
1 Sep. 30

1.1 Introduction
Theorem 1.1.1 (Deligne-Illusie). Let X/k be a smooth proper scheme with k a field of character-
istic zero and Ω•X/k is deRham complex. Then, the Hodge-to-deRham spectral sequence,

Ep,q
1 = Hq(X,Ωp

X/k) =⇒ Hp+q
dR (X)

degenerates at the E1-page.

Corollary 1.1.2. Then,
dimHn

dR(X) =
∑

p+q=n
dimHq(X,Ωp

X/k)

Remark. For k = C, we can prove the above equality using analytic techniques (i.e. Hodge theory).
Remark. D-I give an purely algebraic proof. The idea is use degeneration in positive characteristic
to get degeneration in characteristic zero.

1.2 deRham Complex
Let f : X → Y be a morphism of schemes.

Definition 1.2.1. Then Ω1
X/Y is the sheaf of relative differentials on X/Y . Then,

Ω1
X/Y = ∆∗CX×Y X/X

is the conormal bundle for the diagonal ∆X/Y : X → X ×Y X. Then,

Ωi
X/Y =

i∧
Ω1
X/Y

and let Ω0
X/Y = OX . Furthermore, there exists a unique family of maps di : Ωi

X/Y → Ωi+1
X/Y such

that,

(a) di is a Y -antiderivation of the total complex,

ΩX/Y =
∞⊕
i=0

Ωi
X/Y

meaning that d is f−1OY -linear and on local sections it satisfies the graded Leibniz law,

d(a ∧ b) = da ∧ b+ (−1)ia ∧ db

(b) d2 = 0

(c) da = dX/Y a for deg a = 0.

Then (Ω•X/Y , d) is the deRham complex of X/Y ,

0 OX Ω1
X/Y Ω2

X/Y Ω3
X/Y · · ·d
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Remark. Working over k = C, there is also an analytic deRham complex (Ω•X/Y )an. Then GAGA
tells you that you get the same cohomology in the algebraic and analytic cases. Furthermore, the
analytic deRham complex is a (not acyclic!!) resolution of the constant sheaf C.

Definition 1.2.2. Hn
dR(X) = Hn(X,Ω•X/Y )

Remark. Hn(X,Ω•X/Y ) = RnΓ(Ω•X/Y ).
Remark. There exists a hypercohomology spectral sequence,

Ep,q
1 = RqΓ(X,Cp) =⇒ Hp+q(C•)

Applying this to the deRham complex gives the Hodge-to-deRham spectral sequence,

Hq(X,Ωp
X/Y ) =⇒ Hp+q

dR (X)

1.3 Frobenius and Cartier Isomorphisms
Definition 1.3.1. Let X be a scheme of characteristic p (meaning pOX = 0). Then there is a
natural map Fr : X → X via id on topological spaces and OX → OX via x 7→ xp. This is natural,
in the sense that for any map f : X → Y there is a commutative diagram,

X X

Y Y

FrX

f f

FrY

Therefore, we can define via pullbacks,

X X(p) X

Y Y
f

FX/Y

f

FrY

giving the relative Frobenius FX/Y : X → X(p).

Proposition 1.3.2. If Y has characteristic p and f : X → Y is smooth of relative dimension n
then FX/Y : X → X(p) is finite and flat of degree n. Therefore, F∗OX is locally free of rank n as a
OX(p)-module.

Proof. When f is étale we can do this with general nonsense (HOW). In general, this is a local
question so we reduce to a standard smooth which factors as the composition of an étale map and
a projection from affine space which can be done directly. �

Proposition 1.3.3. Let d = dX/Y . Let s be a local section of OX . Then,

d(sp) = psp−1ds = 0

since d(sp) = F ∗X/Y (ds) = F ∗X/Y (1⊗ ds). Thus,

(a) Fr∗Ωi
X/Y → ΩX/Y is zero

(b) F ∗X/Y Ωi
X(p)/Y → Ω1

X/Y is zero
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(c) d on the complex (FX/Y )∗Ω•X/Y is OXp-linear.

Theorem 1.3.4 (Cartier). There exists a unique morphism of graded OX(p)-algebras,

γ :
⊕
i

Ωi
X(p)/Y →

⊕
i

Hi((FX/Y )∗Ω•X/Y )

such that

(a) for i = 0, we have γ is the map OX(p) → (FX/Y )∗OX

(b) for i = 1, we have γ(1⊗ ds) = sp−1ds in Hi(FX/Y ∗Ω•X/Y )

Furthermore, if f is smooth then γ is an isomorphism and we call c = γ−1.

Remark. If Y = Spec (k) and X is smooth then γ is called the absolute Cartier isomorphism.
Remark. The theorem tells us that γ is determined by how it acts in degree 0 and degree 1 because
it is a morphism of graded algebras and the deRham complex is generated in degrees 0 and 1.
Explicitly,

γ(τ ∧ σ) = γ(τ) ∧ γ(σ)

1.4 Relationship to the HDSS
Now let Y = Spec (k) with k a perfect field. D-I realized that the Cartier isomorphism is related
to degeneration of the HDSS,

Ep,q
1 = Hq(X,Ωp

X/k) =⇒ Hp+q
dR (X/k)

Consider the complex,
C =

⊕
i

Ωi
X(p)/Y [−i]

Then Hi(C) is the graded parts of the domain of the Cartier isomorphism. Furthermore, the
codomain is Hi(F∗Ω•X/k). Then we might ask if there is a map of complexes,

φ : C → F∗Ω•X/k

which induces the Cartier map.

Proposition 1.4.1. If there is such a quasi-isomorphism φ, then the HHSS degenerates at E1.

Proof. This follows from the chain of isomorphisms,

Hn(X,Ω•X) ∼= Hn(X(p), F∗Ω•) ∼=
⊕
i

Hn−i(X(p),Ωi
X(p)) ∼=

⊕
i

Hn−i(X,Ωi
X)

The first isomorphism comes from the fact that F is finite and thus affine. The second isomorphism
is the inverse of the map induced by φ on cohomology. Finally,

Hj(Xp,Ωi
X(p)) = Hj(X,Ωi

X)

becuase F : X → X(p) is an isomorphism over a perfect field. Therefore the dimensions match
whcih implies that the spectral sequence must have degenerated since the dimensions of the terms
matches those of the filtered pieces already. �
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2 Oct. 14

2.1 Degeneration in Characteristic p
First we state the main theorem for today.

Theorem 2.1.1. Let S → Z/pZ be a scheme of characteristic p and a flat lift to Z/p2Z,

S S̃

Spec (Z/pZ) Spec (Z/p2Z)

If X/S is smooth and proper and X(p) admits a smooth lift over S̃ then,

τ<p(FX/S)∗Ω•X/S

is decomposable in D(X(p)) meaning it is isomorphic to a complex whose differentials are all zero
(i.e. it is isomorphic to its cohomology).

Remark. The de Rham complex is not an element of the derived category of OX-modules because
the transition maps are not OX-linear. However, the useful fact about (FX/S)∗Ω•X/S is that the
transition maps are OX(p)-linear because for any f ∈ OX(p)(U) and ω ∈ ΩX/S(F−1

X/S(U)) we have,

d(f · ω) = d(F#
X/S(f)ω) = d(F#

X/S(f)) ∧ ω + F#
X/S(f)dω = f · dω

because d(F#
X/S(f)) = 0 since this is d relative to S and FX/S acts via x 7→ xp “relative to S”.

Corollary 2.1.2. If k is a perfect field and X/k is smooth, proper, and dimX < p and X lifts over
W2(k) then the Hodge-to-de Rham spectral sequence degenerates at E1.

Proof. We apply this to the case S = Spec (k) and S̃ = Spec (W2(k)). By above, we have that
(FX/S)∗Ω•X/S is decomposable and the hyperderived spectral sequence of any decomposable com-
plex degenerates at E1 just because the differentials of the spectral sequence are formed from the
transition maps on the complex which are zero up to quasi-isomorphism. Therefore,

dimHn(X,Ω•X/k) = dimHn(X(p), (FX/k)∗Ω•X/k) =
∑

p+q=n
hq(X(p), (FX/k)∗Ωp

X/k) =
∑

p+q=n
hq(X,Ωp

X/k)

because the Frobenius is affine and therefore the dimensions add up for the Hodge-to-de Rham
spectral sequence already at the E1 page proving that the differentials must already be zero. �

2.2 Recall the Cartier Isomorphism
Let X/S be a scheme with S characteristic p. Then there is a graded isomorphism,

C−1 :
⊕
i

Ωi
X(p)/S

∼−→
⊕
i

Hi((FX/S)∗Ω•X/S)

such that,

(a) in i = 0 the map OX(p) → (FX/S)∗OX is F#
X/S
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(b) in i = 1,
C−1(1⊗ ds) = sp−1ds ∈ H1((FX/S)∗Ω•X/S)

think of this as like “F
∗(ds)
p

”.

To prove the theorem, we will exhibit a quasi-isomorphism

ϕ :
⊕
i<p

Ωi
X(p)/S[−i]→ (FX/S)∗Ω•X/S

that induces C−1 on cohomology for i < p (and thus is a quasi-isomorphism). We want to reduce
to constructing ϕ1 where ϕi are the components of the map from the direct sum. For ϕ0 we just
define,

ϕ0 : OX(p)
C−1
−−→ H0((FX/S)∗Ω•X/S) ↪→ (FX/S)∗Ω•X/S

Now assume we have constructed,

ϕ1 : Ω1
X(p)/S[−1]→ (FX/S)∗Ω•X/S

inducing C−1 on H1. Then there exists,(
Ω1
X(p)/S

)⊗i
→ Ωi

X(p)/S

by sending,
w1 ⊗ · · · ⊗ wi 7→ w1 ∧ · · · ∧ wi

If i < p (or in characteristic zero) then there exists a section to this map,

a(w1 ∧ · · · ∧ wi) = 1
i!
∑
σ∈Si

sign(i)wσ(1) ⊗ · · · ⊗ wσ(i)

Therefore we get,

(Ω1
X(p)/S)⊗i

(
(FX/S)∗ΩX/S

)⊗i

Ωi
X(p)/S (FX/S)∗Ω•X/S

ϕ⊗i
1

ϕi

Because this construction agrees with the product structure and the Cartier isomorphism is deter-
mined (using the product structure) by its values in degree 1 this means that ϕi must induce C−1

in degree i.

2.3 Construction of ϕ1

First we consider the case when FX/S admits a global lift. Given,

S S̃

Spec (Z/p) Spec (Z/p2Z)

5



and X/S is smooth and proper. We want there to be a digram,

X X̃

X(p) X̃(p)

FX/S
�FX/S

where X̃ → S̃ is smooth. We assumed the existence of the smooth lift X̃ → S̃ in the hypothesis of
the thorem but we did not assume the existence of a lift of FX/S. Because of flatness, p : OS ∼−→ pOS̃.
Remark. From the exact sequence,

0 Z/pZ Z/p2Z Z/pZ 0p

we see that Z/pZ ∼−→ pZ/p2Z meaning that this is an extension by the module Z/pZ. Then by the
flatness of S̃ → Spec (Z/p2Z) the exact sequence,

0 OS OS̃ OS 0p

so the extension is by the ideal pOS̃ which is isomorphic to OS. The exact same argument for
X ↪→ X̃ which is also a flat lift over Spec (Z/pZ)→ Spec (Z/p2Z) shows that X̃ is an extension of
X by OX ∼−→ pOX̃ . Therefore, by local freeness, we get an isomorphism,

p : Ω1
X/S

∼−→ pΩ1
X̃/S̃

Furthermore,

F̃ ∗X/S : Ω1�X(p)/S
→ (F̃X/S)∗Ω1

X̃/S̃
has image landing inside p(F̃X/S)∗Ω1

X̃/S̃

because pulling back differentials by Frobenius introduces a factor of p. Therefore, we get a diagram,

Ω1�X(p)/S
p�FX/SΩ1

X̃/S̃

Ω1
X(p)/S (FX/S)∗Ω1

X/S

F̃X/S

ϕ

p·(−)

which exists because the right upward map is an isomorphism. I claim that

imϕ1 ⊂ Z1((FX/S)∗Ω•X/S)

and ϕ1 induces C−1 in degree 1. A local section of O�X(p) ,

�FX/S(da) = pap−1da+ pdb

with some error term pdb which does in the quotient. (CHECK THIS!!)
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2.4 What about if it doesn’t lift?
From smoothness, we know that lifts exist locally. Therefore we want to compare lifts. Given some
lifts, Gi : X̃i →�X(p). One can canonically associate,

h(G1, G2) : Ω1
X(p)/S → (FX/S)∗OX

then,
ϕ1
G1 − ϕ

2
G2 = dh(G1, G2)

and,
h(G1, H2) + h(G2, G3) = h(G1, G3)

Proof. If X̃1 ∼= X̃2 (this may only be true affine locally) then,

G2 −G1 : OX̃1
→ p(�FX/S)∗OX

and is a derivation which does not depend on the choice of derivation. Locally, there is always such
an isomorphism and so because of the uniqueness of the above construction (it doesn’t depend on
the choice of isomorphism) this means that it glues to give a well-defined global map. It is easy to
check the required properties. �

2.5 Proof of the Theorem
Resolve (FX/S)∗Ω•X/S by a Cech double complex C•,•(Ui). There is a quasi-isomorphism,

(FX/S)∗Ω•X/S → Tot (C•,•(Ui))

Then

3 Passage to Characteristic Zero
Remark. Today again all schemes are noetherian.

Proposition 3.0.1 (Nullstellensatz). If K is a finite type k-algebra and K is a field then K/k is
finite.

Proof. Suppose not. Then there is an injection k[t] ↪→ K because K cannot be algebraic. Then
Spec (K)→ A1

k so by Chevalley the image is constructible. But the image the generic point which
is not constructible giving a contradiction. �

Corollary 3.0.2. Every nonempty constructible subset of a finite type k-scheme has a closed point.

Proof. Let C ⊂ X be a clocally closed and affine let C = Spec (A). Then A/m is a field finite type
over k so it is finite. Then consider {m} ⊂ X is closed. However, the generic point of {m} has
transcendence degree zero. �

Definition 3.0.3. X is Jacobson if every nonempty constructible subset has a closed (in X) point.

Remark. This is equivalent to every closed set is the closure of its closed points.

Example 3.0.4. Some (non) examples of Jacobson schemes,
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(a) finte type k-schemes are Jacobson

(b) Spec (Z) is Jacobson

(c) if R is a local ring of dimR ≥ 1 then not Jacobson

(d) X = Spec (R) \ {mR} is Jacobson.

Proposition 3.0.5. Let S be Jacobson and f : X → S is finite type.

(a) If x ∈ X is a closed point then f(x) is closed.

(b) X is Jacobson.

Proof. For (a) let x ∈ X be a closed point then Chevalley’s theorem implies that {f(x)} is con-
structible so {f(x)} is closed because S is Jacobson. For (b) let C ⊂ X be constructible. Then
Chevalley’s theorem implies that f(C) ⊂ S is constructible so there is a closed point s ∈ f(C).
Then Xs → κ(s) is finite type so Xs is Jacobson. Then Xs∩C ⊂ Xs is nonempty constructible so it
has a closed point x ∈ C ∩Xs and Xs is closed (because s ∈ S is closed) so x is a closed point. �

Corollary 3.0.6. Finite type Z-schemes are Jacobson and have finite residue fields at closed points.

Proof. The first part is immediate. Then if x ∈ X is a closed point then it lies over some p ∈ Spec (Z)
nonzero (because x is closed) so x ∈ Xp and Xp is finite type over κ(p) = Fp. Then it follows from
the Nullstellensatz. �

Proposition 3.0.7. If X → Spec (Z) is finite tpye and X is reduced then there is a dense open
such that U → Spec (Z) is smooth.

Proof. This follows from two facts:

(a) if k is a perfect field and X is a finite type reduced k-scheme then it is generically smooth.

(b) if f : X → S is finite type then the smooth locus is open.

We can assume that X is integral then K(x)/k is finitely generated. Since k is perfect there is a
separating transcendence basis t1, . . . , tn ∈ K(X) such that K(X)/k(t1, . . . , tn) is finite separable.
Then K(X) = k(t1, . . . , tn)[T ]/(G(T )) by the primitive element theorem. By localizing on X we
get an open affine U ⊂ X with U ↪→ An+1

k defined by G. Then U \ V (G) is smooth and V (G) does
not contain the generic point so this is a dense open.

To see the second part, locally embedd X ↪→ AN
S by f1, . . . , fm then smoothness is characterized by

the nonvanihsing og some minors of the jacobian of f1, . . . , fm which is a closed condition. �

Theorem 3.0.8. If π : X → S is proper, F is coherent over X then Riπ∗F is also coherent.

Proof. The proof is long but,

(a) first deal with the projective case by showing H i(PnA,O(m)) is finite over A for all i,m, n.

(b) if F is coherent on PnA then there exists a surjection O(−N)M � F then we use descending
induction to show that H i(PnA,F ) is finite for all i.

(c) X is projective then use ι : X ↪→ PnA and exactness of affine pushforward to reduce to the case
of projective space.
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(d) In general, Chow’s lemma gives f : X̃ → X over S such that X̃ is projective over S and f is
projective and surjective. Use Leray spectral sequence argument [EGA III, 3.1-2].

�

Remark. The same coherence statement also holds if F is a bounded complex of coherent sheaves.
This follows from the spectral sequence,

Ei,j
1 = Rjf∗K

i =⇒ Ri+jf∗K
•

which is just the first spectral sequence for hypercohomology.

Theorem 3.0.9 (flat base change). Consider a Cartesian diagram,

X ′ X

S ′ S

g′

f ′ f

g

where g is flat and f is finite type and separated. Let F be quasi-coherent on X then the natural
base change map,

g∗Rf∗F → Rf ′∗g
′∗F

is an isomorphism. By adjunction this is the same as a map,

Rf∗F → Rg∗Rf
′
∗g
′∗F = Rf∗Rg

′
∗g
′∗F

which we have by applying Rf∗ to F → Rg′∗g
′∗F .

Theorem 3.0.10 (Cohomology and Base Change). Let f : X → S be proper and F is coherent
on X and flat over S. Suppose that Rif∗F is finite locally free for all i. Then given any diagram,

g∗Rif∗F → Rif ′∗g
′∗F

is an isomorphism for all n for all maps g.

Remark. The same holds if F is replaced with a bounded complex of coherent sheaves with flat
cohomology sheaves over S such that Rif∗K

• is finite locally free for all n.

Theorem 3.0.11. If f : X → S is finite type, the function,

x 7→ dimxXf(x)

is upper semi-continuous. If f is closed then the function,

s 7→ dimXs

is also semi-continuous.

Proof. The second follows from the first because,

f({x ∈ X | dimxXf(x) ≥ n})

is closed. �
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3.1 Completing the Proof
Remark. Previously, we proved the following.

Theorem 3.1.1. Let k be perfect of characteristic p > 0 and X is smooth and proper over k and
dimX < p and X admits a lift to W2(k) then,

Ep,q
1 = Hq(X,Ωp

X) =⇒ Hp+q
dR (X)

degenerates at E1.

Remark. We now use this to deduce the main theorem.

Theorem 3.1.2. Let K be a field of char zero and X is smooth and proper over K. Then,

Ep,q
1 = Hq(X,Ωp

X) =⇒ Hp+q
dR (X)

degenerates at E1.

Proof. Spread out X to some smooth and proper X→ Spec (A) for A ⊂ K finite type over Z. This
is because K = lim−→A for finite type Z-subalgebras of K then we spread out to schemes over each
A and smooth and proper spreads out. Thus we get a Cartesian diagram,

X X

Spec (K) Spec (A)

Now by base change we can assume that K = K̄ and X is connected of dimension d. By upper-semi
continuity we can assume that all fibers of X → S = Spec (A) are of dimension d by shrinking A.
Furthermore, we can shirnk A such that Spec (A) → Spec (Z) is smooth. This is because AQ is
reduced and thus Spec (AQ)→ Spec (Q) is smooth on a dense open and therefore the smooth locus
of Spec (A) → Spec (Z) contains the generic point and thus is a nonempty open so we can shrink
to that open.

Now Rnf∗Ωi
X/S and Rnf∗Ω•X/S are coherent. Therefore, by shrinking S we can assume that all of

them are finite locally free (this works because there are finitely many since it vanishes when i > d
and n > d) because they are generically free. Let hi,j = dimHj(X,Ωi

X/K) and hn = dimK H
n
dR(X).

It suffices to show that,
hn =

∑
i+j=n

hi,j

Because all pushforwards in sight are finite locally free and therefore these pushforwards commute
with arbitrary base change. In particular if s ∈ S is any point then,

hi,j = dimκ(s) H
j(Xs,Ωi

Xs/κ(s)) and hn = dimκ(s) H
n
dR(Xs)

We want to find an s such that Xs → Spec (κ(s)) satisfies our previous conditions for degeneration
of Hodge-to-deRham. Thus we want,

(a) dimXs < char(κ(s))

(b) Xs lifts to W2(κ(s))
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If we can do this then,
Ei,j

1 = Hj(Xs,Ωi
Xs/κ(s)) =⇒ H i+j

dR (Xs)

degenerates at E1 and therefore,

hn = dimκ(s) H
n
dR(Xs) =

∑
i+j=n

dimκ(s) H
j(Xs,Ωi

Xs/κ(s)) =
∑
i+j=n

hi,j

which is what we wanted to show.

Set,
N =

∏
p≤d

p prime

p

Replace A by A[1/N ] so no residue field of A can have characteristic ≤ d. Then A is finite over Z
so it has a closed point s ∈ Spec (A) and thus char(κ(s)) > d and d = dimXs. Choose this point
s ∈ Spec (A).

Now, we have a diagram,

Spec (κ(s)) S

Spec (W2(κ(s))) Spec (Z)

Spec (Zp)

nilpotent thickening smooth

there exists a lift because S → Spec (Z) is smooth. Therefore, by pulling back along this lift gives
a lift of Xs,

X̃s Xs

Spec (W2(κ(s))) S

therefore Xs lifts over W2(κ(s)) so we are done. �
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