochial: we shouldn’t expect a random rational map from a surface to extend. However,
in good circumstances, the indeterminacy locus will define rational curves on the target as the
“broken” limit of the bent curve C'. This is morally because indeterminacy can be resolved through
blowups at smooth points which introduce exceptional fibers that are copies of P! in the source.

Proposition 1.6.1. Let C' be a smooth projective curve and T" aa smooth curve. Choose fixed
points pp € C'and to € T. Let f:C x T — X be a morphism such that,

(a) f(po,—) is constant at zq € X
(b) f(—,%o) is non-constant

(¢) f(—,t) is different from f(—,t) for general ¢ € T or equivalently there exists a point p € C
such that f(p, —) is non-constant.

Let T be the unique smooth projective model of 7. Then the rational map f : C' x T -- X is not
everywhere defined. Indeed, there exists ¢; € T such that (pg,t;) is in the indeterminacy locus.

Remark. The picture is that f is a nontrivial (condition (c)) family of generically non-constant
(condition (b)) maps f; : C'— X such that f;(py) = x¢ is fixed (condition (a)).

Remark. The importance of this result is in collaboration with the following result.

Proposition 1.6.2. Let Z be a smooth variety and f : Z --~ X a rational map. If we resolve the
rational map via the graph,



Let S C Z be the indeterminacy locus. Then f(7~1(S)) is a union of rational curves on X.

Remark. Vaguely: if m can be resolved by blowups at smooth centers. Therefore, 77(S) — S is a
projective bundle and therefore is covered by rational curves so its image f(7~1(S)) C X is covered
by rational curves. Unfortunately, we don’t know resolution of singularities in positive characteristic
(we need this result in positive characteristic to prove our main theorem even over C).

Corollary 1.6.3. In the hypotheses of Prop. 1.6.1 there exists a rational curve on X through x.

1.7 Reduction to Positive Characteristic

We want to show that Homyg (P!, X) is nonempty?. However, we only know how to do this in
positive characteristic.

Therefore, given a Fano variety X over a field K of characteristic zero we spread out to a smooth
and proper 2~ — Spec (A) where A C K is a finite type Z-algebra and such that wy- /4 is ample
since closed immersion spread out. The Hom scheme is well-defined over Z and respects base change
so we get Homy (PL, 27) — Spec (A). We know that this has nonempty fibers over every point of
positive residue characteristic. Since Hom 4 (P}, 27) is finite type® by Chevallay’s theorem its image
is constructible but also contains every closed point and hence is dense (since Spec (A) is Jacobson)
so it contains the generic point meaning that Homg (P!, X) is nonempty and we win.

2 Bend

Remark. In this lecture we will refine the Hom scheme to keep track of the data of a “fixed point”
and the “degree of the morphism” in order to make the proposed proof sketch actually go through.
Then we will prove the properties of the Hom scheme presented last time. Recall the Hom scheme
is defined as follows.

Definition 2.0.1. Let X and Y be schemes over S. Then the functor Homg (X, Y") is defined as:
T — Homp (X7, Yr) = Homg (X xg T,Y)

Remark. First we recall the Hilbert scheme and its representability.

Definition 2.0.2. Let X — S be a morphism of schemes. Then the Hilbert functor Hilby g is,

T — {closed subschemes Z C X xgT | Z — T is flat, proper, and finitely presented }

2The astute in the audience will notice this is not at all what we want: first, this is never empty because of
constant morphisms, second we want rational curves passing through a fixed point x € X. To remedy both notions
we will refine our Hom scheme in the coming lectures to keep track both of the degree and of a fixed base-point.

3The astute in the audience will notice that this is totally false. This is another reason we need to introduce a
Hom scheme that keeps track of the degree of the morphism. The Hom scheme of morphism of uniformly bounded
degree will actually be finite type and a technical lemma will show we can arrange our curves to have uniformly
bounded degree (independent of the characteristic) so we win. Incidentally, this is also where the degree bound
<mn 4+ 1 in the conclusion of the theorem will come from.



Remark. Let £ be a line bundle on X. Because Z — T is flat and proper we see that for every
point t € T the fiber Z; is a proper «(t)-scheme so,

dim Z
(th’ﬁ(n) = Z (—1)idimHi(Zt,£‘??)
i=0

is a well-defined polynomial in n and is locally constant in ¢ by flatness.

Definition 2.0.3. Let £ be a line bundle on X. For a polynomial ® € Q[)] we define Hilb;};’é via,

T {Z € Hilby/s | 87" = for all t € T}
Proposition 2.0.4. As sheaves there is a natural decomposition,

Hilby,s = J] Hilby/
DeQ[)

Proof. Because t — <I>tZ £ s locally constant, we see that 17" decomposes into a disjoint union on
which ®Z is constant and therefore naturally factors through the inclusion,

[T HilbS/s — Hilbys
DeQ[)

which is hence an isomorphism. O

Theorem 2.0.5 (Grothendieck). Let S be a Noetherian scheme. Let X — S be (quasi)-projective

with £ a relatively ample line bundle for X — S. Then, Hilb;}}fy is represented by a (quasi)-

projective S-scheme Hilbi’/’cy.

Proposition 2.0.6. Let X — S be flat, proper, and finitely presented and Y — S be separated.
Then the map taking a morphism to its graph,

I: Homs (X, Y) — HﬂbXXSY/S
is an open immersion of sheaves.

Proof. The graph morphism takes f : Xy — Yp over T and sends it to the closed subscheme
Iy: Xr = Xo xpYr = (X XgY) xgT. Notice that I'y is a closed immersion because Y — S is
separated and I'y is a base change of Ay/g. Since 7y, o'y = idx, the hypotheses on X — S show
that im I'y — T' is flat, proper, and finitely presented and hence imI'y € Hilby, .y/s(T).

We need to show for any S-scheme T' with a map 7" — Hilby, .y, meaning a choice of a closed
subscheme Z C (X xgY) xg T flat and finitely presented over T" that the diagram,

U T
|- |
HOmS (X, Y) —_— HﬂbXXSY/S
produces an open immersion U — T'. Explicitly, for any test scheme we want to show there is an
open U C T such that 7" — T factors through U — T (meaning has image inside U) if and only

if Z — Hilby, ,y/s factors through Homg (X,Y’) — Hilby,  y/s which is equivalent to saying that
Zp — T" is an isomorphism. This is proven in the following lemma. U
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Lemma 2.0.7. If f: X — Y is a morphism of schemes proper and flat over a Noetherian base S
then there exist open subschemes S; C Sy C S such that,

(a) for any T'— S the map fr : Xp — Yr is flat iff T'— S factors through Sy
(b) for any T'— S the map fr : X — Ty is an isomorphism iff 7" — S factors through S;.

Proof. The flat locus of f : X — Y is an open U. Since gx : X — S is proper the locus
Sp =5\ gx(X\U)is open. By the local criterion for flatness, S is the set of points s € S such
that f: X, — Y, is flat. For T'— S and t € T we see that f; : X; — Y is exactly f, : X, = Y, for
t — s. Therefore, by the local criterion, fr is flat if and only if 7" — S .

Via the previous part, we may assume that f : X — Y is flat. If f: X, — Y} is an isomorphism
then it spreads out to an isomorphism fy; : Xy — Yy over an open of the base [EGAIIL4, Prop.
4.6.7]. Therefore we get a universal open in the same way as above. (l

Corollary 2.0.8. Let S be a Noetherian scheme. Let X — S be projective and flat and Y — S
(quasi)-projective with relatively ample £. Then Homg (X,Y’) is representable as an open sub-
scheme of Hilbx y/s and therefore decomposes as a disjoint union,

Homg (X,Y) = [[ Homg*(X,Y)
DeQ[)

where Hom?’ﬁ (X,Y) are (quasi)-projective (and hence finite type) S-schemes representing the

moduli problems,
T—{f:Xp =Y |0 “=dforallteT}

Remark. For CI),{ £ t0 be well-defined and locally constant explains why we need X — S to be flat
and proper.

2.1 Infinitesimal Deformation Theory

To study the local structure of a moduli space we employ the technique of probing via “infinitesimal
deformations”. For example, Spec (k[t]/(t")) — X give “infinitesimal arcs”. The idea will be to
consider maps from Artin local rings Spec (A) — X deforming a point meaning that A/my = x(z).

Definition 2.1.1. Let Art; be the category of Artin local rings with residue field k. A deformation
functor is a functor,
D: Artk — Set

such that D(k) is a singleton set.

Remark. We think of D(k) as the base object and D(A) its set of deformations over Spec (A). The
structure map k — A makes D(A) a pointed set via D(k) — D(A). Furthermore k — A is a section
splitting the extension A — A/my — k.

Example 2.1.2. For a functor! F' : Sch?®’ — Set and a point p € F(Spec(k)) we define the
associated deformation functor,

Dpp(A) = {a € F(Spec (A)) | lspec(a/ma) = P}

4Thought of as representing some moduli problem
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For example, if F is representable, meaning F' = h* for some scheme X, and p € X (k) is a point
with residue field £ then the infinitesimal information of X is captured in,

DX,p - DhX,p

Remark. Every extension B — A of Artin local rings is automatically infinitesimal meaning
ker (B — A) is a nilpotent ideal. We can filter these into particular first-order extensions (thicken-
ings) which we call small extensions.

Definition 2.1.3. An extension B — A of local rings with kernel K is small if mpK = 0. Equiv-
alently, it is an exact sequence of B-modules,

0 K B A 0
such that A is a B-algebra and K is a B-module through B — B/mgp.
Proposition 2.1.4. Every surjection in Art; can be factored into small extensions.

Remark. Small extensions in Art, have the agreeable property that K is determined by its k-
vectorspace structure.

Definition 2.1.5. Let Loc, be the category of local k-algebras with residue field k£ and finite
dimensional tangent space. Let CLocy be the full subcategory of complete local rings.

Definition 2.1.6. We say that a deformation functor D is pro-representable if there exists R € Locy
such that D = hf where h% is the deformation functor,

hf(A) = Homy,_joc (R, A)

Remark. Because Artin local rings are complete, any local map R — A factors uniquely through the
completion as R — R — A. Therefore, h® = hf so we may assume that pro-representing objects
are in CLocy hence the terminology.

Remark. The deformation functor Dx , for a scheme X is pro-representable by R = Ox, or 6)(\719.
Proposition 2.1.7. The functor R — h* on CLocy, is fully faithful.

Definition 2.1.8. A deformation functor D is said to have tangent-obstruction theory if there are
finite-dimensional k-vector spaces T, T? such that every small extension,

0 K B A 0

gives rise to a natural exact sequence of pointed sets,
T' @, K — D(B) —— D(A) -2 T2 @, K

which is exact on the left when A = k. A morphism of tangent-obstruction theories is a pair of
k-linear maps ;1 : T* — T"' and o, : T? — T'? natural in the sense that all such diagrams commute,

T'®y K —— D(B) —— D(A) -2 T? @, K

R R

T" @y K —— D(B) —— D(A) -5 T2 @, K

11



We call a tangent-obstruction theory universal if it is initial for tangent-obstruction theories.

Remark. We think of T as the tangent space and T2 as the space of obstructions to lifting. If there
is a universal tangent-obstruction theory (7,72, ob) we say that T" is the tangent space of D and
T? is the obstruction space of D and ob : D — T? is the obstruction class.

Proposition 2.1.9. If D has tangent-obstruction theory then 7" is unique up to unique isomor-
phism and is identified with the tangent space of D,

TD = ker (D(k[e]) — D(k))
Therefore ¢, for any morphism of tangent-obstruction theories is an isomorphism.

Proof. This follows immediately from D(k) = % and the sequence applied to the small extension,

0 ek k[e] k 0
along with the fact that the functoriality of D determines a k-vectorspace structure on T'D. O

Remark. The obstruction space T2 is not uniquely determined but in suitable cases there will exist
a universal obstruction space. We will discuss this now in the representable case.

Lemma 2.1.10. Let R € CLoc; and d = dimy, Tx. Then there exists a surjection k[[t1, ..., t4)]] - R
so we can write R = k[[t1,...,tq)]/J for some ideal J C k[[ty,...,t4]] with J C m%.

Proof. Choosing a basis for mp/m% gives a map, S — R. It suffices to prove that S — R is
surjective. Because these are complete local rings this follows from S/m% — R/m}, which for n =1

is because they both have residue field k. Then m%/mz"! — m%/m/;! is surjective because,

Sym"(ms/m§) ——» mg/ms*

| |

Sym" (mp/mf) —— mj/mp"

Then we conclude via induction and the five lemma,

0 —— m2/mi! —— S/mit! —— S/mt —— 0

| J |

0 —— mp/mp!t —— R/mA —— R/m} —— 0

This also shows that, S/m% — R/m% is an isomorphism so J C m%. O
Remark. Because of this lemma, we refer to d = dimy T as the embedding dimension of R.

Theorem 2.1.11. If D is pro-representable then it admits a universal tangent-obstruction theory.
Explicitly, if D = h® for R € CLoc;, then write R = S/J for S = k[[ty,...,t4]] let T} = (mgr/m%)Y
and T3 = (J/mgJ)" then for any small extension,

0 K B A 0

there is a natural short exact sequence,

0 — Th® K —— D(B) —— D(A) 25 T2 K

12



Furthermore, for any tangent-obstruction theory (7%, T?) for D there exists a unique morphism,
i (Tg, Tg) — (T, T?)
and additionally ¢ is injective.

Proof. Consider a small extension,

0 K B A 0

Consider a map ¢ : R — A. As S is a power series ring there is a lift ¢ : S — B. Then D(B)
correspond to lifts S — B Kkilling J.

First, if o, B : R — B are two lifts then a — f : R — K is a k-derivation and hence the lifts of ¢
are an affine space over T ®; K = Homy (mg/m%, K) = Dery (R, K).

Now suppose that ¢, @' : S — B are two lifts then h = ¢ — ¢’ is a derivation S — K. Since
J C m% and mgK = 0 we see that h|; = 0 so ob(p) : J/mgJ — K is independent of the lift.
Thus ¢ can be chosen such that ¢|; = 0 i.e. alift of ¢ : R — A to R — B exists if and only if
ob(p) € (J/mgJ)Y @ K is zero.

Finally we need to show that (T4, T#) is universal. Consider the small extension,
0 —— (J+mk)/(mgJ +mk) —— S/(mgJ +mf) —— R/mf —— 0

By Artin-Rees, for & > 0 we have m% N J C mgJ and thus K = (J + m§)/(mgJ + mk) = J/mgJ.
Then we apply the tangent-obstruction theory,

T' @y K —— D(B) —— D(4) -2 T? @, K
The obstruction to lifting the canonical map ¢ : R — R/m¥% is an element,

ob'(¢p) € (J/mg.J) @4 T? = Homy ((J/mg.J)", T?)

Using our previous construction choose the canonical map ¢ : S — S/(mgJ + mk) as the lift
then restricting to J gives id : J/mgJ — J/mgJ so ob(y) = idj/mss is universal so the map
ob’(¢) : T3 — T? commutes with obstruction classes.

Suppose that T% — T2 is not injective meaning some nonzero v € Ta maps to zero. Then under
m: K — K/V for the codimension one subspace V = kerv the class ob’(p) — 0. But for the
extension,

0—— K/V —— BJV A 0

the obstruction of ¢ : R — A is constructed via taking a lift S — B/V which we can choose to be
the canonical quotient and then ob'(p) = (K — K/V) so this class does not vanish. O

Corollary 2.1.12. If D = h® for R € CLoc;, and (T*,T?) is a tangent-obstruction theory for D,
(a) dimy T* > dim R > dim T' — dimy, T
(b) if dim R = dimy, 7" then R is regular

(c) if dim R = dimy, T — dimy, T? then (T, T?) is universal and R is a complete intersection.
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Proof. We have,
dimy, T dim R > dim S — dimy, (J/mgJ) = dimy T — dimy Tp > dimy, T, — dimy, Ta

Regularity by definition means dimy T} = dim R. Furthermore, if dim R = dimy, T — dimy T% then
the above inequalities are equalities so,

dimg(J/mgJ) = dim S — dim R

proving that R is a complete intersection. 0

2.2 Examples

Remark. 1t is clear from the definition that Homg (X, Y") if it exists is compatible with base change
meaning for any 7' — X,
Homy (X7, Yr) = Homg (X,Y) xg T

In particular, Homg (X, Y’) respects taking fibers,
Homg (X, Y'), = Hom, (X, Y;)

as we saw before. Furthermore, the infinitesimal deformation theory for an S-scheme X — S is
taken relative to a fixed point Spec (k) — X as an S-scheme meaning that we are only keeping
track of relative information meaning Dx/g, = Dx,,. For example, the tangent space defined as
maps Spec (k[e]) — X extending Spec (k) — X as S-schemes satisfies,

TX/S,QU = TXS/s,m
Therefore, it suffices to work over a field.

Proposition 2.2.1. Let D be the deformation functor for Hom,, (X, Y") at a point [f] € Homy, (X, Y) (k).
Assume that f : X — Y lands in the smooth locus. Then D has a tangent-obstruction theory with,

T = EXté)_; (f*Qy/S, Ox>
Proposition 2.2.2. Given a small extensions,

0 K B A 0

the question amounts to considering lifts,

X Xj, Spec (A) L; Y

L

X Xy Spec(B) —— S

Because the right is a first-order infinitesimal extension and f lands in the smooth locus of ¥ — §
we proved last quarter there is a natural obstruction class,

ob(f) € Extg,, (f*Qyys, Ox @p K) = Extg, (f*Qyys, Ox) @k K
vanishing exactly if there exists such a lift. If ob(f) = 0 then the set of lifts is a torsor over,

Home (f*Qy/S, Ox> Qp K

These exactly say that the tangent-obstruction sequence is exact.

14



Corollary 2.2.3. Let X a projective variety over k and Y a quasi-projective variety over k and
f X — Y a k-morphism mapping into the smooth locus of Y. Then,

dim Tj;Homg (X,Y) — dim Homg (X, Y) < dim H' (X, f*Ty")

and therefore,
dim(s; Homg (X,Y’) > dim HY(X, f*Ty) — dim H' (X, f*Ty)

Remark. Another example is the infinitesimal deformation theory of a smooth scheme X — Spec (k).
Consider the deformation functor Def y taking A to the isomorphism classes of smooth lifts of X
over Spec (A). We showed that Def y admits tangent-obstruction theory,

and T° = H°(X, Tx) is the space of automorphisms of a given lift. When the automorphism space is
nonzero, Def x cannot be representable by a scheme. Instead, this obstruction theory is describing
the local structure of the deformation stack.

2.3 Fixing a Base Point

Definition 2.3.1. Let X, Y be S-schemes and fix S-morphisms ¢ : Z — X and g : Z — Y. Then
we define the functor Homg (X, Y ¢, 9),

T'-){fIXXST—)Y|fO(LXidT):gO’iTl}
which is the set of mapping making the following diagram commute,

Z Xg T
LXidTl gom

XXSTTY

Remark. We usually consider this is the case that + : Z — X is a closed immersion identifying Z
with a closed subscheme of X and therefore omit ¢+ from the notation.

Proposition 2.3.2. Let X, Z be projective and flat over S and Y — S be quasi-projective. Then
Homg (X, Y, g) is representable by a closed subscheme of Homg (X, Y").

Proof. Let S — Homg (Z,Y") be the point g : Z — Y. Then consider,
Homg (X, Y0, 9) —— S
| - J
Homg (X,Y) ——— Homg (Z,Y)

Since Homg (Z,Y) is a quasi-projective S-scheme and hence separated the section S — Homg (Z,Y)
is a closed immersion and hence Homg (X, Y’; ¢, g) — Homg (X, Y) is a closed immersion of functors
so Homg (X, Y, g) is representable by a closed subscheme. U

15



Proposition 2.3.3. For a k-point [f] € Hom, (X,Y’; g) (k), there is a canonical isomorphism,
T‘[f]iHomk <X7 Ya g) = Hom(’)x (f*an jz)

Furthermore, when f maps to the smooth locus of Y then the deformation functor of Hom,, (X, Y; g)
has tangent-obstruction theory with,

T" = Exty, (f*Qy, S7)

Proof. We can replace Y by Y*™ because f maps into the open smooth locus and restricting to
open subsets does not affect the infinitesimal deformation theory. We need to consider lifts which
fit into the diagram,

Z Xy, Spec (A) X Xy, Spec (A)

\Y /

Fo
Z Xy, Spec (B) X Xy, Spec (B)

\ /

Spec (k)

Topologically, there is nothing to do because f is defined by the same topological map as f which
already commutes with the maps from Z. Therefore, this is a question of maps of sheaves on X.
Consider,

jz®kK—>ﬂZ®kB
J{ _
0*>OX®;€K4>O)(®]€B*>OX(X)1€A4>O

L0z @y B «—— [0y

0

Therefore, because K2 = 0 as an ideal, the set of dashed maps forms a torsor over,
Derk (f_loy, JZ ®k K) = HOII]@X (f*Qy, jz) ®k K

In particular, for A = k and B = k[e] this computes the tangent space. Furthermore, it shows that
the sheaf of lifts over the Zariski topology on X is a pseudo-torsor over,

Homo, (f*Qy, #z) @ K

We need to show that it is locally nonempty. If X = Spec(R) is affine then by smoothness of
Y — Spec (k) there exists a lift f~1Oy — Ox ®;, B. Consider,
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0 —— I K —— Iy B——— IT®, A —— 0

0 ——— R K —— R®, B ——— R, A —— 0

0 — R/I® K —— R/I®y B —— R/I® A —— 0

0 0 0

We are given g : f'Oy — R/I and ¢ : f[7!Oy - R®, A and ¢ : f7!Oy — R ®; B such
that applying R ®, B — R ® A gives ¢ and applying 7 : R®; A — (R/I) ®; A to ¢ gives
g ®ida. We need to find a new lift such that furthermore applying R ®; B — R/I ®; B gives
g®idp : f'Oy — (R/I)®;, B. Consider mop—g®idp which is a derivation landing in (R/I)®; K.
Because f*Qy is locally free, this lifts to a derivation ¢ : f~!Oy — R ®; K. Then ¢ — q satisfies
the desired conditions.

Therefore, the obstruction to the sheaf of lifts having a global section is the class of this torsor,
ob(f) € Exty (f*Qy, I7) @1 K
where there is no sheaf-Ext term because f*()y is locally-free. O

Corollary 2.3.4. Let X be projective over k and Y be quasi-projective over £k and f: X — Y a
k-morphism mapping into the smooth locus of Y. Furthermore, let Z C X be a closed subscheme
and fix g = f|z: Z — Y. Then, Homy (X,Y) g exists and,

dims Homg (X,Y) > dim H(X, f*Ty ®oy Fz) — dim H' (X, f*Ty Qo I7)

3 Break (TODO Vaughan)

3.1 The Rigidity Lemma

Remark. References for this section:

(a) Olivier Debarre’s Notes Lemma 9
(b) [KM98, section 1.1, Corollary 1.7 and Lemma 1.9]

(c) [Kol99, Section I1.5, Lemma 1.6].

Lemma 3.1.1. Let f : X — Y and g : X — Z be morphisms of varieties. If f.Ox = Oy and there
is a point y € Y such that g : X;, — Z is a constant map then there exists an open neighborhood
U C Y of y such that,

g

) -
N
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https://www.math.ens.psl.eu/~debarre/Grenoble.pdf

commutes. This says over an open of Y “g contracts all the fibers of f”.

Proof. TODO U

3.2 Rational Curves In The Indeterminacy Locus (TODO Vaughan)

Remark. Now that we have a rational map with an indeterminacy locus, what can we do with it.
It turns out a lot!

Remark. References for this section:
(a) Olivier Debarre’s Notes Section 1
(b) [KM98, section 1.1, p.8-9].

(c) [Kol99, section VI.1].

Theorem 3.2.1 (Zariski). Let f: X — Y be a birational morphism of varieties. If y € Y is a nor-
mal point and f~!(y) is finite then there is an open neighborhood of y on which f is an isomorphism.
In particular either f~!(y) = {z} or every component of f~!(y) is positive dimensional.

Definition 3.2.2. Let 7 : X — Y be a birational morphism. The ezceptional locus Exc () is the
subset of X on which 7 is not a local isomorphism.

Proposition 3.2.3. Let 7 : X — Y be a birational morphism of varities with ¥ normal. Set-
ting F = Exc (7), every component of F has positive dimension, 77 1(7(F)) = E, and 7(F) has
codimension at least 2. If 7 is proper then 77! : Y --> X has domain Y \ n(FE).

Remark. DO I NEED PROPERNESS HERE?

Proof. By Zariski’s main theorem, for each y € m(E), every component of the fiber 7~(y) is positive
dimensional. Hence every x € 7~ (7(F)) lies in a positive dimensional fiber contracted by 7 so
x € F proving 7 }(7(E)) = E and every component of F is positive dimensional. By Chevallay’s
theorem, 7(FE) is constructible (since E is closed) and hence contains all the generic points of
7 = m(E) and hence dim E > dim 7(E) + 1 which proves®,

codim (Y, Z) > codim (X, E) +1 > 2

because dim X = dimY. Finally, 7/ : X \ £ — Y \ 7(F) is an open immersion but if 7 is proper
then because 771(7(F)) = E we have 7’ is proper (by base change) so 7’ is an isomorphism since
Y is irreducible. Therefore, 7! is defined on Y \ 7(F). Furthermore, if y € dom(7~!) then 7 is a
local isomorphism at 7' (y) € X so y & 7(E). O

Definition 3.2.4. Let f : X — Y be a generically étale morphism of smooth k-schemes. The
ramification divisor Ram (f) is the vanishing locus of f*wy — wx. Notice that f*wy — wx is
injective and hence defines a regular section s € I'(X,wx ® f*wy ) such that Ram (f) = V (s).

Proposition 3.2.5. Let 7 : X — Y be a birational morphism of smooth varieties. Then,
Ram (7),.4 = Exc (m)

Hence Exc (7) is an effective Cartier divisor.

®Using that if f: X — Y is dominant map of integral finite type k-schemes then dim X = dimY + dim X,,.
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Proof. Consider the exact sequence,

0 —— 7 Qy Qx Qx/y — 0

which is exact on the right because 7*Qy — (2x is a morphism of vector bundles and is an isomor-
phism at the generic point since 7 is birational. Notice that a map of locally free sheaves of the
same rank f : £ — % is an isomorphism at z if and only if det f is an isomorphism at . Therefore,
Suppe, (QX/Y) = Ram (7). On X \ Exc (7), the map f*Qy — Qx is an isomorphism so, as sets,
Ram (7) C Exc (7). By Zariski’s main theorem, for any x € Exc () the fiber 7 (7(z)) has positive
dimension so (£2x/y), 7# 0 meaning € Ram (7). O

Proposition 3.2.6. Let 7 : X — Y be a birational morphism of varieties with ¥ smooth. Through
every point of Exc () there is a rational curve contracted by .

Proof. We only do the case that Y is a surface [REFERENCES]. Let F = Exc (7). We normalize
X — X and let 7 : X — Y be the composition. Let U C X be the smooth locus whose complement
is codimension 2 in X. By Zariski’s main theorem, every component of E = Exc (7) has positive
dimension. Thus because dim X = 2 every component of E intersects U. Let f:U =Y be the
composite which is a birational morphism of smooth varieties. Thus E; = ENU = Exc (7) is a
Cartier divisor. Furthermore, f(E) C Y is codimension 2 and hence is a collection of points (and
is thus a smooth center). We blow up to get a factorization,

ULy, 3SY

using that 7! (7(F)) = E. Suppose 7 (F) is of codimension 2. Then we can repeat this process to
get a sequence,
UM™Y, %Y, ==Y 5Y

We write E; = Exc (¢;). Then because these are blowups at smooth centers we see that Y; is smooth
and the canonical bundle satisfies,

*
wy, = gwy,_, @ O, (E;)
However, because m, is birational, we get an injection,
*
T, Wy, — Wy

and therefore,
7T*(,UY & FTOYl (El) R & W;Oyn (En) — Wy

Since m;(F) C E; we see that Oy (n} E; — E) is effective and therefore,
T'wy @ Op(nE) < wy

However, this gives an ascending chain of subsheaves of wy and hence the process must terminate
with 7m;(E) of codimension 1. Therefore, £ ¢ Exc (m;) and therefore m; : E — m;(E) is a birational
morphism. However, 7 O

Corollary 3.2.7. Let X be a smooth variety and Y a proper variety containing no rational curves.
Then any rational map X --+Y is everywhere defined.
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3.3 The Main Breaking Results

Remark. References for this section:
(a) Olivier Debarre’s Notes Section 5
(b) [KM98, Section 1.1, Corollary 1.7 and Lemma 1.9].
(c) [Kol99, Section IL.5].

Proposition 3.3.1. Let X be a projective variety. Let f : C — X be a smooth curve, and let
co € C a point. If dimfyHomy (C, X; f|s,) > 1 then there exists a rational curve on X through

f(c).
Proof. TODO 0

Remark. In order to get the correct degree information for these newly produced rational curves,
we need the following refined version of the breaking result.

Proposition 3.3.2. Let X be a projective variety and let f : P! — X be a rational curve. If
dim{s; Homy, (P', X) fl{0,00} > 2 then the 1-cycle f,IP! is numerically equivalent to a connected non-
integral effective rational 1-cycle passing through f(0) and f(oc0).

4 Reduction to Positive Characteristic and Completion of
the Proof (TODO Vaughan)

(LOOK AT THE SKETCH OF THE PROOF IN THE INTRODUCTION)

Remark. References for this section:
(a) Olivier Debarre’s Notes Section 6
(b) [KM98, Theorem 1.10].

(c) [Kol99, Section I1.5].

5 Applications of Bend and Break (TODO Spencer)

5.1 Ample Vector Bundles

Remark. References for this section:
(a) Hartshorne, Ample vector bundles [Har66.

Definition 5.1.1. A vector bundle £ on a projective scheme X is ample if Ox(1) on Px(E) is
ample.

Proposition 5.1.2. A quotient of an ample vector bundle is ample.

Proof. Let & — &; be a surjection. This defines a closed immersion Py (&) < Px (&) such that
O (g0)(1)|px(£1) = Opy(e,)(1) and therefore if Op, (g,)(1) is ample so is Op (g,)(1). O
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Proposition 5.1.3. Let £ and £’ be ample vector bundles. Then, & & &, is ample if and only if
&1 and & are ample.

Proof. TODO O
Proposition 5.1.4. Let £ and £ be ample vector bundles. Then,
(a) €@ E is ample
(b) £€® &' is ample
(c) AFE& is ample
(d) S

*(€) is ample.

Proof. TODO U

5.2 Characterizing P", Hartshorne’s Conjecture

Remark. References for this section:
(a) Mori’s original paper. [Mor79].
(b) For historical interest: Mori’s earlier paper proving the n = 3 case [MST78].

Theorem 5.2.1 (Mori). Let X be a smooth projective Fano variety of dimension n. Suppose that
the smallest degree of a covering family of rational curves is n + 1 then X = P".

Proof. TODO U
Corollary 5.2.2. Let X be a smooth projective variety. If Tx is ample then X = P".

Proof. (FIX THIS PROOF) Since Ty is ample this implies that wy = det Ty is ample and thus X
is Fano. Let C' C X be a rational curve. Then we may compute,

(—Kx) - C = deg(wxlc)
However, v : P! — C is finite and birational and (DOES THIS ACTUALLY WORK)
(—Kx) - C = degriwy
However, by a theorem of Grothendieck, every vector bundle on P! is split,
viTx = Opi(a1) @ - -- @ Opi(an)

Furthermore, v is finite so v*Ty is ample and therefore each a; > 1. There is also a map Tp1 — v*Tx
and Tp1 = Op1(2) so this implies that some a; > 2 (WLOG let a; > 2). Thus,

—Kx - C =degv*wy =degv* A Tx = Zai >n+1
i=1
Therefore X is Fano with minimal rational covering degree d > n + 1 so by the main theorems
d=n+1and X =P N
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6 Feb. 9

What we need from Ben’s notes:

Let C be a smooth proper curve over k. Let B C C be a finite set of closed points. Given a
nonconstant morphism f : C' — X nonconstant map,

dimy Homg (X, Y) f|lp > x(C, f*Tx ® IB) = x(C, f*Tx) — #Bdim X
Therefore, by Riemann-Roch,
dims Homg (X,Y) flp > —=Kx - f.C + (1 = g(C) — #B)dim X

We want this to be large. First, we will work out consequences for rational curves on X when

6.1 Rigidity Lemma

Lemma 6.1.1. Let XY, Z be varieties and f : X — Y and g : X — Z be proper morphisms.
Suppose that f,Ox = Oy and there is some y € Y such that g : X, — Z is a point. Then there
exists some open neighborhood U C Y of y such that there exists a factorization,

f0) = U

Z
Proof. There are three steps:

(a) Consider t = (f,g) : X - Y x Z. Set S = imt and let py : S — Y and pz : S — Z be
projections.

(b) There exists an open y € U C Y the map py = py|p;1(U) :pyt (U) = Y is finite.
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(¢) po is actually an isomorphism so can form the diagram,

)~ U)o U

g J{pz T
L~ pzopg

Z

thus proving the claim.

To show (b), by properness, the fiber dimension is upper semi-continuous on the target and thus
the quasi-finite locus is open and then proper + quasi-finite implies finite.

For step (c) it suffices to show that (py).Os, = Oy where Sy = py'(U) and Xy = f~1(U). Notice
that po and t|s, are surjective. Therefore,

Ov = (p0)«Og, and Og, — t.0x,
because t : X — S is surjective by definition. Therefore,

(pO)*OSO — (pO)*t*OXO = f*oXo = OU

Therefore (pg).Os, = Oy and thus by finiteness py is an isomorphism. 0

6.2 Rational Curves in Indeterminacy Locus

Theorem 6.2.1. Let X and Y be projective varities and Y is smooth. Let 7 : X — Y be
birational and proper. Let £ C X be the exceptional locus meaning the locus on which 7 is not an
isomorphism. Then E' is covered by rational curves.

Proof. Let’s do the case that X and Y are surfaces. Then the exceptional locus of f 1y X
can be resolved f : Y — X where Y is a blowup of Y at finitely many smooth points. Then each
fiber f~1(y) C X is dominated by a collection of P!. O

Corollary 6.2.2. Let f : X --=Y be a rational map of smooth projective varieties, consider the
closure of the graph X which has maps 7y : X — X and 7y : X — Y. Notice that py : X 5 X is
a proper birational morphisms. Let S C X be the indeterminacy locus. For every y € py (px'(s))
with s € S there exists a rational curve on Y contained in Y through y.

7 Feb. 16

Recall:

Theorem 7.0.1 (Bend and Break I). Let X be a projective variety, f : C' — X a nonconstant

morphism. If,
dimy Homy, (C, X flo) > 1

Then there exists a rational curve g : P! — X passing through x.
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Theorem 7.0.2 (Bend and Break II). Let X be a projective variety, f : P! — X a rational curve.
Suppose that,
dim[f] Homk (C, X) f‘{O,oo} Z 2

Then,
f*Pl ~num C’0 + C’oo

where the RHS is a nonintegral conncected rational 1-cycle and f(0) € Cy and f(00) € Cu.

Proof. Note {g € Aut (P') | g(0) = 0 and g(00) = 0o} = G,,. There is a silly family P! x G,, — X
sending (z,g) — f(g-z). Choose a curve Ty C Homy, (IP’l, X; f|{0,oo}> not contained in the G,,-orbit
and let T' = T,. Then we get amap ev : P! x T — X. I claim that im ev is 2-dimensional. Consider
the map F': P! x T — X x T via F = ev X py. This is a finite morphism because it is quasi-finite
and proper. Then we get a rational map P' x T --» X x T. Resolve F to get a map S' — P! x T
and S’ — X x T. Take the Stein factorization

S5 SLXxT

where F is finite. We now claim that F~*(X x T) = P! x T. Therefore we have the diagram,

Pt x T S X

%

D2 X xT

p2

T————T
None of the fibers of 7 are contracted under ev : S — X because F is finite. This is because F(S;)
is positive dimensional but would be contracted by both p; and p, which is impossible.

The ideal is to show that the giver of © over the boundary of T is a connected nonintegral 1-
cycle. S is integral and T is 1-dimensional and smooth and 7 is dominant and thus 7 is a flat
morphism [Hartshorne 3.9]. The fibers of 7 are 1-dimensional projective schemes with no embedded
components hence by constancy of the Hilbert poltnomial all the fibers have genus zero since
P! x T F X xT). If C =S8, is a giber and C; C C is an irreducible component then (C});eq
also has genus zero. Thus if a fiber 7 is integral, it is P'. Assume for contradiction that all fibers
are integral. Then 7 realizes S as a ruled surface over T. Then Pic (S) & Zs & Pic (T) where s

is a section. Let Ty = {0} x T and T, = {00} x T. By assumption, ev(S) is a surface. Then
we can consider an ample divisor H C ev(S). By assumption, ev*H - Ty = ev*H - T, = 0 and
(evH)? > 0 so Hodge index theorem says that T3 < 0 and T2 < 0. Then Ty — T,, € 7*Pic (T)
Thus (Ty — Tw)? = 0 but,

(To —Tw)* =Ty + T2 — 2Ty - Too < 0
because Ty and T, are disjoint and both have square zero. Therefore there must be a nonintegral
fiber so we conclude. O
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8 Ample Vector Bundles

Definition 8.0.1. Let £ be a vector bundle on X /k then £ is ample if the canonical line bundle
Op(ey on P(£) is ample.

Proposition 8.0.2. A vector bundle £ is ample if and only if for all .# € €oh (X) and n > 0 the
sheaf Sym" (&) ® .Z is generated by global sections.

Proposition 8.0.3. The following hold,
(a) If £ and .# are ample then £ ® .7 is ample

(b) all A€ and Sym"(€) is ample

(c) for X and Y proper over Spec (A) noetherian and X — Y finite then a pullback of ample is
ample

(d) if X — Spec(A) is proper and A is noetherian then £ is ample if and only if for all ¥ €
Coh (X) and n > 0 we have Sym, (F) £ ® .Z is acyclic
(e) €@ .Z is ample if and only if £ and .% are ample.

Remark. “Very ample” is not good for example X = P! then & = O ® O(1) which is not ample.
However it is globally generated and the associated map X < Gr(2,3) is a closed immersion.

Proposition 8.0.4. Let £ and % be locally and £ — # surjective and £ is ample then % is
ample.

Proof. We get a surjection S™(E) — S™(.#) and thus a surjection S"(£) ® ¥ — S"(F) ® 4 and
the right is generated by global sections for n > 0 so the right factor is also generated by global
sections. 0

Direct Sums. We have,

S E®F)=PS"HE) © SHF)
and then we tensor by ¢4 but ... O
Proposition 8.0.5. £ is ample iff S”(€) is ample for all n > 0.

Proof. £ ® S"Y&) — S™(€) proves by induction that all symmetric powers big enough so that
Sn=1(€) is globally generated are ample.

Suppose that some S™(€) is ample. Then there is a surjection,
S™MSME)) @S (E)® F —» S"MHT(E)® F

we can twist enough to make all finitely many S™(£) ® % for 0 < r < n and thus the left hand side
is generated by global sections and thus so is the right hand side. 0
Proposition 8.0.6. Let £ be be an ample vector bundle of rank r. Then A"E is ample.

Proof. Choose n > 0 such that S"(€) is ample and generated by global sections. It has rank s.
Then we get a surjection,

S"(E)" = N(S"(€))
and the RHS is ample because it is a tensor product of ample and globally generated vector bundles.

Now I claim that A*(S™(£)) is a power of A"(€) and since the first is ample so is the second (since
these are line bundles). O
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8.1 Hartshorne’s Conjecture

Theorem 8.1.1. Let X be a smooth projective k-variety over k = k of dim X = n. If Tx is ample
then X = P

Proposition 8.1.2. Let X satisfy the above conditions.

a) Then there is a nonconstant map P! — X such that f*w} has degree n + 1.
X

(b) Given such f we have,
[ Tx 20(2)@0(1)™

Proof. The proof of 1 is bend and break and taking the normalization and we get deg f*7Tx < n+1.
Thus we just need to understand the pullback of the tangent bundle. By Grothendieck, f*7Tx
splits and is ample and thus is a sum of ample line bundles. Furthermore, there is a nonzero map
Tpr — [*Tx. Furthermore, deg f*Txy < n + 1 so if we write,

[ Tx 2 0(a1) @ -+ @ O(ay)

and by ampleness all a; > 0 and ay > 2 so we conclude that deg f*7Tx = n + 1 and ag = 2 and all
other a; = 1. O

of Thm. Let f be as above. Assuming n > 2 (the cases n = 0 and n = 1 are trivial) then pick
p € P! the smooth locus of f and ¢ = f(p). Let V be the connected component of Homy, (P!, X; f|,)
containing [f]. If v € V then deg (v*'w¥) = n + 1 by connectedness. Then appling the previous
argument to v we know that,

v (Tx) = 0(2) & O(1)*"
The tangent-obstruction spaces of the Hom scheme is,
H'(P',v"(Tx) ® O(—p)) = H'(P', O(1) & O")
and by vanishing of H! we see that V is smooth of dimension n + 1.

Let G be the group scheme of automorphisms of P! fixing p. Then let Y = V/G using the geometric
quotient. ]

Definition 8.1.3. Let fa : V — Chow'y™! defined by taking the image that gives a cycle C' with
C'KX = —(n+1)

Theorem 8.1.4. Y = P 1,

Proof. Fix a tangent vector at p on P'. Then we get a morphism V — A"\ {0} — P"~! which is
G-invariant where the map does not hit zero because we fixed p to be a smooth point (HMMM). O
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