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1. Introduction

In this note we consider a particularly interesting example of a Fano fibration f : X → P1

which is smooth but non isotrivial suggested by Kuznetsov. We will verify that a general

pencil of codimension 4 slices of the Spinor 10-fold form produce a family with the following

properties:

(a) f : X → P1 is smooth and projective

(b) the fibers are Fano 6-folds of Picard rank 1

(c) two general fibers of f are not isomorphic

(d) f is birationally isotrivial, in fact all fibers are rational

(e) the degree of the Chow-Mumford bundle of f is positive.

In the following sections, we will define the Spinor 10-fold and verify the above facts. Then

we will show how to compute the Chow-Mumford bundle and consider K-stability of this

family (TODO).

2. Spinor 10-fold

Consider the reductive group G = Spin(10) corresponding to the simply connected form of

the root system D5 whose Dynkin diagram is

α1
α2 α3

α4

α5

Let P4 be the maximal parabolic corresponding to omitting the simple root α4 (or we can

symmetrically consider P5) and let X10 = G/P4 which is a smooth proper 10-fold. There is

a 16-dimensional representation S16 called the half-spinor representation of G. Under this

representation P4 maps to the maximal parabolic omitting the first index of GL16. This given

an embedding X10 ↪→ P15. Here are some facts we need:

Lemma 2.1. [Kuz18, Section 3.1] Let OX10(1) denote the very ample line bundle induced by

the half-spinor embedding X10 ↪→ P15 then:
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(1) OX10(1) generates PicX10 and hence is the line bundle corresponding to the funda-

mental weight of the omitted index

OX10(1) = OX10(ωP )

(2) ωX10
∼= OX10(−8)

Lemma 2.2. [Kuz18, Corollary 7.9] For any 1 ≤ k ≤ 5 a smooth linear section X10 ∩ V of

codimension k of X10 is rational.

This verifies fact (d).

2.1. Projective Duality, Defect, and Slicing. The most important fact making the con-

struction work is the projective duality of X10 ↪→ P15. Recall that for a subvariety Y ⊊ PN

we define Y ∨ ↪→ P̌N as the set of hyperplanes H so that H is tangent to Y meaning there is

a point y ∈ H ∩ Y where TyY ⊂ TyH. If Y is smooth, this is the set of hypersurfaces so that

H∩Y is singular. Bertini’s theorem proves that Y ∨ ↪→ P̌N is irreducible and has codimension

≥ 1.

Definition 2.3. The defect of an embedding Y ↪→ P̌N is the number

δ = codimP̌NY
∨ − 1

Usually we have δ = 0 unless something very special happens with the embedding. Indeed,

there is the following classification in low dimensions of embeddings with positive defect:

Theorem 2.4. [LS87] Let dimX ≤ 6 and X admit an embedding in PN with defect δ > 0.

Then X is one of the following,

(1) Pn

(2) a scroll over a curve or surface

(3) Plucker embedding Gr(2, 5) ↪→ P9

(4) a smooth hyperplane slice of the above Plucker embedding

Furthermore, flag varieties have embeddings with positive defect in exactly the following

cases:

Theorem 2.5. [KM87] Let X = G/P where P is a parabolic subgroup and consider an

embedding X ↪→ PN with defect δ. Then δ > 0 if and only if X ↪→ PN is isomorphic to one

of the following

(1) a linear embedding Pn ↪→ PN with δ = n

(2) the Pücker embedding of the Grassmanian Gr(2, 2m+ 1) ↪→ Pm(2m+1)−1 with δ = 2

(3) the Spinor 10-fold X10 ↪→ P15 with δ = 4

(4) X1×X2 with the Segre embedding where X1 is one of the above and δ = δ(X1)−dimX2.

Lemma 2.6. Let Y ↪→ PN be a smooth variety embedded in projective space with defect δ.

The locus,

Sk := {V ⊂ PN | V ∩ Y is singular} ⊂ Gr(N − k + 1, N + 1)

of those planes PN−k ⊂ PN whose intersection with Y is singular, has codimension ≥ δ−k+2.

Proof. By definition, y ∈ Y is a singular point of Y ∩ V exactly when
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(1) y ∈ V

(2) the linear forms ℓ1, . . . , ℓk ∈ H0(PN ,O(1)) cutting out V are dependent in the cotan-

gent space of Y at y

O(1)⊗my/m
2
y
∼= my/m

2
y

therefore, there exists a nonzero linear form a1ℓ1 + · · ·+ akℓk vanishing at y whose image in

my/m
2
y is zero. This cuts out a hyperplane H such that

(1) V ⊂ H

(2) H ∩ Y is singular at y.

Therefore,

Sk ⊂ {V ⊂ PN | V ⊂ H for some H ∈ S1} ⊂ Gr(N − k + 1, N + 1)

This larger space is what we call the saturation of S1. It is the image under the first projection

of the incidence correspondence

X ⊂ Gr(N − k + 1, N + 1)× S1

of (V,H) such that V ⊂ H. Now the second projection realizes X as a grassmannian bundle

of N − k planes inside PN−1. Therefore,

dimX = dimGr(N − k + 1, N) + dimS1 = (N − k + 1)(k − 1) + dimS1

and thus

codimGr(N−k+1,N+1) Sk ≥ codimGr(N−k+1,N+1) π2(X )

≥ dimGr(N − k + 1, N + 1)− dimX
= (N − k + 1)k − (N − k + 1)(k − 1)− dimS1

= (N − k + 1)− dimS1 = δ − k + 2

because by definition δ := N − dimS1 − 1. □

Corollary 2.7. Let Y ↪→ PN be a smooth variety embedded in projective space with defect

δ. A generic PGLN+1 translate of any curve C ↪→ Gr(N − k + 1, N + 1) parametrizing

codimension k linear spaces with 1 ≤ k ≤ δ produces a smooth family of slices

Y → C

where Yt := Y ∩ Vt where for t ∈ C then Vt is the linear space corresponding to the point t on

the translate of C in Gr(N − k + 1, N + 1).

Proof. Since codimSk,Gr(N − k + 1, N + 1) ≥ δ − k + 2 if k ≤ δ then Sk has only excess

intersection with any curve C. By Kleiman’s Bertini, since the Grasmannian is a PGLN+1-

homogeneous space, the generic translate of C does not intersect Sk. Hence every parametrized

slice is smooth. In particular, the incidence correspondence Y → C is a smooth morphism. □

This proves (a) taking the family of slices over a generic rational curve in Gr(11, 16) slicing

X10.
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2.2. Linear Slices of the Spinor 10-fold. Consider taking r hyperplane slices of X10 to

get a variety Y . Note that Y is Fano for k < 8 since ωX10 = OX10(−8) and PicY = Z ⟨OY (1)⟩
by the Grothendieck-Lefschetz theorem. This verifies (b). The normal bundle sequence gives

an exact sequence

0 → TY → TX |Y → OY (1)
r → 0

Furthermore, the composition

H0(X,OX(1))r → H0(Y,OY (1))
r → H1(Y, TY )

of the restriction with the connecting map from the normal bundle sequence gives the Kodaira-

Spencer map κ for the family of slices over the Grassmannian. Furthermore, to compute the

restrictions of bundles to Y we use the Kozul resolution

0 → OX(−r) → OX(−(r − 1))r → · · · → OX(−1)r → OX → OY → 0

Now we need the following facts which are proved in the next section:

Lemma 2.8. As a G-module there is a canonical isomorphism in the derived category

RΓ(X,OX(k)) =



Vω4 [0] k = 1

C[0] k = 0

0 0 > k > −8

C[−10] k = −8

Vω5 [−10] k = −9

where Vλ is the irreducible representation of G with highest weight λ and ωi is the fundamental

weight corresponding to the simple root αi.

Remark 2.9. Vω4 = V ∨
ω5

are 16-dimensional.

Corollary 2.10. For r ≤ 8 the canonical map

Vω4 [0] = RΓ(X,OX(1)) → RΓ(Y,OY (1))

is surjective on cohomology and gives

RΓ(Y,OY (1)) = (Vω4/Cr)[0]

Proof. Indeed, OY (1) is computed by the complex

[OX(−r) → OX(−(r − 1))r → · · · → OX(−1)r → OX ]⊗OX(1)

supported in degrees [−r, 0]. None of these terms have any higher cohomology so there is an

exact sequence,

0 → H0(X,Or
X) → H0(X,OX(1)) → H0(Y,OY (1)) → 0

□

To go further we need to understand the cohomology of the twisted tangent bundle pf X10

whose proof we defer to the next section.
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Lemma 2.11. There are canonical isomorphims as G-modules

RΓ(X, TX(k)) =



Vω2 [0] k = 0

0 0 > k > −8

C[−9] k = 8

0 k = 9

Vω3 [−10] k = 10

Remark 2.12. Vω2 is the adjoint representation.

Corollary 2.13. The canonical map

RΓ(X, TX) → RΓ(Y, TX |Y )

is an isomorphism if r < 8.

Proof. Indeed, TX |Y is computed by the complex

[OX(−r) → OX(−(r − 1))r → · · · → OX(−1)r → OX ]⊗ TX
supported in degrees [−r, 0]. None of these terms have any higher cohomology and the terms

of negative degree have no cohomology at all. This proves the claim. □

Corollary 2.14. If r < 8 then there is a diagram

H0(X, TX) H0(X,OX(1))r

0 H0(Y, TY ) H0(Y, TX |Y ) H0(Y,OY (1))
r H1(Y, TY ) → 0

κ

therefore

h0(Y, TY ) ≥ r(dimVω4 − r)− dimVω2 = r(16− r)−
(
10

2

)
= −r2 + 16r − 45

which is nonzero for r ≥ 4. The bound gives ≥ 3 for r = 4.

Hence for r ≥ 4 the Kodaira-Spencer map κ for the family of linear slices over the Gras-

mannian is nonzero. This verifies fact (c) after restricting to a generic P1 ↪→ Gr.

3. Borel-Weil-Bott

3.1. Review of Root Systems Theory of Reductive Groups. Let G be a reductive

group. Fix inclusions T ⊂ B ⊂ P ⊂ G where T is a maximal torus, B a borel subgroup, and

P a parabolic. The main lattices of import live in either the character lattice

X∗(T ) := Hom(T,Gm)

and the cocharacter lattice

X∗(T ) := Hom(Gm, T )

For a representation ρ : G → GL(V ), we say the weights of V are the nonzero elements

α ∈ X∗(T ) such that

Vα = {v ∈ V | ∀t ∈ T : ρ(t) · v = α(t) · v}
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For the adjoint representation, the weights have a special name: roots Φ ⊂ X∗(T ). We make

the convention of using the “lower Borel” (so that dominant weights correspond to ample line

bundles) so that we call the weights of the adjoint torus action on the Lie algebra b ⊂ g of

the Borel form a subset Φ− ⊂ Φ called the negative roots. The complement Φ+ ⊂ Φ are the

positive roots. It turns out that Φ− = −Φ+.

Definition 3.1. For real weights µ, λ ∈ X∗(T )R we say that µ is higher than λ if µ− λ is a

convex (positive real) combination of elements of Φ+.

Inside Φ+ there is a distinguished subset ∆ ⊂ Φ+ of simple roots which are the α ∈ Φ+

that cannot be expressed as a sum of positive roots.

Lemma 3.2. The simple roots satisfy

(1) #∆ = rankX∗(T )

(2) every α ∈ Φ can be written as a unique integer linear combination of elements of ∆

(3) whenever α ∈ Φ is written as a linear combination of elements of ∆ the coefficients

are all positive (in which case α ∈ Φ+) or all negative (in which case α ∈ Φ−) giving

alterative descriptions of the positive and negative roots.

The Weyl group, W = NG(T )/T is a finite reflection group acting on X∗(T ) and preserving

the sets of positive and negative roots. For a root α : T → Gm there is a canonically associated

coroot α∨ : Gm → T defined as the unique cocharacter satisfying

(1) ⟨α, α∨⟩ = 2

(2) α∨ : Gm → T factors through T ∩ D(ZG((kerα)
0
red)) where D(−) is the derived

subgroup.

This gives a set Φ∨ ⊂ X∗(T ) of coroots and likewise a set of positive and negative coroots.

We choose a basis {ωα}α∈∆ of X∗(T )R consisting of fundamental weights which are defined

so that 〈
ωα, β

∨〉 = δαβ α, β ∈ ∆

Definition 3.3. A weight µ ∈ X∗(T )R is dominant if ⟨µ, α∨⟩ ≥ 0 for every positive (equiva-

lently every simple) root α ∈ Φ+. Equivalently, µ is a convex real combination of fundamental

weights.

The Weyl group is generated by reflections

rα(β) := β −
〈
β, α∨〉α

In fact, it is generated by the simple reflections, those rα for α ∈ ∆. For an element w ∈ W ,

the length ℓ(w) of w is the minimal number of simple reflections needed to express w. The

Weyl group acts simply transitively on the Weyl chambers – the connected components of

X∗(T )R \
⋃
α∈Φ

{λ ∈ X∗(T )R |
〈
µ, α∨〉 = 0}.

The fundamental chamber consist of weights µ such that ⟨µ, α∨⟩ ≥ 0 for all α ∈ Φ+ which

is the set of dominant weights. For any weight µ there is always w ∈ W such that w · µ is

dominant. The dominant weight [λ] := w · λ is unique (although w ∈ W is not). We let the

index ind(λ) of λ be the minimal ℓ(w) over w ∈ W realizing w · λ = [λ]. A weight on the
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boundary of a Weyl chamber is called singular. Explicitly, µ is singular if ⟨µ, α∨⟩ = 0 for

some α ∈ Φ. We also define

ρ :=
∑
α∈∆

ωα =
1

2

∑
α∈Φ+

α

Notice that ⟨ρ, α∨⟩ = 1 for all α ∈ ∆ so ρ is dominant and nonsingular. Furthermore if µ is

any dominant weight then µ+ ρ is dominant and nonsingular.

The weights of the adjoint representation on the Lie algebra p ⊂ g of the parabolic P ⊂ G

are Φ− ∪ Φ+
P so that

p = t⊕
⊕
α∈Φ−

gα ⊕
⊕
α∈Φ+

P

gα

where Φ+
P is the set of positive roots which are weights for this action. This is a closed set of

positive roots. We set ΦP = Φ+
P ∪ Φ−

P where Φ−
P = −Φ+

P .

3.2. Cohomology Computations. To prove the cohomology lemmas, we need to apply

Borel-Weil-Bott. Here we actually need a more general version due to Bott that computes

the cohomology of all homogeneous vector bundles.

Theorem 3.4 (Bott). Let G be a reductive group and P ⊂ G a parabolic. Chose a Borel

subgroup B ⊂ P . Let V be an irreducible representation of P with highest weight λ ∈ g∗

and E = G ×P V the corresponding homogeneous vector bundle. Then there is a canonical

isomorphism

Hq(X,E) ∼= Hq(G/B,OG/B(λ))

which is computed as follows:

(1) if λ+ ρ is singular then Hq(X,E) = 0 for all q

(2) otherwise Hq(X,E) = 0 for all q ̸= ℓ := ind(λ + ρ) and Hℓ(X,E) = Vλ′ is the

irreducible G-module of highest weight λ′ := [λ+ ρ]− ρ.

See [Bot57] and for this formulation [AF10, Theorem 2.4.6].

Lemma 3.5. The tangent bundle of X = G/P is the homogenous vector bundle associated

to the P -representation g/p. Hence, its weights are Φ+
X := Φ+ \ Φ+

P .

Recall that if V is an irreducible P -representation and U ⊂ P is the unipotent radical

then V U ⊂ V is a P -subrepresentation because U is normal. However, V U is nonempty by

the Lie–Kolchin theorem. By irreducibility, V U = V so V factors though a representation

of the Levi factor L := P/U . Because L is reductive, the representation V is determined by

its highest weight in X∗(T ). If V is not irreducible, what makes life tricky is that L is not

semisimple, it has an abelian factor. Therefore, we cannot just look the set of highest weights

of V to determine its irreducible Jordan-Hölder factors. If P is a maximal parabolic then

it corresponds to a unique omitted simple root {αP } = ∆ \ ∆P where ∆P = ΦP ∩ ∆. The

abelian part Z(L)∩T =
⋂

α∈ΦP
kerα is spanned by the fundamental coweight ω∨

P dual to αP .

Note also that a character λ ∈ X∗(T ) extends to P iff it extends to L iff it kills D(L) ∩ T

and this is generated by α∨ for α ∈ ΦP . Therefore, X∗(P ) =
⋂

α∈ΦP
ker ⟨−, α∨⟩ which is

spanned by the fundamental weights {ωα}α∈∆\∆P
in particular by ωP if P is maximal. These

characters ZωP correspond to homogeneous line bundles on X = G/P .
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Let V be a P -representation, to compute its Jordan-Hölder factors we partition the weights

by grade – the coefficient of αP when expressed in the basis of simple roots. The decomposition

relies on nice properties for the weight spaces of irreps for semisimple Lie groups arising from

what I call the “uninterrupted string property” for sl2-reps. Precisely, if V is an irrep for sl2
its weight spaces Vn are indexed by an integer n ∈ Z, the degree of the corresponding character
T → Gm, and they are symmetric about the origin and consist of sums of contiguous blocks. In

particular, if Va is nontrivial then Vk is nontrivial for all −a ≤ k ≤ a. Hence an uninterrupted

string. This is consequential for an irrep V of any semisimple group G because any coroot

α∨ factors through the maximal torus of a copy of SL2 and the intersection pairing ⟨−, α∨⟩
measures the induced weight of V viewed as an SL2-representation. In particular, if Vµ+kα is

nontrivial then so are Vµ+k′α for −k ≤ k′ ≤ k by the uninterrupted string property.

Lemma 3.6. Let P be a maximal parabolic and L = P/U the Levi. The Jordan-Hölder

factors of V are exactly the L-representations of highest weight λ where λ varies over the

weights of V that are highest among all weights of the same grade.

Proof. Among weights of the same grade, there is a unique irreducible representation for each

highest weight. Indeed, these are the weights so that ω∨
PZ acts by a fixed character so it

is equivalent to a representation of L/D(L). Since L/D(L) is semisimple its representations

split into irreps determined by their highest weight. □

Often, there will be a unique highest weight of each fixed grade in which case the grade

filtration on V is a Jordan-Hölder filtration. Indeed, this occurs for V = g/p. Since g is

semisimple, the root spaces of the adjoint representation, and hence of V , are all 1-dimensional

so there is a most a single irrep of L/D(L) at each grade. Indeed, if we have two irreps in the

decomposition then two of their weight spaces must collide to give a weight space of higher

multiplicity by the “uninterrupted string property” for sl2-reps.

Lemma 3.7. For G = Spin(10) and P = P4 the P -module g/p has only grade 1 and is

irreducible of highest weight ω2.

Proof. This calculation is done in Magma for the root system D5 by listing the positive roots

in Φ+ \ Φ+
P and stratifying them according to the coefficient of αP based on simple roots.

We find that only the coefficient 1 appears and these weights have a unique highest element.

There are 9 roots in Φ+
P and those have grade 0 by definition. The remaining 11 roots in

Φ+ \ Φ+
P all have grade 1. □

The proofs of the cohomology lemmas is now immediate from Borel-Weil-Bott. The sheaf

OX(k) corresponds to the P -irrep of weight kω4. The sheaf TX(k) corresponds to the P -irrep

of weight ω2+kω4. Magma handles computing the dominant representatives under the Weyl

action. These scripts are available upon request.

4. Computing the Pushforward of the Relative Anti-Canonical

We are now going to consider the universal family of slices of X10. From now on, unless

otherwise specified we write X = X10. Denote by

X ⊂ X ×Gr(12, 16)



A NON-ISOTRIVIAL SMOOTH FANO FIBRATION OVER P1 9

the incidence correspondence of points onX that lie in a specified P11 ⊂ P16. This corresponds

to the case r = 4 above. Inside X×Gr(12, 16) this is cut out by a section of the rank 4 bundle

E = OX(1)⊠Q4

where Q4 is the universal quotient bundle of rank 4 on the Grassmanian. We are interested

in computing

Rπ2∗ω
−m
X/Gr

Notice that

ωX/Gr = (π∗
1ωX)|X ⊗ detNX

where NX = E . Therefore
detNX = OX(4)⊠ detQ4

ωX/Gr = (OX(−4)⊠ detQ4)|X
Now to compute the pushforward, we need to use the Kozul resolution of OX

0 → OX(−4)⊠ detQ∨
4 → OX(−3)⊠ ∧3Q∨

4 → · · · → OX(−1)⊠Q∨
4 → OX×Gr → OX → 0

Recall that for k > −8 there is no higher cohomology of OX(k). Therefore, we get an exact

sequence

0 → H0(X,OX(4m−4))⊗∧4Q∨
4 → · · · → H0(OX(4m−1))⊗Q∨

4 → H0(OX(4m))⊗OGr → Gm → 0

with π2∗ω
−m
X/Gr = Gm ⊗ (detQ4)

−m and there is no higher cohomology in Rπ2∗ω−m
X/Gr.

4.1. Chow-Mumford Degree. Now we choose a generic pencil of 11-plane sections (codi-

mension 4 linear slices) of X. This corresponds to a generic line P1 ↪→ Gr(12, 16) with respect

to the Plucker embedding. Under the map, the universal quotient bundle pulls back as

Q4 7→ O3
P1 ⊕OP1(1)

Therefore, pulling back the sequences computing Rπ2∗ω−m
X/Gr we find that

rankGm = h0(OX(4m))−4h0(OX(4m−1))+6h0(OX(4m−2))−4h0(OX(4m−3))+h0(OX(4m−4))

and

deg Gm = h0(OX(4m− 1))− 3h0(OX(4m− 2)) + 3h0(OX(4m− 3))− h0(OX(4m− 4))

Hence we need to know the Hilbert polynomial of X

p(k) := χ(X,OX(k))

To compute this, we can use Borel-Weil Bott and interpolation. Since p has degree 10, we

need 11 points to determine it. The lemma gives exactly 11 points and proves that

p(k) =
1

10!

[
12k3 + 144k2 + 12 + 720

]
k(k + 1)(k + 2)(k + 3)(k + 4)(k + 5)(k + 6)(k + 7)

plugging in gives

rankGm =
1024m6

15
+

1024m5

5
+ 256m4 +

512m3

3
+

956m2

15
+

188m

15
+ 1

deg Gm =
4096m7

105
+

512m6

5
+

1664m5

15
+ 64m4 +

104m3

5
+

18m2

5
+

9m

35
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deg π2∗ω
−m
X/Gr = deg Gm −m · rankGm

= − 2m

105

(
39 + 469m+ 2254m2 + 5600m3 + 7616m4 + 5376m5 + 1536m6

)
and likewise

deg π2∗ωX
−m = deg

(
π2∗ω

−m
X/Gr ⊗ ω−m

P1

)
= deg Gm +m · rankGm

=
2m

105

(
66 + 847m+ 4438m2 + 12320m3 + 19264m4 + 16128m5 + 5632m6

)
The Chow-Mumford bundle controls the growth rate of detπ2∗ω

−m
X/Gr in the sense that

λCM = M−1
7

where the Mi are coefficients in the Mumford-Knudsen expansion of detπ2∗ω
−m
X/Gr (reviewed

in section 5). These are computed by finite differencing this sequence of line bundles. Hence

the top coefficient is given by 7! times the leading coefficient in degree:

deg λCM = 7! · 2

105
· 5632 = 540672

If the family is K-stable and non-isotrivial then an important theorem in K-stability says

that detλCM > 0. Given that this holds in our example, it is natural to ask:

Question 4.1. Are the linear slices Y = X10 ∩ V which are smooth Fano varieties K-stable?

5. Review of the Chow-Mumford Bundle

Theorem 5.1. [KM76, Theorem 4] Let f : X → S be a flat projective morphism of relative

dimension r with a relatively very ample line bundle L. Then there are unique line bundles

Mi ∈ PicS such that

detRf∗L⊗m =
r+1⊗
k=0

M⊗(mk )
k

called the Mumford-Knudsen expansion.

Question: does the theorem require very ample?

Remark 5.2. These Mi are the line bundle analogs of the binomial coefficients of the Hilbert

polynomial as a numerical polynomial. Note that

ch(Rf∗L⊗m)1 = c1(detRf∗L⊗m) =

r+1∑
i=0

(
m

k

)
· c1(Mk)

which by Grothendieck-Riemann-Roch equals the degree 1 part in CH•(S) of

f∗(e
mc1(L)TdX/S)

This is a numerical polynomial valued in CH1(S)Q and the c1(Mk) are related to its coefficients

by expanding the binomial terms as polynomials inm. As a polynomial this has denominators,

however the Mumford-Knudsen expansion shows there is a “numerical polynomial” valued in

PicS integrally (without tensoring in Q) which agrees with a polynomial after tensoring with

Q. For example, rationally,

c1(Mr+1) = f∗c1(L)r+1
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Question: does this equality hold integrally in the Chow ring?

Definition 5.3. A numerical polynomial of degree n valued in a ring R is a function p : Z → R

of the form

p(m) =

n∑
k=0

(
m

k

)
ak

for some coefficients ak ∈ R.

Remark 5.4. Numerical polynomials are an abelian group in the obvious way. Furthermore,(
m

k

)(
m

k′

)
=

min(k,k′)∑
j=0

(
k + k′ − j

j, k − j, k′ − j

)(
m

k + k′ − j

)
where the first coefficient is a multinomial coefficient. Since the multinomial coefficient is an

integer depending only on k, k′ and j this shows that numerical polynomials form a ring.

Recall that numerical polynomials of the form

p(n) =
d∑

k=0

(
n

k

)
ak

satisfy the important property that their finite differencing behaves formally like differentia-

tion for Taylor polynomials, it just shifts the coefficients. Indeed,

p(n+ 1)− p(n) =
d∑

k=0

(
n

k

)
ak+1

because of the fundamental recursion(
n+ 1

k

)
=

(
n

k

)
+

(
n

k − 1

)
Therefore, the function p determines the coefficients ak ∈ R integrally while p is only a

polynomial valued in RQ and this polynomial may forget torsion in R.

This discussion gives a differencing formula for the Mk in the Mumford-Knudsen decom-

position.
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