A NON-ISOTRIVIAL SMOOTH FANO FIBRATION OVER P!

BENJAMIN CHURCH

1. INTRODUCTION

In this note we consider a particularly interesting example of a Fano fibration f : X — P!
which is smooth but non isotrivial suggested by Kuznetsov. We will verify that a general
pencil of codimension 4 slices of the Spinor 10-fold form produce a family with the following
properties:

(a) f: X — P! is smooth and projective
(b) the fibers are Fano 6-folds of Picard rank 1
(c) two general fibers of f are not isomorphic
(d) f is birationally isotrivial, in fact all fibers are rational
(e) the degree of the Chow-Mumford bundle of f is positive.
In the following sections, we will define the Spinor 10-fold and verify the above facts. Then

we will show how to compute the Chow-Mumford bundle and consider K-stability of this
family (TODO).

2. SPINOR 10-FOLD

Consider the reductive group G = Spin(10) corresponding to the simply connected form of
the root system D5 whose Dynkin diagram is

Qg

a1 o
&%) a3

a5

Let Py be the maximal parabolic corresponding to omitting the simple root ay (or we can
symmetrically consider P5) and let X719 = G/P; which is a smooth proper 10-fold. There is
a 16-dimensional representation Sig called the half-spinor representation of G. Under this
representation Py maps to the maximal parabolic omitting the first index of GL1g. This given
an embedding X9 < P'®. Here are some facts we need:

Lemma 2.1. [Kuzl18, Section 3.1] Let Ox,,(1) denote the very ample line bundle induced by
the half-spinor embedding X19 — P then:
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(1) Ox,,(1) generates Pic X19p and hence is the line bundle corresponding to the funda-
mental weight of the omitted index

OXl()(l) = OXlO(wP)
(2) Wx,o = OXIO(_S)

Lemma 2.2. [Kuzl8, Corollary 7.9] For any 1 < k <5 a smooth linear section X190 NV of
codimension k of X19 is rational.

This verifies fact (d).

2.1. Projective Duality, Defect, and Slicing. The most important fact making the con-
struction work is the projective duality of X9 < P'®. Recall that for a subvariety Y C PV
we define YV < PV as the set of hyperplanes H so that H is tangent to Y meaning there is
a point y € HNY where T,,)Y C T,,)H. If Y is smooth, this is the set of hypersurfaces so that
HNY is singular. Bertini’s theorem proves that YV < PV is irreducible and has codimension
> 1.

Definition 2.3. The defect of an embedding Y < PV is the number
§ = codimpy Y — 1

Usually we have § = 0 unless something very special happens with the embedding. Indeed,
there is the following classification in low dimensions of embeddings with positive defect:

Theorem 2.4. [LS87] Let dim X < 6 and X admit an embedding in PN with defect § > 0.
Then X is one of the following,

(1) P

(2) a scroll over a curve or surface

(3) Plucker embedding Gr(2,5) — PY

(4) a smooth hyperplane slice of the above Plucker embedding

Furthermore, flag varieties have embeddings with positive defect in exactly the following
cases:

Theorem 2.5. [KM87] Let X = G/P where P is a parabolic subgroup and consider an
embedding X — PN with defect . Then 6 > 0 if and only if X — PN is isomorphic to one
of the following

(1) a linear embedding P* < PN with § = n
(2) the Piicker embedding of the Grassmanian Gr(2,2m + 1) < PCmHD)=1 yith § = 2
(3) the Spinor 10-fold X19 < P with § = 4
(4) X1 x Xy with the Segre embedding where X1 is one of the above and § = 6(X1)—dim Xs.

Lemma 2.6. Let Y — PN be a smooth variety embedded in projective space with defect §.
The locus,
Sp:={V cPY|VANY is singulary C Gr(N —k +1,N +1)

of those planes PN =% < PN whose intersection with Y is singular, has codimension > § —k+2.

Proof. By definition, y € Y is a singular point of Y NV exactly when
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(1) yeV
(2) the linear forms ¢1, ..., ¢, € H°(PY,O(1)) cutting out V are dependent in the cotan-
gent space of Y at y

2 ~ 2
O(1) ® my/m; = m, /m,
therefore, there exists a nonzero linear form a1 + - - - + aifx vanishing at y whose image in
my /mz is zero. This cuts out a hyperplane H such that

(1) VcH
(2) HNY is singular at y.

Therefore,
Sy c{VcPN |V CH forsome He S} C Gr(N —k+1,N +1)

This larger space is what we call the saturation of Si. It is the image under the first projection
of the incidence correspondence

X CCr(N—k+1,N+1)x 8,

of (V, H) such that V' C H. Now the second projection realizes X’ as a grassmannian bundle

]PNfl

of N — k planes inside . Therefore,

dimX = dimGr(N —k+1,N) +dim S = (N — k + 1)(k — 1) + dim S

and thus
codimay(n—g+1,N4+1) Sk > codimay(n—k11,8+1) T2(X)
>dimGr(N —k+1,N+1)—dimX
=(N—-k+1Dk—(N—k+1)(k—1)—dimsS;
=(N—-k+1)—dimS; =0—-k+2
because by definition ¢ := N —dim 57 — 1. O

Corollary 2.7. Let Y — PN be a smooth variety embedded in projective space with defect
0. A generic PGLyy1 translate of any curve C — Gr(N — k + 1, N + 1) parametrizing
codimension k linear spaces with 1 < k < ¢ produces a smooth family of slices

y—=C

where Yy :=Y NV, where fort € C then V; is the linear space corresponding to the point t on
the translate of C in Gr(N —k+1,N +1).

Proof. Since codim S, Gr(N —k+1,N+1) > § — k+ 2 if K < § then S has only excess
intersection with any curve C. By Kleiman’s Bertini, since the Grasmannian is a PGLy41-
homogeneous space, the generic translate of C' does not intersect Si. Hence every parametrized
slice is smooth. In particular, the incidence correspondence ) — C'is a smooth morphism. [

This proves (a) taking the family of slices over a generic rational curve in Gr(11, 16) slicing
Xlo.
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2.2. Linear Slices of the Spinor 10-fold. Consider taking r hyperplane slices of Xig to
get a variety Y. Note that Y is Fano for k < 8 since wx,, = Ox,,(—8) and PicY = Z (Oy (1))
by the Grothendieck-Lefschetz theorem. This verifies (b). The normal bundle sequence gives
an exact sequence

0—Ty = Txly = Oy(1)" =0
Furthermore, the composition

H°(X,0x(1))" = H°(Y, Oy (1)) — H'(Y, Ty)

of the restriction with the connecting map from the normal bundle sequence gives the Kodaira-
Spencer map x for the family of slices over the Grassmannian. Furthermore, to compute the
restrictions of bundles to Y we use the Kozul resolution

0—O0x(—1r) = Ox(—(r—1)" == 0x(-1)" = 0x - Oy =0

Now we need the following facts which are proved in the next section:
Lemma 2.8. As a G-module there is a canonical isomorphism in the derived category
Vi, [0] k=1
CJo] k=0
RT'(X,0x(k) =10 0>k>-8

C[-10] k= -8
[ Veos [-10] k=-9

where Vy is the irreducible representation of G with highest weight A and w; is the fundamental
weight corresponding to the simple root «;.

Remark 2.9. V,,, =V, are 16-dimensional.
Corollary 2.10. For r < 8 the canonical map
Viu[0] = RI'(X, Ox(1)) — RI(Y, Oy (1))
1s surjective on cohomology and gives
RE(Y, Oy (1)) = (Vi /CT)[0]
Proof. Indeed, Oy (1) is computed by the complex
[Ox(—r) = Ox(—=(r—1))" = -+ = Ox(—-1)" = Ox]| ® Ox(1)

supported in degrees [—r,0]. None of these terms have any higher cohomology so there is an
exact sequence,

0— HY(X,0%) = H(X,0x(1)) = H (Y, 0y (1)) = 0
O

To go further we need to understand the cohomology of the twisted tangent bundle pf X1
whose proof we defer to the next section.
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Lemma 2.11. There are canonical isomorphims as G-modules

V0] k=0

0 0>k>-8
RT(X,Tx(k)) = § C[-9] k=28
0 k=9

Vs [—10] k=10
Remark 2.12. V,,, is the adjoint representation.

Corollary 2.13. The canonical map
RU(X,Tx) — RU(Y, Tx|y)
s an isomorphism if r < 8.

Proof. Indeed, Tx|y is computed by the complex
[Ox(—1) = Ox(—(r—1))" = -+ = O0x(-1)" = Ox] ® Tx
supported in degrees [—r,0]. None of these terms have any higher cohomology and the terms

of negative degree have no cohomology at all. This proves the claim. O

Corollary 2.14. If r < 8 then there is a diagram
HO(X, Tx) H(X,0x(1

| l\

0 —— HYY,Ty) —— HY(Y,Tx|ly) —— H(Y,Oy(1))" —— HY(Y,Ty) =0
therefore

10

ROY, Ty) > r(dimV,, —r) — dimV,, = 7(16 —r) — <2

> = —r? +16r — 45
which is nonzero for r > 4. The bound gives > 3 for r = 4.

Hence for r > 4 the Kodaira-Spencer map « for the family of linear slices over the Gras-
mannian is nonzero. This verifies fact (c) after restricting to a generic P! < Gr.

3. BOREL-WEIL-BoTT

3.1. Review of Root Systems Theory of Reductive Groups. Let G be a reductive
group. Fix inclusions T'C B C P C G where T is a maximal torus, B a borel subgroup, and
P a parabolic. The main lattices of import live in either the character lattice

X*(T) := Hom(T', G,,)
and the cocharacter lattice
X«(T) := Hom(G,, T)

For a representation p : G — GL(V), we say the weights of V are the nonzero elements
a € X*(T) such that
Va={veV | VteT: p(t) v=alt)- v}
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For the adjoint representation, the weights have a special name: roots ® C X*(7"). We make
the convention of using the “lower Borel” (so that dominant weights correspond to ample line
bundles) so that we call the weights of the adjoint torus action on the Lie algebra b C g of
the Borel form a subset ®~ C ® called the negative roots. The complement &+ C & are the
positive Toots. It turns out that &~ = —d™T.

Definition 3.1. For real weights pu, A\ € X*(T)r we say that u is higher than A if p— \is a
convex (positive real) combination of elements of ®7.

Inside ®* there is a distinguished subset A C ®T of simple roots which are the a@ € ®T
that cannot be expressed as a sum of positive roots.

Lemma 3.2. The simple roots satisfy
(1) #A =rank X*(T)
(2) every a € ® can be written as a unique integer linear combination of elements of A
(3) whenever a € ® is written as a linear combination of elements of A the coefficients
are all positive (in which case o € ®1) or all negative (in which case o € ®~) giving
alterative descriptions of the positive and negative roots.

The Weyl group, W = N¢(T')/T is a finite reflection group acting on X*(7") and preserving
the sets of positive and negative roots. For a root a : T' — G, there is a canonically associated
coroot " : G,, — T defined as the unique cocharacter satisfying

(1) {a,av) =2
(2) @¥ : G, — T factors through T N D(Zg((kera)® ;) where D(—) is the derived
subgroup.
This gives a set ®" C X, (T) of coroots and likewise a set of positive and negative coroots.

We choose a basis {wq }aca of X*(T)gr consisting of fundamental weights which are defined

so that

<Wom/8\/> =00 a,BEA

Definition 3.3. A weight p € X*(T)g is dominant if (u,a¥) > 0 for every positive (equiva-
lently every simple) root @ € ®*. Equivalently, u is a convex real combination of fundamental
weights.

The Weyl group is generated by reflections
Ta(B) =8 — </8’a\/> «Q

In fact, it is generated by the simple reflections, those r,, for a € A. For an element w € W,
the length ¢(w) of w is the minimal number of simple reflections needed to express w. The
Weyl group acts simply transitively on the Weyl chambers — the connected components of
XD\ e X*(Mr | (1, 0") =0}
acd
The fundamental chamber consist of weights p such that (u,a") > 0 for all « € &+ which
is the set of dominant weights. For any weight p there is always w € W such that w - p is
dominant. The dominant weight [A] := w - A is unique (although w € W is not). We let the
index ind(A) of A be the minimal /(w) over w € W realizing w - A = [A\]. A weight on the
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boundary of a Weyl chamber is called singular. Explicitly, p is singular if (u,«") = 0 for

p=Ywa=3 Y a

acA acdt

some o € ®. We also define

Notice that (p,a") =1 for all & € A so p is dominant and nonsingular. Furthermore if 4 is
any dominant weight then u + p is dominant and nonsingular.
The weights of the adjoint representation on the Lie algebra p C g of the parabolic P C G

are <I>_U<I>I+3 so that
]J:fEB @ ga D @ Yo

- +
acd ae(bp

where @J]S is the set of positive roots which are weights for this action. This is a closed set of
positive roots. We set ®p = CIJ;S U @, where &, = —(I)j;.

3.2. Cohomology Computations. To prove the cohomology lemmas, we need to apply
Borel-Weil-Bott. Here we actually need a more general version due to Bott that computes
the cohomology of all homogeneous vector bundles.

Theorem 3.4 (Bott). Let G be a reductive group and P C G a parabolic. Chose a Borel
subgroup B C P. Let V be an irreducible representation of P with highest weight A € g*
and E = G xP V the corresponding homogeneous vector bundle. Then there is a canonical
isomorphism
HY(X,E) = HY(G/B,0g/5()))
which is computed as follows:
(1) if X+ p is singular then H1(X,E) =0 for all q
(2) otherwise HY(X,E) = 0 for all ¢ # ¢ := ind(\ + p) and HY(X,E) = Vy is the
irreducible G-module of highest weight X' := [ + p| — p.

See [Bot57] and for this formulation [AF10, Theorem 2.4.6].

Lemma 3.5. The tangent bundle of X = G/P is the homogenous vector bundle associated
to the P-representation g/p. Hence, its weights are @} =P\ <I)1+3.

Recall that if V' is an irreducible P-representation and U C P is the unipotent radical
then VUV C V is a P-subrepresentation because U is normal. However, VU is nonempty by
the LieKolchin theorem. By irreducibility, VY = V so V factors though a representation
of the Levi factor L := P/U. Because L is reductive, the representation V' is determined by
its highest weight in X*(7"). If V' is not irreducible, what makes life tricky is that L is not
semisimple, it has an abelian factor. Therefore, we cannot just look the set of highest weights
of V' to determine its irreducible Jordan-Hoélder factors. If P is a maximal parabolic then
it corresponds to a unique omitted simple root {ap} = A\ Ap where Ap = &p N A. The
abelian part Z(L)NT = (,cq, ker o is spanned by the fundamental coweight wy dual to ap.
Note also that a character A € X*(7T') extends to P iff it extends to L iff it kills D(L) N'T
and this is generated by o for a € ®p. Therefore, X*(P) = (,cq, ker (—, a") which is
spanned by the fundamental weights {wa }aea\a, in particular by wp if P is maximal. These
characters Zwp correspond to homogeneous line bundles on X = G/P.



8 BENJAMIN CHURCH

Let V' be a P-representation, to compute its Jordan-Hoélder factors we partition the weights
by grade — the coefficient of ap when expressed in the basis of simple roots. The decomposition
relies on nice properties for the weight spaces of irreps for semisimple Lie groups arising from
what I call the “uninterrupted string property” for sly-reps. Precisely, if V' is an irrep for slo
its weight spaces V,, are indexed by an integer n € Z, the degree of the corresponding character
T — Gy, and they are symmetric about the origin and consist of sums of contiguous blocks. In
particular, if V, is nontrivial then Vj, is nontrivial for all —a < k < a. Hence an uninterrupted
string. This is consequential for an irrep V of any semisimple group G because any coroot
oV factors through the maximal torus of a copy of SLy and the intersection pairing (—, V)
measures the induced weight of V' viewed as an SLo-representation. In particular, if V4 x4 is
nontrivial then so are Vj,4 4o for —k < k' < k by the uninterrupted string property.

Lemma 3.6. Let P be a mazimal parabolic and L = P/U the Levi. The Jordan-Hélder
factors of V' are exactly the L-representations of highest weight A\ where \ varies over the
weights of V' that are highest among all weights of the same grade.

Proof. Among weights of the same grade, there is a unique irreducible representation for each
highest weight. Indeed, these are the weights so that w)Z acts by a fixed character so it
is equivalent to a representation of L/D(L). Since L/D(L) is semisimple its representations
split into irreps determined by their highest weight. O

Often, there will be a unique highest weight of each fixed grade in which case the grade
filtration on V is a Jordan-Holder filtration. Indeed, this occurs for V' = g/p. Since g is
semisimple, the root spaces of the adjoint representation, and hence of V', are all 1-dimensional
so there is a most a single irrep of L/D(L) at each grade. Indeed, if we have two irreps in the
decomposition then two of their weight spaces must collide to give a weight space of higher
multiplicity by the “uninterrupted string property” for sly-reps.

Lemma 3.7. For G = Spin(10) and P = P, the P-module g/p has only grade 1 and is
wrreducible of highest weight wo.

Proof. This calculation is done in MAGMA for the root system Dy by listing the positive roots
in &\ <I>]+3 and stratifying them according to the coefficient of ap based on simple roots.
We find that only the coefficient 1 appears and these weights have a unique highest element.
There are 9 roots in @J}S and those have grade 0 by definition. The remaining 11 roots in
T\ @} all have grade 1. O

The proofs of the cohomology lemmas is now immediate from Borel-Weil-Bott. The sheaf
Ox (k) corresponds to the P-irrep of weight kw,. The sheaf Tx (k) corresponds to the P-irrep
of weight ws + kws. MAGMA handles computing the dominant representatives under the Weyl
action. These scripts are available upon request.

4. COMPUTING THE PUSHFORWARD OF THE RELATIVE ANTI-CANONICAL

We are now going to consider the universal family of slices of X19. From now on, unless
otherwise specified we write X = X19. Denote by

X C X x Gr(12,16)
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the incidence correspondence of points on X that lie in a specified P'* C P16, This corresponds
to the case r = 4 above. Inside X x Gr(12,16) this is cut out by a section of the rank 4 bundle

E=0x(1)XQ,
where Q4 is the universal quotient bundle of rank 4 on the Grassmanian. We are interested
in computing
RW2*w2—(T/nGr
Notice that
Wx/Gr = (Tiwx)|x ® det Ny
where Ny = £. Therefore
det Ny = Ox(4) X det Q4
Wx/Gr = (Ox(—4) X det Q4)|X
Now to compute the pushforward, we need to use the Kozul resolution of Oy

0— Ox(—4)Rdet Q) = Ox(=3)RA3QY = -+ = Ox(-1) K QY = Oxxar — Ox =0

Recall that for k& > —8 there is no higher cohomology of Ox (k). Therefore, we get an exact
sequence

0 — HY(X,Ox(4m—4)on* QY — -+ = H'(Ox(4m—1))®Q) — H*(Ox(4m))@O0a: = Gm — 0
with Wz*w;(’/"Gr = Gm @ (det Q4)~™ and there is no higher cohomology in RF?*“})_(TGr'
4.1. Chow-Mumford Degree. Now we choose a generic pencil of 11-plane sections (codi-

mension 4 linear slices) of X. This corresponds to a generic line P! — Gr(12, 16) with respect
to the Plucker embedding. Under the map, the universal quotient bundle pulls back as

Q4 03, @ Op (1)
Therefore, pulling back the sequences computing Rm*w;;”er we find that
rank G, = h(Ox (4m))—4h°(Ox (4m—1))+6h°(Ox (4m—2))—4h®(Ox (4m—3))+h°(Ox (4m—4))
and
deg G,y = h2(Ox (4m — 1)) — 3h°(Ox (4m — 2)) + 3h°(Ox (4m — 3)) — hO(Ox (4m — 4))
Hence we need to know the Hilbert polynomial of X
p(k) := x(X, Ox (k)
To compute this, we can use Borel-Weil Bott and interpolation. Since p has degree 10, we

need 11 points to determine it. The lemma gives exactly 11 points and proves that

p(k) = %0' [12k% 4 144K* + 12 + 720] k(k + 1)(k + 2)(k + 3)(k + 4)(k + 5)(k + 6)(k + 7)

plugging in gives
1024mS  1024m? 512m3  956m?%  188m

kG, = 256m* 1
rank Gm 15 5 e e et

4096m” N 512mS N 1664m> + 6amd 1 104m®  18m?  9m
m

deg Gm = —05 5 15 5 5 T35
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deg Wg*w;(;”Gr =degG,, — m -rank G,,
2
= —% (39 + 469m + 2254m> + 5600m? + 7616m* + 5376m° + 1536m°)

and likewise
deg moswy " = deg (Wz*w;%r ® w]}jlm) =degG,, + m -rank G,,
2
= 5= (66 + 847m + 4438m” + 12320m° + 19264m" + 16128m” + 5632m°)

The Chow-Mumford bundle controls the growth rate of det Wg*w;/”Gr in the sense that

Aov = M;H

where the M; are coefficients in the Mumford-Knudsen expansion of det mo,w?.":

X/Gr
in section 5). These are computed by finite differencing this sequence of line bundles. Hence

(reviewed

the top coefficient is given by 7! times the leading coefficient in degree:

2
=71 = .5632 = 540672
deg Acar = 7!+ o= - 5632 = 54067

If the family is K-stable and non-isotrivial then an important theorem in K-stability says
that det Agps > 0. Given that this holds in our example, it is natural to ask:

Question 4.1. Are the linear slices Y = X719 NV which are smooth Fano varieties K-stable?

5. REVIEW OF THE CHOW-MUMFORD BUNDLE

Theorem 5.1. [KM76, Theorem 4] Let f : X — S be a flat projective morphism of relative
dimension r with a relatively very ample line bundle L. Then there are unique line bundles

M; € Pic S such that
r—+1

det RfLE™ = QML)
k=0

called the Mumford-Knudsen expansion.
Question: does the theorem require very ample?

Remark 5.2. These M; are the line bundle analogs of the binomial coefficients of the Hilbert
polynomial as a numerical polynomial. Note that

r+1
ch(RfLE™)1 = cr(det RELZ™) =) <le) -1 (M)
i=0

which by Grothendieck-Riemann-Roch equals the degree 1 part in CH®(S) of
Fule™ O Td )

This is a numerical polynomial valued in CH! (S)g and the ¢;(M},) are related to its coefficients
by expanding the binomial terms as polynomials in m. As a polynomial this has denominators,
however the Mumford-Knudsen expansion shows there is a “numerical polynomial” valued in
Pic S integrally (without tensoring in Q) which agrees with a polynomial after tensoring with
Q. For example, rationally,

c1(Myy1) = feer (L)
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Question: does this equality hold integrally in the Chow ring?

Definition 5.3. A numerical polynomial of degree n valued in a ring R is a functionp : Z — R
of the form

for some coefficients a; € R.

Remark 5.4. Numerical polynomials are an abelian group in the obvious way. Furthermore,

m\ (m _mi%k:’k,) k+E —j m
W) \e) = 2 kg =) \kw =

where the first coefficient is a multinomial coefficient. Since the multinomial coefficient is an
integer depending only on k, k' and j this shows that numerical polynomials form a ring.

Recall that numerical polynomials of the form

d
n
pn) =3 ( k) a
k=0
satisfy the important property that their finite differencing behaves formally like differentia-
tion for Taylor polynomials, it just shifts the coefficients. Indeed,

pn 1) ) =3 () ower

k=0
because of the fundamental recursion

)=+

Therefore, the function p determines the coefficients ar € R integrally while p is only a
polynomial valued in Rg and this polynomial may forget torsion in R.

This discussion gives a differencing formula for the M in the Mumford-Knudsen decom-
position.
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