Artin’s Axioms and Formal Deformation Theory

Stanford-Berkeley Number Theory Learning Seminar
November 16, 2022

1 Definitions

Definition 1.0.1. An algebraic space is a functor X : (Schg)gh ¢ — Set such that,
(a) F is a sheaf in the fppf topology
(b) the diagonal Ax/s: X — X xg X is representable by schemes
(c) there is a scheme U and an étale surjection U — X.
Definition 1.0.2. An algebraic stack is a category fibered in groupoids X — (Schg)gpr such that,
(a) X is a stack in the fppf topology
(b) Ayxss: X = X xg X is representable by algebraic spaces
(c) there is an algebraic space U and an étale surjection U — X.

Remark. The map U — X is only necessarily representable by algebraic spaces so to express the
property of being an étale surjection consider any map from a scheme T"— X and an étale cover
from a scheme V' — U x y T in the diagram,

ét surj

V —— UxyT —— T

| |

U— X

This property is independent of the choice of étale cover V' — U x y T by étale descent for étale
surjective morphisms.

Remark. Why do we only require that X be smooth locally an algebraic space and its diagonal
be representable by only algebraic spaces? The diagonal is closely related to the automorphism
groups of objects X parametrizes. When 7 : X — S a proper finitely presented map of schemes,
Hilbx,s is representable by an algebraic space but not generally by a scheme unless 7 is projective.
This shows that Isomg(X,Y’) between two proper S-schemes is usually only representable by an
algebraic space. Therefore, we want to allow for A to be representable by algebraic spaces not just
schemes to capture moduli of proper non-projective objects.

Definition 1.0.3. Consider f : X — Z and ¢ : Y — Z morphisms of categories fibered in
groupoids. Then the 2-fiber product X x z Y is defined as the category fibered in groupoids,
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(a) objects are (x,y,~) with p(z) = p(y) and v : f(x) — g(y) a morphism over id

(b) morphisms are ¢ : (z,y,7) — (2/,y',7') are given by pairs (¢, : © = 2/, ¢, : y = ') such
that the diagram,

commutes.

Proposition 1.0.4. For any objects xz,y € X (U). There is a 2-fiber product diagram,

Isom(z,y) —— U

| I

Definition 1.0.5. The inertia stack of X is the category fibered in groupoids £y = X X yxx X.

Proposition 1.0.6. For any x € X' (U) there is a 2-fiber product diagram,

2 Presentations

Proposition 2.0.1. Let X be an algebraic space over S and f : U — X an étale surjection from
a scheme U. Set R = U xx U in the pullback diagram,

R——U

|

U— X

then we have,

(a) j: R — U xg U is a monomorphism and R(T) C U(T) x U(T) is an equivalence relation for
all T — S

(b) the projections s,t: R — U are étale

(c) the diagram,

R—U — X

is a coequalizer in Sh((Schg)gpf)-



Proof. The first two are immediate The last holds in any category of sheaves given that U — X is
surjective. [

Definition 2.0.2. Let (U, R, s,t,¢) be a groupoid in algebraic spaces over S. The quotient stack,
p: [U/R] — (Schyg) gt
is the stackification of the category fibered in groupoids,
(T — S)— (U(T),R(T), s, t,c)

Proposition 2.0.3 (04T5). Given an algebraic stack X there is a smooth morphism U — X from
a scheme. We recover the groupoid presentation by taking the 2-fiber product,

R——U
J

[
U— X

and R is an algebraic space because we assumed that Ay is representable by algebraic spaces. Then
there is a natural equivalence [U/R] = X.

3 Infinitesimal Deformation Theory

Remark. First we recall how to apply infinitesimal deformation theory in the relative setting. In
the basic case, we want to probe properties of a morphisms of schemes f : X — S near a finite type
point z : Spec (k) — S. There is some affine open Spec (A) C X containing x. Then we need to
consider Artinian local rings A and diagrams,

Spec (k) —— Spec (A) ~— Spec (A) —— §

and consider the set of dashed arrows. This means our base category should be the category of
local Artinian A-algebras with residue field k.

Definition 3.0.1. Let A be a noetherian ring and A — k& a finite ring map with &k a field. Let Cy
be the category of,

(a) (A, p) where A is an Artinian local A-algebra and ¢ : A/my — k a A-algebra isomorphism
(b) morphisms f: (B,¥) — (A, ¢) are local A-algebra maps such that ¢ o (f mod my) = ¢

Remark. As in the absolute case (which corresponds to A = k) we can factor any extension B — A
into small extensions ¢ : B — A where ker ¢ is principal and annihilated by mp.

Definition 3.0.2. Let A be a Noetherian ring and let A — k be a finite ring map where £ is a
field. Define the category C, of,

(a) pairs (R,¢) where R is a Noetherian complete local A-algebra and ¢ : R/mr — k is a
A-algebra isomorphism,

(b) morphisms f : (S,%) — (R, ¢) are local A-algebra map such that ¢ o (f mod mg) = 1.
Remark. Then Cy C C, is naturally a full subcategory.
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3.1 Deformation Functors

Definition 3.1.1. A predeformation functor is a functor F': Cy — Set such that F(k) = {x}.
Remark. The condition F'(k) = {*} corresponds to choosing a fixed base object for the deformations.

Definition 3.1.2. Given a predeformation functor F : C, — Set we extend it to F : Cp — Set via,
— lim F(R/m})

A functor F'is pro-representable if Fis representable.

Definition 3.1.3. We say a morphism ¢ : F' — G of functors on C, is smooth the map,
F(B) = F(A) xg(x) G(B)
induced by an extension B — A is surjective.

Definition 3.1.4. Let F' : C, — Set be a predeformation functor. The tangent space of F' is the
set TF = F(k[e]). We will see under some assumptions this set is naturally a k-vectorspace.

Definition 3.1.5. Let F': Cy — Set be a predeformation functor. A hulﬂ for F'is a pair (R,n)
where R € Cy and n e F (R) such that hg — F is formally smooth and bijective on tangent spaces.

Remark. Let k[e] be the ring k[e]/(€*) with the trivial A-algebra structure.

Definition 3.1.6. Let ' : Cy — Set be a predeformation functor. If A’ — A and A” — A are
morphisms in C, there is a natural map,

(%) F(A x4 A") = F(A") xpa F(A")
Then Schlessinger’s conditions are as follows,
(H1) if A” — A is a small thickening then (x) is surjective
(H2) if A=k and A” = k[e] then (x) is bijective
(H3) TF = F(kle]) is finite-dimensional
(H4) if A” = A" and A’ — A is a small thickening, then (x) is bijective.
Remark. TF = F(k[e]) has a canonical vectorspace structure when F satisfies (H2) since we get,

F(kle]) x F(kle]) = F(kle1, e2]) — F(k[e])

using the map klej, es] — k[e] via €; — € and €; — €. The scalar multiplication is defined by
F(k[e]) — F(k[e]) induced by the map € — ce.

We cannot give T'F' a vectorspace structure without (H2) so it is more correct to group the Sch-
lessinger conditions into pairs (H1) + (H2) and (H3) + (H4) as we do in the sequel.

1Some authors use the terminology miniversal formal object. However, in the deformation category setting, a
minimal versal object may not induce an isomorphism of the tangent space so we reserve the term miniversal for a
minimal versal object see [Tag 06T0.


https://stacks.math.columbia.edu/tag/06T0

Definition 3.1.7. A pre-deformation functor F': Cy — Set is a deformation functor if it satisfies
(H1) and (H2).

Theorem 3.1.8 (Schlessinger). Let F': Cy — Set be a deformation functor. Then,
(a) F' admits a hull if and only if it satisfies (H3)

(b) F is pro-representable if and only if it satisfies (H3) and (H4).
Example 3.1.9. Let X be a k-scheme, the functor Defy : C, — Set defined by,
Defy : A {(X',¢) | X' flat A-scheme with ¢ : X' @4 k' = X}/ =
is a deformation functor.

Example 3.1.10. Let X = Spec (k[z,y]/(zy)) and F' = Defx. If A is a finite type k-algebra and
P — A is a presentation from a polynomial ring with kernel K then [H, Ex. 9.8] shows that,

Hom 4 (Qp/k- R, A,A) —— Homy (J/J? A) —— TDefy —— 0
arising from the conormal exact sequence,
J/J2 E— Qp/k ®pA E— QA/k — 0

In our case, let P = k[x,y] and J = (zy). Then we have,
A0, ® A0, A TDefy —— 0

and therefore TDef4 = A/(x,y) = k. Thus Defx satisfies (H3) so it should have a hull. Indeed,
(K[t], Spf(k[tl[z, y]/(xy —1)))

is a hull (note the formal object is effective). Let’s first understand why this hull is not a pro-
representing object. For any map, ¢ : k[t] — A the induced object,

@« (SpE(E[t] [z, y]/(vy — 1)) = Spec (Alz,y]/(zy — »(1)))

is unchanged (in isomorphism class) if we replace ¢ buy ¢’ = ugp for any unit u € A since then we can
scale x or y to remove u. However, recall that a deformation X’ is equipped with a distinguished
isomorphism ¢ : X' ®4 kK = X with which isomorphisms of deformations must be compatible.
Therefore, ¢’ = up and ¢ define the same deformation if u € A* is a unit and v = 1 mod ma.
Therefore, the map, hg — Defx is not injective for general A but is injective for A = kle] (since
(1 + ae) - € = € so multiplication by such a does nothing) as must be true for a hull.

However Def x is not pro-representable since it does not satisfy (H4). Indeed, consider A = k[e]/(€?)
and consider,

Defx(A Xk A) — Defx<z4) X DefX(A)

I claim this is not injective. Indeed, t = €; + €3 and t = €; + €5 + €165 map to the same pair of
deformations but I claim they are not related by such a unit. Write,

u =1+ ae; + bey + O(e?)

then,
u(e; + €2) = €1 + €9 + ael + (a + b)erey + bes + O(e?)

and we cannot have a = b =0 but a + b = 1.



Remark. The above illustrates why it is necessary to define deformations of a scheme as equipped
with a distinguished isomorphism ¢ : X’ ®4 k& = X otherwise Defyx will not be a deformation
functor. Indeed, let Def’y be the pre-deformation functor,

Def’y : A — {X’| X' flat A-schemes such that X' @, k' = X}/ =
but forgetting the isomorphism. Then for X = Spec (k[z,y]/(xy))
Def’y (k[e1, e2]) — Def’y (k[e]) x Def'y (ke])
is not injective. Indeed,
Spec (kler, €o][z, y]/(zy + €1+ €2) and  Spec(kler, e[z, y]/(zy + & + 2€2))

have the same image but are not isomorphic.

3.2 Deformation Categories

Definition 3.2.1. A predeformation category is a category cofibered in groupoids F — C, such
that F (k) is equivalent to the trivial category.

Remark. Let & be a predeformation category and xg € F(k). Then for any z € F over A let
q : A — k then there is a pushforward x — ¢.x and ¢.x € F(k) so there is a unique isomorphism
¢ = x¢ and hence there is a canonical morphism x — xy in F.

Remark. If F : Cy, — Set is a predeformation functor then the associated cofibered set Fr — C, is
a predeformation category. Likewise, if F — C, is a predeformation category then the functor of
isomorphism classes & : Cy, — Set is a predeformation functor.

Definition 3.2.2. Let F — C, be a category cofibered in groupoids. The category of formal objects
of F is the category of,

(a) formal objects (R,&,, f,) consists of an object R € Cy, and objects &, € F(R/m?%) and

morphisms f,, : &,41 — &, over the projection R/m’s™ — R/m7

(b) morphisms a : (R, &,, fn) — (S, M, gn) consists of a map ap : R — S in C, and a collection

ap, = &, — )y, of morphisms in F lying over R/m, — S/m¥ such that the diagrams,

fn
€n+1 I gn

la’rrl»l lan

9n
Nn+1 > Tin

commute for each n € N.
Proposition 3.2.3 (06H4). The formal objects forms a category cofibered in groupoids p : F — Ch.

Definition 3.2.4. Let p : F — C, be a category cofibered in groupoids. We say that F satisfies
the Rim-Schlessinger (RS) condition if for all A; — A and A; — A in Cy with Ay — A surjective,

g(Al X A Ag) — g(Al) X F(A) -.7(142)

is an equivalence. A deformation category is a predeformation category F satisfying (RS).

6


https://stacks.math.columbia.edu/tag/06H4

Lemma 3.2.5 (06J5). Condition (RS) is equivalent to: for every diagram in F,

To AQ
l lying over l
rNy —— T A]. e A

in Cy with Ay — A surjective, there exists a fiber product x; X, xo in F such that the diagram,

X1 Xy Xg — X9 Ay xq Ay —— Ay
l l lying over J J
ry ——— T Al —— A

Lemma 3.2.6 (07WQ). If X — S is an algebraic stack then for any Spec (k) — S and x¢ € X' (k)
the deformation category Fy ., satisfies (RS).

Remark. By Schlessinger’s theorem, this is telling us that a deformation functor F' = Dy ,, rep-
resented by some pointed finite-type quasi—separatedﬂ algebraic space o € X over a noetherian
scheme S is pro-representable. So even though X does not have a canonical local ring it does have
a formal local ring @?0 We can calculate it from the formal local ring of any étale cover U — X.
This is well-defined because for two étale covers U; — X and U; — X we have U; xx Uy is an
étale cover of both and these maps identify the formal local rings. There is a subtly here about the
residue field of the preimage of x( in these étale covers meaning that the complete local rings will
not be isomorphic until after a field extension. The technical assumptions ensure that X is decent
and then the discussion of Tag O0EMV applies.

3.3 Versality

Remark. A versal object is a universal object without the “uni” i.e. without the uniqueness.

Definition 3.3.1. A morphism ¢ : & — @ of categories cofibered in groupoids over C, is smooth
if for every extension B — A in C, the map,

F(B) = F(A) xg) F(B)
is essentially surjective.

Remark. This is basically the formal lifting criterion for formal smoothness. Indeed, if these defor-
mation categories are induced by the representable functors for a morphism of schemes f: X — Y
then we get that,

X(B) = X(A) xy Y(B)

is surjective which is equivalent to there existing a dashed arrow in each lifting diagram,

Spec (A) —— X

T
\[ ///// J‘f

Spec (B) —— Y

2T don’t know if these are the right conditions but they make the discussion work.
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Lemma 3.3.2. Smoothness of ¢ : ¥ — @ is equivalent to the following explicit condition. For
every surjection B — A in Cy and y € G(B) and = € F(A) equipped with a map y — ¢(x) over
B — A there is 2/ € F(B) and a morphism 2’ — x over B — A and a morphism ¢(z') — y over
id : B — V such that,

(') ———y
~ |
o(r)

Definition 3.3.3. Let R € Cy. We say £ € F(R) is versal if the morphism ¢ : R
by £ is smooth.

e, — F defined

Remark. The morphism is defined as follows. For any A € C, and map ¢ : R — A it will factor as
on : R/m" — A we send (A, ) — (¢n)«&n. The compatibility isomorphisms of the formal object £
make this well-defined.

Remark. Let & be a formal object of F. Versality of £ is equivalent to: the existence of a dashed
arrow for any diagram,

B

.
¢ —
in & such that y — x lies over a surjective map B — A of Artinian rings.

Theorem 3.3.4 (Rim-Schlessinger). A deformation category F such that TF = F(k[e]) is finite
dimensional admits a versal formal object.

Example 3.3.5. Let X be a k-scheme. The cofibered category of deformations Defy — Ci is a
deformation category. If X is finite type and either proper or affine then T@Wef = TDefy is finite
dimensional so X admits a versal formal deformation X — Spf(R).

Definition 3.3.6. Given a category fibered in groupoids,
p: X — (SChS)fppf

and a finite type point Spec (k) — S and z¢ € X (k). First factor Spec (k) — Spec (A) < S through
some affine open such that A — k£ is finite. The category C,, up to canonical equivalence, does
not depend of the choice of affine open Spec (A) C S. Note that C, is equivalent to the opposite
category of factorizations,

Spec (k) — Spec (A) — S

such that A is Artin local and A — k identifies & with the residue field. Now let Fy i ., be the
category of,

(a) morphisms zq — x of X over Spec (k) — Spec (A) as S-map in Cy,

(b) morphisms (zg — x) — (xg — 2’) are diagrams,



x '

~ 7

Zo

in X (notice the reversal of arrows).

Then p : Fx jz, — Ca is a predeformation category. We say that a formal object £ = (R, &, f,) of X
is versal if € is versal as a formal object of Fy ., with k = R/mp and zo = &;. We say that x € X' (U)
is versal at a finite type point ug € U if T € ?Xﬁ(uo),mo is versal where z¢ : Spec (k) - U — X is
the image.

Definition 3.3.7. Let S be a locally noetherian scheme and p : X — (Schg)gpr a category fibered
in groupoids. We say X satisfies openness of versality if given a scheme U locally of finite type
over S, an object x € X(U), and a finite type point ug € U such that x is versal at ug then there
is exists an open neighborhood ug € U’ C U such that x is versal at every finite type point of U’.

3.4 Effectivity
Definition 3.4.1. A formal object £ = (R, &, fn) € ‘?X,k@o is effective if it arises from & € X (R).

Lemma 3.4.2 (07X3). If X — S is an algebraic stack over a locally noetherian scheme S then
every formal object is effective.

Proof. First, if X is a scheme then for all local rings R factoring Spec (k) — X the map corresponds
to Spec (R) — Spec (Ox ) — X so if R is complete,

X(R) = I‘IOIIlloC (@X,om R) = 1&1 HOIIl]OC (@X@? R/mﬁ) = @X(R/m%)

The general case follows from an intricate descent argument. 0

4 Artin’s Axioms

Theorem 4.0.1 (Artin Approximation). Let S be a locally noetherian scheme and a category
fibered in groupoids p : X — (Schg)gpe. Let R be a Noetherian complete local ring with residue field
k with Spec (R) — S finite type and z € X'(R). Let s € S be the image of Spec (k) — Spec (R) — S.
Assume that,

(a) Ogg is a G-ring

(b) p is limit-preserving on objects.
Then for every N > 1 there exist,

(a) a finite type S-algebra A

(b) a maximal ideal my C A
(c) an object x4 € X (A)

)

(d) an S-isomorphism R/my = A/m¥
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(e) an isomorphism z|g/my = xaly Jmy over the previous map
(f) an isomorphism gr,, (R) = gr,,, (A) of graded k-algebras.

Lemma 4.0.2. Let S be a locally noetherian scheme and p : X — (Schg)gpr a category fibered in
groupoids. Let & be a formal object of X with z¢ = & lying over Spec (k) — S with image s € S
such that,

a is versal

(a) €

(b) & is effective

(¢) Ogs is a G-ring
)

(d) p: X — (Schg)gpe is limit-preserving

then there exists a finite type morphism U — S, a finite type point vy € U with residue field k£ and
x € X(U) such that z : U — X is versal at 4 and x|SpeC(@U ) induces &.
uQ

Proof. Choose an object xr € X (R) whose completion is . Apply Artin approximation with N = 2
to obtain A,mu,z4 € X(A) approximating £. Let n be the formal object completing xA‘Spec(A)
(the completion of A at my). Then a lift for the diagram in ?X,k,xo,

U

A

J lying over

\
\
\
\
v
o

E—— &= R;R/m%:/l/mi

exists because £ is versal. Since the map R —> A induces an isomorphism on tangent spaces and by

construction dimj, m%/m%™ = dim;, m% /m’4"! we conclude that R — A is an isomorphism. Hence
n = £ is versal so the map x4 : Spec (A) — X is versal at xA|SpeC(A) =1. O

Theorem 4.0.3. Let S be a locally Noetherian base scheme and consider a category fibered in
groupoids p : X — (Schg)gpe. For each finite type morphism Spec (k) — S with & a field and
zo € X (Spec (k)) assume that,

(a) X is a stack for the étale topology
(b) Ax/s: X = & xg X is representable by algebraic spaces

(c¢) X is limit preserving (preserves filtered colimits)

(d satisfies the Rim-Schlessinger condition (RS)

(f) every formal object of & is effective
(g satisfies openness of versality
(

h

)
)
)
) X
() T3y k., is finite dimensional for all k£ and all zy € F (k)
)
) &
) Og is a G-ring for all finite type points s € S
)

(i) a set theoretic condition
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then X is an algebraic stack.

Proof. 1t suffices to show that for each finite type Spec (k) — S and xy € X (k) there is a finite type
morphism U — S and a smooth map U — X such that there is a finite type point ug : Spec (k) — U
such that z|,, = x.

By Rim-Schlessinger Fy j », admits a versal formal object £ which is then effective. Artin approx-
imation allows us to approximate an effective formal object by a finite type object U — X which
is versal at ug € U. By openness of versality, we can shrink U such that U — X is versal at every
finite type point.

Finally, prove that a representable morphism f : X — U of limit preserving categories fibered in
groupoids which is smooth on deformation categories is smooth (Tag 07XX). Indeed, for T — Y
the condition says that f : Xp — T is a formally smooth map of algebraic Spacesﬂ and the limit-
preserving condition gives finitely presented. U

Remark. Usually most difficult to prove openness of versality. There a number of deformation-
theoretic techniques for proving this but require effectivity of formal objects over more general formal
schemes. There are also tangent-obstruction theory methods for proving openness of versality.

3There is a subtly here with changing fields that requires the full strength of (RS) where as proving that a versal
object exists only requires (S1) and (S2) and finite-dimensionality of tangent spaces
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