
1 Connections April 13
Remark. Reference is Deligne’s book on differential equations and regular singular points.

Definition 1.0.1. Let X be a complex manifold and E a holomorphic vector bundle on X. Infor-
mally, a connection is the data of, for each pair of ”infinitessimally close” (x, y) an isomorphism
γy,x : E(x) ∼−→ E(y) depending holomorphically on (x, y) such that γx,x = id.

Remark. How do we make this precise? We need complex analytic spaces (locally ringed space
locally isomorphic to vanishing of finitely many analytic functions on a polydisk) to use nilpotents.

Definition 1.0.2. Consider the diagonal embedding,

∆X : X ↪→ X ×X

gives X(n) = V (I n+1) where I is the idea of definition of ∆X . We say that f, g : S → X are
infinitessimally close if,

S X ×X

X(1)

(f g)

Remark. We can now interpret the informal definition litterally for S-points.

Definition 1.0.3. A connection is a functorial assignment,

(f, g) 7→ γ : f ∗E → g∗E

where f, g : S → X are infinitessimally close.

Proposition 1.0.4. A connection is equivalent to an isomorphism γ : p∗
1E

∼−→ p∗
2E restricting to the

identity over ∆X .

Proof. By Yoneda’s lemma. □

Proposition 1.0.5. Let J1(E) = (p1)∗p
∗
2E be the first jet bundle. Then the following are equivalent

data,

(a) an isomorphism γ : p∗
1E

∼−→ p∗
2E restricting to the identity over ∆X .

(b) a section of J1(E)→ E splitting J1(E) ∼= E ⊕ (Ω1
X ⊗ E)

(c) a map ∆ : E → Ω1
X ⊗ E satisfying,

∇(fs) = df ⊗ s+ f∇s

Proposition 1.0.6. The following are true,

(a) d : OX → Ω1
X is a connection

(b) more generally if Λ is a C-local system on X then,

d⊗ id : OX ⊗C Λ→ Ω1
X ⊗C Λ

is a connection
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(c) if ∇ and ∇′ are two connections then ∇−∇′ ∈HomOX
(E ,Ω1

X ⊗ E).

Example 1.0.7. Let X = C× then find all vector bundles with connection. First, all holomorphic
vector bundles on X are trivial so we may assume that E ∼= O⊕n

X . We prove this as follows,

(a) all topological C-vector bundles are trivial, classified by,

S1 → BGLn(C)

but
π1(BGLn(C)) = π0(GLn(C)) = {∗}

(b) Oka’s principle says if G is a complex Lie group, X is a Stein manifold, P → X is a principle
G-bundle with a topological section, it has a holomorphic section (special case of Gromov’s
h-principle).

(c) Apply (a) and (b) to the frame bundle which is a principle GLn-bundle.

We have one connection on OX so the rest are obtained by adding a global 1-form. Thus every
holomorphic connection on OX is given by,

∇(s) = ds+ fsdz

for some f ∈ OX(X). Suppose we write the Laurent series,

f =
∞∑

n=−∞
anz

n

then I claim that,
(OX ,∇f ) ∼= (OX ,∇a−1

z
)

The point is that g such that g′ = f − a−1
z

exists and then,

(OX ,∇f )→ (OX ,∇a−1
z

) via s 7→ seg

Furthermore,
(OX ,∇a

z
) ∼= (OX ,∇a+1

z
)

via s 7→ zs. Then,

ker∇− a
z

=
{
∂s

∂z
= a

z

}

These are the local representatives of cza locally cea log z. These exist locally but not globally so
ker∇− a

z
is a local system with monodromy e2πia is an arbitrary element of C×. This every 1-

dimensional local system appears as the monodromy of one of these local systems. Therefore, the
local systems are parametrized by C/Z ∼= C×. Furthermore,

(ker∇a
z
⊗C OX , 1⊗ d) ∼−→ (OX ,∇a

z
)

2



Definition 1.0.8. Given (E ,∇) define

∇p : Ωp
X ⊗ E → Ωp+1

X ⊗ E

by,
∇p(ω ⊗ e) = dω ⊗ e+ (−1)pω ∧∇e

A calculation shows that,
∇p+1∇p(ω ⊗ e) = ω ∧∇1∇(e)

We say that ∇1∇ is the curvature. In this case, get,

0 E Ω1
X ⊗ E Ω2

X ⊗ E · · ·∇ ∇

which is a complex called the de Rham complex (Ω•
X ⊗ E ,∇).

Example 1.0.9. (a) If X is 1-dimensional, all connections are integrable (curvature vanishes for
dimension reasons).

(b) If Λ is a local system then (OX ⊗C Λ, d⊗ 1) is integrable.

Theorem 1.0.10 (Riemann-Hilbert). There is an equivalence of categories,

{vector bundles with flat connection (E ,∇)} ⇐⇒ {C-local systems}
(E ,∇) 7→ ker∇

(OX ⊗C Λ, d⊗ 1)←[ Λ

This works equally well for smooth manifolds.

Remark. If X/C is smooth and proper then we get algebraic vector bundles with connections. When
is the associated Λ an étale local system? In the Gm example Λ was only algebraic if a ∈ Q.

Theorem 1.0.11 (Deligne). Let X be a smooth variety over C. Then there is an equivalence of
categories,

{algebraic vector bundles with regular connection (E ,∇)} ⇐⇒ {C-local systems on X(C)}

Definition 1.0.12. For curves, “regular” means simple poles on the boundary.

Remark. This theorem is amazing because it relates a purely algebraic to a purely topological
category. For an example why this is amazing, if X is a smooth proj. variety over a field K then
π1(X(C)) depends on K ↪→ C.

Example 1.0.13. Due to Serre:

(a) choose a certain prime p, construct using the main theorem of complex multiplication for
k = Q(√−p) and K the hilbert class field an an abelian variety A with CM by S = Z[ζp] and
two embeddings φ, ψ : K → C such that

(a) π1(Aφ) is a free S-module
(b) π1(Aψ) is a nonfree S-module.
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(b) Find a smooth hypersurface Y ⊂ Pn such that G = Z/pZ acts freely on Y . For large enough n
we know Y is simply connected then X = Y/G has π1(X(C)) = G. Choose Z[G] ↠ S which
gives an action G

⟳

A detecting triviality of the fundamental groups as representations.

(c) Let V = (Y × A)/G where g(y, a) = (g−1y, ga). Then there is a fibration,

Aφ → Vφ → Xφ

which has a section Xφ → Vφ using the identity section which is fixed under G ⟳

A. G
does not act freely on A but it does act freely on Y . Therefore by the long exact homotopy
sequence,

π1(Vφ) ∼= π1(Aφ) ⋊G

because it is a split exact sequence.

(d) Therefore, it suffices to prove that,

π1(Aφ) ⋊G ̸∼= π1(Aψ) ⋊G

Any isomorphism sends π1(Aφ) to π1(Aψ) because each is the unique abelian index p subgroup.
Therefore, this induces an isomorphism σ : G→ G. Thus,

π1(Aφ) ∼−→ π1(Aψ)

in an σ-semilinear way but one is free over S and the other is not (and hence they are different
Z[G]-modules) so there does not exist such an isomorphism.

Remark. The main theorem of CM says that if E has CM by k then E(C) ∼= C/Λ for Λ ⊂ k is a
rank 1 projective Ok-module and all such Λ appear. If σ ∈ Gal (K/Q)

1.1 The Tannakian Perspective
Theorem 1.1.1 (Tannaka). Let k be a field. There is an anti-equivalence of categories,

{affine k-group schemes} ⇐⇒ {neutral rigid abelian tensor categories equipped with faithful exact fiber functor}

Given by G 7→ (Repk(G),⊗, F ) where F is the forgetful category to vectorspaces. The inverse is
given by,

(C,⊗, ω) 7→ Aut⊗(ω)

Remark. Neutral means there is a unit, abelian means the tensor is symmetric, rigid means there
is an internal hom.
Remark. Consider what the 2-morphisms are on the right!!
Remark. This is a generalization of Grothendieck’s Galois category formalism.

Example 1.1.2. The category of finite dimensional representations of any group satisfies the RHS
so what affine group scheme do you recover? By Deligne’s theorem we can recover the Tanakian
category alebraically so how much do we recover about the group?

(a) if π1(X(C)) is finite then π1(X(C))aff = π1(X(C))
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(b) if π1(X(C)) ∼= Z then finite dim reps of Z correspond to matrices M so the Jordan decompo-
sition gives a commuting pair of ss and unip matrices. Then,

Zaff = D(C×)×Ga = Spec
(
C[C×]

)
×Ga

D(C×) are semisimple they correspond to C×-grading of a vectorspace correspond to semisim-
ple matrices. The commuting condition is realized in the fact that this is a direct product.

Remark. Given the scheme X we have access to πét
1 (X) = ̂π1(X(C)) and also π1(X(C))aff from the

Tanakian formalism.

Proposition 1.1.3. If Ĝ = 0 then Gaff = 0 so we don’t recover that much more from the Tanakian
formalism.

Proposition 1.1.4. Any f.g. matrix group is “res. fin.”

∀g ∈ G : ∃f : G→ H s.t f(g) ̸= 0 and H finite

Remark. Open question: does there exist a smooth variety X/C with π1(X(C)) ̸= 0 but πét
1 (X) = 0.

Example 1.1.5. The Higman group,

G =
〈
a, b, c, d, a−1ba = b2, b−1cb = c2, c−1dc = d2, d−1ad = a2

〉
is infinite but with no nontrivial homs to any finite group.

1.2 The Relative Setting
Definition 1.2.1. Let f : X → S be a smooth morphism of analytic spaces (locally on the source
given by Dn × S → S).

Remark. If S and X are smooth this is the same as a submersion by the constant rank theoem.

Definition 1.2.2. A relative local system is a sheaf of f−1OS-modules locally isomorphic to the
pullback of a coherent sheaf on S.

Definition 1.2.3. A relative connection on E is an f−1OS-linear map,

∇ : E → Ω1
X/S ⊗OX

E

which satisfies,
∇(se) = ds⊗ e+ s∇(e)

Proposition 1.2.4. A coherent sheaf with connection on a smooth manifold is automatically a
vector bundle.

Theorem 1.2.5. There is an equivalence of categories,

{relative local systems Λ} ⇐⇒ {coherent sheaves with relative integrable connection (E ,∇)}

where,
Λ 7→ (Λ⊗f−1OS

OX , 1⊗ d)
and

(E ,∇) 7→ ker∇
Moreover, (Λ⊗f−1OS

Ω•
X/S) = (Ω•

X/S ⊗ E ,∇) is a resolution of Λ for any relative local system.
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Remark. The previous thing works even when X is not smooth as long as X → S is smooth.
Remark. The Poincare lemma says that Ω•

X is a resolution of C and thus Λ ⊗C Ω•
X is a resolution

of Λ and thus Ω•
X ⊗OX

E is a resolution of ker∇.

Corollary 1.2.6. If Λ is a local system on X then OS ⊗C R
if∗Λ ∼−→ Rif∗(Ω•

X/S ⊗C Λ) is a quasi-
isomorphism.

Definition 1.2.7. The Gauss-Manin connection is the connection on Rif∗(Ω•
X/S ⊗C Λ) whose flat

sections is the local system OS ⊗C R
if∗Λ.

2 Connections in Local Coordinates
Locally over U ⊂ X we can trivial E|U choosing a local frame e1, . . . , en defines an isomorphism
O⊕n
U

∼−→ E|U . Then we we define 1-forms ωij via,

∇ej =
∑

ωij ⊗ ei

Therefore, the connection acts on (f1, . . . , fn) as,

∇

 n∑
j=1

fjej

 =
n∑
j=1

(
dfjej +

n∑
i=1

fjωij ⊗ ei
)

=
n∑
i=1

dfi +
n∑
j=1

fjωij

⊗ ei
Proposition 2.0.1. Given a change of coordinate matrix g the 1-form matrix changes as,

ω 7→ g−1dg + g−1ωg

Corollary 2.0.2. For a line bundle L, two connection forms represent the same connection iff
ω − ω′ = dlog(f) for some f ∈ O×

X . Therefore, a line bundle defines a class,

(Uij, dlog fij) ∈ H2(X,ΩX)

which is zero if and only if there exist forms ωi on Ui such that ωi − ωj = dlog fij if and only if L
admits a connection.

Proposition 2.0.3. For a line bundle with connection form ω the curvature is dω. It locally admits
a smooth frame iff ω is locally exact iff F∇ = 0 on a neighborhood.

3 Relative Riemann-Hilbert April 20
Let f : X → S be a smooth morphism of analytic spaces.
Remark. Good reference: Coherent Sheaves (Grauert-Remmert).
Remark. Smooth means the morphism is locally on the source S × Dn → S. If X,S are smooth
this is equivalent to f being a submersion. Note that Dn = (D1)n is a polydisk not a coordinate
ball.

Definition 3.0.1. A relative local system is a sheaf of f−1OS-modules which locally on X is the
pullback of a coherent sheaf on S.
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Definition 3.0.2. A relative connection on a coherent sheaf V on X is a f−1OS-linear map,

∇ : V → Ω1
X/S ⊗f−1OS

V

We say that ∇ is integrable if ∇1 ◦ ∇ = 0 or equivalently ∇[X,Y ] = [∇X ,∇Y ].

Remark. If S = Sp(C) then we recover the notion of a vector bundle with connection (not obvious
that V is a vector bundle but it is true).

Theorem 3.0.3 (relative RH). Let f : X → S be a smooth morphism of analytic spaces,

(a) if Λ is a relative local system on X then,

V = OX ⊗f−1OS
Λ equipped with ∇ = dX/S ⊗ id

is an integrable relative connection and gives a resolution,

Λ→ (Ω•
X/S ⊗f−1OS

Λ)

(b) The functors,
Λ 7→ (OX⊗f−1OS

, dX/S ⊗ id)

and,
(V ,∇) 7→ ker∇

define an equivalence of abelian categories between relative local systems and vector bundles
with relative integrable connections.

Proof. The first question is local (we just need to show the complex is acyclic the first two points
are clear) so assume first that S = Dn and X = Dn ×Dn for f = π1 and Λ = f−1OS then,

0 Γ(f−1OS) Γ(OX) Γ(Ω1
X/S) · · ·

is acyclic. We can show this with an explicit homotopy. In general, can assume that S ↪→ Dn

closed and X = Dm×S and f = π2 and Λ = f−1Λ0 for Λ0 coherent on S (we can shrink untill this
is true). Further shrinking, assume L• → ι∗Λ0 is a free resolution. To get this resultion, use the
fact that ODn,x is regular local (look at the completion) and thus by Serre’s theorem on projective
dimension we get a resolution over the local ring which spreads out to some open so we can assume
such a resolution exists by shrinking. Then pass from S to Dn by replacing Λ0 by ι∗Λ0. Assume
there is an exact sequence of coherent OS-modules,

0 V ′
0 V0 V ′′

0 0

call this sequence Σ0. Then Σ := f−1Σ0 is exact. Then,

Ω•
X/S ⊗ Σ = Σ⊗f−1OS

Ω•
X/S

Applying the snake lemma shows that proving the acyclicity for any two of the bundles proves it
for the last and thus we reduce to the free case via taking a resolution.

For the second step, we first deal with relative dimension 1. We will prove any (V ,∇) arises from
a relative local system.
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(a) Case 1 let S = D1 and X = Dn×D1 and f = π2 and V is free. In this case, let s0 : S → X be
the zero section. If v is a local section of s−1

0 V then there is a unique horizontal section ṽ of V
coinciding with v over s0(S). In local coordinates, this amounts to solving rankV differential
equations of the form,

∂iṽ = Ai(z, ṽ)
such that ṽ|s0(S) = v. Let,

ṽ =
∑

sivi

and so in the local relative coordinate z (relative dimension 1)

∇ṽ =
∑
i

dsi ⊗ vi +
∑

si∇vi =
∑
i

dsi ⊗ vi +
∑

sikdz ⊗ vk

so we get, ∑
i

∂si
∂z

dz ⊗ vi +
∑
ijk

sisikdz ⊗ vk

This is called the Cauchy problem. Sketch: show there exists a formal solution by induction
on the coefficients and then find bounds to ensure convergence.

(b) Case 2, S = Dn and X = Dn+1 and f = π1 but V not free. Shrink to assume a presentation,

V1 V V 0

where the first two are free. By further shrinking can assume that V1 and V0 have integrable
connection which respect the maps. Thus by the first case V0 = OX ⊗ Λ0 and V1 = OX ⊗ Λ1
and then we see that V = OX ⊗ coker (Λ1 → Λ0).

(c) Case 3, f : X → S has relative dimension 1. Shrinking we can assume that S ↪→ Dn and
X = S × D and f = pr1. All objects on X,S correspond to the analogous onjects on Dn+1

and Dn killed by the coherent ideal sheaf I of S ↪→ Dn. Therefore, by the previous case we
conclude for these pushforward objects.

(d) Case 4, general f : X → S. We induct on the relative dimension of f . If n = 0 this becomes
trivial. If n ̸= 0 then shrink to assume thatX = S×Dn−1×D and f = π1. Then (V ,∇) induces
(V0,∇0) on X0 = S ×Dn−1 × {0} by restriction. By induction, V0 ∼= OX0 ⊗π−1

1 OS
Λ for Λ a

relative local system on X0. Therefore, we have a projection map p : X → S×Dn−1 of relative
dimension 1 and ∇ induces a relative (to p) connection on V (by quotienting pullback forms).
Then by case 3, there is a coherent sheaf Λ1 on X0 = S×Dn−1 and V ∼= OX⊗p−1OS×Dn−1 p

−1Λ1
compatible with connections relative to p. Thus we get an isomorphism,

α : V → OX ⊗f−1OS
f−1Λ

such that,

(a) α|X0 respects connection relative to f
(b) α respects the connection relative to p.

We want to show that α respects the connection relative to f . It suffices to show that if v is
a local section of Λ then ∇v = 0 because Λ generates both sides OX-linearly so it suffices to
check that the connections act the same way.
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If v is such a section, (ii) shows that ∇xnv = 0 if 1 ≤ i < n then,

∇xn∇xi
v = ∇xi∇xnv = 0

by integrability since [ ∂
∂xn

, ∂
∂x1

] = 0. Therefore ∇xi
v is a relative horizontal section for p and by (i)

it is 0 on X0. Thus by uniqueness of solutions for a Cauchy problem we have ∇xi
v = 0 and hence

∇v = 0 so we win. □

3.1 Gauss-Manin Connection
Proposition 3.1.1. Let f : X → S be a smooth and separated map of analytic spaces, i ∈ Z and
Λ a C-local system on X. Suppose,

(a) f is a topological fiber bundle (e.g. if f is proper)

(b) dimH i(f−1(s),Λ) <∞ for all s ∈ S.

Then OS ⊗C R
if∗Λ ∼−→ Rif∗(Ω•

X/S ⊗C Λ).

Remark. Consider A2\{0} → A1 which is not a fiber bundle because its fibers are A1 over all points
but the origin and Gm over the origin. This is why we need something like properness.

Proof. By relative Poincare,

Rf∗(ΩX/S ⊗C Λ) = Rf∗(Ω•
X/S ⊗f−1OS

(f−1OS)⊗C Λ)) = Rf∗(f−1OS ⊗C Λ)

Therefore, it remains to prove that,

Rf∗(f−1OS ⊗C Λ) ∼−→ OS ⊗C Rf∗Λ

This is a pure topology question. □

Definition 3.1.2. If S is moreover smooth then the Gauss-Manin connection on Rif∗(Ω•
X/S ⊗C Λ)

is the unique connection whose flat sections are Rif∗Λ.

4 Griffiths Transversality
Let f : X → S be a smooth projective (H-projective meaning embedded in Pn × S) morphism of
smooth complex analytic spaces of relative dimension d.

Theorem 4.0.1 (Ehresmann). If f : M → N is a proper submersion of smooth manifolds then f
is a fiber bundle. In particular, all the fibers of f are diffeomorphic.

Definition 4.0.2. R•
Z(f) = ∑

Rnf∗Z. For any abelian sheaf F we have,

Rn
F (f) = F ⊗Rn

Z(f) = Rnf∗(f ∗F )

Then there is,
η ∈ H0(S,R2

Z(f))
which is a relative Lefschetz class. We have, sublocal systems,

P n
Z (f) ⊂ Rn

Q(f)
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where,
P n
Q(f) = ker (ηd−n+1 ∧ − : Rn

Q(f)→ R2d−n+1
Q (f))

and,
P n
Z (f) = P n

Q(f) ∩Rn
Q(f)

Then we define a form,
ψ(x, y) =

∫
Xs

ηd−n ∧ x ∧ y

which is a bilinear form,
ψ : Rn

Z(f)⊗Rn
Z(f)→ Z

4.1 de Rham complex
Let Ω1X/S = Ω1

X/f
∗Ω1

S and Ωp
X/S = ∧p Ω1

X/S and T 1
X/S = (Ω1

X/S)∨.

Proposition 4.1.1 (Relative Poincare). Ω•
X/S is a resolution of f ∗OS.

Proposition 4.1.2. There is a spectral sequence,

Ep,q
1 = Rqf∗Ωp

X/S =⇒ Rp+qf∗Ω•
X/S = Rp+qf∗(f ∗OS)

Taking fibers over s ∈ S we obtain the usual Hodge-to-de Rham spectral sequence,

Ep,q
1 = Hq(Xs,Ωp

Xs
) =⇒ Hp+q

dR (Xs) = Hp+q(XS,C)

By usual Hodge theory this spectral sequence degenerates.

Furthermore, by Ehresmann’s theorem all the fibers are diffeomorphic and therefore allHp+q(XS,C)
have the same dimension. By degeneration,∑

p+q=n
hq(Xs,Ωp

Xs
) = dimHn(Xs,C)

And by semi-continuity we see that the Hodge numbers can only jump up and therefore by this
equality they are constant. Since S is smooth we can apply Grauert’s theorem to conclude that,

(a) Rqf∗Ωp
X/S are vector bundles

(b) the relative Hodge-de Rham spectral sequence degenerates.

Corollary 4.1.3. There is a “relative Hodge filtration” F • on Rnf∗(Ω•
X/S) which restricts on fibers

to the Hodge filtration.

4.2 The Gauss-Manin Connection
Definition 4.2.1. Observe that Rn

C(f) is a sublocal system of Rn
OS

(f). Then Gauss-Manin con-
nection is a connection,

∇ : Rn
OS

(f)→ Ω1
S ⊗Rn

OS
(f)

Whose flat sections are the local system Rn
C(f).
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Remark. Question: does the Gauss-Manin connection preserve the Hodge filtration? Equivalently,
can we make a global Hodge filtration on Rn

C(f) that tensors with OS to give the relative Hodge
filtration on Rn

OS
(f) = Hn

dR(X/S).
Remark. The answer is no but the next best thing is true.
Theorem 4.2.2 (Griffiths Transversality). ∇F p(Rn

OS
(f)) ⊂ Ω1

S ⊗ F p−1(Rn
OS

(f)).
Proof. This is local on S so we may assume that S is Stein. It is enough to show that for all vector
fields v we have,

∇v(F p) ⊂ F p−1

Now we do some Cech calculations to verify. Let {Ui} be a Stein open cover of X. Consider the
double complex,

f∗(U,Ω1
X/S)p,q =

⊕
|Q|=q+1

f∗(UQ,Ωp
X/S)

The pushforward f : UQ → S is acyclic on coherent sheaves because it is a map of Stein manifolds.
Therefore, this is an acyclic Cartan-Eilenberg resolution so we can use it to compute hypercoho-
mology. Setting,

Ep,q
0 = f∗(U,Ω1

X/S)p,q

and then the E1-page is,
Ep,q

1 = Rqf∗Ωp
X/S

But F p arises from the p filtration on E•,•
1 .

Recall that the Gauss-Manin connection is the edge map (ASK ABOUT HTHIS)!.
Let v be a holomorphic bector field on S. For all i let vi be a lifting to i. Let,

θ(vi) : Ep,q
0 = f∗(U,Ω•

X/S)→ f∗(UQ,Ωp
X/S)⊕

⊕
i0<i1

f∗(U{i0}∪Q,Ωp
X/S) ⊂ Ep−1,q+1

0 ⊕ Ep,q
0

The components of this map are, (DEFINE!!!) Therefore it suffices to prove the following. □

Lemma 4.2.3. The map θ(vi) induces ∇vi
on hypercohomology.

Proof. Consider the smooth analogues. Choose v′
i smooth lifting of v. Then,

θ(v′
i)− θ(v′′

i ) = dH = Hd
for H = (v′

i − v′′
i )L at the level of hypercohomology meaning the choice of lift does not matter.

When working in the C∞ contex we can take U = {X} because all smooth sheaves are acyclic.
Then,

f∗(U,Ω∗
C∞,X/S) = f∗(Ω•

C∞,X/S)
Then θ(vi) is “visibly” ∇vi

. □

Definition 4.2.4. A variation of real Hodge structures of weight n consists of
(a) a local system HR of real vector spaces on S

(b) a finite downward holomorphic filtration by locally free analytic sheaves of HOS
= HR ⊗R OS

(where the inclusions are strongly of constant rank)
such that for the canonical connection on HOS

(corresponding to HR by Riemann-Hilbert)
(a) ∇F p(HOS

) ⊂ Ω1
X/S ⊗ F p−1(HOS

)

(b) on each fiber the filtration forms a Hodge structure.
A variation of Hodge structures of weight n consists of a local system of free Z-modules HZ such
that HZ ⊗Z R is a variation of real Hodge structures.
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5 May 11 Hodge Loci
Definition 5.0.1. A Z-variation of hodge structures on a complex analytic space B is the data of,

(a) a local system H of finite free Z-modules

(b) a decreasing filtration F • by subbundles on H = H ⊗Z OB (note H is a vector bundle with
the obvious connection.

Such that,

(a) Griffoths transversality: ∇F p(H) ⊂ Ω1
B ⊗ F p−1H

(b) each fiber Hb equipped with the filtration on Hb is a Z-Hodge structure.

5.1 Noether-Lefschetz Loci
We conisder surfaces Su ⊂ P3. Note: any curve C ⊂ Sn is a mutiple of the hyperplane class H
iff C = Su ∩ H is a complete intersection where H is a hypersurface. We will study the classical
question of asking if all curves are of this form.

Let B ⊂ PH0(P3,OP3(d)) be the locus of smooth hypersurfaces in the moduli space of smooth
hypersurfaces. Consider the universal hypersurface ϕ : SB → B.

Definition 5.1.1. The Noether-Lefschetz Locus is,

NL(B) := {u ∈ B | Pic
(
P3
)
→ Pic (Su) not surjective}

Theorem 5.1.2 (Noether-Lefschetz). If d ≥ 4 the components of NL(B) ⊂ B are proper algebraic
subsets so every “very general” smooth S ⊂ P3 of degree d ≥ 4 has every C ⊂ S of the form
C = S ∩H.

Remark. Consider,

Ck
B = {(Z,H) | Z = SH ∩ Y for Y a hypersurface of degree k}

Then thre is a map, ⋃
k

Ck
B → B

5.2 Hodge Loci
Given a Z-VHS (H,F •,∇) on B consider λ ∈ Γ(B,H).

Definition 5.2.1. Given p, λ the Hodge locus,

Up
λ = {u ∈ U | λu ∈ F pHu}

is the set of points where λ lies in the pth filtered part.

Remark. In the case k = 2p then Up
λ is the locus where λ is a “Hodge class” because,

H2p(X,Z) ∩HpH2p(X,C) = Hp,p

because H2p(X,Z) is conjugation invariant so any Hp,q part must be paired with a Hq,p part not
allowed in the filtration.

12



Remark. The class k = 2 and p = 1 then the Lefschetz (1, 1)-theorem says that,

c1 : Pic (X)→ H1,1(X) ∩H2(X,Z)

is surjective. Suppose that the Z-VHS arises from a smooth proper family f : X → S then,

Up
λ = {u ∈ U | λu = c1(L) for some L ∈ Pic (Xu)}

Claim: for well-chosen λ,
NL(B) =

⋃
λ

Up
λ

(WHAT)
More generally, π : XB → B is the universal hypersurface of degree d. Let U ⊂ B be an open

set and,
λ ∈ Γ(U,Rn−1π∗Uprim)

Theorem 5.2.2. If d, n, p are chosen with,

d(n− p+ 1)− (n− 1) ≤ (d− 2)(n+ 1)

then Up
λ are proper analytic subsets of U all nonzero λ.

5.3 Generalities on Hodge Loci
Lemma 5.3.1. Up

q ⊂ U is a complex analytic subspace.

Proof. Since the bundles F pH are holomorphic then,

Up
λ := {u ∈ U | λ̄u = 0 inside H/F pH}

andH/F pH is a vector bundle so the vanishing of its sections are closed in the analytic topology. □

Proposition 5.3.2. Up
λ can be defined locally by hp−1 := rankF p−1H/F pH equations.

Proof. For u ∈ Up
λ , in a neighborhood, choose a decomposition,

H/F pH ∼= F p−1H/F pH⊕F

and we write λ̄ = λ̄p−1 + λ̄F . Then we have,

Up
λ ⊂ V p

λ = {u ∈ U | λ̄p−1 = 0}

and we want to show this is an equality. First, pass to U = V p
λ meaning λ̄ = 0 globally. We work

formally,
Uℓ = Spec

(
OU,u/mℓ+1

u

)
It suffices to show that Up

λ ∩ Uℓ = Uℓ. We prove this by induction on ℓ. The base case it clear.
Assume true for ℓ. Let λ ∈ H is in F p−1H mod mℓ

u. Then,

λ = µ−
∑
i

αiσi

13



for αi ∈ mℓ
u and σi ∈ char a local basis of flat sections with µ ∈ F pH. Then λ̄p−1 = 0 implies that

λ− µ ∈ mλ+1
u H projects to 0 in, mℓ+1

u /mℓ+2
u F p−1H/F pH.

However, recall that λ ∈ H and therefore is a flat section which implies that,

∇(λ− µ) = −∇µ =
∑

dα⊗ σ − i ∈ H ⊗ Ω1

and by transversality,
∇(λ− µ) ∈ F p−1H⊗ Ω

□

Proposition 5.3.3. Consider the following induced maps,

F p+1Hk F pH⊗ ΩB

F pHk F p−1Hk ⊗ ΩB

Hp,q Hp−1,q+1 ⊗ ΩB

0 0

∇

∇

∇

and ∇ is OB-linear. This is called an infinitesimal variation of Hodge structures.

Remark. This is called the infinitesimal variation of Hodge structures becuase it is the differential
of the period map. Indeed,

Pp : B → Gr(F p, Hk(X,C))

then the differential is,
dPp : TB,b → Hom

(
F pHk, Hk/F pHk

)
but this factors by transversality as,

TB,n Hom
(
F pHk, Hk/F pHk

)

Hom
(
F pHk, F p−1Hk/F pHk

)

Hom
(
F pHk/F p+1Hk, F p−1Hk/F pHk

)
Lemma 5.3.4.

TUp
λ
,x = ker∇(λ̄x) ⊂ TU,x

where,
∇x(λ̄x) ∈ F p−1/F p ⊗ ΩB

∼= Hom
(
TU,x, F

p−1Hx/F
pHx

)
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6 Last Week
Let X be a smooth proper variety and Y ⊂ X be a normal crossings divisor let U = X \ Y and
Y (k) be the normlaization of the k-fold intersections of the components.

This gives the logarithmic forms Ω•
X(log Y ) and the Hodge filtration F pHn(U,C) and weight filtra-

tion WpH
n(X,C). Then there are spectral sequences,

FE
p,q
1 = Hq(X,Ωp

X(log Y )) =⇒ Hp+q(U,C)

WE
p,q
1 = H2o+q(Y (−p),C) =⇒ Hp+q(U,C)

These satisfy,

(a)

(b)

W•Ω•≥2k
X (log Y ) ↪→ W•Ω•

X(log Y )
Then we see that,

FE
p,q
1 F k+pH2p+q(Y (−q),C) F kHp+q(U,C)

WE
p,q
1

7 The Noether-Lefschetz theorem

7.1 The Case of a Smooth Hypersurface
As before, X is projective and smooth and Y ⊂ X is a smooth divisor. Then consider,

WE
0,q
1 = Hq(X,C) WE

−1,q
1 = Hq−2(Y,C)

and the other columns are zero. Therefore we get a long exact sequence,

· · · · · · Hk(X,C) Hk(U,C) Hk−1(Y,C) Hk+1(X,C) · · ·j∗ i∗

where j : U ↪→ X and i : Y ↪→ X are the natural embeddings. This map i∗ is called the Gysin map
in topology.

Proposition 7.1.1. The Gysin map satisfies,

(a) the Poincare dual is,
H2n−k−1(Y,C) i∗−→ H2n−k−1(X,C)

(b) The map,
Hk(X,C) i∗−→ Hk(Y,C) i∗−→ Hk+2(X,C)

is cup product with [Y ] ∈ H2(X,C). Likewise, the map,

Hk(Y,C) i∗−→ Hk+2(X, C) i∗−→ Hk+2(Y,C)

is the cup product of [Y ] = i∗[Y ] ∈ H2(Y,C).
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From the weight spectral sequence we get,

0 coker i∗ Hk(U,C) ker i∗ 0

W0 W1

Now we assume that [Y ] is ample which implies that it represents a Kahler class.

Theorem 7.1.2 (Lescheftz hyperplane and Hard Lescheftz). (a) i∗ : Hk(X,C) → Hk(Y,C) is
an isomorphism for k < n− 1 and injective for k = n− 1

(b) i∗ : Hk(Y,C)→ Hk+2(X,C) is an isomorphism for k > n− 1 and surjective for k = n− 1

(c) the map −⌣ [Y ]k : Hn−k(X,C)→ Hn+k(X,C) is an isomorphism.

Definition 7.1.3.

Hn−k(X,C)prim = ker (−⌣ [Y ]k+1)
Hk(X,C)van = ker (i∗ : Hk(Y,C)→ Hk+2(X,C))

So there is an exact sequence,

0 Hn(X,C)prim Hn(U,C) Hn−1(Y,C)van 0

Definition 7.1.4. Y is super ample if H i(X,Ωj
X(kY )) = 0 for all i > 0 and j ≥ 0 and k > 0.

Example 7.1.5. Every smooth hypersurface of Pn is superample.

7.2 The Noether-Lefschetz theorem
Consider the map,

φp : H0(X,KX(pY ))→ Hn(U,C) α 7→ [α|U ] ∈ Hn
dR(U)

Theorem 7.2.1 (Griffiths, 1969). If Y is super ample then for 1 ≤ p ≤ n we have imφp =
F n−p+1Hn(U,C).

Proof. Consider the sheaf Ωk,c
X (ℓY ) = ker (d : Ωk

X(ℓY )→ Ωk+1
X ((ℓ+ 1)Y )). Then we need the fol-

lowing lemma. □

Lemma 7.2.2. The sequence,

0 Ωk,c
X (ℓY ) Ωk

X(ℓY ) Ωk+1,c
X ((ℓ+ 1)Y ) 0d

is exact. In particular, this is saying that closed forms with at worst order (ℓ+ 1)-poles is locally d
of a form with at worst order ℓ-poles.

Now assuming the lemma,
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0 Ωn−1,c
X ((p− 1)Y ) Ωn−1

X ((p+ 1)Y ) KX(pY ) 0

0 Ωn−2,c
X ((p− 1)Y ) Ωn−22

X ((p+ 1)Y ) Ωn−1,c
X ((p− 1)Y ) 0

...

0 Ωn−p+1,c
X ((p− 1)Y ) Ωn−p+1

X ((p+ 1)Y ) Ωn−p+2,c
X (2Y ) 0

ℓ

ℓ

ℓ

By the super ample condition these the middle column has vanishing higher cohomology. Therefore
we get isomorphisms,

H0(KX(pY )) H1(Ωn−1,c
X ((p− 1)Y ))

H1(Ωn−1,c
X ((p− 1)Y )) H2(Ωn−2,c

X ((p− 2)Y ))

...

Hp−2(Ωn−p+2,c
X (2Y )) Hp−1(Ωn−p+1,c

X (Y )) Hp−1(Ωn−p+1,c
X (log Y ))

∼

∼

Therefore Ω•
X(log Y ) ∼−→ j∗AU is a quasi-isomorphism and RHS is exact in degrees ≥ 2. Therefore,

0 Ωn−p+1
X (log Y ) Ωn−p+2

X (log Y ) · · ·

is quasi-isomorphic to Ωn−p+1,c
X (log Y ). Therefore,

H p−1(Ω•≥n−p+1
X (log Y )) = F n−p+1Hn(U,C)

7.3 The Case of a Smooth Hypersurface in Pn

Let Y ⊂ X = Pn be of degree d and write Y = V (f). We have a map,

H0(X,O(pd− n− 1)) ↠ F n−p+1Hn(U,C) ↠ Hn−p+1,p−1(U,C) = F n−p+1/F n−p+2

Because Hn(X,C)prim = 0 we have Hn(U, C) ∼−→ Hn−1(Y,C)van. Then there is an isomorpism,

F n−p+1Hn(U,C) ∼= FN−pHn−1(Y,C)van

Therefore,

H0(X,O(pd− n− 1)) ↠ F n−p+1Hn(U,C) = F n−p+1Hn(U,C)van ↠ Hn−p,p−1(Y,C)van
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Theorem 7.3.1 (Griffiths). The kernel is Jpd−n−1
f where,⊕

a

Jaf ⊂
⊕
a

H0(X,OX(a))

is the ideal generated by ∂f
∂zi

. This ideal cuts out an artinian subscheme supported at the origin of
An+1 since f is homogeneous and Y is smooth so this ideal contains f and can only be supported
at the origin by smoothness.

Proof. Consider,

H0(X,O(pd− n− 1)) H0(X,O((p− 1)d− n− 1))

F n−pHn−1(Y,C)van FN−p+1Hn−1(Y,C)

ξp ξp−1

ϕ

□

Let π : F n−pHn−1(Y,C)van → Hn−p,p+1(U,C)van be the cokernel map. Then p ∈ kerπ ◦ ξp iff
∃α : ξp(p) = ξp−1(α) = ξp(fα) iff ∃α : p− fα ∈ ker ξp

Corollary 7.3.2. Consider Hn−p,p−1(U,C)van = H0(X,O(dq − n− 1))/Jpd−n−1
f := Rpd−n−1

F .

Remark. The graded ring,
RF =

⊕
a

Ra
f

is Artinian and a complete intersection. We proved Artinian and that the ideal is cut out of An+1

by n+ 1 equations.

7.4 Noether-Lefschetz
Theorem 7.4.1 (Carlson et al., 1983). Let π : Y → B be a universal family of degree d smooth
hypersurfaces in Pn and let λ be a nonzero local section of (Rn−1π∗C)van. If d(n− p+ 1)− n− 1 ≤
(d− 2)(n+ 1) then,

Up
λ = {x ∈ B | λx ∈ F pHn−1(Yx,C)}

is a proper analytic subset.

Theorem 7.4.2. Idea: study the infinitesmial variations of Hdoge structure. Do we even know
that F pHn−1 ̸= Hn−1, its not so clear! But we use the corollary and the following fact.

Theorem 7.4.3. (a) Complete intersection implies Gorenstein

(b) Gorenstein and Artinian and graded implies that there exists N > 0 such that dimRN
f = 1

and dimR>N
f = 0 and Ra

f ×Rn−a
f → RN

f is a perfect pairing.

(c) We have explicitly, N = (d− 2)(n+ 1)
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7.5 Infinitesimal Variation
Theorem 7.5.1. Up to a nonzero constant, the following diagram commutes,

H0(X,KX(pY )) Hom (H0(X,O(ℓ)), H0(X,KX((ℓ+ 1)Y )))

Hn−p,p−1(Y,C)van Hom (TB,f , Hn−p+1(U,C)van)

α αp+1

∇

where b ∈ B corresponds to Y = V (f). We can reduce to B is the open subset of H0(X,O(d))
which gives TB,f ∼= H0(X,O(d)).

Lemma 7.5.2. If B is connected and ∃x ∈ B : ∇x : F pHx/F
p+1Hx → Hom (TB,x, F p−1Hx/F

pHX)
is injective, then Up

λ = B implies that Up+1
λ = B.

Proof. The locus of such x is open, and this implies λx ∈ F p+1Hx. If Up
λ = B for Hn−1(Y,C)van then

∇ : R(n−p)d−n−1
f → Hom

(
H0(X,O(d)), R(n−p+1)d−n−1

f

)
we ant to show this is injective. However,

H0(X,O(d)) ↠ Rd
f □
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