1 Connections April 13

Remark. Reference is Deligne’s book on differential equations and regular singular points.

Definition 1.0.1. Let X be a complex manifold and £ a holomorphic vector bundle on X. Infor-
mally, a connection is the data of, for each pair of "infinitessimally close” (z,y) an isomorphism
Yy o E(x) = E(y) depending holomorphically on (x,y) such that v, , = id.

Remark. How do we make this precise? We need complex analytic spaces (locally ringed space
locally isomorphic to vanishing of finitely many analytic functions on a polydisk) to use nilpotents.

Definition 1.0.2. Consider the diagonal embedding,
Ax: X =X xX

gives X = V(#"+1) where .# is the idea of definition of Ax. We say that f,g : S — X are
infinitessimally close if,

s Y9, x«x

N

x@
Remark. We can now interpret the informal definition litterally for S-points.
Definition 1.0.3. A connection is a functorial assignment,
(fr9) =y ff€—=g&
where f,g: S — X are infinitessimally close.

Proposition 1.0.4. A connection is equivalent to an isomorphism 7 : p;€ = pi€ restricting to the
identity over Ay.

Proof. By Yoneda’s lemma. 0

Proposition 1.0.5. Let J'(£) = (p1).p3E be the first jet bundle. Then the following are equivalent
data,

(a) an isomorphism « : p;€ = pi€ restricting to the identity over Ay.
(b) a section of J'(£) — & splitting JH(E) X E @ (U ® E)
(c) amap A : & — QL ® & satisfying,
V(fs)=df ® s+ fVs
Proposition 1.0.6. The following are true,
(a) d: Ox — QL is a connection
(b) more generally if A is a C-local system on X then,
d®id: Ox ®@c A = Q% ®@c A

is a connection



(c) if V and V' are two connections then V — V' € #sr0, (€, Q) @ ).

Example 1.0.7. Let X = C* then find all vector bundles with connection. First, all holomorphic
vector bundles on X are trivial so we may assume that £ = OF". We prove this as follows,

(a) all topological C-vector bundles are trivial, classified by,
S' — BGL,(C)

but
m(BGL,(C)) = m0(GL,(C)) = {*}

(b) Oka’s principle says if G is a complex Lie group, X is a Stein manifold, P — X is a principle
G-bundle with a topological section, it has a holomorphic section (special case of Gromov’s
h-principle).

(c) Apply (a) and (b) to the frame bundle which is a principle GL,,-bundle.

We have one connection on Oy so the rest are obtained by adding a global 1-form. Thus every
holomorphic connection on Oy is given by,

V(s) =ds+ fsdz
for some f € Ox(X). Suppose we write the Laurent series,

f= i anz"

n=—oo

then I claim that,
(OXv Vf) = (OXava%l)

The point is that g such that g' = f — % exists and then,
(Ox,Vy) = (Ox,Vai) via s+ se’

Furthermore,

0s a
k _a pr— — T —
erV : {8z z}

These are the local representatives of cz® locally ce?°8*. These exist locally but not globally so
ker V_a is a local system with monodromy e*™® is an arbitrary element of C*. This every 1-
dimensional local system appears as the monodromy of one of these local systems. Therefore, the
local systems are parametrized by C/Z = C*. Furthermore,

via s — zs. Then,

(kerV% Qc Ox, 1® d) l> (O)(,V%)



Definition 1.0.8. Given (&, V) define
VP B8 0E

by,
VPVw®e)=dw®e+ (—1)Pw A Ve

A calculation shows that,
VPV (w®e) =w A VIV(e)

We say that V1V is the curvature. In this case, get,

0 E—Y5 N Y PRRE— -
which is a complex called the de Rham complex (2% ® &€, V).

Example 1.0.9. (a) If X is 1-dimensional, all connections are integrable (curvature vanishes for
dimension reasons).

(b) If A is a local system then (Ox ®c A,d ® 1) is integrable.

Theorem 1.0.10 (Riemann-Hilbert). There is an equivalence of categories,

{vector bundles with flat connection (£,V)} <= {C-local systems}
(E,V) = kerV
(OX ®CA,d®1) — A

This works equally well for smooth manifolds.

Remark. If X/C is smooth and proper then we get algebraic vector bundles with connections. When
is the associated A an étale local system? In the G,, example A was only algebraic if a € Q.

Theorem 1.0.11 (Deligne). Let X be a smooth variety over C. Then there is an equivalence of
categories,

{algebraic vector bundles with regular connection (£,V)} <= {C-local systems on X (C)}

Definition 1.0.12. For curves, “regular” means simple poles on the boundary.

Remark. This theorem is amazing because it relates a purely algebraic to a purely topological

category. For an example why this is amazing, if X is a smooth proj. variety over a field K then
m(X(C)) depends on K — C.

Example 1.0.13. Due to Serre:

(a) choose a certain prime p, construct using the main theorem of complex multiplication for

k = Q(y/—p) and K the hilbert class field an an abelian variety A with CM by S = Z[(,] and
two embeddings ¢, : K — C such that

(a) m(Ay,) is a free S-module

(b) m(Ay) is a nonfree S-module.



(b) Find a smooth hypersurface Y C P" such that G = Z/pZ acts freely on Y. For large enough n
we know Y is simply connected then X = Y/G has m(X(C)) = G. Choose Z[G] — S which
gives an action G C A detecting triviality of the fundamental groups as representations.

(c) Let V = (Y x A)/G where g(y,a) = (¢~ 'y, ga). Then there is a fibration,
A, =V, = X,

which has a section X, — V,, using the identity section which is fixed under G C A. G
does not act freely on A but it does act freely on Y. Therefore by the long exact homotopy

sequence,
7T1(V4p) = 7T1(A4p) x G

because it is a split exact sequence.

(d) Therefore, it suffices to prove that,
7T1(A(p> X G 7r\é /ﬂ-l(.Arl/)) X G

Any isomorphism sends 7 (A,) to m (Ay) because each is the unique abelian index p subgroup.
Therefore, this induces an isomorphism ¢ : G — G. Thus,

Wl(Aw) = Wl(Aw)

in an o-semilinear way but one is free over S and the other is not (and hence they are different
Z|G)-modules) so there does not exist such an isomorphism.

Remark. The main theorem of CM says that if £ has CM by k then F(C) = C/A for A C k is a
rank 1 projective Ox-module and all such A appear. If o € Gal (K/Q)

1.1 The Tannakian Perspective

Theorem 1.1.1 (Tannaka). Let &k be a field. There is an anti-equivalence of categories,
{affine k-group schemes} <= {neutral rigid abelian tensor categories equipped with faithful exact fiber fi

Given by G — (Rep,(G),®, F') where F' is the forgetful category to vectorspaces. The inverse is
given by,
(C,®,w) — Aut®(w)

Remark. Neutral means there is a unit, abelian means the tensor is symmetric, rigid means there
is an internal hom.

Remark. Consider what the 2-morphisms are on the right!!

Remark. This is a generalization of Grothendieck’s Galois category formalism.

Example 1.1.2. The category of finite dimensional representations of any group satisfies the RHS

so what affine group scheme do you recover? By Deligne’s theorem we can recover the Tanakian
category alebraically so how much do we recover about the group?

(a) if m (X (C)) is finite then m (X (C))* = 7, (X (C))



(b) if m (X (C)) = Z then finite dim reps of Z correspond to matrices M so the Jordan decompo-
sition gives a commuting pair of ss and unip matrices. Then,

2% = D(C*) x G, = Spec (C[C*]) x G,

D(C*) are semisimple they correspond to C*-grading of a vectorspace correspond to semisim-
ple matrices. The commuting condition is realized in the fact that this is a direct product.

—

Remark. Given the scheme X we have access to 75'(X) = m(X(C)) and also 7, (X (C))* from the
Tanakian formalism.

Proposition 1.1.3. If G = 0 then G* = 0 so we don’t recover that much more from the Tanakian
formalism.

Proposition 1.1.4. Any f.g. matrix group is “res. fin.”
Vge G:3f:G— H st f(g) #0and H finite
Remark. Open question: does there exist a smooth variety X/C with (X (C)) # 0 but 7$*(X) = 0.
Example 1.1.5. The Higman group,
G = <a, b,c,d,a ba = b2 b b= ¢ Vde = d?, d ad = a2>

is infinite but with no nontrivial homs to any finite group.

1.2 The Relative Setting

Definition 1.2.1. Let f: X — S be a smooth morphism of analytic spaces (locally on the source
given by D" x S — 5).

Remark. If S and X are smooth this is the same as a submersion by the constant rank theoem.

Definition 1.2.2. A relative local system is a sheaf of f~!Og-modules locally isomorphic to the
pullback of a coherent sheaf on S.

Definition 1.2.3. A relative connection on £ is an f~!Og-linear map,
V:€—>Q}(/S®@X€

which satisfies,
V(se) =ds®e+sV(e)

Proposition 1.2.4. A coherent sheaf with connection on a smooth manifold is automatically a
vector bundle.

Theorem 1.2.5. There is an equivalence of categories,
{relative local systems A} <= {coherent sheaves with relative integrable connection (£, V)}

where,
A — (A ®f71(gs Ox, 1® d)

and
(E,V) = kerV

Moreover, (A ®f-104 2%/5) = (25,5 ® €, V) is a resolution of A for any relative local system.
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Remark. The previous thing works even when X is not smooth as long as X — S is smooth.
Remark. The Poincare lemma says that 2% is a resolution of C and thus A ®¢ Q2% is a resolution
of A and thus Q% ®p, £ is a resolution of ker V.

Corollary 1.2.6. If A is a local system on X then Og ®@¢ R f,A = R'f.( %/s ®c A) is a quasi-
isomorphism.

Definition 1.2.7. The Gauss-Manin connection is the connection on R'f,(Q% /s ®c A) whose flat
sections is the local system Og ®@c R f,A.

2 Connections in Local Coordinates

Locally over U C X we can trivial £|y choosing a local frame e, ..., e, defines an isomorphism

O™ = E€|y. Then we we define 1-forms w;; via,
V@j = Zwij & €;

Therefore, the connection acts on (fi,..., f,) as,

v (Xn: fjej) = i <dfj€j + i fiwij © ez') =

n
7j=1 =1 =

(df@ + zn: fjwij) X e;

[ =1

Proposition 2.0.1. Given a change of coordinate matrix g the 1-form matrix changes as,
w— g dg 4+ g twg

Corollary 2.0.2. For a line bundle £, two connection forms represent the same connection iff
w—w' = dlog(f) for some f € O%. Therefore, a line bundle defines a class,

(Uij,dlog fi;) € HQ(X> Qx)

which is zero if and only if there exist forms w; on U; such that w; — w; = dlog f;; if and only if £
admits a connection.

Proposition 2.0.3. For a line bundle with connection form w the curvature is dw. It locally admits
a smooth frame iff w is locally exact iff Fy = 0 on a neighborhood.

3 Relative Riemann-Hilbert April 20

Let f: X — S be a smooth morphism of analytic spaces.
Remark. Good reference: Coherent Sheaves (Grauert-Remmert).

Remark. Smooth means the morphism is locally on the source S x D" — S. If X, S are smooth
this is equivalent to f being a submersion. Note that D™ = (D')" is a polydisk not a coordinate
ball.

Definition 3.0.1. A relative local system is a sheaf of f~!Og-modules which locally on X is the
pullback of a coherent sheaf on S.



Definition 3.0.2. A relative connection on a coherent sheaf V on X is a f~'Og-linear map,
V:V— Q%(/S ®f7105 %
We say that V is integrable if V! o V = 0 or equivalently Vixy) = [Vx, Vyl.

Remark. 1f S = Sp(C) then we recover the notion of a vector bundle with connection (not obvious
that V is a vector bundle but it is true).

Theorem 3.0.3 (relative RH). Let f: X — S be a smooth morphism of analytic spaces,

(a) if A is a relative local system on X then,
V=0x ®10, A equipped with V = dx/g ® id
is an integrable relative connection and gives a resolution,
A= (s @105 A)

(b) The functors,
A— (OX®f—1(957dX/S (059 ld)

and,
(V,V) = kerV

define an equivalence of abelian categories between relative local systems and vector bundles
with relative integrable connections.

Proof. The first question is local (we just need to show the complex is acyclic the first two points
are clear) so assume first that S = D" and X = D" x D" for f = 7; and A = f~'Og then,

0 —— I(f'0s) —— T(Ox) —— T(Qy)5) —— -+

is acyclic. We can show this with an explicit homotopy. In general, can assume that § — D"
closed and X = D™ x S and f = m and A = f~'A, for Ay coherent on S (we can shrink untill this
is true). Further shrinking, assume L, — A is a free resolution. To get this resultion, use the
fact that Opn , is regular local (look at the completion) and thus by Serre’s theorem on projective
dimension we get a resolution over the local ring which spreads out to some open so we can assume
such a resolution exists by shrinking. Then pass from S to D" by replacing Ay by ¢.Ag. Assume
there is an exact sequence of coherent Og-modules,

0 Vy Vo Vy —— 0

call this sequence Xy. Then ¥ := f~13 is exact. Then,
%/s ®E =X Qp-104 Uy/g

Applying the snake lemma shows that proving the acyclicity for any two of the bundles proves it
for the last and thus we reduce to the free case via taking a resolution.

For the second step, we first deal with relative dimension 1. We will prove any (V, V) arises from
a relative local system.



(a)

Case 1let S = D' and X = D" x D! and f = m and V is free. In this case, let s5 : S — X be
the zero section. If v is a local section of 55V then there is a unique horizontal section @ of V
coinciding with v over so(5). In local coordinates, this amounts to solving rank V' differential
equations of the form,

such that 9|s, gy = v. Let,
V= Z S;U;

and so in the local relative coordinate z (relative dimension 1)

Vo= ds;@vi+Y_ sV, =Y ds; Qv + Y _ sidz @ vy

so we get,

> (?)SZZ dz ®@v; + ) sisipdz @ vy

i ijk

This is called the Cauchy problem. Sketch: show there exists a formal solution by induction
on the coefficients and then find bounds to ensure convergence.

Case 2, S = D" and X = D" and f = m; but V not free. Shrink to assume a presentation,

Vi 1% 1% 0

where the first two are free. By further shrinking can assume that V; and V, have integrable
connection which respect the maps. Thus by the first case Vo = Ox ® Ag and V; = Ox ® A4
and then we see that V = Ox ® coker (A; — Ap).

Case 3, f : X — S has relative dimension 1. Shrinking we can assume that S <— D" and
X =S x D and f = pr;. All objects on X, S correspond to the analogous onjects on D"*!
and D™ killed by the coherent ideal sheaf .# of S < D". Therefore, by the previous case we
conclude for these pushforward objects.

Case 4, general f : X — S. We induct on the relative dimension of f. If n = 0 this becomes
trivial. If n # 0 then shrink to assume that X = Sx D" 'x D and f = m;. Then (V, V) induces
(Vo, Vo) on Xy = S x D"! x {0} by restriction. By induction, Vy & Ox, ®r-10g A for A a
relative local system on X. Therefore, we have a projection map p : X — S x D" ! of relative
dimension 1 and V induces a relative (to p) connection on V (by quotienting pullback forms).
Then by case 3, there is a coherent sheaf Aj on Xg = Sx D" tand V= Ox®,-10 1A
compatible with connections relative to p. Thus we get an isomorphism,

Sxpn—1 p

a:V— Oy Rr-104 fﬁlA
such that,

(a) alx, respects connection relative to f

(b) « respects the connection relative to p.

We want to show that o respects the connection relative to f. It suffices to show that if v is
a local section of A then Vv = 0 because A generates both sides Ox-linearly so it suffices to
check that the connections act the same way.
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If v is such a section, (ii) shows that V, v =0if 1 <i < n then,

Ve, Vv =Va,;V, v =0

by integrability since [%, %] = 0. Therefore V,,v is a relative horizontal section for p and by (i)

it is 0 on X;. Thus by uniqueness of solutions for a Cauchy problem we have V,.v = 0 and hence
Vv = 0 so we win. 0

3.1 Gauss-Manin Connection

Proposition 3.1.1. Let f: X — S be a smooth and separated map of analytic spaces, i € Z and
A a C-local system on X. Suppose,

(a) f is a topological fiber bundle (e.g. if f is proper)
(b) dim H'(f~!(s),A) < oo for all s € S.
Then OS ®(C le*A :> le* (QB(/S ®(C A)

Remark. Consider A%\{0} — A! which is not a fiber bundle because its fibers are A! over all points
but the origin and G,, over the origin. This is why we need something like properness.

Proof. By relative Poincare,
Rf(Qxss ©c A) = Rf(Q% /s @105 (f1Os) @c N)) = Rf(fT'O0s ®¢ A)
Therefore, it remains to prove that,
Rf(f'0s@c A) = Os ®c Rf.A
This is a pure topology question. O

Definition 3.1.2. If S is moreover smooth then the Gauss-Manin connection on R’ f,(Q%/s ®@c A)
is the unique connection whose flat sections are R’ f,A.

4 Griffiths Transversality

Let f: X — S be a smooth projective (H-projective meaning embedded in P" x S) morphism of
smooth complex analytic spaces of relative dimension d.

Theorem 4.0.1 (Ehresmann). If f: M — N is a proper submersion of smooth manifolds then f
is a fiber bundle. In particular, all the fibers of f are diffeomorphic.

Definition 4.0.2. R} (f) = > R"f.Z. For any abelian sheaf .# we have,
R5(f) =7 @ By(f) = R"f.(f*F)

Then there is,
n € H°(S, R3(f))

which is a relative Lefschetz class. We have, sublocal systems,
Py (f) € Ry(f)
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where,

Pg(f) =ker (""" A= Ry(f) — Rg "))
and,
Pz (f) = Pg(f) N Ry(f)
Then we define a form,
U(w,y) = / AT Ay
Xs
which is a bilinear form,

b Ry (f) ® Ry (f) = Z

4.1 de Rham complex
Proposition 4.1.1 (Relative Poincare). 2% ¢ is a resolution of f*Og.

Proposition 4.1.2. There is a spectral sequence,
Pt = RIL. s — BRI s = RPIL(FOs)
Taking fibers over s € S we obtain the usual Hodge-to-de Rham spectral sequence,
EY = HY(X,, Q%) = Hig'(X,) = H""(Xs,C)
By usual Hodge theory this spectral sequence degenerates.

Furthermore, by Ehresmann’s theorem all the fibers are diffeomorphic and therefore all H?™%(Xg, C)
have the same dimension. By degeneration,

> RI(X,, Q%)) = dim H"(X,, C)

ptg=n

And by semi-continuity we see that the Hodge numbers can only jump up and therefore by this
equality they are constant. Since S is smooth we can apply Grauert’s theorem to conclude that,

(a) RIf.Q% /g are vector bundles
(b) the relative Hodge-de Rham spectral sequence degenerates.

Corollary 4.1.3. There is a “relative Hodge filtration” F'* on R™ f,(Q% /S) which restricts on fibers
to the Hodge filtration.

4.2 The Gauss-Manin Connection

Definition 4.2.1. Observe that R{(f) is a sublocal system of R, (f). Then Gauss-Manin con-
nection is a connection,

Vi R (f) = Q5 @ Ro ()
Whose flat sections are the local system Rg(f).
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Remark. Question: does the Gauss-Manin connection preserve the Hodge filtration? Equivalently,
can we make a global Hodge filtration on R{(f) that tensors with Og to give the relative Hodge
filtration on Ry (f) = Hir(X/S).

Remark. The answer is no but the next best thing is true.

Theorem 4.2.2 (Griffiths Transversality). VFP(Rg_(f)) C Qg ® FP~H (R, (f)).

Proof. This is local on S so we may assume that S is Stein. It is enough to show that for all vector
fields v we have,

V. (F?) C FP!
Now we do some Cech calculations to verify. Let {U;} be a Stein open cover of X. Consider the
double complex,

LUQ = @ Lo, V)
|Ql=q+1
The pushforward f : Uy — S is acyclic on coherent sheaves because it is a map of Stein manifolds.
Therefore, this is an acyclic Cartan-Eilenberg resolution so we can use it to compute hypercoho-
mology. Setting,
ERY = £.(U, Q% 5)"
and then the Ei-page is,
EP1 = qu*Qgc/s
But F? arises from the p filtration on E7*°.

Recall that the Gauss-Manin connection is the edge map (ASK ABOUT HTHIS)!.
Let v be a holomorphic bector field on S. For all i let v; be a lifting to ;. Let,

O(vi) « E§* = fu(U. Qss) = fulUq, y5) & D fulUpinyuq Uys) € B @ B

io<in
The components of this map are, (DEFINE!!!) Therefore it suffices to prove the following,. O
Lemma 4.2.3. The map 6(v;) induces V,, on hypercohomology.
Proof. Consider the smooth analogues. Choose v, smooth lifting of v. Then,
O(v)) — 0(v!) = dH = Hd
for H = (v; — v!)L at the level of hypercohomology meaning the choice of lift does not matter.

When working in the C* contex we can take U = {X} because all smooth sheaves are acyclic.
Then,

f*(Q7 Q*CW,X/S) = f*( .COO,X/S)

Then 0(v;) is “visibly” V,,.. O
Definition 4.2.4. A wvariation of real Hodge structures of weight n consists of

(a) a local system Hpg of real vector spaces on S

(b) a finite downward holomorphic filtration by locally free analytic sheaves of Hp, = Hg ®r Og

(where the inclusions are strongly of constant rank)

such that for the canonical connection on Hpg (corresponding to Hg by Riemann-Hilbert)

(a) VFP(Ho,) C Qs ® FP~'(Hoy)

(b) on each fiber the filtration forms a Hodge structure.

A wariation of Hodge structures of weight n consists of a local system of free Z-modules Hz such
that Hz ®z R is a variation of real Hodge structures.
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5 May 11 Hodge Loci

Definition 5.0.1. A Z-variation of hodge structures on a complex analytic space B is the data of,

(a) a local system H of finite free Z-modules

(b) a decreasing filtration F'* by subbundles on H = H ®z Op (note H is a vector bundle with
the obvious connection.

Such that,
(a) Griffoths transversality: VEP(H) C QL @ Fr-1#

(b) each fiber H, equipped with the filtration on H, is a Z-Hodge structure.

5.1 Noether-Lefschetz Loci

We conisder surfaces S, C P3. Note: any curve C C S, is a mutiple of the hyperplane class H
ifft C = S, N H is a complete intersection where H is a hypersurface. We will study the classical
question of asking if all curves are of this form.

Let B C PH°(P?,Ops(d)) be the locus of smooth hypersurfaces in the moduli space of smooth
hypersurfaces. Consider the universal hypersurface ¢ : Sp — B.

Definition 5.1.1. The Noether-Lefschetz Locus is,
NL(B) :={u € B | Pic (]P3) — Pic(S,) not surjective}

Theorem 5.1.2 (Noether-Lefschetz). If d > 4 the components of NL(B) C B are proper algebraic
subsets so every “very general” smooth S C P3 of degree d > 4 has every C C S of the form
C=SNH.

Remark. Consider,
Cr={(Z H)|Z=SygNY for Y a hypersurface of degree k}

Then thre is a map,

Jcy — B
k

5.2 Hodge Loci
Given a Z-VHS (H, F*,V) on B consider A € I'(B, H).
Definition 5.2.1. Given p, A the Hodge locus,

U ={ueU| A\ €F'H,}
is the set of points where \ lies in the p'" filtered part.

Remark. In the case k = 2p then U} is the locus where X is a “Hodge class” because,
H?*(X,7Z)N HPH?*(X,C) = HP?

because H?(X,7Z) is conjugation invariant so any H?¢ part must be paired with a H%? part not
allowed in the filtration.
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Remark. The class k = 2 and p = 1 then the Lefschetz (1, 1)-theorem says that,
¢y : Pic(X) — H"Y(X)N H*(X,Z)
is surjective. Suppose that the Z-VHS arises from a smooth proper family f : X — S then,
U ={ueU]|\ =c(L) for some L € Pic(X,)}

Claim: for well-chosen A,

(WHAT)

More generally, 7 : 25 — B is the universal hypersurface of degree d. Let U C B be an open
set and,
A e T(U, R ' 7,Upiim)

Theorem 5.2.2. If d,n, p are chosen with,
dn—p+1)—(n—1)<(d—2)(n+1)

then U} are proper analytic subsets of U all nonzero \.

5.3 Generalities on Hodge Loci

Lemma 5.3.1. UP C U is a complex analytic subspace.
Proof. Since the bundles FPH are holomorphic then,
UY:={ueU]|\, =0 inside H/FPH}

and H /FPH is a vector bundle so the vanishing of its sections are closed in the analytic topology. [
Proposition 5.3.2. U} can be defined locally by h?~! := rank FP~'H /FPH equations.
Proof. For u € UY, in a neighborhood, choose a decomposition,

H/FPH = PP Y FPH S .F
and we write \ = Xp,l + 5\3;. Then we have,

UcVP={ueclU]|\_=0}

and we want to show this is an equality. First, pass to U = V meaning A = 0 globally. We work
formally,

U, = Spec (C’)U,u/mﬁ“)

It suffices to show that Uy NU, = U,. We prove this by induction on ¢. The base case it clear.
Assume true for . Let A € H is in FP"'H mod m{,. Then,

)\:M—ZOZZ'O_Z'
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for o; € mf; and o; € char a local basis of flat sections with u € FPH. Then Xp_l = 0 implies that
A — p € myTIH projects to 0 in, m&TL /mEF2 P JFPH.

However, recall that A € H and therefore is a flat section which implies that,
VA—p) =-Vu=> da®o—iceHaQ
and by transversality,

VOA—p) € FF' 1 eQ

Proposition 5.3.3. Consider the following induced maps,

Friigk YV prH @ Op
Fril —Y— Fripk @ Qp

HPra — Y rlatl @ Qg

0 0
and V is Op-linear. This is called an infinitesimal variation of Hodge structures.

Remark. This is called the infinitesimal variation of Hodge structures becuase it is the differential

of the period map. Indeed,
P,: B — Gr(F?, H*(X,C))

then the differential is,
dP, : Ty, — Hom (F*H*, H* | F? H¥)

but this factors by transversality as,

Thn Hom (FPH*, H*/FPH")

\ -

Hom (FPH*, Fr~tH"/FP ")

T

Hom (FPH*/ PP+ ", Fr=tHE [ FPH")

Lemma 5.3.4. -
Tyr » = ker V() C Ty

)\7
where,

V() € FP7Y/F? @ Qp = Hom Ty, F*~'H,/FPH, )
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6 Last Week

Let X be a smooth proper variety and Y C X be a normal crossings divisor let U = X \ Y and
Y ®) be the normlaization of the k-fold intersections of the components.

This gives the logarithmic forms Q% (logY’) and the Hodge filtration F?H"(U, C) and weight filtra-
tion W,H™(X,C). Then there are spectral sequences,

FEP = HY(X, B (logY)) = H"'(U,C)
wEP? = {2ty (P) C) = HP(U,C)
These satisty,
(a)
(b)

W (log V) — W,Q% (logY)

Then we see that,

P,q
rEY

= FMP WY (), C) ——> FFHP(U,C)

P,q
w B

7 The Noether-Lefschetz theorem

7.1 The Case of a Smooth Hypersurface
As before, X is projective and smooth and Y C X is a smooth divisor. Then consider,
wEY = HY(X,C) wE; " =H"*Y,C)

and the other columns are zero. Therefore we get a long exact sequence,

H*(X,C) —L— H*U,C) —— H*(Y,C) —=— H*1(X,C) ——

where j: U — X and i : Y < X are the natural embeddings. This map i, is called the Gysin map
in topology.

Proposition 7.1.1. The Gysin map satisfies,
(a) the Poincare dual is,
H2n k— I(Y (C) H2n k— l(X C)
(b) The map,
H*(X,C) 5 H*(Y,C) & H"?(X,C)
is cup product with [Y] € H?(X,C). Likewise, the map,
H*(Y,C) & H"?*(X,C) 5 HM?(Y,C)
is the cup product of [Y] =i*[Y] € H*(Y,C).
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From the weight spectral sequence we get,

0 —— cokeri, —— H*(U,C) —— keri, —— 0

| |

Wy Wi
Now we assume that [Y] is ample which implies that it represents a Kahler class.

Theorem 7.1.2 (Lescheftz hyperplane and Hard Lescheftz). (a) i* : H*(X,C) — H*(Y,C) is
an isomorphism for £ < n — 1 and injective for k =n — 1

(b) 4. : H*(Y,C) — H*"2(X,C) is an isomorphism for k > n — 1 and surjective for k =n — 1
(c) the map — — [Y]*: H"*(X,C) — H""*(X,C) is an isomorphism.
Definition 7.1.3.

H" (X, C)prim = ker (— — [Y]**)
H*(X,C)yan = ker (i, : H*(Y,C) — H*?(X,C))

So there is an exact sequence,
0 —— H(X,C)prim —— H(U,C) —— H" 1(Y,C)yan —— 0
Definition 7.1.4. Y is super ample if H'(X, Y (kY)) =0 for all i > 0 and j > 0 and k > 0.

Example 7.1.5. Every smooth hypersurface of P" is superample.

7.2 The Noether-Lefschetz theorem
Consider the map,
0, H' (X, Kx(pY)) = H"(U,C) aw [aly] € Hix(U)

Theorem 7.2.1 (Griffiths, 1969). If YV is super ample then for 1 < p < n we have im¢p, =
Fr=rtLn(U, C).

Proof. Consider the sheaf Q5%¢(¢Y) = ker (d : Q% (0Y) — Q% ((¢ +1)Y)). Then we need the fol-
lowing lemma. U

Lemma 7.2.2. The sequence,
0 —— Qbe(y) —— Qb (1Y) —4= Q5 ((1+1)Y) —— 0

is exact. In particular, this is saying that closed forms with at worst order (¢ + 1)-poles is locally d
of a form with at worst order ¢-poles.

Now assuming the lemma,
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0 —— Q" ((p—1)Y) —— Q¥ ((p+1)Y) —L— Kx(pV) ———— 0

0 —— QY ((p - 1Y) —— QT 2((p+1)Y) —— Q¢ “((p—1)Y) —— 0

0 —— Q}_pﬂ’c((p— 1)Y) —— Q}_pﬂ((p—i— 1)Y) —t Q}_p“’c(QY) — 0

By the super ample condition these the middle column has vanishing higher cohomology. Therefore
we get isomorphisms,

H(Ex(pY)) —— H'(Q% “((p— 1)Y))

HY Q% ((p = DY) —— HQx (0~ 2)Y))

HP (@ 72421 ) —= s B Y@ PH(Y)) —— HP Q7 (log V)
Therefore Q% (logY) = j. Ay is a quasi-isomorphism and RHS is exact in degrees > 2. Therefore,
0 —— Q¥ " (logY) —— Q¥ P (logy) —— ---
is quasi-isomorphic to Q% ?**(logY"). Therefore,
AP Q" P (logY)) = F P H™(U, C)
7.3 The Case of a Smooth Hypersurface in P"
Let Y € X =P" be of degree d and write Y = V(f). We have a map,
HYX,0(pd — n — 1)) — F"PFLH(U,C) — H"PH=L([,C) = Frr+l /pr—r+?
Because H"(X,C)prim = 0 we have H"(U,C) = H" (Y, C)yan. Then there is an isomorpism,
Freignu,C) =2 FNPH 1Y, C)yan
Therefore,

HY(X,0(pd — n— 1)) — F*" P HNU,C) = F* P HY(U, C)an — B 7~ (¥, C)ua
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Theorem 7.3.1 (Griffiths). The kernel is de_"_l where,
P Jf c P H (X, 0x(a))

is the ideal generated by %. This ideal cuts out an artinian subscheme supported at the origin of

A" since f is homogeneous and Y is smooth so this ideal contains f and can only be supported
at the origin by smoothness.

Proof. Consider,
HY(X,0(pd —n—1)) «— H*(X,0((p—1)d —n —1))

& L&

Fr P H' (Y, C)yan 5 FNPHH™L(Y,C)
O

Let m : F" PH" 1 (Y,C)yan — H" PP (U,C)yan be the cokernel map. Then p € kerw o &, iff
da: €y(p) = Epi(a) = E(fa) iff Ja:p— fa € kerE,

Corollary 7.3.2. Consider H" PP~1(U,C)yan = H*(X, O(dg —n — 1))/ J3" "1 = RET"1
Remark. The graded ring,

Rr =& R}
is Artinian and a complete intersection. We proved Artinian and that the ideal is cut out of A™*!

by n + 1 equations.

7.4 Noether-Lefschetz

Theorem 7.4.1 (Carlson et al., 1983). Let 7 : Y — B be a universal family of degree d smooth
hypersurfaces in P and let A be a nonzero local section of (R" '7,C)yan. If din —p+1)—n—1<

(d—2)(n+ 1) then,
Uy ={reB|\ € FFH"(Y,,C)}

is a proper analytic subset.

Theorem 7.4.2. Idea: study the infinitesmial variations of Hdoge structure. Do we even know
that FPH" 1 % H"! its not so clear! But we use the corollary and the following fact.

Theorem 7.4.3. (a) Complete intersection implies Gorenstein

(b) Gorenstein and Artinian and graded implies that there exists N > 0 such that dim R}V =1
and dim R?N =0and R} X R} — R;V is a perfect pairing.

(¢) We have explicitly, N = (d — 2)(n + 1)

18



7.5 Infinitesimal Variation

Theorem 7.5.1. Up to a nonzero constant, the following diagram commutes,

H°(X,Kx(pY)) —— Hom (H°(X,0(()), H*(X, Kx(({ + 1)Y)))

B o

Hn—p,p—l(y’, (C)van L Hom (TB,f7 Hn—p-i—l(U’ (C)van)

where b € B corresponds to Y = V(f). We can reduce to B is the open subset of H(X, O(d))
which gives Tp ; = H*(X, O(d)).

Lemma 7.5.2. If B is connected and 3z € B : V, : FPH,/FP™'H, — Hom (T, FP"'H,/FPHx)
is injective, then U? = B implies that UY™ = B.

Proof. The locus of such z is open, and this implies A\, € FPHH,. If UY = B for H" (Y, C)yan then
Vv R;"_p)d_”_l — Hom (HO(X,(’)(d)), R}"_pﬂ)d_n_l) we ant to show this is injective. However,
HO(X,0(d) — R? 0
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