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1 Thomae’s function: an Invitation

Consider the curious real function,

f(x) =

{
1
b x = a

b ∈ Q writen in reduced form

0 x /∈ Q

It turns out that f is continuous exactly on the irrational numbers R \ Q.
(PROVE IT) The natural question arises: can one construct a function which is
exactly continuous on the rationals and discontinuous on the irrationals. This is
quite a difficult question. I will spare you from many attempts and failures only
remarking that we could make a function continuous on exactly the irrationals
because a function measuring the “complexity” of a rational which went to zero
as you approached any irrational exists, namely a

b 7→ 1
b . The difficulty begins

when we realize that there is not an abvious candidate for a function measuring
how “rational” an irrational number is which goes to zero as we approach any
rational. The fact that no such function exists will be a consequence of the more
systematic treatment to come.

2 The Topology of Continuity in Euclidean Space

Since there are not obvious candidate functions which satisfy the property we
are looking for, we are going to need to be more systematic and rigorous in our
quest. In particular, we need to nail down what the possible set of continuity
points “looks like.” The notion of how a set “looks” is nicely captured by what
we call its topology. In this section, we will introduce the basic notions of the
topology of Euclidean space and consider its relationship to continuity.

Definition: In Rn let | • | denote the usual Euclidean norm. The open ball of
radius δ > 0 centered at x is the set,

Bδ(x) = {y ∈ Rn | |x− y| < δ}

Definition: We call a set U ⊂ Rn open if for each point x ∈ U there exists
δ > 0 such that Bδ(x) ⊂ U . A set is closed if its complement is open.

Proposition. The set of points at which f : R → R is continuous can be
written as a countable intersection of open sets.

Proof. For n ∈ Z+ define the set,

Cn = {x ∈ R | ∃δ > 0 : y, z ∈ Bδ(x) =⇒ |f(y)− f(z)| < 1
n}

I claim that these sets are open. If x ∈ Cn then there exists some δ associated
to x such that |f(y) − f(z)| < 1

n whenever y, z ∈ Bδ(x). Take δ′ = 1
2δ. Then,

I claim that Bδ′(x) ⊂ Cn. If x′ ∈ Bδ′(x) then for any y, z ∈ Bδ′(x
′) we know

that Bδ′(x
′) ⊂ Bδ(x) since |y − x′| < δ′ =⇒ |y − x| < |y − x′| + |x′ − x| < δ.
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Thus, |f(y) − f(z)| < 1
n so x′ ∈ Cn. Furthermore, I claim that the continuity

points of f can be written as,

C(f) =

∞⋂
n=1

Cn

This is because if f is continuous at x then for any n choose ε < 1
2n then we

get a δn > 0 such that f(Bδn(x)) ⊂ Bε(f(x)). Therefore, if y, z ∈ Bδn(x) then
|f(y)− f(x)| < ε and |f(z)− f(x)| < ε. This implies that,

|f(y)− f(z)| < |f(y)− f(x)|+ |f(x)− f(z)| < 2ε < 1
n

so x ∈ Cn for each n. Conversely, if x ∈ Cn for each n then, given any ε > 0
take n such that 1

n < ε and get a δ since x ∈ Cn such that

y, z ∈ Bδ(x) =⇒ |f(y)− f(z)| < 1
n < ε

Therefore, |x− y| < δ =⇒ |f(x)− f(y)| < ε for any positive ε. Therefore, f is
continuous at x i.e. x ∈ C(f) so we have equality. □

Remark 2.0.1. This may not seem like a much of a restriction on the possible
set of continuity points but it turns out to determine this set’s membership in
the Borel Hierarchy.

Definition: We call a set Gδ if it is the countable intersection of open sets and
we call it Fσ if it is the countable union of closed sets.

Proposition.
A ∈ Gδ ⇐⇒ AC ∈ Fσ

Proof. If A ∈ Gδ then for some open Ui,

A =

∞⋂
i=1

Ui =⇒ AC =

∞⋃
i=1

UC
i =⇒ AC ∈ Fσ

since UC
i is closed. Conversely, if AC ∈ Fσ then for some closed Di,

AC =

∞⋃
i=1

Di =⇒ A =

∞⋂
i=1

DC
i =⇒ A ∈ Gδ

since DC
i is open. □

Theorem 2.1. Let A ⊂ R then there exits a function f : R → R such that
C(f) = A if and only if A is Gδ.

Proof. We have shown that if C(f) = A then A is Gδ. Conversely, suppose we
can write,

A =

∞⋂
i=1

Ai
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with open sets Ai. Define the sequence of open sets,

Un =

n⋂
i=1

Ai

then define the function,

f(x) =


0 x ∈ A
1
n x ∈ Un−1 and x /∈ Un and x ∈ Q
− 1

n x ∈ Un−1 and x /∈ Un and x /∈ Q

We need to prove that C(f) = A. If x ∈ A then x ∈ Un so for each n there exists
δn such that Bδn(x) ⊂ Un. For any ϵ > 0 take n ∈ Z+ such that 1

n < ϵ and
consider δn. If y ∈ Bδn(y) ⊂ Un then the minimal m such that y /∈ Um is greater
than n + 1 so |f(y) − f(x)| = |f(y)| ≤ 1

n+1 < ϵ so A ⊂ C(f). Furthermore, if

x /∈ A then f(x) = ± 1
n for some n. In every neighborhood of x there will be a y

with the opposite rationality as x such that f(y) ≤ 0. Thus, |f(x)− f(y)| ≥ 1
n

for some point in any neighborhood contradicting continuity for any choice of
ϵ < 1

n . Thus, C(f) ⊂ A. □

Remark 2.0.2. For Thomae’s function, we can take the following decomposition
of C(f) = R \Q as,

R \Q =

∞⋂
n=1

R \
{a
n

∣∣∣ a ∈ Z
}

The sets,

An = R \
{a
n

∣∣∣ a ∈ Z
}

are unions of open intervals and thus open. Furthermore, if x ∈ Un−1 but
x /∈ Un then x = a

n in least terms. Therefore, fA constructed above is exactly
Thomae’s function since if x /∈ R\Q then x ∈ Q so the output is always positive.

Remark 2.0.3. Therefore, we have reduced our problem to determining which
subsets of R are Gδ. This turns out to be much more sublte than it may appear
and will lead to the Baire category theorem, one of the most powerful theorems
in modern analysis.

3 General Topology and Metric Spaces

3.1 Point-Set Topology

Definition: A topology on X is a collection of subsets T ⊂ P (X) such that,

1. ∅, X ∈ T

2. If C ⊂ T is any collection of sets in T then their union is an element of T ,⋃
U∈C

U ∈ T
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3. If A,B ∈ T then A ∩B ∈ T so all finite intersections are in T

We call the sets in T the open sets of X and the closed sets of X are those whose
complement is in T i.e. D ⊂ X is closed exactly when X \D is open. Therefore,
a toplogy on X is simply a choice of which sets to call open making sure that
unions and finite intersections of open sets are open and that the empty set and
full set are open. Furthermore, if T is a topology on X we call the pair (X, T )
a topological space.

Remark 3.1.1. There is no reason that a set need be either closed or open.
In fact, many sets are neither open nor closed, for example the interval [a, b).
Also, some sets are both open and closed, for example ∅ and X. Such sets are
hilariously refered to as “clopen.”

Definition: A function f : (X, TX) → (Y, TY ) between topological spaces is
continuous if for any U ∈ TY we have f−1(U) ∈ TX . That is, the pre-image
of open sets is open. Similarly, f is continuous at some point x ∈ X if for any
neighborhood U of f(x), i.e. an open set containing f(x), its preimage f−1(U)
contains a neighborhood of x.

Definition: The closure of a set A ⊂ X, denoted A, is the intersection of all
closed sets containing A.

Proposition. For A ⊂ X, its closure A is the smallest closed set containing A.

Definition: A set D ⊂ X is dense in X if D = X.

Proposition. A set D ⊂ X is dense if and only if it intersects with every
nonempty open set of X.

Proof. Let U be open then D ∩ U = ∅ ⇐⇒ D ⊂ UC ⇐⇒ D ⊂ UC since UC

is closed. Therefore, D intersects with every nonempty open set iff D = X. □

Remark 3.1.2. For example, the rationals Q ⊂ R are dense in R since if Q ⊂ D
with D closed then DC must be an open set which intersects no rationals.
However, every open set contains an interval about each point and thus contains
some rational unless it is empty. Thus, D = R.

Definition: The interior of a set A ⊂ X, denoted A◦, is the union of all open
sets contained in A.

Definition: A set A ⊂ X is nowhere dense if its closure has empty interior.

Definition: The boundary of a set A ⊂ X, denoted ∂A, is ∂A = A \A◦.

Definition: x ∈ X is a limit point of A if for every open U ⊂ X containing x
we have U ∩ (A \ {x}) ̸= ∅.

Definition: x ∈ A is an isolated point of A if x is not a limit point of A.
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Definition: A set A ⊂ X is dense in itself if it contains no isolated points.

(DO THIS PROPOSITION)

Lemma 3.1 (Categorization of Toplogical Sets).

1.

3.2 Metric Spaces

Definition: A metric space is a space X and a function d : X ×X → R such
that for all x, y, z ∈ X,

1. d(x, y) ≥ 0

2. d(x, y) = 0 ⇐⇒ x = y

3. d(x, y) = d(y, x)

4. d(x, z) + d(z, y) ≥ d(x, y)

Definition: Let X be a metric space and x ∈ X. The open ball of radius δ > 0
centered at x is the set,

Bδ(x) = {y ∈ X | d(x, y) < δ}

Proposition. Any metric space (X, d) is a topological space with the induced
topology,

T = {U ⊂ X | ∀p ∈ U : ∃δ > 0 : Bδ(p) ⊂ U}

Proof. (DO PROOF) □

Definition: A sequence (ai) in a metric space is Cauchy if for any ε > 0 there
exists a natural number Nε such that for any n,m > Nε we have d(an, am) < ε.

Definition: A sequence (ai) in a metric space has limit L, denoted lim
n→∞

an = L

if for any ε > 0 there exists a natural number Nε such that for all n > Nε we
have d(an, L) < ε. If a sequence has some limit we say that it converges.

Proposition. If a sequence converges then it is Cauchy.

Proof. Suppose that an → L. Then for any ε > 0 there exists Nε/2 ∈ N such
that, d(an, L) < ε/2 for all n > Nε. Therefore, if n,m > Nε/2 then,

d(an, am) < d(an, L) + d(L, am) <
ε

2
+

ε

2
= ε

so (an) is Cauchy. □

Remark 3.2.1. In general, the converse is false. For example, in the metric space
Q, decimal approximations of π of increasing length form a Cauchy sequence
that does not converge to any element of Q since π is irrational.
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Definition: A metric space (X, d) is complete if every Cauchy sequence with
respect to the metric d converges in X i.e. converges to some limit in X.

Theorem 3.2. Euclidean space Rn with the Euclidean distance d(x,y) = |x−y|
is a complete metric space.

Remark 3.2.2. In fact, one possible definition of Rn is as the completion of Qn

with the standard metric i.e. the smallest complete metric space containing Qn

whose metric extends the standard metric on Q i.e. the metric of the larger
complete space resticted to Q is just the standard metric.

Definition: Let X be a metric space and A ⊂ X. Then,

diam (A) = sup{d(x, y) | x, y ∈ A}

Theorem 3.3. A metric space (X, d) is complete if and only if every descending
chain of closed sets,

F0 ⊃ F1 ⊃ F2 ⊃ · · ·

such that diam (Fn) → 0 has a unique point in its intersection.

Proof. (DO PROOF) □

3.3 Continuity of Maps Between Metric Spaces

Proposition. A map f : (X, dX) → (Y, dY ) of metric spaces is continuous at
x ∈ X if and only if for every ε > 0 there exists δ > 0 such that,

f(Bδ(x)) ⊂ Bε(f(x))

Which is equivalent to,

d(x, y) < δ =⇒ d(f(x), f(y)) < ε

Proof. (DO PROOF) □

Definition: Let f : (X, dX) → (Y, dY ) be a map of metric spaces. Then the
oscillation of f over a set S ⊂ X is,

ωf (S) = diam (f(S)) = sup{d(f(x), f(y)) | x, y ∈ S}

Furthermore, we may define the oscillation at a point x ∈ X via,

ωf (x) = inf
δ>0

ωf (Bδ(x))

Lemma 3.4. Let f : (X, dX) → (Y, dY ) be a map of metric spaces then the
continuity points of f are equivalent to,

C(f) = {x ∈ X | ωf (x) = 0}

and likewise the discontinuity points are X \ C(f).
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Proof. Suppose that ωf (x) = 0. Then for any ε > 0 there must exist a δ > 0
such that ωf (Bδ(x)) < ε and thus diam (f(Bδ(x))) < ε so f(Bδ(x)) ⊂ Bε(f(x))
since no points of f(Bδ(x)) are seperated by more than ε. Thus, f is continuous
at x. Conversely, assuming that f is continuous at x we know that given any
ε > 0 we can find δε/2 > 0 such that f(Bδ(x)) ⊂ Bε/2(f(x)). Therefore, for all
y, z ∈ Bε/2(f(x)) we know that,

dY (y, z) ≤ dY (y, f(x)) + dY (f(x), z) < ε

so ωf (Bδ(x)) = diam (f(Bδ(x))) < ε. Therefore,

ωf (x) = inf
δ>0

ωf (Bδ(x)) < ε

for all ε > 0 which implies that ωf (x) = 0. Thus,

x ∈ C(f) ⇐⇒ f is continuous at x

□

Theorem 3.5. Let f : X → Y be a map of metric spaces. Then the set of
continuity points C(f) is Gδ and the set of discontinuity points C(f)C is Fσ.

Proof. Clearly,

C(f) = {x ∈ X | ωf (x) = 0} =

∞⋂
n=1

{x ∈ X | ωf (x) <
1
n}

so it suffices to show that each,

Cn(f) = {x ∈ X | ωf (x) <
1
n}

is open to prove that C(f) is the countable intersection of open sets i.e. Gδ.
Suppose that ωf (x) <

1
n or equivalently that there exists some δ > 0 such that

ωf (Bδ(x)) <
1
n . For x

′ ∈ Bδ/2(x) consider,

ωf (Bδ/2(x
′)) = diam

(
f(Bδ/2(x

′))
)

If y, z ∈ Bδ/2(x
′) ⊂ Bδ(x) then d(f(x), f(z)) ≤ diam (f(Bδ(x))) <

1
n . Then,

ωf (x
′) ≤ diam

(
f(Bδ/2(x

′))
)
= diam

(
f(Bδ/2(x

′))
)
< 1

n

which implies that x′ ∈ Cn(f). Thus, Bδ/2(x) ⊂ Cn(f) so Cn(f) is open.
Therefore, C(f) is Gδ and thus X \ C(f) is Fσ since it is a countable union of
closed sets. □

Remark 3.3.1. It now remains to understand the properties of Gδ and Fσ sets.
Specifically, we will be interested in dense Gδ and Fσ sets.

8



4 The Baire Category Theorem

Definition: A set A ⊂ X ismeager if it is the countable union of nowhere dense
sets. We say A ⊂ X is comeager if its complement is meager or equivalently if
it is the countible intersection of sets with dense interiors.

Proposition. Any subset of a meager set is meager.

Proof. Let S ⊂ M and M be meager then there exit nowhere dense sets Ni such
that,

S ⊂ M =

∞⋃
i=1

Ni =⇒ S =

∞⋃
i=1

Ni ∩ S

then Ni ∩ S is nowhere dense since (Ni ∩ S)◦ ⊂ (Ni)
◦ = ∅. □

Remark 4.0.1. A set A ⊂ X being nowhere dense is equivalent to its intersection
with any nonempty open set U ⊂ X not being dense in U . If A is dense in some
U then for any closed D ⊂ X if A ∩ U ⊂ D ∩ U then U ⊂ D. Therefore, if
A ⊂ D then U ⊂ D so D has nonempty interior. Converely if A has nonempty
interior then there must exist a nonempty open set U contained in every closed
set containing A. However, if A∩U ⊂ D ∩U then A ⊂ D ∪UC which is closed
(since U is open) so U ⊂ D ∪ UC which implies that U ⊂ D because U is
contained in A. Thus, D ∩ U = U and thus A ∩ U is dense in U .

Remark 4.0.2. It is clear that if U is open then U is dense iff it has dense interior
and likewise if D is closed then D has empty interior iff D is nowhere dense.

Proposition. A topological space X is a Baire space if one of the following
equivalent properties holds,

1. every countable intersection of open dense sets is dense

2. every countable union of closed nowhere dense sets has empty interior

3. every meager set has empty interior

4. every comeager set is dense.

5. every nonempty open set is nonmeager

Proof. I will show that these properties are equivalent. A set U is a dense
open set if and only if UC = X \ U is a closed nowhere dense set because

UC
◦
= (UC)◦ = (U)C . Therefore,

U is dense ⇐⇒ U = X ⇐⇒ UC
◦
= (U)C = ∅ ⇐⇒ UC is nowhere dense

Therefore the first two properties are equivalent because,( ∞⋂
i=1

Ui

)
=

( ∞⋃
i=1

UC
i

)C

=

[( ∞⋃
i=1

UC
i

)◦]C
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Therefore, ( ∞⋂
i=1

Ui

)
= X ⇐⇒

( ∞⋃
i=1

UC
i

)◦

= ∅

Thus, every intersection of dense open sets is dense if and only if any union of
closed nowhere dense sets has empty interior.

Now, I will show that properties 2 and 3 are equivalent. Assuming 2, if M is a
meager set then,

M =

∞⋃
i=1

Ni

where Ni is nowhere dense. Then,

M ⊂
∞⋃
i=1

Ni

By 2, the union has no interior points and thus neither does M proving 3.
Conversely, assuming 3, a countible union of closed nowhere dense sets is a
meager set and thus, by 3, has empty interior proving 2.

Now, I will show that properties 1 and 5 are equivalent. Assuming 1, if A is
comeager then it is a countable intersection of sets with dense interior which
are thus dense. Therefore, by 1, A is dense proving 4. Conversely, assuming 4,
if A is the countable intersection of open dense sets then it is comeager (since
open dense sets trivially have dense interiors) and thus dense by 4, proving 1.
Furthermore, 3 and 4 are clearly equivalent because the complement of a meager
set M is dense exactly when M has empty interior.

Finally, I will show that properties 3 and 5 are equivalent. Assuming 3, if U
is open and meager then its interior, by 3, is empty so U = U◦ = ∅ since it
is open proving 5. Conversely, assuming 5, if M is meager then M◦ ⊂ M and
thus is meager. However, M◦ is also open so, by 5, M◦ is empty proving 3. □

Theorem 4.1 (Baire). X is a Baire space if either of the folowing sufficient
conditions holds,

1. X is a complete metric space

2. X is a locally compact Hausdorff space.

Proof. Let X be a complete metric space. Suppose that {Ui} is a countable
collection of dense open sets. We want to show that,

U =

∞⋂
i=1

Ui
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is dense. Let W be a nonempty open set of X. Since U1 is dense, ∃x1 ∈ U1∩W
but U1 ∩ W is open so ∃r1 ∈ (0, 1) : Br1(x1) ⊂ U1 ∩ W . Now we define a
sequence recursively. Given xn and rn, we know that Un+1 ∩ Brn(xn) is open
and nonempty since Un+1 is dense. Thus, there exists xn+1 ∈ Un+1 ∩ Brn(xn)
and since the set is open,

∃rn+1 ∈ (0, 1
n ) : Brn+1(xn+1) ⊂ Un+1 ∩Brn(xn)

Therefore, there exist sequences1 (xn) in X and (rn) in R such that,

Brn+1(xn+1) ⊂ Un+1 ∩Brn(xn)

and rn ∈ (0, 1
n ). Since Brn(xn) ⊂ Brm(xm) ⊂ Um ∩W when n > m. Therefore,

xn ∈ U1 ∩ · · · ∩ Un and xn ∈ W . Furthermore, d(xn, xm) < rm < 1
m so for

any ε > 0 if we choose n,m > N such that 1
N < ε then d(xn, xm) < 1

N < ε so
(xn) is Cauchy. Therefore, since X is complete xn converges to a limit x ∈ X.
Since xn ∈ Brm(xm) for all n > m and Brm(xm) is closed, we must have
x ∈ Brm(xm) ⊂ Um∩W so x ∈ Um for all m and x ∈ W . Therefore, x ∈ U ∩W
so U intersects any nonempty open set and is therefore dense. (PROOF FOR
LCH) □

Corollary 4.2. In a Baire space X, Q and QC cannot both be dense Gδ sets.

Proof. Suppose that Q and QC were dense Gδ sets then both Q and QC would
be the intersection of countably many dense2 open sets. Therefore, Q ∩ QC is
the countable intersection of dense open sets. However, Q ∩ QC = ∅ is not
dense contradicting X being a Baire space. □

5 An Answer At Last

Theorem 5.1. There does not exist a real function continuous exactly on Q.

Proof. We know that the set of continuity points of any function must be Gδ

so it suffices to prove that Q is not Gδ. Since R is a complete metric space it
is a Baire space. Therefore, no set and its complement can be dense Gδ sets.
However, both Q and R \Q are dense and,

R \Q =
⋂
q∈Q

R \ {q}

is Gδ since Q is countible and R \ {q} is open. Therefore, Q cannot be Gδ. □

Remark 5.0.1. This proof easily generalizes to show that if Q is a dense Fσ set
with dense complement then Q cannot be the set of continuity points of any
function.

1We can define any finite number of terms in such a sequence recursively. However, to get
the entire infinite sequence we need to invoke the axiom of choice. In fact, the Baire category
theorem is equivalent to a weak form of the axiom of choice.

2Since Q is dense, if we can write Q as an intersection of {Ui} then Q ⊂ Ui so Ui ⊃ Q = X
so each Ui is dense.
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6 The Borel Hierarchy

We have demonstrated the importance of Gδ and Fσ sets in proving facts about
continuity points. However, we can generalize the definitions of these classes to
form an infinite hierarchy of increasingly complex sets.

Definition: The Borel Hierarchy of a topological space X consists of classes of
sets Σ0

α, Π
0
α, and, ∆

0
α for any countable ordinal3 greater than zero 0 < α < ω1

which are defined by the following inductive rules,

1. A set is Σ0
1 exactly when it is open.

2. A set is Π0
α if and only if complement is Σ0

α.

3. A set is ∆0
α exactly when it is both Σ0

α and Π0
α.

4. A set A is Σ0
α if and only if there is a countable sequence {Ai} such that

A is Π0
αi

for αi < α and,

A =

∞⋃
i=1

Ai

Remark 6.0.1. It follows that a set A is Π0
α if and only if there is a countable

sequence {Ai} such that A is Σ0
αi

for αi < α and,

A =

∞⋂
i=1

Ai

Remark 6.0.2. We see that Fσ = Σ0
2 since these are exactly the countable unions

of closed sets and Gδ = Π0
2 is their complements which is exactly the countable

intersection of open sets.

Remark 6.0.3. Since ∆0
α = Σ0

α ∩Π0
α we see that no ∆0

2 subset of a Baire space
can be dense and have dense complement. For example, R \ {0} is open and
thus Gδ = Π0

2 but,

R \ {0} =

∞⋃
i=1

(−∞, 1
i ] ∪ [ 1i ,∞)

which is Fσ = Σ0
2 so R \ {0} is ∆0

2. However, notice that its complement is just
the point zero which is, of course, not dense.

Lemma 6.1. For and ordinal α, we have Σ0
α ∪Π0

α ⊂ ∆0
α+1. Therefore, higher

ordinal classes of the Hierarchy contain all lower classes.

3An ordinal is a generalization of the counting numbers N to counting infinite things.
In particular, ω is the set of natural numbers and ω + 1 is the union of that set and {ω}.
Furthermore, ω1 is the set of all countable ordinals and which is, itself, an uncountable ordinal
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Proof. If A ∈ Σ0
α then clearly A ∈ Π0

α+1 since it is trivially an intersection of
Σ0

α sets. Furthermore, we can write,

A =

∞⋃
i=1

Ai

with Ai ∈ Π0
αi

for αi < α < α + 1 which means that A ∈ Σ0
α+1. Therefore,

A ∈ ∆0
α+1. Furthermore, if A ∈ Π0

α then clearly A ∈ Σ0
α+1 since it is trivially

a countable union of Π0
α sets. Furthermore, we can write,

A =

∞⋂
i=1

Ai

with Ai ∈ Σ0
αi

for αi < α < α+1 which means that A ∈ Π0
α+1 so A ∈ ∆0

α+1. □

Definition: A topological space X is seperable if there exists a countable dense
subset. We call a seperable complete metric space a Polish space.

Proposition. Let X be an uncountable Polish space. Then Σ0
α ̸⊂ Π0

α and
Π0

α ̸⊂ Π0
α for any α < ω1. Therefore, the Borel Hierarchy does not collapse.

Now let us go further!

Proposition. Define,

Σ0
ω1

=
⋃

α<ω1

Σ0
α

Π0
ω1

=
⋃

α<ω1

Π0
α

∆0
ω1

=
⋃

α<ω1

∆0
α

Then,
B(X) = Σ0

ω1
= Π0

ω1
= ∆0

ω1

is called the σ-algebra of Borel sets and B(X) is closed under countable unions,
countable intersections, and complements.

Proof. If A ∈ Σ0
ω1

or A ∈ Π0
ω1

then A ∈ Σ0
α or A ∈ Π0

α for some α < ω1. But
we know that Σ0

α ∪Π0
α ⊂ ∆0

α+1 ⊂ ∆0
ω1

so A ∈ ∆0
ω1
. However, we clearly have

∆0
ω1

⊂ Σ0
ω1

and ∆0
ω1

⊂ Π0
ω1

since ∆0
α = Σ0

α ∩Π0
α.

Since B(X) = Σ0
ω1

= Π0
ω1

= ∆0
ω1

it is closed under complements since A ∈ ∆0
ω1

implies that A ∈ Σ0
ω1

∩Π0
ω1

so AC ∈ Π0
ω1

∩Σ0
ω1

= B(X). It remains to check
that B(X) is closed under countable unions (since we get countable intersections
from this and complements). Suppose that {Ai} is a countable sequence of Borel
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sets then Ai ∈ ∆0
ω1

so Ai ∈ ∆0
αi

for some αi < ω1. I claim that the supremum
α = supαi exists and is a countable ordinal α < ω1. Assuming this, the union,

A =

∞⋃
i=1

Ai

is Σ0
α+1 because Ai ∈ ∆0

αi
⊂ Π0

αi
for αi < α + 1. Thus A ∈ Σ0

α+1 ⊂ Σ0
ω1

=
B(X). Now I need to prove my claim. I define,

α = supαi =

∞⋃
i=1

αi

which is countable since it is a countable union of countable sets and α ⊃ αi so
α ≥ αi. □
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