
1 Moduli of L-parameters
Let F/Qp be finite and p prime and WF the Weil group. Consider the sequence,

1 IF WF 〈FrobkF 〉 1

1 IF Gal
(
F/F

)
Gal

(
kF/kF

)
1

Definition 1.0.1. Let ` 6= p be prime, define,

Φ(GLn, F )

to be the set of isom classes of n-dimensional continuous representations of WF on GLn(Q`).

There is also,
Π(GLn, F )

is the set of isomorphism classes of irreducible smooth representations of GLn(F ) the topological
group on Q` (smooth means that vectors have open stabilizers). Note that smooth irreducible
representations are automatically admissible.

Theorem 1.0.2 (Harris-Taylor). There is a bijection:

LLn : Π(GLn, F )→ Φ(GLn, F )

satisfying many good properties.

Remark. For example, when n = 1 the map LL1 is induced by Local CFT W ab
F
∼= F×.

1.1 Goal
Generalize this to general connected reductive G and to more general coefficients Λ (than Q`) for
example Λ = Z` or the universal deformation ring of some mod ` representation.

1.2 For Now
Let G/F be a split reductive group and let Ĝ/Q` be its Langlands dual group for example,

(a) GLn ⇐⇒ GLn

(b) SLn ⇐⇒ PGLn

(c) SO2n+1 ⇐⇒ Sp2n

(d) SO2n ⇐⇒ SO2n.

Define Π(G,F ) as before meaning isomorphism classes of smooth irreducible G(F ) representa-
tions on Q`-vectorspaces. And define Φ(G,F ) to be continuous homomorphisms WF → Ĝ(Q`) up
to Q̂(Q`)-conjugacy.
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Conjecture 1.2.1. There is a surjective map,

LLG : Π(G,F )→ Φ(G,F )

with finite fibers Πφ = LL−1
G (φ) called L-packets and we expect that Πφ is in bijection with irre-

ducible Q`-representations where Sφ is a finite group associated to φ.

Remark. For GLn we can characterize LLn using ε-factors of pairs etc. but this seems to be Hopeless
for general G.
Remark. One strategy for pinning down LLG is to upgrade it is a categorical equivalence. Fargues-
Scholze have some conjectural categorical LLG which we will not discuss. Roughly it says there is
an equivalence between the derived category of coherent sheaves on the moduli stack of Langlands
parameters is equivalent to the derived category of `-adic sheaves on the Fart-Fontain curve.
Remark. The other strategy is to make it work in families (Emerton and Helm).

1.3 A Tale of Two Centers
Definition 1.3.1. The Berstein center of an abelian category,

Z(A)

is the endomorphisms of the identity functor.

Proposition 1.3.2. Z(A) is commutative.

Proof. Consider ϕ, ψ ∈ Z(A) then for each object X ∈ A we have (ϕ ◦ ψ)X = ϕX ◦ ψX but
ψX : X → X is a morphism and we know that ϕ is a natural transformation so we have,

ϕX ◦ ψX = ψX ◦ ϕX = (ψ ◦ ϕ)X

and therefore ϕ ◦ ψ = ψ ◦ ϕ. �

Consider,
A = RepZ`(G(F ))

which is an ebelian category. Then Z(A) is a commutative Z`-algebra. There are variants with
other coefficients (Q` and F`).

Helm works on G = GLn over Z`.
Remark. If H ∈ C such that,

EndH =

FpQ`

Then we get a map Z(C)→ End (H ) giving a field valued point.
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1.4 Spectral Berstein Center
Consider Zspec(G,Z`) is global functions on the moduli stack of Ĝ-valued L-parameters over Z`.
This stack will be [Z1(WF , Ĝ)/Ĝ] where Z1(WF , Ĝ) represents the functor,

R 7→ Homcont
(
WF , Ĝ(R)

)
where Ĝ(R) is topologized in some way. This is the cocycles because WF acts trivially on Ĝ(R).

Theorem 1.4.1. Z1(WF , Ĝ) is a disjoint union of finite type affine schemes of Z` each is flat and
lci and generically smooth (over Q` hmm?).

Global functions on the stack,
[Z1(WF , Ĝ)/Ĝ]

are just Ĝ-equivariant functons on Z1(WF , Ĝ) so we have,

Zspec(WF , Ĝ) = Γ(Z1(WF , Ĝ)//Ĝ)

Theorem 1.4.2. Closed points of Z1(WF , Ĝ)//Ĝ correspond to semisimple representations of
WF → Ĝ(F`).

Definition 1.4.3. For a representation into a reductive group G meaning a map H → G semi-
simple means that if φ : H → G factors through a parabolic subgroup P ⊂ G then it must factor
though some Levi factor L ⊂ P .

One of the main results of Fargues-Scholtza (FS) is a map,

ψG : Zspec(G,Z`)→ Z(G(F ),Z`)

satisfying some good properties. Recall that if we have H an irreducible smooth Z` represnetation
to G(F ) with endomorphism Q` then we get a map Z(G(F ),Z`) → Q` giving a semisimple rep
φ : WF → Ĝ(F ). This should be,

Π(G) Φ(G)

Φss(G)

φG

This recovers Harrs-Taylor and in factlies of ψG is an isomorphism. This recovers “LL in families”
of Emerton-Helm and Helm-Moss.

Actually, we will define Z1(WF , Ĝ) over Z[p−1] by discretising WF . The end goal is to understand
both centers so that we can state FS and give recient applications.

2 Weil-Deligne Representations
Recall that F/Qp and residue field kF of cardinality q for ` 6= p for w ∈ WF write,

WF → Z→ qZ

denote w 7→ ||w||. Obseve that Π(G) does not depend on the `-adic topology and thus on ` but
Φ(G) does seem to depend on the `-adic topology. We use Weil-Deligne representations to fix this
problem.
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Theorem 2.0.1. Let k/Q` be a finite extension and (ρ, V ) a finte representation ofWF over K (the
field of V ). Then there exists some open H ⊂ IF such that for all x ∈ G we have ρ(x) unipotent in
GL(V ).

Remark. The slogan is that inertia is quasi-unipotent.

Proof. We need some results about the structure of IF to prove this. Fix F̄ then F unr ⊂ F̄ has
a unique degree n extension for (n, p) = 1 given by the splitting field of xn − $F where $F is a
uniformizer. Note that F unr already contains the nth-roots of unity because (n, p) = 1. Therefore
we get a Galois group Z/nZ(1) = µn. (WHAT DOES THIS REALLY MEAN) There is an exact
sequence,

1 PF IF
∏
λ 6=p Zλ(1) 1

Z`(1)

t`

By continuity of ρ we can take an open subgroup H ⊂ IF such that ρ(x) ∈ 1 + `2Mm(OK) ⊂
GLm(K). This implies that,

log ρ(x) =
∞∑
j=0

(ρ(x)− 1)j
j

converges in the `-adic topology. Now further shrink H so that ρ|H factors through t` (because the
group is pro-` since it is trivial after reduction) and then for w ∈ WF we get x ∈ H,

log ρ(wxw−1) = log ρ(x)||w|| = (log ρ(x))||w||

If p is the char poly of log ρ(x) then writing,

p(T ) =
∑

akT
k

then we showed that qn−kak = ak and thus ak = 0 for k 6= n and thus log ρ is nilpotent. �

Corollary 2.0.2. There is a unique nilpotent N ∈ End (V ) such that ρ(w)Nρ(w)−1 = ||w||N and
there exists open H ⊂ IF such that,

ρ(x) = exp(t`(x) ·N)

Proof. This equation for a single x /∈ ker t` determines N . For existence, it is clear if ρ|IF factos
over a finite quotient since then we can take N = 0 (and H the open inside the kernel). If not then
there exists y /∈ ker t` such that ρ(y) 6= 1 and then we define,

N = log ρ(y)t`(y)−1

and Z`(1)→ GL(V ) given by x 7→ exp(xN) recovers ρ via H → Z`(!)→ GL(V ). �

Definition 2.0.3. Let R be a Z[p−1]-algebra. A Weil-Deligne representation over R is a pair (ρ,N)
where ρ : WF → GLn(R) such that ρ|IF has finite image and N ∈Mn(R) is nilpotent such that for
all x ∈ WF ,

ρ(x)Nρ(x)−1 = ||w||N

Remark. The moduli space of these things is flat over Z[ 1
Mp

] where M = #GLn(kF )n!.
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Theorem 2.0.4. For K = Q` there is an equivalence of categories,
{n-dim WD-representation over K} ∼−→ {continuous n-dim representations of WF over K}

Given by sending (ρ,N) 7→ ρ′ where for w = ϕax for x ∈ IF and ϕ is some lift of Frobenius then
let,

ρ′(w) = ρ(ϕa) exp (t`(x) ·N)
and is independent of the choosen lift of Frobenius.
Definition 2.0.5. For G/F split connected reductive, a WD rep with values in Ĝ over R is a pair
(r,N) where,

r : WF → Ĝ(R)
such that IF has finite image and N ∈ ĝ(R) such that for all w ∈ WF ,

Ad(r(w)) ·N = ||w|| ·N
Remark. There is a moduli space WD(Ĝ) over Z[p−1]. Fix L/F some finite extension and consider
WDL/F (Ĝ) parametrizing the same (r,N) as before but now r|IL is required to be trivial for IL ⊂ IF .
Then WD(Ĝ) = lim−→L/F

WDL/F and the WDL/F are of finite type over Z[p−1].

There is a map WDL/F (Ĝ) → Rep(IL/F ) × Nilp(ĝ) given by (r,N) 7→ (r|IF , N) but since r|IL is
trivial r is a representation of IL/F .

3 April 12
3.1 Introduction to DHKM
Let G be a quasi-split connected reductive group. We study the modui space of L-parameters ϕ :
WF → LG(Q`) continuous with `-adic topology. These correspond to continuous ϕ : W 0

F → LG(Q`)
with the discrete topology where W 0

F is “discretized” tame inertia.
Definition 3.1.1. Let π : WF → WF/PF . Consider 〈F, s〉 ⊂ WF/PF where s is a topological
generator of tame inertia. Then,

〈F, s〉 = sZ[q−1] o F Z

where q = #kF (since s is a generator of tame inertia we have q-roots because these are tame). We
define W 0

F = π−1(〈F, s〉).
(WHY IS TAME INERTIA DIVISIBLE BY q, because Z` is divisible by q for all q 6= `)
Then Ĝ is a split reductive group scheme over O[p−1. It is easy to show that Z1(W 0

F , Ĝ) is
representable using generators and relations since W 0

F is discrete.
Theorem 3.1.2. Z1(W 0

F , Ĝ) is flat over O[p−1], lci pure absolute dimension dim Ĝ+ 1 and gener-
ically smooth over Z1(PF , Ĝ) meaning the map Z1(W 0

F , Ĝ)Q` → Z1(PF , Ĝ)Q` is smooth. Further-
more,
(a) affine coordinate ring of Z1(W 0

F , Ĝ) is `-adically separated

(b) describe the geometric irred. components

(c) describe the quotient
Z1(W 0

F , Ĝ)L//ĜL

where L = L̄ has characteristic not p (any algebraically closed field mapping to O[p−1]).
Remark. This is the functor R 7→ Z1(W 0

F , Ĝ(R)) on O[p−1]-algebras.
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3.2 Affine Scheme
Easy to see that

Lemma 3.2.1. The functor R→ Z1(W 0
F/PF , (̂G)(R)) is representable by an affine scheme of finite

type over O[1/p].

Proof. A coycle ϕ ∈ Z1(W 0
F/PF , Ĝ(R)) is determined uniquely by ϕ(F ), ϕ(s) ∈ Ĝ(R). Then,

(F0, s0) ∈ Ĝ(R)× Ĝ(R) is a cocycle ⇐⇒ (F0, F )(s0, s)(F0, F )−1 = (s0, s)q

�

4 April 28 Reduction to tame Parameters
Recall Ĝ is a split reductive group scheme over Z[p−1] with a finite action of WF and LG = ĜoW
where W is a finite quotient of WF through which the action factors.

We studied moduli of tame parameters, i.e. assumed the action factors through WF/PF where PF
is wild inertia. [We also assume the action preserves a Borel pair, but this is irrelevant. We only
needed that Lϕ(s)ss preserves a Borel pair, this is always true by Setinberg “Endomorphisms of
Linear Alebraic Groups”, Theorem 7.5]. We proves some nice properties of Z1(W 0

F/PF , Ĝ),

(a) Z1(W 0
F , PF , Ĝ) is ffppf / Z[1/p] with lci fibers of pure dimension dim Ĝ

(b) Z1(W 0
F/PF , Ĝ) is generically smooth

(c) coordinate ring is `-adically separated for ` 6= p.

We want the same properties for Z1(W 0
F , Ĝ) in general. (Strategy, reduce to tame case). Idea:

look at space of cycles with fixed behavior on PF . First fix a filtration,

PF ⊃ P 1
F ⊃ P 2

F ⊃ · · ·

of PF by open normal subgroups of PF with the property that,⋂
e

P e
F = {1}

Fix two data, the first is the restriction of ϕ to PF denoted by φ [by continuity each φ factors
through PF/P e

F for some e (the preimage of 0 is open and hence finite index since PF is profinite).

Theorem 4.0.1. Fix e ≥ 1. There is a number fieldKe and a finite set Φe ⊂ Z1(PF/P e
F , Ĝ(OKe [1/p])

such that,

(a) if R is a OKe [1/p]-algebra then any cocycle φ : PF/P e
F → Ĝ(K) is étale-locally Ĝ-conjugate

to some φ0 ∈ Φe (unique once it exists)

(b) for any φ ∈ Φe, the reductive group scheme CĜ(φ)◦ is split over OKe [1/p] and its component
group π0(φ) = π0(CĜ(φ)) is constant.

WARNING: CĜ(φ) is the centralizer of Lφ not of φ and CLφ(φ) is not even the centralizer of Lφ.

6



Definition 4.0.2. We define functorially,

CLG(φ) = {(g, w) ∈ LG | (g, w)Lφ(w−1pw)(g, w)−1 = Lφ(p) for all p ∈ PF}

Remark. From now on assume that PF/P e
F → W is injective. Note, CLG(φ) ∩ Ĝ = CĜ(φ).

Let π̃0(φ) = π0(CLG(φ)) then there is a SES (maybe need φ admissible)

1 π0(φ) π̃0(φ) W 1

Any extension Lϕ of Lφ factors through CLG(φ) so it gives a map αφ : W 0
F → CLG(φ) → π̃0(φ)

extending the map PF
Lφ−→ CLG(φ)→ π̃0(φ).

The other datum we fix is a section α of (*) extending PF
Lφ−→ CLG(φ)→ π̃0(φ). Let

Σ(φ) = {such α}.

Then we write down,

Z1(W 0
F , Ĝ)φ = {ϕ ∈ Z1(W 0

F , Ĝ) | ϕ|PF = φ}

and likewise,
Z1(W 0

F , Ĝ)φ,α = {ϕ ∈ Z1(W 0
F , Ĝ)φ | αϕ = α}

Definition 4.0.3. We say φ, α are admissible if these schemes are nonempty.

There is an isomorphism for fixed ϕ over R of R-schemes,

Z1
Adϕ(W ◦

F/PF , CĜ(φ)◦)R ∼−→ Z1(W 0
F , Ĝ)φ,α,R

This almost reduces us to the previous case with one Caveat: the action of Adϕ might not be finite.
Also representatives ϕ might not exist integrally.

Theorem 4.0.4 (Main Theorem). There is a finite extension K ′e/Ke such that for any admissible
φ ∈ Φe and admissible α ∈ Σ(φ) there is some ϕα ∈ Z1(W 0

F , Ĝ(OK′e [1/p]) such that Lϕα(W 0
F ) is

finite (also it can be chosen to preserve a Borel pair of CĜ(φ)◦).

4.1 Consequences
First we remark that to prove geometric properties of Z1(W 0

F/P
e
F , Ĝ) it suffices to consider the base

chance to the extension K ′e. There is a map,

Z1(W 0
F/P

e
F , Ĝ)OKe [1/p] → Z1(PF/P e

F , Ĝ)OKe [1/p] =
∐
φ∈Φe

Ĝ · φ ∼=
∏
φ∈Φe

Ĝ/CĜ(φ)

Then over a particlar φ we get the fiber,

Z1(W 0
F/P

e
F , Ĝ) Z1(WF

Spec (OKe [1/p]) Z1(PF/P e
F , Ĝ)OKe [1/p]

φ
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Over Z̄[1/p] we can choose these Φe such that Φe ⊂ Φe+1 for each e. As a consequence,

Z1(PF , Ĝ)Z̄[1/p] = lim−→
e

Z1(PF , P e
F , Ĝ)Z̄[1/p] =

∐
φ∈Φ

Ĝ · φ

So ultimately, good properties of Z1(W 0
F , Ĝ) reduce to these properties over Z̄[1/p] and thus to the

fibers. Because the obits downstairs are open and closed we just need to check over each orbit and
because of equivariance we can check flatness on this section.
Theorem 4.1.1. This discussion implies that,
(a) Z1(W 0

F , Ĝ)φ,α is fppf / OKe [1/p] and lci with fibers of pure dim CĜ(φ)

(b) Z1(W 0
F , Ĝ)φ,α is generically smooth

(c) the coordinate ring is `-adically separated.

4.2 Outline of the Proof
We only will need to show there are sections fppf locally (not integral sections). We will show,
(a) using admissibility, find an F̄`-point

(b) lift this point to get a section over O
W (F̄`)

(c) modify the lift to have finite image

(d) spread out to get a section over a quasi-finite flat extension of OKe [1/p]

(e) modify to get sections over the remaining complete local rings Oλ.
Fix a Borel pair Bφ = (Bφ, Tφ) in CĜ(φ)◦ let Tφ = NCLG(φ)(Bφ). Some facts,

(a) Tφ is smooth over OKe [1/p] (N(B)◦ = B and the normalizer of a mult. type group scheme in
a smooth group scheme is smooth without connected component

(b) T ◦φ = Tφ (normalizer of Borus is a reductive group scheme in the torus)

(c) π0(Tφ) = π0(CLG(φ)) = π̃0(φ) (Borel pairs are étale-locally conjugate).

(d) the action of Tφ on Tφ factors through π̃0(φ) �

Tφ and thus any α ∈ Σ(φ) gives rise to an
action of WF/PF on Tφ.

Definition 4.2.1. Functorially,

Σ(W 0
F , Tφ)φ = {ϕ ∈ Z1(W 0

F , Ĝ) | Lϕ(W 0
F ) ⊂ Tφ}

This condition is equivalent to Lϕ(W 0
F ) normalizing Bφ.

This gives a disjoint union decomposition,

Σ(W 0
F , Tφ)φ =

∐
α∈Σ(φ)

Σ(W 0
F , Tφ)φ,α

Each as an OKe [1/p]-action from Z1
α(W 0

F/PF , Tφ) given by multiplication (ψ, ϕ) 7→ ψϕ such that
for every OKe [1/p]-algebra R,

Σ(W 0
F , Tφ(R))φ,α

is either empty or a torsor for Z1
α(W 0

F/PF , Tφ(R)) [pseudo-torsor]. The main result is again.
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Theorem 4.2.2. IF φ and α are admissible, then

(a) Z1
α(W 0

F/PF , Tφ) is a diagonalizable group scheme over OKe [1/p].

(b) Σ(W 0
F , Tφ)φ is an fppf torsor under Z1

α(W 0
F/PF , Tφ).

moreover, both statements remain true for W 0
F replace by a suitable finite quotient.

The main theorem follows for the statment that Σ(W,Tφ(OK′e [1/p]))φ,α 6= ∅ for some finite
K ′e/Ke. One other point: torsors for a diag. group scheme E are trivialed over the normalization
in some finite extension. There are two essential cases,

(a) D = Gm

(b) D = µn for some n

For case (a) we pass to the Hilbert class field and torsors for Gm are line bundles but all ideal
classes are trivialied after this cover so H1(OKe [1/p],Gm) → H1(OK′e [1/p],Gm) is the zero map.
For (b) there is an exact sequence,

OKe [1/p]× OKe [1/p]× H1
fppf(OKe [1/p], µm)→ H1

fppf(OKe [1/p],Gm) H1
fppf(OKe [1/p],Gm)×m ×m

So after passing to Kh
e , the µm-torsor is given by the m-th roots of some f ∈ OKe [1/p]×. So pass

to the splitting field of xm − f .

The main point: various cohomology calculations. In putcomes for the following. LetW0 = WF/PF
and I0 = IF/PF and A an abelian group with finite W0-action.

(a) There is a SES,

0 H1(W0/I0, H
1(I0, A)) H2(W0, A) H2(I0, A)W0/I0 0

using the cohomological dimensions to get the zeros coming from the H-SSS.

(b) H2(I0, A) = 0 if A contains a p′-div group of fin index

(c) H1(W0/I0, H
1(I0, A)) = 0 if A is a p′-div group and thus H2(W0, A) = 0 if A is a p′-div group.

Remark. These follow from I0 ∼= Ẑp.

4.3 Completing the Proof
(a) Consider the map,

Z1
α(W 0

F , PF , Tφ)→ Tφ × Tφ
functorially via,

η 7→ (η(F ), η(s))
This realizes the LHS as a flat closed subgroup scheme of Tφ × Tφ which is diagonalizable so
it is diagonalizable.

(b) We want to show Σ(W 0
F , Tφ)φ,α is an fppf-torsor for Z1

α(W 0
F/PF , Tφ) we know on R-points it

is empty or acted upon simply transitively. Thus it suffices to show it has fppf local sections.
Suffices to find a faithfully flat OKe [1/p]-algebra R such that Σ(W 0

F , Tφ(R))φ,α 6= ∅.
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4.3.1 Step 1

By admissibility Z1(W 0
F , Ĝ)φ,α 6= ∅ but it is finite type over OKe [1/p] and hence by Chevallay’s

theorem it has an F`-point. Therefore, get a map,

W 0
F

Lϕ̄−→ G(F`)

factors through a finite quoitent because W 0
F is finitely generated, hence lands in some LG(F`n).

Roughly speaking, modify ϕ by CĜ(φ) to assume it fixes a Borel pair, and then use some cohomology
vanishing to modify further.

4.3.2 Step 2

We want to lift to characteristic zero. Find Lϕ : W 0
F → Tφ(W (k̄)) continuous for the ordi-

nary topology on the left and the discrete topology on the right. By smoothness of Tφ the map
Tφ(W (k̄))→ Tφ(k̄) is surjective so we can choose lifts ϕ̃(w) ∈ Tφ(W (k̄)) such that,

(a) ϕ̃(w) depens only on ϕ̄(w) and ϕ̃(w) = 1 if ϕ̄(w) = 1 and Lϕ̃(pw) = Lφ(p)Lϕ̃(w) for all
w ∈ WF and p ∈ PF . Then consider the map,

c2 : WF ×WF → ker (Tφ(W (k̄))→ Tφ(k̄)) = A

sending,
(w,w′) 7→ Lϕ̃(w)Lϕ̃(w′)Lϕ̃(ww′)−1

This is a 2-cocycle, it has finite image, factors through (WF/PF )× (WF/PF ), and it is enough
that this is a coboundary. Problems, H2(WF , A) 6= 0 but A′ = ker (Tφ(Ō)→ Tφ(k̄)) is divisble,
so H2(WF , A

′) = 0

4.3.3 Step 3

Modify Lϕ to have finite image. By continuity in step 2 (coefficients with the discrete topology)
Lϕ(IF ) is finite since IF is compact. Problem is Lϕ(F ) may not have finite order but this is the
only obstruction to having finite order. Let Cφ be the maximal subtorus of TWF /PF

φ so Cφ(O) is
finite index in Tφ(O)WF /PF . Choose m ≥ 1 such that,

(a) Lϕ̄(Fm) = 1

(b) ϕ(F n) ∈ Cφ(O) [Lϕ(IF ) is finite so ϕ(F n) ∈ Tφ(O)WF /PF (it commutes with itself so just
needs to commute with ϕ(s) but there are finitely many mod PF ) and Cφ(O) ⊂ Tφ(O)WF /PF

is finite index].

Bow ker (Cφ(O)→ Cφ(k̄)) is divislbe. So there exists c such that cn = ϕ(F n). Take ϕ′ : w 7→
c−γ(w)ϕ(w).

4.3.4 Step 4

There exists a section / quasi-finite flat extension. The point Σ(W, Tφ)ϕ,α → Spec (OKe [1/p]) is
dominant, so spreads out to a generic section to OK [1/N ] where K/Ke is finite N ≥ 1.
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4.3.5 Step 5

Find a section over the missing points. Pick a prime λ of K divising N but not p, let Kλ be the
completion at λ, and Oλ = OKλ . Then Lϕ : WF → Tφ(OK [1/N ])→ Tφ(Kλ). We want to conjugate
by an element of Tφ(Kλ) such that the image lies in Tφ(Oλ). A calculation reduces to vanishing of
ϕ in H1(W,Tφ(Kλ)/Tφ(Oλ)). This might not be divisible but Tφ(K̄λ)/Tφ(Ōλ) is divisible :
Tφ(K̄λ)/Tφ(Ōλ) = lim−→

[K′:Kλ]<∞
Tφ(K ′)/Tφ(OK′) = lim−→

[K′:Kλ]<∞
Hom (X∗(Tφ), 1/v(πK′)Z) = Hom (X(Tφ),Q)

5 May 3
5.1 Quotients and GIT of Cocycles
(a) H1 and basic properties

(b) passage to L-parameters (L = L̄)

(c) “classical” GIT detour

(d) W ◦
F/PF to WF/I

e
F and inependence of choice of W ◦

F .
Goal: understand,

H1(W 0
FP

e
F , Ĝ) := Z1(W 0

F/P
e
F , Ĝ)//Ĝ

We have a 2-step decomposition,
Z1 =

∐
φ∈Φe

Z1
φ =

∐
φ,α

Z1
φ,α

and we showed that,
Z1
φ,α = Z1

Adϕ(W 0
F/PF , CĜ(φ))

Then I can write,
Z1(W 0

F/P
e
F ) =

∐
φ∈Φe

(Ĝ× Z1(W 0
F , Ĝ)φ)//CĜ(φ)

Second decomposition: Z1(W 0
F , Ĝ)φ = ∐

α Z
1(W 0

F , Ĝ)φ,α

H1
Adϕα(W 0

F/Pf , CĜ(φ)◦) ∼= Z1(W 0
F , Ĝ)φ,α,O′//CĜ(φ)◦

Let σ(φ)◦ be the set of π0(φ)-orbit representatives, for π0(φ)α stabilzer of α. Then,
H1(W 0

F/P
e
F , Ĝ)O′ =

∐
φ

∐
α∈Σ(φ)◦

H1
Adϕα(W 0

F/PF , CĜ(φ)◦)//π0(φ)α

At level of rings,
(RLF )Ĝ ⊗O′ =

∏
φ

∏
α

((RLG,ϕα)CĜ(φ)◦)π0(φ)α

Properties of (RLG)Ĝ:
(a) flat

(b) reduced

(c) finite presentation (hard algebra result)
Remark. A excellent normal implies that BG is finitely generated A-algebra and if B is a finitely
generated A-algebra. Then G �

B is reducible (surprising in char 6= 0).
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5.2 Base Change
Base Change to L = L̄ and char(L) = ` 6= p (with ` = 0 allowed). Then,

Z1(W 0
F/P

e
F , Ĝ)L//ĜL → (Z1(W 0

F/P
e
F , Ĝ)//Ĝ)L

corresponds to,

(Re
LG)Ĝ ⊗ L (Re

LG ⊗ L)Ĝ

RLG ⊗ L

In characteristic 0 this is surjective (first go to Q and then L both steps commute with taking
Ĝ-invariansts because fppf descent). For positive characteristic use [Alper, 2014].

Definition 5.2.1. A ring map ρ : A→ B is adequate of for all b ∈ B there is N such that bN ∈ im ρ
and universally adequate means adequare after any base change along A→ A′,

Example 5.2.2. Fp ↪→ Fpn is adequare but base changeing to Fpn ,

Fpn ↪→
∏

Fpn

is not adequate.

Proposition 5.2.3. Let A ↪→ B be finite type F`-algebras then the following are equivalent,

(a) A ↪→ B is universally adequate

(b) Spec (B)→ Spec (A) is universal integral homeomorphisms

(c) there exists r such that for all b ∈ B we have b`r ∈ A

Theorem 5.2.4. A smooth group scheme G → S is reductive iff geometrically reductive which
implues that,

(R`
LG)Ĝ ⊗ F` → (R`

LG/`R
`
LG)Ĝ

is adequate.

5.3 L-parts of H1

Classical GIT means keeping Zariski closed orbits.

Definition 5.3.1. A closed subgroup H ↪→ G is G-completely reductible if for all parabolics P ⊂ G
containing H there exists a Levi subgroup L for P containing H.

Example 5.3.2. G = GLn then we recover the usual definition of completely reducible subgroup
(meaning the corresponding representation is completely reducible)

Definition 5.3.3. An R-parabolic/Levi subgroup of G is one of the form,

P (λ) := {g ∈ G | lim
t→0

λ(t)gλ(t)−1 exists}

L(λ) := CG(λ(Gm))

For some λ : Gm → G. If G is connected reductive, this is equivalent to the usual definitions but
not otherwise.
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Definition 5.3.4. A subgroup H ↪→ G is strongly reductive if: fix a maximal torus S of CG(H)
then H is not contained in any proper parabolic of CG(S) (this is a Levi in G for some parabolic
and thus reductive by Borel LAG 20.8).

Remark. The deinition is independent of the choice of S.

Proposition 5.3.5. H ⊂ G is G-completely reducible ⇐⇒ H ⊂ G is stronly reductive.

If H = 〈x1, . . . , xn〉 topologically finitely generated then,

H strongly reductive ⇐⇒ G · (x1, . . . , xn) ⊂ Gn is z-closed

Remark. In characteristic 0, these are all equivalent to reductibe.

Proof. Assume H is G-completely reducible. Fix a maximal torus S (in CG(H)) so CG(S) is Levi.
Assueme that H ⊂ Q for some parabolic of CG(S). We want to show that Q = CG(S). Fact: there
exists a parabolic P for G such that Q = CG(S) ∩ P .Let S be central in CG(S) so S ⊂ Q ⊂ P
implies that S is a maximal torus of CP (H) ⊂ CG(H). Then H ⊂ P so by G-complete reducibility,
H ⊂ for some L of P . Consider T := Z(L)◦ which is a torus. (reductive, solvable commutative
implies a torus and T ⊂ CP (L) ⊂ CP (H)). Up to conjugacy in CP (H). Then T ⊂ S so there exists
g ∈ CP (H) such that gTg−1 ⊂ S. Thus,

CG(S) ⊂ GG(gTg−1) = gCG(T )g−1 = gLg−1 ⊂ P

and therefore Q = CG(S) which is what we wanted to show.

For the converse, suppose that H is strongly reductive in G and P ⊂ G contains H. We want to
show there exists a Levi L such that H ⊂ L. To use strong reductivity: pick a maximal torus S
in CG(H). Let L := CG(S) (contains H automatically). For some parabolic Q of G so H ⊂ P ∩Q
implies P,Q have a commmon Levi M . We want to show that H ⊂ M . Let P− be the oppositve
(!?) of P with respect to M (meaning P ∩ P− = M). Then,

Ru(Q) = (Ru(Q) ∩M)(Ru(Q) ∩Ru(P ))(Ru(Q) ∩Ru(P−))

HMMM Sean has a proof. �

5.4 •
Definition 5.4.1. ϕ ∈ Z1(W 0

F/P
e
F , Ĝ(L)) is LG-semisimple iff Lϕ(W 0

F ) ≤ LG(L) is LG(L)-completely
reducible.

Theorem 5.4.2. Ĝ(L)-orbit of ϕ is closed iff ϕ is LG-semisimple.

Proof. Z1 ⊂ Hom
(
W 0
F/P

`
F ,

LG(L)
)
is a closed and open subscheme �

Proposition 5.4.3. ϕ : W 0
F → Ĝ(L) semisimple extends continulosuly uniquely to WF
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