1 Moduli of L-parameters

Let F/Q, be finite and p prime and Wy the Weil group. Consider the sequence,

1 Ip Gal (F/F) —— Gal (kp/kr) — 1

Definition 1.0.1. Let ¢ # p be prime, define,
O(GL,, F)
to be the set of isom classes of n-dimensional continuous representations of Wr on GL,(Q;).

There is also,

1(GL,, F)

is the set of isomorphism classes of irreducible smooth representations of GL, (F') the topological
group on Q, (smooth means that vectors have open stabilizers). Note that smooth irreducible
representations are automatically admissible.

Theorem 1.0.2 (Harris-Taylor). There is a bijection:
LL, :1(GL,, F) = ®(GL,, F)
satisfying many good properties.

Remark. For example, when n = 1 the map LL; is induced by Local CFT Wab =~ Fx,

1.1 Goal

Generalize this to general connected reductive G and to more general coefficients A (than Q) for
example A = Z, or the universal deformation ring of some mod ¢ representation.

1.2 For Now
Let G/F be a split reductive group and let G /Q, be its Langlands dual group for example,

Define II(G, F') as before meaning isomorphism classes of smooth irreducible G(F) representa-
tions on Q-vectorspaces. And define ®(G, F) to be continuous homomorphisms Wp — G(Q,) up

to Q(@e) conjugacy.



Conjecture 1.2.1. There is a surjective map,
LLs - 1I(G,F) = ®(G, F)

with finite fibers Iy = LL;'(¢) called L-packets and we expect that I14 is in bijection with irre-
ducible Q,-representations where Sy is a finite group associated to ¢.

Remark. For GL,, we can characterize LL,, using e-factors of pairs etc. but this seems to be Hopeless
for general G.

Remark. One strategy for pinning down LLg is to upgrade it is a categorical equivalence. Fargues-
Scholze have some conjectural categorical LLg which we will not discuss. Roughly it says there is
an equivalence between the derived category of coherent sheaves on the moduli stack of Langlands
parameters is equivalent to the derived category of f-adic sheaves on the Fart-Fontain curve.

Remark. The other strategy is to make it work in families (Emerton and Helm).

1.3 A Tale of Two Centers

Definition 1.3.1. The Berstein center of an abelian category,
Z(A)
is the endomorphisms of the identity functor.

Proposition 1.3.2. Z(A) is commutative.

Proof. Consider ¢,1 € Z(A) then for each object X € A we have (p o 9)x = px o 1bx but
Yx : X — X is a morphism and we know that ¢ is a natural transformation so we have,

pxotx =1hxopx = (Poy)x
and therefore p o =1 o . U

Consider,
A = Repz, (G(F))

which is an ebelian category. Then Z(A) is a commutative Z-algebra. There are variants with
other coefficients (Q, and Fy).

Helm works on G = GL,, over Z;.
Remark. If 2 € C such that,

End = {Fp

1

Then we get a map Z(C') — End (J€) giving a field valued point.



1.4 Spectral Berstein Center

Consider Z°P°°(G,Z,) is global functions on the moduli stack of G-valued L-parameters over Z;.
This stack will be [Z'(Wr, G)/G] where Z'(Wr, ) represents the functor,

R— Homcont (WFv G(R)>

where G(R) is topologized in some way. This is the cocycles because Wy acts trivially on G(R).

Theorem 1.4.1. Z'(Wp, G) is a disjoint union of finite type affine schemes of Z, each is flat and
Ici and generically smooth (over Q, hmm?).

Global functions on the stack,

(2 (W, G)/G]
are just G-equivariant functons on Z YWk, é) so we have,
ZP(Wi, G) = T(Z'(Wr, G)//G)

Theorem 1.4.2. Closed points of ZY(Wg,G)//G correspond to semisimple representations of

Definition 1.4.3. For a representation into a reductive group G meaning a map H — G semi-
simple means that if ¢ : H — G factors through a parabolic subgroup P C G then it must factor
though some Levi factor L C P.

One of the main results of Fargues-Scholtza (FS) is a map,
@Z)G : ZSpeC(G,Zg) — Z(G(F),Zg)

satisfying some good properties. Recall that if we have . an irreducible smooth Z, represnetation
to G(F) with endomorphism @, then we get a map Z(G(F),Z;) — Q, giving a semisimple rep
¢ : Wrp — G(F). This should be,

1(G) - s 3(G)

This recovers Harrs-Taylor and in factlies of 1 is an isomorphism. This recovers “LL in families”
of Emerton-Helm and Helm-Moss.

Actually, we will define Z*(Wp, é) over Z[p~'] by discretising Wr. The end goal is to understand
both centers so that we can state FS and give recient applications.

2 Weil-Deligne Representations

Recall that F'/Q, and residue field kg of cardinality ¢ for ¢ # p for w € W write,
Wp = Z — ¢*

denote w +— ||wl||. Obseve that II(G) does not depend on the ¢-adic topology and thus on ¢ but
®(G) does seem to depend on the f-adic topology. We use Weil-Deligne representations to fix this
problem.



Theorem 2.0.1. Let k/Qy be a finite extension and (p, V') a finte representation of Wy over K (the
field of V). Then there exists some open H C I such that for all x € G we have p(z) unipotent in
GL(V).

Remark. The slogan is that inertia is quasi-unipotent.

Proof. We need some results about the structure of Iy to prove this. Fix F then F'™ C F has
a unique degree n extension for (n,p) = 1 given by the splitting field of 2" — wr where wp is a
uniformizer. Note that F'™ already contains the n''-roots of unity because (n,p) = 1. Therefore
we get a Galois group Z/nZ(1) = p,. (WHAT DOES THIS REALLY MEAN) There is an exact
sequence,

1 PF IF H)\;,épZ)\(l) — 1
X J

Z(1)

By continuity of p we can take an open subgroup H C Iy such that p(z) € 1+ (*M,,(Ok) C
GL,,(K). This implies that,

o (o) — 52 (00) ~ 17

=0 J

converges in the f-adic topology. Now further shrink H so that p|y factors through ¢, (because the
group is pro-£ since it is trivial after reduction) and then for w € Wr we get z € H,

log p(wazw™) = log p(x) " = (log p(x))!
If p is the char poly of log p(x) then writing,
p(T) = aT"
then we showed that ¢" *a; = a; and thus a, = 0 for k # n and thus log p is nilpotent. U

Corollary 2.0.2. There is a unique nilpotent N € End (V') such that p(w)Np(w)~! = ||w||N and
there exists open H C I such that,

p(x) = exp(te(x) - N)

Proof. This equation for a single x ¢ kert, determines N. For existence, it is clear if p|;,. factos
over a finite quotient since then we can take N = 0 (and H the open inside the kernel). If not then
there exists y ¢ kert, such that p(y) # 1 and then we define,

N =log p(y)te(y) ™"
and Z¢(1) — GL(V) given by x +— exp(zN) recovers p via H — Z,(!) — GL(V). O

Definition 2.0.3. Let R be a Z[p~']-algebra. A Weil-Deligne representation over R is a pair (p, N)
where p : Wrp — GL,(R) such that p|;, has finite image and N € M, (R) is nilpotent such that for
all v € Wpg,

p(x)Np(x) ™" = ||w]|N

Remark. The moduli space of these things is flat over Z] where M = #GL,,(kp)nl.

1
)
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Theorem 2.0.4. For K = Q, there is an equivalence of categories,
{n-dim WD-representation over K} = {continuous n-dim representations of Wr over K}

Given by sending (p, N) +— p’ where for w = p®x for x € Ir and ¢ is some lift of Frobenius then
let,

p(w) = p(p®) exp (to(x) - N)
and is independent of the choosen lift of Frobenius.

Definition 2.0.5. For G/F split connected reductive, a WD rep with values in G over R is a pair
(r, N) where, K
r:Wgp — G(R)
such that Ir has finite image and N € g(R) such that for all w € Wg,
Ad(r(w)) - N = [|w][ - N

Remark. There is a moduli space WD(QG) over Z[p~!]. Fix L/F some finite extension and consider

A

WDy, r(G) parametrizing the same (r, V') as before but now r|;, is required to be trivial for I, C Ip.
Then WD(G) = th/F WDy,p and the WDy g are of finite type over Z[p™'].

There is a map WDL/F(G) — Rep(I,r) x Nilp(g) given by (r, N) + (r|s,, N) but since r|;, is
trivial r is a representation of Iy /p.

3 April 12

3.1 Introduction to DHKM

Let G be a quasi-split connected reductive group. We study the modui space of L-parameters ¢ :
Wr — Lg(Q,) continuous with ¢-adic topology. These correspond to continuous ¢ : Wp — Lg(Qy)
with the discrete topology where W is “discretized” tame inertia.

Definition 3.1.1. Let 7 : Wr — Wg/Pr. Consider (F,s) C Wg/Pp where s is a topological
generator of tame inertia. Then,
-1
(F,s) = st 5 FZ
where ¢ = #kp (since s is a generator of tame inertia we have g-roots because these are tame). We
define W2 = 71 ((F, s)).

(WHY IS TAME INERTIA DIVISIBLE BY q, because Z, is divisible by ¢ for all ¢ # ¢)
Then G is a split reductive group scheme over O[p~!. Tt is easy to show that Z'(W2,G) is
representable using generators and relations since WP is discrete.

Theorem 3.1.2. Z1(W2,G) is flat over O[p~], Ici pure absolute dimension dim G + 1 and gener-

A A

ically smooth over Z'(Pr, G) meaning the map Z'(Wp, G)g, — Zl(PF,GA)@Z is smooth. Further-
more,

(a) affine coordinate ring of Z'(W2, &) is (-adically separated
(b) describe the geometric irred. components

(c) describe the quotient
Z'(W, @)1/ /Gy
where L = L has characteristic not p (any algebraically closed field mapping to O[p~]).
Remark. This is the functor R — Z' (W2, G(R)) on O[p~']-algebras.
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3.2 Affine Scheme

Easy to see that

A

Lemma 3.2.1. The functor R — Z'(W}2/Pr, (G)(R)) is representable by an affine scheme of finite
type over O[1/p].
Proof. A coycle ¢ € Z'(W2%/Pp, G(R)) is determined uniquely by ¢(F),¢(s) € G(R). Then,

A

(Fo, s0) € G(R) x G(R) is a cocycle <= (Fy, F)(s0,5)(Fo, F)™' = (50, 5)

4 April 28 Reduction to tame Parameters

Recall G is a split reductive group scheme over Z[p~!] with a finite action of Wy and *G = GxW
where W is a finite quotient of Wy through which the action factors.

We studied moduli of tame parameters, i.e. assumed the action factors through Wg/Pr where Pp
is wild inertia. [We also assume the action preserves a Borel pair, but this is irrelevant. We only
needed that Lp(s)® preserves a Borel pair, this is always true by Setinberg “Endomorphisms of
Linear Alebraic Groups”, Theorem 7.5]. We proves some nice properties of Z}(W2/Pp, G),

(a) ZY (WP, Pp, Q) is fippf / Z[1/p] with lci fibers of pure dimension dim G
(b) ZY (WP, G) is generically smooth
(c) coordinate ring is ¢-adically separated for ¢ # p.

We want the same properties for Z1(W2, é) in general. (Strategy, reduce to tame case). Idea:
look at space of cycles with fixed behavior on Pr. First fix a filtration,

PrDPrDPED -
of Pr by open normal subgroups of Pr with the property that,
N Pr={1}
Fix two data, the first is the restriction of ¢ to Pr denoted by ¢ [by continuity each ¢ factors
through Pr/Pf for some e (the preimage of 0 is open and hence finite index since Pp is profinite).

Theorem 4.0.1. Fix e > 1. There is a number field K, and a finite set ®, C Z'(Pg /P&, G(Ok.[1/p])
such that,

(a) if R is a O, [1/pl-algebra then any cocycle ¢ : Pp/Pg — G(K) is étale-locally G-conjugate
to some ¢y € P, (unique once it exists)

(b) for any ¢ € @, the reductive group scheme Cp(¢)° is split over Ok, [1/p] and its component
group mo(¢) = mo(Cp(¢)) is constant.

WARNING: Cf(¢) is the centralizer of “¢ not of ¢ and Cry(¢) is not even the centralizer of “¢.
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Definition 4.0.2. We define functorially,

Cra(p) = {(g,w) € "G | (g9, w) ¢(w™ " pw)(g,w) " ="¢(p) for all p € Pr}

Remark. From now on assume that Pp/Pg — W is injective. Note, Crg(¢) NG = Ca(9).
Let 7o(¢) = mo(Crg(¢)) then there is a SES (maybe need ¢ admissible)

1 —— mo(p) —— 7o(0) |44 1

Any extension “¢ of ¢ factors through Crg(¢) so it gives a map ag : W — Crg(d) — 7o(0)
extending the map Pp e, Cra(o) — To(9).

L
The other datum we fix is a section « of (*) extending Pp A Cra(¢) — To(¢). Let

Y (¢) = {such a}.

Then we write down,

Z'\Wp,G)s = {p € Z2(Wp,G) | ¢l = ¢}

and likewise,
Zl(ngG)qué - {4,0 S Z1<WF> )¢> ‘ Qp = Oé}

Definition 4.0.3. We say ¢, «a are admissible if these schemes are nonempty.

There is an isomorphism for fixed ¢ over R of R-schemes,
Zpap Wi/ Pr, Co(0))m = 2 (Wi, G)oor

This almost reduces us to the previous case with one Caveat: the action of Adyp might not be finite.
Also representatives ¢ might not exist integrally.

Theorem 4.0.4 (Main Theorem). There is a finite extension K|/K. such that for any admissible
¢ € ®. and admissible a € X(¢) there is some ¢, € Z(W, G(Ok,[1/p]) such that Ly, (WD) is
finite (also it can be chosen to preserve a Borel pair of C(¢)°).

4.1 Consequences

First we remark that to prove geometric properties of Z'(Wp/Pg, G) it suffices to consider the base
chance to the extension K. There is a map,

(WF/PF’G)OKU/P]_)Z(PF/PF>G(9K 1/p] — HG ¢ = HG/C
PED, PEDe

Then over a particlar ¢ we get the fiber,

Z'(We/Ps,G) ——— ZH(Wp

Spec (O [1/p]) —2— ZM(Pp/Pg, Q) o (11



Over Z[1/p] we can choose these ®, such that ®, C ., for each e. As a consequence,

Zl(PF,G) 1/p]—lgﬁlz (PFaPF7G Z[1/p] — HG ¢
Pped

So ultimately, good properties of Z'(W}, @) reduce to these properties over Z[1/p] and thus to the
fibers. Because the obits downstairs are open and closed we just need to check over each orbit and
because of equivariance we can check flatness on this section.

Theorem 4.1.1. This discussion implies that,
(a) ZY (W2, () is tppf | Ok.[1/p] and lci with fibers of pure dim Cp ()
(b) ZY (WP, )y is generically smooth

(c) the coordinate ring is ¢-adically separated.

4.2 Outline of the Proof

We only will need to show there are sections fppf locally (not integral sections). We will show,
(a) using admissibility, find an F,-point
(b
(c

)
)

(d) spread out to get a section over a quasi-finite flat extension of O [1/p]
)

W (F,)
modify the lift to have finite image

(e) modify to get sections over the remaining complete local rings Oy,
Fix a Borel pair By = (B, T,) in Cg(9)° let Ty = Ny (4)(Bg). Some facts,

(a) Ty is smooth over Ok, [1/p] (N(B)° = B and the normalizer of a mult. type group scheme in
a smooth group scheme is smooth without connected component

(b) 75 = Ty (normalizer of Borus is a reductive group scheme in the torus)
(c) mo(Tp) = mo(Cra(@)) = To(¢) (Borel pairs are étale-locally conjugate).

(d) the action of T4 on T}, factors through 7o(¢) C Ty and thus any o € X(¢) gives rise to an
action of Wg/Pp on T.

Definition 4.2.1. Functorially,
DWE,T,)s = fp € 2N WEG) | “o(WD) € Ty}
This condition is equivalent to Lo (W2) normalizing By.
This gives a disjoint union decomposition,

E(W}(?V’]:b)(b: H E<W}(«lv7;>)¢>,a
aeX(e)

Each as an Ok, [1/p]-action from Z}(W}/Pr,T,) given by multiplication (¢, ¢) — e such that
for every O, [1/p]-algebra R,

S(Wp, To(R))s.a
is either empty or a torsor for Z(Wp/Pr, Ty(R)) [pseudo-torsor]. The main result is again.
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Theorem 4.2.2. IF ¢ and « are admissible, then
(a) ZL(Wp/Pr,Ty) is a diagonalizable group scheme over Ok, [1/p].
(b) S(Wg,T,), is an fppf torsor under Z2(Wp/Pr,Ty).
moreover, both statements remain true for W2 replace by a suitable finite quotient.

The main theorem follows for the statment that X(W,T,(Ok:[1/p]))ga # @ for some finite
K!/K.. One other point: torsors for a diag. group scheme E are trivialed over the normalization
in some finite extension. There are two essential cases,

(a) D =Gy,
(b) D = p, for some n

For case (a) we pass to the Hilbert class field and torsors for G,, are line bundles but all ideal
classes are trivialied after this cover so H'(Ok,[1/p],G,) — H'(Ok:[1/p], G,,) is the zero map.
For (b) there is an exact sequence,

O, [1/p] = O [1/p]* —— Hiyul( O [1/0]s pim) = Hip(Ox [1/0], Gin) — Hio (O [1/p], Gin)

So after passing to K, the u,,-torsor is given by the m-th roots of some f € Ok, [1/p]*. So pass
to the splitting field of 2™ — f.

The main point: various cohomology calculations. In putcomes for the following. Let Wy = Wg/Pp
and Iy = Ir/Pp and A an abelian group with finite Wy-action.

(a) There is a SES,
0 —— H'\Wy/Iy, H' (Iy, A)) —— H*(Wy, A) —— H?(Iy, A)Vo/lo —

using the cohomological dimensions to get the zeros coming from the H-SSS.
(b) H?*(Iy, A) = 0 if A contains a p/-div group of fin index
(c) H' (Wy/Io, H'(Iy, A)) = 0 if A is a p/-div group and thus H*(W, A) = 0 if A is a p/-div group.

Remark. These follow from Iy = zv.

4.3 Completing the Proof
(a) Consider the map,
Zo (Wi, P, Ty) — Ty x Ty
functorially via,
n = (n(F),n(s))
This realizes the LHS as a flat closed subgroup scheme of Ty x T}, which is diagonalizable so

it is diagonalizable.

(b) We want to show S(W2,Ty) s is an fppf-torsor for Z2(Wp/Pr,Ty) we know on R-points it
is empty or acted upon simply transitively. Thus it suffices to show it has fppf local sections.
Suffices to find a faithfully flat O, [1/p]-algebra R such that X(W2, T43(R)).a # D-
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4.3.1 Step 1

By admissibility Z' (W2, G)ga # @ but it is finite type over Ok, [1/p] and hence by Chevallay’s
theorem it has an Fy-point. Therefore, get a map,

wo 2% G(F,)

factors through a finite quoitent because W2 is finitely generated, hence lands in some “G(F).
Roughly speaking, modify ¢ by Cp(¢) to assume it fixes a Borel pair, and then use some cohomology
vanishing to modify further.

4.3.2 Step 2

We want to lift to characteristic zero. Find ¢ : W& — T,(W(k)) continuous for the ordi-
nary topology on the left and the discrete topology on the right. By smoothness of 7, the map
To(W(k)) — Ty(k) is surjective so we can choose lifts ¢(w) € T5(W (k)) such that,

(a) @(w) depens only on @(w) and @(w) = 1 if g(w) = 1 and L@(pw) = Lo(p)L@(w) for all
w € Wr and p € Pp. Then consider the map,

co: Wp x Wi — ker (To(W (k) — Ty(k)) = A

sending,

(w,w') = F@(w) G(w) G (ww') !

This is a 2-cocycle, it has finite image, factors through (Wr/Pr) x (Wg/Pr), and it is enough

that this is a coboundary. Problems, H?(Wp, A) # 0 but A’ = ker (T,(O) — T, (k)) is divisble,
so H*(Wg, A') =0

4.3.3 Step 3

Modify L¢ to have finite image. By continuity in step 2 (coefficients with the discrete topology)
Lo(Ir) is finite since I is compact. Problem is Lo(F) may not have finite order but this is the

only obstruction to having finite order. Let Cy4 be the maximal subtorus of T;;V #IPr g0 Cy(0) is
finite index in T, ¢(@)WF /Pr Choose m > 1 such that,

(a) Po(Fm) =1

(b) @(F") € C4(O) [Fo(IF) is finite so p(F™) € Ty(O)"r/Pr (it commutes with itself so just
needs to commute with ¢(s) but there are finitely many mod Pr) and Cy(O) C Ty(O)Wr/Pr
is finite index].

Bow ker (Cy(O) — Cy(k)) is divislbe. So there exists ¢ such that ¢" = @(F"). Take ¢’ : w
Cffy(w)gp(w)'

4.3.4 Step 4

There exists a section / quasi-finite flat extension. The point X(W, Ty),o — Spec (Ok,[1/p]) is
dominant, so spreads out to a generic section to Ok|[1/N] where K/K, is finite N > 1.
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4.3.5 Step 5

Find a section over the missing points. Pick a prime A of K divising N but not p, let K, be the
completion at A, and Oy = Of,. Then Lo : Wr — T3(Ok[1/N]) = T3(K,). We want to conjugate
by an element of T4(K) such that the image lies in 7,(0,). A calculation reduces to vanishing of
@ in HY(W, Ty(K)/T,(Oy)). This might not be divisible but T,,(K)/Ty(O,) is divisible :

Ty(K))/T5(0y) = [ hg] Ty(K")/Ty(Ogr) = [ hg] Hom (X.(Ty), 1/v(7k:)Z) = Hom (X (Ty), Q)

5 May 3

5.1 Quotients and GIT of Cocycles

(a) H' and basic properties

(b) passage to L-parameters (L = L)

(c) “classical” GIT detour

(d) Wg/Pr to Wg/I% and inependence of choice of Wj.

Goal: understand, A R R
HY(WpPp, G) = Z'(Wp/Pp, G) /|G
We have a 2-step decomposition,
=1l z; = H Zja

pED,
and we showed that,
Zyo = Znay(Wp/Pr.Cs(9))
Then I can write,

Z'Wp/Pp) = [T (G x 2" (W, G)s)//Ce(6)

PED,
Second decomposition: Z' (W9, GQ)y = 1, Z' (W2, Gy

Hiap Wi/ Py, Ca(9)°) = Z' (Wi, a0/ /C(0)°
Let 0(¢)° be the set of my(¢p)-orbit representatives, for my(¢), stabilzer of a. Then,

H'Wp/PpGlo =11 11 Hiap W/ Pr. Ce(9)°)//m0(6)a

¢ aeX(¢)°

At level of rings,
(Rep)© 90 = HH (Regp, )Ca(@)*ymo(@a

Properties of (Rig)C:
(a) flat
(b) reduced

(c) finite presentation (hard algebra result)

Remark. A excellent normal implies that B¢ is finitely generated A-algebra and if B is a finitely
generated A-algebra. Then G C B is reducible (surprising in char # 0).
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5.2 Base Change
Base Change to L = L and char(L) = ¢ # p (with £ = 0 allowed). Then,
Z'(Wy/ P, G/ |G — (Z'(Wp/ P, G)/G)1

corresponds to,

(Ri)® ® L — (Riy ® L)¢

T~

Rig® L

In characteristic 0 this is surjective (first go to Q and then L both steps commute with taking
G-invariansts because fppf descent). For positive characteristic use [Alper, 2014].

Definition 5.2.1. A ring map p : A — B is adequate of for all b € B there is N such that b" € im p
and universally adequate means adequare after any base change along A — A’,

Example 5.2.2. F, — F,» is adequare but base changeing to IF,n,
Fpr < [[Fpm
is not adequate.
Proposition 5.2.3. Let A < B be finite type F-algebras then the following are equivalent,

(a) A < B is universally adequate
(b) Spec (B) — Spec (A) is universal integral homeomorphisms
(c) there exists 7 such that for all b € B we have b* € A

Theorem 5.2.4. A smooth group scheme G — S is reductive iff geometrically reductive which
implues that, A )
(Rig)” @ Fr — (Rig/(Rig)”

is adequate.

5.3 L-parts of H!

Classical GIT means keeping Zariski closed orbits.

Definition 5.3.1. A closed subgroup H — G is G-completely reductible if for all parabolics P C G
containing H there exists a Levi subgroup L for P containing H.

Example 5.3.2. G = GL,, then we recover the usual definition of completely reducible subgroup
(meaning the corresponding representation is completely reducible)

Definition 5.3.3. An R-parabolic/Levi subgroup of G is one of the form,
P\ ={gedG| lg% At)gA(t) ! exists}
L(A) == Ca(MGn))
For some \ : G,, — G. If G is connected reductive, this is equivalent to the usual definitions but

not otherwise.
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Definition 5.3.4. A subgroup H < G is strongly reductive if: fix a maximal torus S of Cg(H)
then H is not contained in any proper parabolic of C(S) (this is a Levi in G for some parabolic
and thus reductive by Borel LAG 20.8).

Remark. The deinition is independent of the choice of S.
Proposition 5.3.5. H C G is G-completely reducible <= H C G is stronly reductive.

If H=(xy,...,x,) topologically finitely generated then,
H strongly reductive <= G- (z1,...,x,) C G" is z-closed

Remark. In characteristic 0, these are all equivalent to reductibe.

Proof. Assume H is G-completely reducible. Fix a maximal torus S (in Cg(H)) so C(S) is Levi.
Assueme that H C @ for some parabolic of C(S). We want to show that Q@ = C(S). Fact: there
exists a parabolic P for G such that @@ = Cg(S) N P.Let S be central in Cg(S) so S C Q C P
implies that S is a maximal torus of Cp(H) C Cg(H). Then H C P so by G-complete reducibility,
H C for some L of P. Consider T' := Z(L)° which is a torus. (reductive, solvable commutative
implies a torus and 7' C Cp(L) C Cp(H)). Up to conjugacy in Cp(H). Then T C S so there exists
g € Cp(H) such that ¢gT'g~! € S. Thus,

Ca(S) € Ga(gTg™) = gCa(T)g ™ =gLg' C P
and therefore @) = C(.S) which is what we wanted to show.

For the converse, suppose that H is strongly reductive in G and P C G contains H. We want to
show there exists a Levi L such that H C L. To use strong reductivity: pick a maximal torus S
in Cq(H). Let L := Cg(S) (contains H automatically). For some parabolic @ of G so H C PN Q
implies P, () have a commmon Levi M. We want to show that H C M. Let P~ be the oppositve
(1?) of P with respect to M (meaning P N P~ = M). Then,

Ry(Q) = (R.(Q) N M)(R.(Q) N Ru(P))(Ru(Q) N Ru(P7))

HMMM Sean has a proof. O

54 o

Definition 5.4.1. ¢ € Z'(W2/Pg, G(L)) is “G-semisimple iff Lo(W2) < “G(L) is “G(L)-completely
reducible.

Theorem 5.4.2. G(L)-orbit of ¢ is closed iff ¢ is “G-semisimple.

Proof. Z' C Hom (Wg/Pf;, LG(L)) is a closed and open subscheme O

Proposition 5.4.3. ¢ : W2 — G(L) semisimple extends continulosuly uniquely to Wy
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