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1 Definitions
Definition 1.0.1. An algebraic space is a functor X : (SchS)op

fppf → Set such that,

(a) F is a sheaf in the fppf topology

(b) the diagonal ∆X/S : X → X ×S X is representable by schemes

(c) there is a scheme U and an étale surjection U ↠ X.

Definition 1.0.2. An algebraic stack is a category fibered in groupoids X → (SchS)fppf such that,

(a) X is a stack in the fppf topology

(b) ∆X /S : X → X ×S X is representable by algebraic spaces

(c) there is an algebraic space U and an étale surjection U ↠ X .

Remark. The map U → X is only necessarily representable by algebraic spaces so to express the
property of being an étale surjection consider any map from a scheme T → X and an étale cover
from a scheme V → U ×X T in the diagram,

V U ×X T T

U X

ét surj

This property is independent of the choice of étale cover V → U ×X T by étale descent for étale
surjective morphisms.
Remark. Why do we only require that X be smooth locally an algebraic space and its diagonal
be representable by only algebraic spaces? The diagonal is closely related to the automorphism
groups of objects X parametrizes. When π : X → S a proper finitely presented map of schemes,
HilbX/S is representable by an algebraic space but not generally by a scheme unless π is projective.
This shows that IsomS(X, Y ) between two proper S-schemes is usually only representable by an
algebraic space. Therefore, we want to allow for ∆ to be representable by algebraic spaces not just
schemes to capture moduli of proper non-projective objects.

Definition 1.0.3. Consider f : X → Z and g : Y → Z morphisms of categories fibered in
groupoids. Then the 2-fiber product X ×Z Y is defined as the category fibered in groupoids,
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(a) objects are (x, y, γ) with p(x) = p(y) and γ : f(x)→ g(y) a morphism over id

(b) morphisms are φ : (x, y, γ) → (x′, y′, γ′) are given by pairs (φx : x → x′, φy : y → y′) such
that the diagram,

f(x) g(x)

f(x′) g(x′)

γ

φx φy

γ′

commutes.

Proposition 1.0.4. For any objects x, y ∈ X (U). There is a 2-fiber product diagram,

Isom(x, y) U

U X

y

x

Definition 1.0.5. The inertia stack of X is the category fibered in groupoids IX = X ×X×X X .

Proposition 1.0.6. For any x ∈ X (U) there is a 2-fiber product diagram,

Isom(x, x) IX

U Xx

2 Presentations
Proposition 2.0.1. Let X be an algebraic space over S and f : U ↠ X an étale surjection from
a scheme U . Set R = U ×X U in the pullback diagram,

R U

U X

then we have,

(a) j : R→ U ×S U is a monomorphism and R(T ) ⊂ U(T )× U(T ) is an equivalence relation for
all T → S

(b) the projections s, t : R→ U are étale

(c) the diagram,

R U X
s

t

is a coequalizer in Sh((SchS)fppf).
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Proof. The first two are immediate The last holds in any category of sheaves given that U → X is
surjective. □

Definition 2.0.2. Let (U,R, s, t, c) be a groupoid in algebraic spaces over S. The quotient stack,

p : [U/R]→ (SchS)fppf

is the stackification of the category fibered in groupoids,

(T → S) 7→ (U(T ), R(T ), s, t, c)

Proposition 2.0.3 (04T5). Given an algebraic stack X there is a smooth morphism U → X from
a scheme. We recover the groupoid presentation by taking the 2-fiber product,

R U

U X
and R is an algebraic space because we assumed that ∆X is representable by algebraic spaces. Then
there is a natural equivalence [U/R] ∼−→ X .

3 Infinitesimal Deformation Theory
Remark. First we recall how to apply infinitesimal deformation theory in the relative setting. In
the basic case, we want to probe properties of a morphisms of schemes f : X → S near a finite type
point x : Spec (k) → S. There is some affine open Spec (Λ) ⊂ X containing x. Then we need to
consider Artinian local rings A and diagrams,

X

Spec (k) Spec (A) Spec (Λ) S

f

and consider the set of dashed arrows. This means our base category should be the category of
local Artinian Λ-algebras with residue field k.

Definition 3.0.1. Let Λ be a noetherian ring and Λ→ k a finite ring map with k a field. Let CΛ
be the category of,

(a) (A,φ) where A is an Artinian local Λ-algebra and φ : A/mA → k a Λ-algebra isomorphism

(b) morphisms f : (B,ψ)→ (A,φ) are local Λ-algebra maps such that φ ◦ (f mod mA) = ψ

Remark. As in the absolute case (which corresponds to Λ = k) we can factor any extension B ↠ A
into small extensions φ : B′ ↠ A where kerφ is principal and annihilated by mB.

Definition 3.0.2. Let Λ be a Noetherian ring and let Λ → k be a finite ring map where k is a
field. Define the category ĈΛ of,

(a) pairs (R,φ) where R is a Noetherian complete local Λ-algebra and φ : R/mR → k is a
Λ-algebra isomorphism,

(b) morphisms f : (S, ψ)→ (R,φ) are local Λ-algebra map such that φ ◦ (f mod mS) = ψ.

Remark. Then CΛ ⊂ ĈΛ is naturally a full subcategory.
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3.1 Deformation Functors
Definition 3.1.1. A predeformation functor is a functor F : CΛ → Set such that F (k) = {∗}.

Remark. The condition F (k) = {∗} corresponds to choosing a fixed base object for the deformations.

Definition 3.1.2. Given a predeformation functor F : CΛ → Set we extend it to F̂ : ĈΛ → Set via,

F̂ (R) = lim←−
n

F (R/mn
R)

A functor F is pro-representable if F̂ is representable.

Definition 3.1.3. We say a morphism φ : F → G of functors on CΛ is smooth the map,

F (B)→ F (A)×G(A) G(B)

induced by an extension B ↠ A is surjective.

Definition 3.1.4. Let F : CΛ → Set be a predeformation functor. The tangent space of F is the
set TF = F (k[ϵ]). We will see under some assumptions this set is naturally a k-vectorspace.

Definition 3.1.5. Let F : CΛ → Set be a predeformation functor. A hull1 for F is a pair (R, η)
where R ∈ ĈΛ and η ∈ F̂ (R) such that hR → F is formally smooth and bijective on tangent spaces.

Remark. Let k[ϵ] be the ring k[ϵ]/(ϵ2) with the trivial Λ-algebra structure.

Definition 3.1.6. Let F : CΛ → Set be a predeformation functor. If A′ → A and A′′ → A are
morphisms in CΛ there is a natural map,

(∗) F (A′ ×A A
′′)→ F (A′)×F (A) F (A′′)

Then Schlessinger’s conditions are as follows,

(H1) if A′′ ↠ A is a small thickening then (∗) is surjective

(H2) if A = k and A′′ = k[ϵ] then (∗) is bijective

(H3) TF = F (k[ϵ]) is finite-dimensional

(H4) if A′′ = A′ and A′ ↠ A is a small thickening, then (∗) is bijective.

Remark. TF = F (k[ϵ]) has a canonical vectorspace structure when F satisfies (H2) since we get,

F (k[ϵ])× F (k[ϵ]) ∼−→ F (k[ϵ1, ϵ2])→ F (k[ϵ])

using the map k[ϵ1, ϵ2] → k[ϵ] via ϵ1 7→ ϵ and ϵ2 7→ ϵ. The scalar multiplication is defined by
F (k[ϵ])→ F (k[ϵ]) induced by the map ϵ 7→ cϵ.

We cannot give TF a vectorspace structure without (H2) so it is more correct to group the Sch-
lessinger conditions into pairs (H1) + (H2) and (H3) + (H4) as we do in the sequel.

1Some authors use the terminology miniversal formal object. However, in the deformation category setting, a
minimal versal object may not induce an isomorphism of the tangent space so we reserve the term miniversal for a
minimal versal object see Tag 06T0.
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Definition 3.1.7. A pre-deformation functor F : CΛ → Set is a deformation functor if it satisfies
(H1) and (H2).

Theorem 3.1.8 (Schlessinger). Let F : CΛ → Set be a deformation functor. Then,

(a) F admits a hull if and only if it satisfies (H3)

(b) F is pro-representable if and only if it satisfies (H3) and (H4).

Example 3.1.9. Let X be a k-scheme, the functor DefX : Ck → Set defined by,

DefX : A 7→ {(X ′, ψ) | X ′ flat A-scheme with ψ : X ′ ⊗A k
′ ∼−→ X}/ ∼=

is a deformation functor.

Example 3.1.10. Let X = Spec (k[x, y]/(xy)) and F = DefX . If A is a finite type k-algebra and
P ↠ A is a presentation from a polynomial ring with kernel K then [H, Ex. 9.8] shows that,

HomA

(
ΩP/k ⊗k A,A

)
HomA (J/J2, A) TDefA 0

arising from the conormal exact sequence,

J/J2 ΩP/k ⊗P A ΩA/k 0

In our case, let P = k[x, y] and J = (xy). Then we have,

A∂x ⊕ A∂y A TDefA 0

and therefore TDefA = A/(x, y) = k. Thus DefX satisfies (H3) so it should have a hull. Indeed,

(kJtK, Spf(kJtK[x, y]/(xy − t)))

is a hull (note the formal object is effective). Let’s first understand why this hull is not a pro-
representing object. For any map, φ : kJtK→ A the induced object,

φ∗(Spf(kJtK[x, y]/(xy − t))) = Spec (A[x, y]/(xy − φ(t)))

is unchanged (in isomorphism class) if we replace φ buy φ′ = uφ for any unit u ∈ A since then we can
scale x or y to remove u. However, recall that a deformation X ′ is equipped with a distinguished
isomorphism φ : X ′ ⊗A k

∼−→ X with which isomorphisms of deformations must be compatible.
Therefore, φ′ = uφ and φ define the same deformation if u ∈ A× is a unit and u ≡ 1 mod mA.
Therefore, the map, hR → DefX is not injective for general A but is injective for A = k[ϵ] (since
(1 + aϵ) · ϵ = ϵ so multiplication by such a does nothing) as must be true for a hull.

However DefX is not pro-representable since it does not satisfy (H4). Indeed, consider A = k[ϵ]/(ϵ3)
and consider,

DefX(A×k A)→ DefX(A)×DefX(A)
I claim this is not injective. Indeed, t = ϵ1 + ϵ2 and t = ϵ1 + ϵ2 + ϵ1ϵ2 map to the same pair of
deformations but I claim they are not related by such a unit. Write,

u = 1 + aϵ1 + bϵ2 +O(ϵ2)

then,
u(ϵ1 + ϵ2) = ϵ1 + ϵ2 + aϵ2

1 + (a+ b)ϵ1ϵ2 + bϵ2
2 +O(ϵ3)

and we cannot have a = b = 0 but a+ b = 1.
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Remark. The above illustrates why it is necessary to define deformations of a scheme as equipped
with a distinguished isomorphism φ : X ′ ⊗A k

∼−→ X otherwise DefX will not be a deformation
functor. Indeed, let Def ′

X be the pre-deformation functor,

Def ′
X : A 7→ {X ′ | X ′ flat A-schemes such that X ′ ⊗A k

′ ∼= X}/ ∼=

but forgetting the isomorphism. Then for X = Spec (k[x, y]/(xy))

Def ′
X(k[ϵ1, ϵ2])→ Def ′

X(k[ϵ])×Def ′
X(k[ϵ])

is not injective. Indeed,

Spec (k[ϵ1, ϵ2][x, y]/(xy + ϵ1 + ϵ2) and Spec (k[ϵ1, ϵ2][x, y]/(xy + ϵ1 + 2ϵ2))

have the same image but are not isomorphic.

3.2 Deformation Categories
Definition 3.2.1. A predeformation category is a category cofibered in groupoids F → CΛ such
that F(k) is equivalent to the trivial category.

Remark. Let F be a predeformation category and x0 ∈ F(k). Then for any x ∈ F over A let
q : A → k then there is a pushforward x → q∗x and q∗x ∈ F(k) so there is a unique isomorphism
q∗x

∼−→ x0 and hence there is a canonical morphism x→ x0 in F.
Remark. If F : CΛ → Set is a predeformation functor then the associated cofibered set FF → CΛ is
a predeformation category. Likewise, if F → CΛ is a predeformation category then the functor of
isomorphism classes F : CΛ → Set is a predeformation functor.

Definition 3.2.2. Let F→ CΛ be a category cofibered in groupoids. The category of formal objects
of F̂ is the category of,

(a) formal objects (R, ξn, fn) consists of an object R ∈ ĈΛ, and objects ξn ∈ F(R/mn
R) and

morphisms fn : ξn+1 → ξn over the projection R/mn+1
R → R/mn

R

(b) morphisms a : (R, ξn, fn) → (S, ηn, gn) consists of a map a0 : R → S in ĈΛ and a collection
an : ξn → ηn of morphisms in F lying over R/mn

R → S/mn
S such that the diagrams,

ξn+1 ξn

ηn+1 ηn

an+1

fn

an

gn

commute for each n ∈ N.

Proposition 3.2.3 (06H4). The formal objects forms a category cofibered in groupoids p̂ : F̂→ ĈΛ.

Definition 3.2.4. Let p : F → CΛ be a category cofibered in groupoids. We say that F satisfies
the Rim-Schlessinger (RS) condition if for all A1 → A and A2 → A in CΛ with A2 ↠ A surjective,

F(A1 ×A A2)→ F(A1)×F(A) F(A2)

is an equivalence. A deformation category is a predeformation category F satisfying (RS).
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Lemma 3.2.5 (06J5). Condition (RS) is equivalent to: for every diagram in F,

x2

x1 x

lying over
A2

A1 A

in CΛ with A2 → A surjective, there exists a fiber product x1 ×x x2 in F such that the diagram,

x1 ×x x2 x2

x1 x

lying over
A1 ×A A2 A2

A1 A

Lemma 3.2.6 (07WQ). If X → S is an algebraic stack then for any Spec (k)→ S and x0 ∈ X (k)
the deformation category FX ,k,x0 satisfies (RS).

Remark. By Schlessinger’s theorem, this is telling us that a deformation functor F = DX,x0 rep-
resented by some pointed finite-type quasi-separated2 algebraic space x0 ∈ X over a noetherian
scheme S is pro-representable. So even though X does not have a canonical local ring it does have
a formal local ring ÔX,x0 . We can calculate it from the formal local ring of any étale cover U → X.
This is well-defined because for two étale covers U1 → X and U2 → X we have U1 ×X U2 is an
étale cover of both and these maps identify the formal local rings. There is a subtly here about the
residue field of the preimage of x0 in these étale covers meaning that the complete local rings will
not be isomorphic until after a field extension. The technical assumptions ensure that X is decent
and then the discussion of Tag 0EMV applies.

3.3 Versality
Remark. A versal object is a universal object without the “uni” i.e. without the uniqueness.

Definition 3.3.1. A morphism φ : F → G of categories cofibered in groupoids over CΛ is smooth
if for every extension B ↠ A in CΛ the map,

F(B)→ F(A)×G(A) F(B)

is essentially surjective.

Remark. This is basically the formal lifting criterion for formal smoothness. Indeed, if these defor-
mation categories are induced by the representable functors for a morphism of schemes f : X → Y
then we get that,

X(B)→ X(A)×Y (A) Y (B)

is surjective which is equivalent to there existing a dashed arrow in each lifting diagram,

Spec (A) X

Spec (B) Y

f

2I don’t know if these are the right conditions but they make the discussion work.
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Lemma 3.3.2. Smoothness of φ : F → G is equivalent to the following explicit condition. For
every surjection B ↠ A in CΛ and y ∈ G(B) and x ∈ F(A) equipped with a map y → φ(x) over
B ↠ A there is x′ ∈ F(B) and a morphism x′ → x over B ↠ A and a morphism φ(x′) → y over
id : B → V such that,

φ(x′) y

φ(x)

Definition 3.3.3. Let R ∈ ĈΛ. We say ξ ∈ F̂(R) is versal if the morphism ξ : R|CΛ → F defined
by ξ is smooth.

Remark. The morphism is defined as follows. For any A ∈ CΛ and map φ : R→ A it will factor as
φn : R/mn → A we send (A,φ) 7→ (φn)∗ξn. The compatibility isomorphisms of the formal object ξ
make this well-defined.
Remark. Let ξ be a formal object of F. Versality of ξ is equivalent to: the existence of a dashed
arrow for any diagram,

y

ξ x

in F̂ such that y → x lies over a surjective map B ↠ A of Artinian rings.

Theorem 3.3.4 (Rim-Schlessinger). A deformation category F such that TF = F(k[ϵ]) is finite
dimensional admits a versal formal object.

Example 3.3.5. Let X be a k-scheme. The cofibered category of deformations DefX → Ck is a
deformation category. If X is finite type and either proper or affine then TDefX = TDefX is finite
dimensional so X admits a versal formal deformation X → Spf(R).

Definition 3.3.6. Given a category fibered in groupoids,

p : X → (SchS)fppf

and a finite type point Spec (k)→ S and x0 ∈ X (k). First factor Spec (k)→ Spec (Λ) ↪→ S through
some affine open such that Λ → k is finite. The category CΛ, up to canonical equivalence, does
not depend of the choice of affine open Spec (Λ) ⊂ S. Note that CΛ is equivalent to the opposite
category of factorizations,

Spec (k)→ Spec (A)→ S

such that A is Artin local and A → k identifies k with the residue field. Now let FX ,k,x0 be the
category of,

(a) morphisms x0 → x of X over Spec (k)→ Spec (A) as S-map in CΛ,

(b) morphisms (x0 → x)→ (x0 → x′) are diagrams,
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x x′

x0

in X (notice the reversal of arrows).

Then p : FX ,k,x0 → CΛ is a predeformation category. We say that a formal object ξ = (R, ξn, fn) of X
is versal if ξ is versal as a formal object of FX ,k,x0 with k = R/mR and x0 = ξ1. We say that x ∈ X (U)
is versal at a finite type point u0 ∈ U if x̂ ∈ F̂X ,κ(u0),x0 is versal where x0 : Spec (k) → U → X is
the image.

Definition 3.3.7. Let S be a locally noetherian scheme and p : X → (SchS)fppf a category fibered
in groupoids. We say X satisfies openness of versality if given a scheme U locally of finite type
over S, an object x ∈ X (U), and a finite type point u0 ∈ U such that x is versal at u0 then there
is exists an open neighborhood u0 ∈ U ′ ⊂ U such that x is versal at every finite type point of U ′.

3.4 Effectivity
Definition 3.4.1. A formal object ξ = (R, ξn, fn) ∈ F̂X ,k,x0 is effective if it arises from ξ̃ ∈ X (R).

Lemma 3.4.2 (07X3). If X → S is an algebraic stack over a locally noetherian scheme S then
every formal object is effective.

Proof. First, if X is a scheme then for all local rings R factoring Spec (k)→ X the map corresponds
to Spec (R)→ Spec (OX,x)→ X so if R is complete,

X(R) = Homloc (OX,x, R) = lim←−
n

Homloc (OX,x, R/m
n
R) = lim←−

n

X(R/mn
R)

The general case follows from an intricate descent argument. □

4 Artin’s Axioms
Theorem 4.0.1 (Artin Approximation). Let S be a locally noetherian scheme and a category
fibered in groupoids p : X → (SchS)fppf . LetR be a Noetherian complete local ring with residue field
k with Spec (R)→ S finite type and x ∈ X (R). Let s ∈ S be the image of Spec (k)→ Spec (R)→ S.
Assume that,

(a) OS,s is a G-ring

(b) p is limit-preserving on objects.

Then for every N ≥ 1 there exist,

(a) a finite type S-algebra A

(b) a maximal ideal mA ⊂ A

(c) an object xA ∈ X (A)

(d) an S-isomorphism R/mN
R

∼−→ A/mN
A
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(e) an isomorphism x|R/mN
R

∼−→ xA|A/mN
A

over the previous map

(f) an isomorphism grmR
(R) ∼−→ grmA

(A) of graded k-algebras.

Lemma 4.0.2. Let S be a locally noetherian scheme and p : X → (SchS)fppf a category fibered in
groupoids. Let ξ be a formal object of X with x0 = ξ1 lying over Spec (k) → S with image s ∈ S
such that,

(a) ξ is versal

(b) ξ is effective

(c) OS,s is a G-ring

(d) p : X → (SchS)fppf is limit-preserving

then there exists a finite type morphism U → S, a finite type point u0 ∈ U with residue field k and
x ∈ X (U) such that x : U → X is versal at u0 and x|Spec(OU,u0) induces ξ.

Proof. Choose an object xR ∈ X (R) whose completion is ξ. Apply Artin approximation with N = 2
to obtain A,mA, xA ∈ X (A) approximating ξ. Let η be the formal object completing xA|Spec(Â)
(the completion of A at mA). Then a lift for the diagram in F̂X ,k,x0 ,

η

ξ ξ2 = η2

lying over
Â

R R/m2
R = A/m2

A

exists because ξ is versal. Since the map R→ Â induces an isomorphism on tangent spaces and by
construction dimk m

n
R/m

n+1
R = dimk m

n
A/m

n+1
A we conclude that R → Â is an isomorphism. Hence

η ∼= ξ is versal so the map xA : Spec (A)→ X is versal at ̂xA|Spec(Â) = η. □

Theorem 4.0.3. Let S be a locally Noetherian base scheme and consider a category fibered in
groupoids p : X → (SchS)fppf . For each finite type morphism Spec (k) → S with k a field and
x0 ∈ X (Spec (k)) assume that,

(a) X is a stack for the étale topology

(b) ∆X /S : X → X ×S X is representable by algebraic spaces

(c) X is limit preserving (preserves filtered colimits)

(d) X satisfies the Rim-Schlessinger condition (RS)

(e) TFX ,k,x0 is finite dimensional for all k and all x0 ∈ F(k)

(f) every formal object of X is effective

(g) X satisfies openness of versality

(h) OS,s is a G-ring for all finite type points s ∈ S

(i) a set theoretic condition
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then X is an algebraic stack.

Proof. It suffices to show that for each finite type Spec (k)→ S and x0 ∈ X (k) there is a finite type
morphism U → S and a smooth map U → X such that there is a finite type point u0 : Spec (k)→ U
such that x|u0

∼= x0.

By Rim-Schlessinger FX ,k,x0 admits a versal formal object ξ which is then effective. Artin approx-
imation allows us to approximate an effective formal object by a finite type object U → X which
is versal at u0 ∈ U . By openness of versality, we can shrink U such that U → X is versal at every
finite type point.

Finally, prove that a representable morphism f : X → Y of limit preserving categories fibered in
groupoids which is smooth on deformation categories is smooth (Tag 07XX). Indeed, for T → Y

the condition says that f : XT → T is a formally smooth map of algebraic spaces3 and the limit-
preserving condition gives finitely presented. □

Remark. Usually most difficult to prove openness of versality. There a number of deformation-
theoretic techniques for proving this but require effectivity of formal objects over more general formal
schemes. There are also tangent-obstruction theory methods for proving openness of versality.

3There is a subtly here with changing fields that requires the full strength of (RS) where as proving that a versal
object exists only requires (S1) and (S2) and finite-dimensionality of tangent spaces
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