
1 The Ehrhart Polynomial
Theorem 1.0.1 (Ehrhart Polynomial). Let P be an n-dimensionaly lattice polytope in Rn. Then
there exists a unique polynomial with rational coefficients EP ∈ Q[x] ssatsfying:

(a) For any integer ν ∈ N,
EP (ν) = # ((νP ) ∩M)

(b) The leading coefficient of EP is VolM (P ) i.e. the volume of P normalized to the lattice cell
volume of M .

(c) There is a reciprocity law for positive integers ν > 0,

EP (−ν) = (−1)d# (νP ◦ ∩M)

Remark. To prove the power of this theorem, we can easily derive the classical Pick’s theorem as a
special case.

Theorem 1.0.2 (Pick). Let n = 2 and P ⊂ R2 be a lattice polygon. Then,

#(P ∩M) = VolM (P ) + 1
2#(∂P ∩M) + 1

Proof. Consider the Ehrhart polynomial which takes the form,

EP (x) = VolM (P )x2 +Bx+ 1

Now we can decompose P = P ◦ ∪ ∂P which implies that,

EP (1) = # (P ∩M) = # (P ◦ ∩M) + # (∂P ∩M)

Furthermore, by the reciprocity law,

EP (−1) = # (P ◦ ∩M)

Putting these together, we find,

EP (1)− EP (−1) = # (∂P ∩M)

However, applying the polynomial form,

EP (1)− Ep(−1) = 2B =⇒ B = 1
2# (∂P ∩M)

Thus the Ehrhart polynomial is,

EP (x) = VolM (P )x2 + 1
2# (∂P ∩M)x+ 1

Which, for x = 1 we find,

EP (1) = # (P ∩M) = VolM (P ) + 1
2# (∂P ∩M) + 1

giving Pick’s formula. �
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2 Construction of the Toric Variety
Let N = #(P ∩ Zn)− 1. Then consider the map (C×)n ↪→ PN defined by sending,

t 7→ [tv0 : · · · : tvN ]

for the lattice poitns vi ∈ P ∩ Zn. Then we define the toric variety XP to be the closure of the
image of this map. The additional points are called the boundary strata and can be shown to also
be rational varities of lower dimensions. (Note, if P does not have “enough lattice points” then
this construction does not work because the associated divisor is only ample not very ample but
this does work replacing P by νP for ν � 0 and then mucking around with divisors to return
to counting points for the divisor P . Alternatively, one can construct XP intrinsically from the
combinatorial data of P in a way that is manifestly independent of scaling).

Furthermore, notice that the embedding (C×)n ↪→ PN is equivariant for the following action
(C×)n � PN given by,

t · [z0 : · · · : zN ] = [tv0z0 : · · · : tvN zN ]
Therefore, we get an action (C×)n �

XP extending the standard left action of the torus (C×)n ⊂ XP .
Because the embedded torus (C×)n ⊂ XP is a dense open, the function field which is the field of
meromorphic functions on XP , is equal to that of (C×)n which is,

K(XP ) = C(χ1, . . . , χn)

These are generated by rational functions χi : (C×)n → C× which are the standard characters
t 7→ ti. We call functions of the form χu = χu1

1 · · ·χun
n characters because they are exactly the set

of group homomorphisms.

We now consider the structure of the boundary strata and how these characters behave at the
boundary. Let’s consider a polynomial map λ : C× → (C×)n. Let ei be the maximum exponent of
λ of χi ◦ λ. Then we see that under the embedding,

lim
t→∞

λ(t) = lim
t→∞

[c1t
e·v1 : · · · : cN te·vN ]

Therefore, after rescaling, the only remaining terms are the maximum values of e · vi. The indices
that show up as maximum values in the direction e are the extreme shapes of P . Therefore, we get
a correspondence between the strata and the faces of P . Furthermore, consider,

lim
t→∞

χu ◦ λ(t) = tu·e

so the order of the pole of χu on the boundary strata De defined by e is u · e. In particular, the
character χu has a pole on the boundary strata defined by a direction e if and only if u · e > 0 and
has a zero if and only if u · e < 0. Note, this really only makes sense for top-dimensional boundary
strata (corresponding to facets: top dimensional faces of P ) because a zero or pole of a rational
function only makes sense on a codimension 1 subset. For example, consider f(x, y) = x

y
on C2.

This has a pole on the x-axis and a zero on the y-axis so what is its value at the origin?? Indeed,
it has a different limit depending on if you approach the origin along the x or y axis.

Now notice the following. If we write decompose our polytope into half-spaces defined by the facets,

P =
⋂
F⊂P

H+(uF , aF ) where H+(u, a) = {x ∈ Rn | x · u ≤ a}
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Then notice that u ∈ P ∩ Zn if and only if χu has a pole of no worse than order a. Therefore, we
should define LP to be the line bundle of functions with poles along the strata DF no worse than
order aF . Because DF are torus-invariant and the torus acts on the function field we see that LP
is equivariant for the torus and therefore its space of sections is spanned by eigensections for the
torus action which are exactly characters. Therefore, we conclude that,

H0(XP ,LP ) =
⊕

u∈P∩Zn

C · χu

Notice that we can describe any other polytope with the same facet normals as P in a similar way
just by chaning the pole behavior on the boundary strata. For a tuple of integers q = (qF ) let,

P (q) =
⋂
F⊂P

H+(uF , qF )

and we associate a line bundle Lq = LP (q) which we also write in divisor notation as,

Lq = OXP
(
∑
F⊂P

qFDF )

Then the same argument shows that,

H0(XP ,Lq) =
⊕

u∈P (q)∩Zn

C · χu

Theorem 2.0.1 (Demazure). For i > 0 the cohomology,

H i(XP ,LP (q)) =
⊕

u∈P∩Zn

C · χu

and therefore,
χ(XP ,LP (q)) = #(P ∩ Zn)

3 The Proof
Theorem 3.0.1 (Ehrhart Polynomial). Let P be an d-dimensionaly lattice polytope in MR. Then
there exists a unique polynomial with rational coefficients EP ∈ Q[x] ssatsfying:

(a) For any integer ν ∈ N,
EP (ν) = # ((νP ) ∩M)

(b) The leading coefficient of EP is VolM (P ) i.e. the volume of P normalized to the lattice cell
volume of M .

(c) There is a reciprocity law for positive integers ν > 0,

EP (−ν) = (−1)d# (νP ◦ ∩M)

Proof. Given the lattice polytope P we have constructed a toric variety XP with a divisor DP such
that,

χ(XP ,OXP
(DP )) = #(P ∩ Zn)

3



By the Hirzbruch-Riemann-Roch theorem we have,

χ(XP ,OXP
(νDP )) =

∫
XP

ch(OXP
(νDP )) Td(TXP

)

Recall that the Chern character is,

ch(OXP
(νDP )) = exp (c1(OXP

(νDP ))) =
d∑

m=0

c1(OXP
(νDP ))m
m!

where the sum terminates at d = dimXP since higher intersections vanish. Recall that the Chern
class c1 is a homomorphism c1(L1 ⊗ L2) = c1(L1) + c1(L2). Thus, since OXP

(νDP ) = OXP
(DP )⊗ν ,

ch(OXP
(νDP )) =

d∑
m=0

c1(OXP
(DP )⊗ν)m
m! =

d∑
m=0

c1(OXP
(DP ))mν

m

m!

Therefore,

χ(XP ,OXP
(νDP )) =

∫
XP

(
d∑

m=0
c1(OXP

(DP ))mν
m

m!

)
Td(TXP

)

=
d∑

m=0

νm

m!

(∫
XP

c1(OXP
(DP ))m Td(TXP

)
)

= h(ν)

is a degree at most d polynomial in ν. This implies that for ν ∈ N we have proven there is a
polynomial,

EP (ν) = h(ν) = χ(XP ,OXP
(νDP )) = dimCH

0(XP ,OXP
(νDP )) = # (νP ∩M)

Furthermore, since DP is big and EP (m) counts sections of OXP
(mDP ), we know that the leading

term must be md so degEP = d. Writing,

EP (x) = anx
n + · · ·+ a0

we may isolate the leading coefficient as follows,

an = lim
ν→∞

EP (ν)
νd

= lim
ν→∞

# (νP ∩M)
νd

= VolM (P )

Lastly, to prove the duality property, we apply Serre duality. On XP , the dualizing sheaf is equal
to the canonical sheaf,

ωXP
= OXP

(−
∑
F

DF )

where DF is the divisor V (σF ) for each facet F ⊂ P . Since XP is a projective Cohen–Macaulay
variety (and thus irreducible over k), Serre duality sates that, for any locally free sheaf F on XP ,

H i(XP ,F
∨) = Hd−i(XP ,F ⊗OXP

ωXP
)∨

which, by computing dimensions and reordering, implies that,

χ(XP ,F
∨) = (−1)dχ(XP ,F ⊗OXP

ωXP
)
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In particular, for F = OXP
(νDP ) we have,

EP (−ν) = χ(XP ,OXP
(−νDP )) = (−1)dχ(XP ,OXP

(νDP )⊗OXP
ωXP

)

By the Kodaria vanishing theorem, since νDP is ample for ν > 0,

χ(XP ,OXP
(νDP )⊗OXP

ωXP
) = dimC H0(XP ,OXP

(νDP )⊗OXP
ωXP

)

Now we consider the invertible sheaf,

OXP
(νDP )⊗OXP

ωXP
= OXP

(νDP −
∑
F

DF ) = OXP
(
∑
F

(νaF − 1)DF )

which means we should consider the divisor,

D′ =
∑
F

(νaF − 1)DF

which corresponds to the support function ψD′ satisfying ψD′(nF ) = −(νaF − 1) (recall that cones
ρ ∈ ΣP (1) correspond to facets F ⊂ P ). Therefore, the polytope for the divisor D′ is,

PD′ =
⋂
F⊂P

a facet

H+(nF , ψD′(nF )) =
⋂
F⊂P

a facet

H+(nF , 1− νaF )

Recall that,
νP =

⋂
F⊂P

a facet

H+(nF ,−aF ) =
⋂
F⊂P

a facet

{x ∈MR | ∀F : 〈x, nF 〉 ≥ −νaF}

Therefore, the interior is,

νP ◦ =
⋂
F⊂P

a facet

{x ∈MR | ∀F : 〈x, nF 〉 > −νaF}

Therefore, intersecting with the lattice,

νP ◦ ∩M =
⋂
F⊂P

a facet

{m ∈M | ∀F : 〈m,nF 〉 ≥ −νaF + 1} = PD′ ∩M

because the inner product is integer valued on the lattice so,

〈m,nF 〉 > −νaF ⇐⇒ 〈n, nF 〉 ≥ −νaF + 1

Thus,

EP (−ν) = (−1)d dimC H0(XP ,OXP
(D′)) = (−1)d# (PD′ ∩M) = (−1)d# (νP ◦ ∩M)

�

Remark. Note that EP (0) = #((0 · P ) ∩M) = 1 so the constant term is 1. Furthermore, in the
limit ν →∞ if dimP = d then EP (ν) ∈ O(νd) so degEP = d.
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