
Provability Logic
Benjamin Church

July 3, 2022

Contents
1 Introduction 2

1.1 First-Order Languages . 2
1.2 Proof Theory . 3

2 A Theory For the Natural Numbers 4
2.1 The Language of Number Theory . 4
2.2 Robinson Arithmetic and Peano Arithmetic . 4
2.3 Representing Functions and Relations . 5

3 Computability Theory 5
3.1 µ-Recursive Functions . 6
3.2 Recursive and Recursively Enumerable Sets . 6

3.2.1 Church-Turing Thesis . 6
3.3 The Representability Theorem . 6

4 Number Theory Swallows Itself 7
4.1 Gödel Numbering . 7
4.2 The Provability Predicate . 8
4.3 Self-Reference . 8
4.4 Godel Incompleteness I . 10
4.5 Löb’s Theorem . 11
4.6 Godel Incompleteness II . 12
4.7 Löb’s Theorem Formalized inside Number Theory 12
4.8 Gödel Incompleteness Formalized inside Number Theory 13

5 GL Provability Logic 15
5.1 Modal Logic . 15
5.2 Modal Semantics . 16
5.3 Arithmetic Soundness . 16
5.4 The Existence of Modal Fixed Points . 16
5.5 Arithmetic Completeness . 16

1

1 Introduction

1.1 First-Order Languages
.

Definition 1.1.1. A vocabulary or signature σ is a set of “non-logical” symbols which may be of
three types:

(a) Constant symbols (e.g. 0)

(b) n-ary function symbols (e.g. +)

(c) n-ary relation symbols (e.g. ∈)

Along with the signature, a first-order language has a set of “logical” symbols:

(a) A countable list of variable symbols: x1, x2, x3, · · ·

(b) Logical connectives: ¬,∨,∧,→

(c) Quantifiers: ∀ (we get ∃ ⇐⇒ ¬∀¬ for free)

(d) An equality relation: =

(e) Punctuation: () , etc.

Definition 1.1.2. The set of terms of a first-order language L with vocabulary σ is defined induc-
tively as follows:

(a) Any variable or constant symbol is a term.

(b) If f is an n-ary function symbol and t1, . . . , tn are terms then f(t1, . . . , tn) is a term. For a
binary operator (2-ary function), say ◦, we will often write (t1 ◦ t2) to mean ◦(t1, t2).

Definition 1.1.3. The set of formulas of a first-order language L with vocabulary σ is defined
inductively as follows:

(a) If s, t are terms then (s = t) is a formula. Furthermore if R ∈ σ is an n-ary relation symbol
and t1, . . . , tn are terms then R(t1, . . . , tn) is a formula. For a 2-ary relation we will often write
sRt to mean R(s, t).

(b) If A and B are formulas then ¬A, (A ∨B), (A ∧B), and (A → B) are all formulas.

(c) If x is a variable symbol and φ a formula in which x is free (φ contains x but no quantifiers
over x) then ∀x φ and ∃x φ are formulas.

Definition 1.1.4. A sentence of a first-order language is a formula with no free variables.

Definition 1.1.5. A first-order theory is a first-order language L along with a set Γ of first-order
L-sentences which are referred to as axioms.

2

1.2 Proof Theory
There are many possible first-order deduction systems each with its own unique flavor. A deduction
system has logical axioms and rules of inference on formulas of L. A formal proof beginning with
some assumptions is a sequence of L-formulas each of which is either a logical axiom, an assumption,
or the result of a rule of inference applied to previous formulas. Here we work with an example
which is a variant of Hilbert’s propositional logic formal system H extended to first order logic.

Definition 1.2.1. Hilbert’s system H has logical connectives {¬,→} and the following axiom
schemas: for any formulas A,B,C the following are axioms of H,

(H1) A → (B → A)

(H2) (A → (B → C)) → ((A → B) → (A → C))

(H3) ¬A → (A → B)

(H4) (¬A → A) → A

The formal system H has one rule of inference known as modus ponens (MP),

A (A → B)
B

We can define the formulas A ∨ B to stand for ¬A → B and A ∧ B to stand for ¬(A → ¬B) and
A ↔ B to stand for (A → B) ∧ (B → A) etc.

Definition 1.2.2. We say that a first-order theory Γ syntactically entails or, more simply, proves
A if there exists a formal proof using axioms of Γ and first-order rules of inference. We write this
as Γ ⊢ A.

Example 1.2.3. We show that ⊢H A → A for any formula A.

[A → ((A → A) → A)] → [(A → (A → A)) → (A → A)] axiom (L2) (1)
A → ((A → A) → A) axiom (L1) (2)
(A → (A → A)) → (A → A) MP 1,2 (3)
A → (A → A) axiom (L1) (4)
A → A MP 3,4 (5)

Remark. Clearly, proofs in H are horrible. Luckily the following wonderful theorem means we will
rarely need to provide explicit proofs.

Theorem 1.2.4 (Gödel). Every propositional tautology is a theorem of H.

Remark. By tautology here we mean always evaluates to true under the standard semantics for ¬
and →. In these semantics all axioms of H are tautologies and modus ponens is locally sound.

Definition 1.2.5. The formal system FO extends H by adding the additional axioms,

(EQ1) ∀x (x = x)

(EQ2) ∀x [(x = t) → (A(x) → A(t))]

3

(FO1) ∀x A(x) → A(t) where t is any term whose variables are not bound in A.

(FO2) ∀x (A → B(x)) → (A → ∀x B(x)) where x is free in x and not in A.

and the additional rule of inference called generalization (Gen),

A
∀x A

Remark. We will use the notation A(x) to denote that x is a free variable in A and then A(t) to
denote A with t substituted for x.

Definition 1.2.6. A first-order theory Γ is consistent if there does not exist a statement A such
that Γ ⊢ A and Γ ⊢ ¬A.

Definition 1.2.7. A first-order theory Γ is complete if for every L-sentence A we have either Γ ⊢ A
or Γ ⊢ ¬A.

Lemma 1.2.8 (Categorization of Consistency). Γ is proof-theoretically consistent if and only if
there exists a first-order sentence A such that Γ ̸⊢ A.

Proof. If Γ is consistent and Γ ⊢ A then Γ ̸⊢ ¬A. If Γ is not consistent then Γ ⊢ A and Γ ⊢ ¬A for
some A. Using (H3), Γ ⊢ ¬A → (A → B) so applying MP twice gives Γ ⊢ B for any B. □

2 A Theory For the Natural Numbers

2.1 The Language of Number Theory
Definition 2.1.1. The first-order language LNN has signature σ = {0, s,+, ·} where 0 is a constant
symbol, s is a 1-ary function symbol, and + and · are 2-ary function symbols.

Example 2.1.2. We be define the abbreviation x < y to mean ∃z (x+ s(z) = y).

Definition 2.1.3. For each natural number i ∈ N we denote the term si(0) by the bold-face numeral
i.

2.2 Robinson Arithmetic and Peano Arithmetic
Now that we have a first-order language in which to do number theory, we need an actual theory.

Definition 2.2.1. Robinson Arithmetic, denoted as Q, is the first-order theory over LNN with the
set of axioms,

(Q1) ∀x ¬(s(x) = 0)

(Q2) ∀x∀y [(s(x) = s(y)) → (x = y)]

(Q3) ∀x (x+ 0 = x)

(Q4) ∀x∀y (x+ s(y) = s(x+ y))

(Q5) ∀x (x · 0 = 0)

4

(Q6) ∀x∀y (x · s(y) = (x · y) + x)

(Q7) ∀x [(x = 0) ∨ ∃y (x = s(y))]

Remark. We see that Q is arithmetic without induction. You might think that we cannot do very
much in Q since it is a very weak theory. However Q is sufficiently powerful to cause its own
essential incompleteness. In fact, Q is the minimal theory necessary to prove the representability
theorem. For completeness, we will now define the more familiar framework for number theory.

Definition 2.2.2. Peano Arithmetic (PA) is the first-order theory over LNN which has axioms
(Q1) - (Q6) and additionally the axiom schema of induction,

(PA) φ(0) → [∀x (φ(x) → φ(s(x))) → ∀x φ(x)]

for each formula φ with x free. Note we have dropped (Q7) since it is a consequence of the induction
axiom.

Definition 2.2.3. An extension of Q is a first-order theory Γ over the language LNN such that
Γ ⊢ Q, in particular if Γ ⊃ Q.

Remark. Clearly PA is an extension of Q. In fact, the extension is proper.

2.3 Representing Functions and Relations
Definition 2.3.1. A relation R ⊂ Nn is strongly representable or simply representable in Γ, an
extension of Q if there exists a formula A(x1, . . . , xn) in LNN with n free variables such that for all
natural numbers a1, . . . , an ∈ N we have,

R(a1, . . . , an) =⇒ Γ ⊢ A(a1, . . . , an)
¬R(a1, . . . , an) =⇒ Γ ⊢ ¬A(a1, . . . , an)

In this case we say that A represents R over Γ.

Definition 2.3.2. An arithmetic function f : Nn → N is representable over Γ iff there exists
a formula A(x1, . . . , xn, xn+1) of LNN with n + 1 free variables such that for all natural numbers
a1, . . . , an ∈ N with b = f(a1, . . . , an) we have,

Γ ⊢ ∀x [A(a1, . . . , an, x) ↔ (x = b)]

Remark. A function being representable is equivalent to its graph Gf being representable.

Definition 2.3.3. A relation R ⊂ Nn is weakly representable in Γ if there exists a formula
A(x1, . . . , xn) in LNN with n free variables such that for all natural numbers a1, . . . , an ∈ N we
have,

R(a1, . . . , an) ⇐⇒ Γ ⊢ A(a1, . . . , an)

In this case we say that A weakly represents R over Γ.

Lemma 2.3.4. If Γ is consistent then weak representability implies representability.

Proof. It suffices to show that if Γ ⊢ A(a1, . . . , an) then R(a1, . . . , an). Indeed, by consistency,
Γ ̸⊢ ¬A(a1, . . . , an) so therefore R(a1, . . . , an). □

5

3 Computability Theory
We would like to construct representable functions. It turns out that there is a deep connection
between computability and representability. More generally, the incompleteness theorems rely on
arithmetic capturing the power of computable functions.

3.1 µ-Recursive Functions
The notion of computability or an effective procedure for computing a function is not a well-defined
notion. We begin with a concrete definition for a class of clearly computable arithmetic functions.
It turns out that in some sense these are all the computable functions.

Definition 3.1.1. An arithmetic function F : Nn → N is recursive if F is one of,

(a) a starting function: addition ((a, b) 7→ a+b), multiplication (·), projection (Un,k(a1, . . . , an) =
ak), or less-then characteristic (K<(a, b) = 1 if a < b and zero otherwise).

(b) a compositions of recursive functions F = G ◦ (H1, . . . , Hk)

(c) a minimalization of a regular recursive function

F (a1, . . . , an) = µx[G(a1, . . . , an, x) = 0]

where the regularity condition on G means that such a zero is always required to exist for all
natural numbers a1, . . . , an ∈ N.

3.2 Recursive and Recursively Enumerable Sets
Definition 3.2.1. A relation R ⊂ Nn is recursive (R) if there exists a recursive arithmetic function
f : Nn → N such that R = {(a1, . . . , an) ∈ Nn | f(a1, . . . , an) = 0}.

Definition 3.2.2. A relation R ⊂ Nn is recursively enumerable (RE) if R can be written as
R(a1, . . . , an) ⇐⇒ ∃x Q(a1, . . . , an, x) where Q ⊂ Nn is a recursive relation.

Proposition 3.2.3. A set S ⊂ N is RE iff it is enumerated by a recursive function.

Remark. This proposition explains the terminology recursively enumerable.

3.2.1 Church-Turing Thesis

There is no clear universally agreed upon a priori definition for what it means for a function to be
effectively computable. However, logicians Alonzo Church and Alan Turing proved that a wide class
of models of computation (µ-recursive functions, Turning machines, λ-calculi) are all equivalently
powerful. Therefore, we define effectively computable functions to be exactly those computable
by any of these equivalent models of computation. Often, we will invoke this thesis to show that
a given function is recursive if we can find an informal effective procedure for computing it. It
should be stressed that such a use of the Church-Turing thesis is never necessary for proving meta-
logical theorems it is simply a time-saving device for lazy logicians who don’t want to explicitly
construct recursive functions. It is only strictly necessary to invoke the Church-Turning thesis when
computability is assumed as a hypothesis since we must develop a formal proof using some explicit
model of computation.

6

3.3 The Representability Theorem
Theorem 3.3.1. Let f : Nn → N be recursive function then f is representable over Q.

Proof. Very technical but conceptually easy. Show that all starting functions are representable and
that given representable functions that we can construct representations of their composition and
minimization. □

Corollary 3.3.2. Let R ⊂ Nn be a recursive relation then R is representable over Q.

Proof. There exists a recursive f : Nn → N such that f vanishes exactly on R. Then f is repre-
sentable by some LNN formula A(x1, . . . , xn+1) such that for all natural numbers a1, . . . , an ∈ N and
b = f(a1, . . . , an) then,

Q ⊢ ∀x [A(a1, . . . , an, x) ↔ (x = b)]

Let B(x1, . . . , xn) = A(x1, . . . , xn,0). Then I claim that,

R(a1, . . . , an) =⇒ Γ ⊢ B(a1, . . . , an)
¬R(a1, . . . , an) =⇒ Γ ⊢ ¬B(a1, . . . , an)

and thus B represents R. □

4 Number Theory Swallows Itself

4.1 Gödel Numbering
We need some way of expressing the metalanguage of formulas and proofs inside of number theory
such that we can use number theory to prove statements of its own meta-theory. This is accom-
plished by encoding formulas as natural numbers.

Theorem 4.1.1. There exists an injective function #g : FORLNN → N such that its image S =
Im (#g) is a recursive set.

Proof. Consider encoding each symbol as a unique integer and then a sequence of symbols via
pa1

1 · · · pan
n where pi is the ith prime and ai is the code of the ith symbol. By uniqueness of prime

factorization, this function is injective. Checking its image is recursive is highly technical so I
will simply invoke the Church-Turning thesis since there exists an effective procedure to factor a
number, translate it into a string of symbols, and check if this string can be produced by the rules
for forming well-formed formulas. The last step is effectively computable because there are a finite
number of formulas of the correct length or less (restricting to only the variables which appear in
the target string) so we can simply try each. □

Remark. The function #g encodes each formula as a natural number such that the set of codes
corresponding to well-formed formulas is computable.

Definition 4.1.2. Let A be a formula and a = #g (A) its Gödel number. Then let ⌜A⌝ be the
term a.

Remark. This notation is intentionally suggestive of quotation in natural language. In fact, the
Gödel sentence is not best described as saying “I am provable” but rather the Quine sentence,

7

“when preceded by its quotation is unprovable”
when preceded by its quotation is unprovable.

which is self-referential since the object of the sentence (“when preceded by its quotation is unprov-
able” when preceded by its quotation) is a copy of the entire sentence. This sentence accomplishes
self-reference without the self-referential “machinery” of the pronoun “I” and therefore is a much
better model for how such self-reference can unintentionally arise in number theory.

4.2 The Provability Predicate
Definition 4.2.1. A theory Γ with language LNN is recursively axiomatized if #g (Γ) is recursive.

Remark. Intuitively, a theory Γ is axiomatized if there exists an algorithm which can decide if a
given string is an axiom of the theory.

Theorem 4.2.2. Let Γ be recursively axiomatized. We may extend #Γ
g : PRFΓ → N to encoding

valid Γ-proofs as a sequence of formulas which, using the technique used above, we can encode in a
single number. Again, we require that gΓ be injective and have recursive image such that the codes
of valid proofs comprise a computable set. Furthermore the relation, CHKPRFΓ ⊂ N2 defined to
contain (a, p) iff a is the code of a valid formula and p is the code of a valid proof of the formula
encoded by a is a recursive relation.

Proof. We rely here on the Church-Turning thesis to show that such relations are recursive. They
are effectively computable since checking a proof requires only checking each line to see if it is an
axiom (which is decidable by hypothesis) or the result of applying one of finitely many rules of
inference to the finitely many preceding sentences. This is clearly computable. □

Definition 4.2.3. Since CHKPRFΓ is recursive it is Γ-representable. Let 𝒫𝓇𝒻Γ(x, y) be a formula
of LNN such that,

CHKPRFΓ(a, p) =⇒ Γ ⊢ 𝒫𝓇𝒻Γ(a,p)
¬CHKPRFΓ(a, p) =⇒ Γ ⊢ ¬𝒫𝓇𝒻Γ(a,p)

Definition 4.2.4. The provability predicate ℬℯ𝓌Γ(x) is the formula ∃p 𝒫𝓇𝒻Γ(x, p).

Remark. The notation ℬℯ𝓌 derives from the German word Beweis for proof.

Lemma 4.2.5. If Γ ⊢ A then Γ ⊢ ℬℯ𝓌Γ(⌜A⌝).

Proof. If Γ ⊢ A then there exists a proof of A which has code p and let A have code a. Therefore,
CHKPRFΓ(a, p) so Γ ⊢ 𝒫𝓇𝒻Γ(a,p). Now the axiom (FO1) gives,

Γ ⊢ ∀y ¬𝒫𝓇𝒻Γ(a, y) → ¬𝒫𝓇𝒻Γ(a,p)

Thus, taking the contrapositive,

Γ ⊢ 𝒫𝓇𝒻Γ(a,p) → ℬℯ𝓌Γ(⌜A⌝)

so by modus ponens Γ ⊢ ℬℯ𝓌Γ(⌜A⌝). □

Remark. We will see in the following sections that under the additionaly hypothesis of ω-consistency
the provability predicate ℬℯ𝓌Γ(x) actually weakly represents theoremhood. However, we will also
see that theoremhood is not strongly representable.

8

4.3 Self-Reference
Lemma 4.3.1 (Diagonalization). Let F (x) be an LNN formula with one free variable. Then there
exists a ‘fixed-point’ sentence ψ such that,

Q ⊢ ψ ↔ F (⌜ψ⌝)

Proof. There exists a recursive function d : N → N such that when a = #g (A) where A(x) is a
formula with at least one free variable then d(a) = #g (A(a)) = #g (A(⌜A⌝)) (for now we appeal to
the Church-Turing thesis). Therefore, D is represented by some formula D(x, y) such that for all
a ∈ N and b = d(a) we have,

Q ⊢ ∀y [D(a, y) ↔ (y = b)]

Now define the formula with one free variable,

φ := ∀y [D(x, y) → F (y)]

Let a = #g (φ) be its Gödel number and then substitute a = ⌜φ⌝ for x in φ,

ψ := φ(⌜φ⌝) := ∀y [D(⌜φ⌝ , y) → F (y)]

The Gödel number of ψ is q = #g (φ(⌜φ⌝)) = d(a) so we apply the representation of d applied at
d(a) = q,

Q ⊢ ∀y [D(⌜φ⌝ , y) ↔ (y = ⌜φ(⌜φ⌝)⌝)]

Using the tautology,
Q ⊢ (A ↔ B) → [(A → C) ↔ (B → C)]

we find,
Q ⊢ ∀y [D(⌜φ⌝ , y) → F (y)] ↔ ∀y [(y = ⌜φ(⌜φ⌝)⌝) → F (y)]

Which we can write as,
Q ⊢ φ(⌜φ⌝) ↔ F (⌜φ(⌜φ⌝)⌝)

and using ψ := φ(⌜φ⌝) we have,
Q ⊢ ψ ↔ F (ψ)

□

Remark. If we interpret F (⌜ψ⌝) to represent “the formula ψ has property F” then the diagonal
lemma proves the existence of self-referential fixed points. The sentence ψ ↔ F (⌜ψ⌝) “says” that ψ
is true if and only if ψ has property F . In other words, ψ has an interpretation as the sentence: “I
have property F .” As described earlier, the diagonal sentence is more accurately modeled in natural
language as the Quine sentence,

“when preceded by its quotation has property F”
when preceded by its quotation has property F .

In fact, the above proof of the diagonalization lemma closely resembles the construction of a Quine
sentence: we take a sentence which refers to its object applied to (preceded by) its own quotation
and apply it to (preceding it by) its own quotation. The predicate φ(x) encodes “x when applied
to its quotation (Gödel number) has property F” and the self-referential statement ψ is exactly φ
applied to its quotation.

9

4.4 Godel Incompleteness I
In this and the following sections, let ⊥ stand for your favorite contradiction, say (0 = 1) or
(x = y) ∧ ¬(x = y) etc. Any choice is as good as any other as long as Γ ⊢⊥ implies that Γ is
inconsistent (which the above certainly do).

Definition 4.4.1. A theory Γ is ω-consistent if for all formulas A(x) with one free variable Γ cannot
simultaneously prove ∃x A(x) and ¬A(n) for each natural number n ∈ N.

Lemma 4.4.2. ω-consistency implies consistency.

Proof. For each formula with one free variable A(x) either Γ ̸⊢ ∃x A(x) or for some n ∈ N we
have Γ ̸⊢ ¬A(n). Therefore, there exists some formula that Γ cannot prove which implies that Γ is
consistent. □

Lemma 4.4.3. If Γ is ω-consistent and Γ ̸⊢ A then Γ ̸⊢ ℬℯ𝓌Γ(⌜A⌝). In particular,

Γ ⊢ A ⇐⇒ Γ ⊢ ℬℯ𝓌Γ(⌜A⌝)

meaning that ℬℯ𝓌Γ(x) weakly represents the theoremhood relation on formulas.

Proof. Suppose that Γ ̸⊢ A and a = g(A) is the Gödel number. Then for each n ∈ N we have
¬CHKPRFΓ(a, n) since there exist no valid proofs of A. Therefore we have Γ ⊢ ¬𝒫𝓇𝒻Γ(a,n) for
each n ∈ N so by ω-consistency Γ ̸⊢ ℬℯ𝓌Γ(⌜A⌝). □

Corollary 4.4.4. If Γ is ω-consistent then Γ is consistent so Γ ̸⊢⊥ and thus, by the previous lemma,
Γ ̸⊢ ℬℯ𝓌Γ(⌜⊥⌝) and thus Γ ̸⊢ ℬℯ𝓌Γ(⌜ℬℯ𝓌Γ(⌜⊥⌝)⌝) etc.

Theorem 4.4.5 (Gödel). Any ω-consistent recursively axiomatized extension of Q is incomplete.
In particular, if Γ is a recursively axiomatized extension of Q then there exists a sentence 𝒢Γ such
that,

(a) if Γ is consistent then Γ ̸⊢ 𝒢Γ

(b) if Γ is ω-consistent then Γ ̸⊢ ¬𝒢Γ.

Proof. Let Γ be a consistent recursively axiomatized extension of Q. Since Γ is recursively axiom-
atized 𝒫𝓇𝒻Γ and ℬℯ𝓌Γ exist. The fixed-point theorem proves the existence of a sentence 𝒢Γ such
that,

Γ ⊢ 𝒢Γ ↔ ¬ℬℯ𝓌Γ(⌜𝒢Γ⌝)

Suppose that Γ ⊢ 𝒢Γ then Γ ⊢ ℬℯ𝓌Γ(⌜𝒢Γ⌝). However, using Γ ⊢ 𝒢Γ and the self-reference
equivalence, Γ ⊢ ¬ℬℯ𝓌Γ(⌜𝒢Γ⌝) contradicting the consistency of Γ.

Suppose that Γ ⊢ ¬𝒢Γ. By the consistency of Γ we cannot have Γ ⊢ 𝒢Γ. However, Γ ⊢ ¬𝒢Γ and
self-reference shows that Γ ⊢ ℬℯ𝓌Γ(⌜𝒢Γ⌝). Because Γ ̸⊢ 𝒢Γ, this contradicts the ω-consistency of
Γ. □

Remark. The sentence 𝒢Γ expresses “I am not provable” through Quinian self-reference. This is
captured formally through Γ ⊢ 𝒢Γ ↔ ¬ℬℯ𝓌Γ(⌜𝒢Γ⌝).

10

4.5 Löb’s Theorem
Remark. In this section we assume that Γ is a recursively axiomatized extension of PA.

Lemma 4.5.1 (Hilbert-Bernays-Löb). The provability predicate satisfies,

(a) Γ ⊢ A =⇒ Γ ⊢ ℬℯ𝓌Γ(⌜A⌝)

(b) Γ ⊢ ℬℯ𝓌Γ(⌜A → B⌝) → (ℬℯ𝓌Γ(⌜A⌝) → ℬℯ𝓌Γ(⌜B⌝))

(c) Γ ⊢ ℬℯ𝓌Γ(⌜A⌝) → ℬℯ𝓌Γ(⌜ℬℯ𝓌Γ(⌜A⌝)⌝)

Proof. SKETCH THIS PROOF!!!! □

Remark. The first Hilbert-Bernays derivability condition states that ℬℯ𝓌Γ(x) weakly represents
theoremhood (it cannot strongly represent it however as we shall show). The second condition
states that modus ponens is provably (within Γ) a rule of inference of Γ. Finally, the third Hilbert-
Bernays derivability condition is the formalization of the first property within the system Γ, saying
that Γ can prove that if it can prove A then it can prove that it can prove A.

Theorem 4.5.2 (Löb). If Γ ⊢ ℬℯ𝓌Γ(⌜A⌝) → A then Γ ⊢ A for any sentence A.

Proof. Via the fixed point theorem applied to ℬℯ𝓌Γ(x) → A, there exists a sentence B such that,

Γ ⊢ B ↔ (ℬℯ𝓌Γ(⌜B⌝) → A)

Applying HB1 to one direction gives,

Γ ⊢ ℬℯ𝓌Γ(⌜B → (ℬℯ𝓌Γ(⌜B⌝) → A)⌝)

and then applying HB2 twice we deduce,

Γ ⊢ ℬℯ𝓌Γ(⌜B⌝) → (ℬℯ𝓌Γ(⌜ℬℯ𝓌Γ(⌜B⌝)⌝) → ℬℯ𝓌Γ(⌜A⌝))

However, HB3 gives,
Γ ⊢ ℬℯ𝓌Γ(⌜B⌝) → ℬℯ𝓌Γ(⌜ℬℯ𝓌Γ(⌜B⌝)⌝)

and thus putting the previous two together,

Γ ⊢ ℬℯ𝓌Γ(⌜B⌝) → ℬℯ𝓌Γ(⌜A⌝)

Now we use the hypothesis Γ ⊢ ℬℯ𝓌Γ(⌜A⌝) → A to get a proof,

Γ ⊢ ℬℯ𝓌Γ(⌜B⌝) → A

but since ℬℯ𝓌Γ(⌜B⌝) → A is provably equivalent to B we find Γ ⊢ B so by HB1 Γ ⊢ ℬℯ𝓌Γ(⌜B⌝)
and thus Γ ⊢ A by modus ponens. □

Remark. This theorem is truly remarkable because it says that Q and all extensions are “maximally
modest” in the sense that the do not “believe” in their own validity (i.e. a proof of A entails A)
except for statements they already know to be true. Furthermore, it answers the fascinating question
posed by Henkin.

11

Remark. After seeing Gödel’s proof of the first incompleteness theorem Henkin asked about a subtle
modification. What if we apply the fixed-point lemma not to ¬ℬℯ𝓌Γ(x) but to simply ℬℯ𝓌Γ(x)?
Then there would exist a sentence ℋ ,

Γ ⊢ ℋ ↔ ℬℯ𝓌Γ(⌜ℋ⌝)

This sentence has the interpretation “I am provable” which seems to convey no information at all!
However, clearly for such a sentence we have,

Γ ⊢ ℬℯ𝓌Γ(⌜ℋ⌝) → ℋ

and thus by Löb’s theorem we get Γ ⊢ ℋ . So in fact, such a Henkin sentence which asserts its own
provability must actually be provable.

4.6 Godel Incompleteness II
Finally, Löb’s theme gives us enough machinery to give an elegant proof of the second incompleteness
theorem.

Definition 4.6.1. The sentence 𝒞ℴ𝓃Γ is given by ¬ℬℯ𝓌Γ(⌜⊥⌝) which expresses the consistency
of the theory Γ.

Remark. We have shown that if Γ ⊢ ¬𝒞ℴ𝓃Γ then Γ is not ω-consistent. However, we are about to
show a much more interesting result.

Theorem 4.6.2 (Gödel). Let Γ be a consistent recursively axiomatized extension of Q then Γ
cannot prove 𝒞ℴ𝓃Γ.

Proof. By Löb’s theorem if Γ ⊢ ℬℯ𝓌Γ(⌜⊥⌝) →⊥ then Γ ⊢⊥. However, ℬℯ𝓌Γ(⌜⊥⌝) →⊥ is
equivalent to 𝒞ℴ𝓃Γ. Thus if Γ ⊢ 𝒞ℴ𝓃Γ then Γ ⊢⊥ contradicting the consistency of Γ. Taking
the contrapositive, Γ ̸⊢⊥ =⇒ Γ ̸⊢ 𝒞ℴ𝓃Γ i.e. the consistency of Γ implies that Γ cannot prove
𝒞ℴ𝓃Γ. □

Remark. Gödel’s second incompleteness theorem is often stated provocatively as: a theory’s proof
of its own consistency establishes its inconsistency. This makes sense because an inconsistent theory
can prove anything including its own consistency.

4.7 Löb’s Theorem Formalized inside Number Theory
Wonderfully, we can formalize the proof of Löb’s theorem inside the system Γ so that we may apply
Löb inside formal proofs.

Theorem 4.7.1 (Löb). For any sentence A of LNN,

Γ ⊢ ℬℯ𝓌Γ(⌜ℬℯ𝓌Γ(⌜A⌝) → A⌝) → ℬℯ𝓌Γ(⌜A⌝)

Proof. Let B := ℬℯ𝓌Γ(⌜ℬℯ𝓌Γ(⌜A⌝) → A⌝) and C := ℬℯ𝓌Γ(⌜A⌝). Then HB2 gives,

Γ ⊢ ℬℯ𝓌Γ(⌜B → C⌝) → (ℬℯ𝓌Γ(⌜B⌝) → ℬℯ𝓌Γ(⌜C⌝))

Furthermore, since B := ℬℯ𝓌Γ(⌜C → A⌝),

Γ ⊢ B → (ℬℯ𝓌Γ(⌜C⌝) → ℬℯ𝓌Γ(⌜A⌝))

12

and by HB3 (since B begins with ℬℯ𝓌),

Γ ⊢ B → ℬℯ𝓌Γ(⌜B⌝)

Given ℬℯ𝓌Γ(⌜B → C⌝) we get ℬℯ𝓌Γ(⌜B⌝) → ℬℯ𝓌Γ(⌜C⌝). Additionally, givenB we get ℬℯ𝓌Γ(⌜B⌝)
so we get ℬℯ𝓌Γ(⌜C⌝) but B also gives ℬℯ𝓌Γ(⌜C⌝) → ℬℯ𝓌Γ(⌜A⌝) so we get C := ℬℯ𝓌Γ(⌜A⌝).
Thus by propositional logic,

Γ ⊢ ℬℯ𝓌Γ(⌜B → C⌝) → (B → C)

Therefore, applying Löb’s theorem,
Γ ⊢ B → C

which, expanded out is,

Γ ⊢ ℬℯ𝓌Γ(⌜ℬℯ𝓌Γ(⌜A⌝) → A⌝) → ℬℯ𝓌Γ(⌜A⌝)

□

4.8 Gödel Incompleteness Formalized inside Number Theory
Much in the way that Löb theorem can be formalized inside number theory, we can formalize
the proofs of the incompleteness theorems inside the formal system itself. In fact, we can further
formalize the notion that consistency implies the unprovability of the Gödel sentence and thus
its truth to give an alternative proof of the second incompleteness theorem and furthermore a
demonstration of the provable logical equivalence of all Gödel sentences.

Theorem 4.8.1. Let 𝒢Γ be a Gödel sentence for Γ then,

Γ ⊢ 𝒞ℴ𝓃Γ ↔ 𝒢Γ

In particular, all Gödel sentences are provably logically equivalent.

Proof. Since 𝒢Γ is a Gödel sentence,

Γ ⊢ 𝒢Γ ↔ ¬ℬℯ𝓌Γ(⌜𝒢Γ⌝)

Therefore, applying HB1 and HB2,

Γ ⊢ ℬℯ𝓌Γ(⌜𝒢Γ⌝) ↔ ℬℯ𝓌Γ(⌜¬ℬℯ𝓌Γ(⌜𝒢Γ⌝)⌝)

However, by HB3,
Γ ⊢ ℬℯ𝓌Γ(⌜𝒢Γ⌝) → ℬℯ𝓌Γ(⌜ℬℯ𝓌Γ(⌜𝒢Γ⌝)⌝)

Furthermore, since Γ ⊢ ¬A → (A →⊥) by HB1 and HB2 twice we get,

Γ ⊢ ℬℯ𝓌Γ(⌜¬A⌝) → (ℬℯ𝓌Γ(⌜A⌝) → ℬℯ𝓌Γ(⌜⊥⌝))

Applying this to A := ℬℯ𝓌Γ(⌜𝒢Γ⌝) we find,

Γ ⊢ ℬℯ𝓌Γ(⌜𝒢Γ⌝) → ℬℯ𝓌Γ(⌜⊥⌝)

13

However, Γ ⊢⊥→ 𝒢Γ and thus applying HB1 and HB2 we find,

Γ ⊢ ℬℯ𝓌Γ(⌜⊥⌝) → ℬℯ𝓌Γ(⌜𝒢Γ⌝)

In summary,
Γ ⊢ ℬℯ𝓌Γ(⌜𝒢Γ⌝) ↔ ℬℯ𝓌Γ(⌜⊥⌝)

However, Γ ⊢ 𝒢Γ ↔ ¬ℬℯ𝓌Γ(⌜𝒢Γ⌝) and 𝒞ℴ𝓃Γ := ¬ℬℯ𝓌Γ(⌜⊥⌝) which implies that,

Γ ⊢ 𝒢Γ ↔ 𝒞ℴ𝓃Γ

□

Corollary 4.8.2. If Γ is consistent then by Gödel incompleteness I we know Γ ̸⊢ 𝒢Γ and thus
Γ ̸⊢ 𝒞ℴ𝓃Γ giving an alternative proof of incompleteness II.
Theorem 4.8.3 (Formalized Gödel I).

Γ ⊢ ω-𝒞ℴ𝓃Γ → (¬ℬℯ𝓌Γ(⌜𝒢Γ⌝) ∧ ¬ℬℯ𝓌Γ(⌜¬𝒢Γ⌝))

Where ω-𝒞ℴ𝓃Γ is the sentence ¬ℬℯ𝓌Γ(⌜ℬℯ𝓌Γ(⌜⊥⌝)⌝) expressing weak ω-consistency.
Proof. First, by HB3,

Γ ⊢ ℬℯ𝓌Γ(⌜⊥⌝) → ℬℯ𝓌Γ(⌜ℬℯ𝓌Γ(⌜⊥⌝)⌝)
and therefore,

Γ ⊢ ω-𝒞ℴ𝓃Γ → 𝒞ℴ𝓃Γ

We have already proven above that,

Γ ⊢ 𝒞ℴ𝓃Γ → ¬ℬℯ𝓌Γ(⌜𝒢Γ⌝)

and thus by transitivity of implication,

Γ ⊢ ω-𝒞ℴ𝓃Γ → ¬ℬℯ𝓌Γ(⌜𝒢Γ⌝)

The negation of the Gödel property gives,

Γ ⊢ ¬𝒢Γ ↔ ℬℯ𝓌Γ(⌜𝒢Γ⌝)

and thus by HB1 and HB2 we have,

Γ ⊢ ℬℯ𝓌Γ(⌜¬𝒢Γ⌝) ↔ ℬℯ𝓌Γ(⌜ℬℯ𝓌Γ(⌜𝒢Γ⌝)⌝)

However, by HB3,
Γ ⊢ ℬℯ𝓌Γ(⌜¬𝒢Γ⌝) → ℬℯ𝓌Γ(⌜ℬℯ𝓌Γ(⌜¬𝒢Γ⌝)⌝)

Furthermore via Γ ⊢ ¬𝒢Γ → (𝒢Γ →⊥) and HB1 and HB2 repeatedly we find,

Γ ⊢ ℬℯ𝓌Γ(⌜ℬℯ𝓌Γ(⌜𝒢Γ⌝)⌝) → (ℬℯ𝓌Γ(⌜ℬℯ𝓌Γ(⌜¬𝒢Γ⌝)⌝) → ℬℯ𝓌Γ(⌜ℬℯ𝓌Γ(⌜⊥⌝)⌝))

and thus by transitivity of implications,

Γ ⊢ ℬℯ𝓌Γ(⌜¬𝒢Γ⌝) → ℬℯ𝓌Γ(⌜ℬℯ𝓌Γ(⌜⊥⌝)⌝)

contradicting ω-consistency. That is, taking the contrapositive,

Γ ⊢ ω-𝒞ℴ𝓃Γ → ¬ℬℯ𝓌Γ(⌜¬𝒢Γ⌝)

giving both implications which together show that,

Γ ⊢ ω-𝒞ℴ𝓃Γ → (¬ℬℯ𝓌Γ(⌜𝒢Γ⌝) ∧ ¬ℬℯ𝓌Γ(⌜¬𝒢Γ⌝))

□

14

Remark. Just as we needed ω-consistency in the standard proof of Gödel Incompleteness I, in the
formalized version we require a stronger hypothesis than 𝒞ℴ𝓃Γ, we need ¬ℬℯ𝓌Γ(⌜ℬℯ𝓌Γ(⌜𝒢Γ⌝)⌝)
which expresses the idea that ω-consistency requires Γ to be unable to prove that it can prove a
contradiction. In fact this hypothesis is somewhat weaker than full ω-consistency so this is an abuse
of notation.
Theorem 4.8.4 (Formalized Gödel II).

Γ ⊢ 𝒞ℴ𝓃Γ → ¬ℬℯ𝓌Γ(⌜𝒞ℴ𝓃Γ⌝)

Proof. Apply formalized Löb with A =⊥ to give,

Γ ⊢ ℬℯ𝓌Γ(⌜ℬℯ𝓌Γ(⌜⊥⌝) →⊥⌝) → ℬℯ𝓌Γ(⌜⊥⌝)

However, ℬℯ𝓌Γ(⌜⊥⌝) →⊥ is logically equivalent to ¬ℬℯ𝓌Γ(⌜⊥⌝) which is 𝒞ℴ𝓃Γ. Furthermore if
Γ ⊢ A ↔ B then Γ ⊢ ℬℯ𝓌Γ(⌜A⌝) ↔ ℬℯ𝓌Γ(⌜B⌝) by HB1 and HB2 so we have,

Γ ⊢ ℬℯ𝓌Γ(⌜𝒞ℴ𝓃Γ⌝) → ℬℯ𝓌Γ(⌜⊥⌝)

which is exactly the contrapositive of formalized Gödel incompleteness II. □

5 GL Provability Logic

5.1 Modal Logic
Modal logics are formal systems given by standard predicate calculus with a modal predicate □
which expresses some form of “necessity.” We first define the simplest so called “normal” modal
logic K named for Saul Kripke.
Definition 5.1.1. The formal system K has logical connectives {→,¬,□} and sentences are built
from an infinite list of propositional variables p, q, It is defined by having as axioms,

(a) tautologies of propositional calculus (say take Hilbert’s system H for concrete axiomatization)

(b) the modal distribution axiom (K),

□(A → B) → (□A → □B)

and as rules of inference has,
(a) modus ponens (MP),

A (A → B)
B

(b) the necessitation rule,
A
□A

Remark. K is the basis for most modal logics, however it is too weak to capture most modal notions.
For proability logic we need a stronger extension which is named GL for Gödel and Löb.
Definition 5.1.2. The formal system GL is simply K with the added two axioms,

(4) □A → □□A

(L) □(□A → A) → □A

15

5.2 Modal Semantics

5.3 Arithmetic Soundness
Definition 5.3.1. Let Γ be We define an arithmetical realization to be a logical map ϕ : GL → PA
(that is a map on sentences which preserves logical connectives i.e. a morphism of the Boolean
algebra of sentences) which satisfies the property that for any sentence A of GL,

ϕ(□A) = ℬℯ𝓌Γ(⌜ϕ(A)⌝)

Remark. When the realization ϕ is unambiguous we will often write A∗ for ϕ(A) the realization of
A.

Theorem 5.3.2 (Arithmetical Soundness). If GL ⊢ A then PA ⊢ A∗ for any arithmetical realiza-
tion ∗.

Proof. This proceeds by induction of proofs. It suffices to show that the axioms of GL are realized
by provably statments of PA and that rules of inference in GL are sound in PA. Since PA contains
axiom schema for all propositional tautologies and the rule of inference MP we simply need to check
the necessitation deduction,

PA ⊢ A∗ =⇒ PA ⊢ (□A)∗

and modal axioms,

PA ⊢ (□(A → B) → (□A → □B))∗

PA ⊢ (□A → □□A)∗

PA ⊢ (□(□A → A) → □A)∗

Using the properties of ∗ we see this is equivalent to asking that,

PA ⊢ A∗ =⇒ PA ⊢ ℬℯ𝓌Γ(⌜A∗⌝)
PA ⊢ ℬℯ𝓌Γ(⌜A∗ → B∗⌝) → (ℬℯ𝓌Γ(⌜A∗⌝) → ℬℯ𝓌Γ(⌜B∗⌝)
PA ⊢ ℬℯ𝓌Γ(⌜A∗⌝) → ℬℯ𝓌Γ(⌜ℬℯ𝓌Γ(⌜A∗⌝)⌝)
PA ⊢ ℬℯ𝓌Γ(⌜ℬℯ𝓌Γ(⌜A∗⌝) → A∗⌝) → ℬℯ𝓌Γ(⌜A∗⌝)

which are exactly the three Hilbert-Bernays derivability conditions and formalized Löb’s theorem
which have shown to be probable in PA. □

5.4 The Existence of Modal Fixed Points

5.5 Arithmetic Completeness
Theorem 5.5.1 (Arithmetical Completeness, Solovay, 1976). If PA ⊢ A∗ for any arithmetical
realization ∗ then GL ⊢ A.

Remark. This theorem is remarkable because it captures the overarching logic of PA in a modal
logic based of propositional calculus without quantifiers. This result is made even more remarkable
by the following decidability theorem for GL.

Theorem 5.5.2. The theoremhood relation for GL is decidable i.e. the decision problem for GL
is solvable.

16

Remark. We know by Church and Turring that the decision problem for PA is unsolvable that
there does not exist an algorithm which can decide theoremhood in PA. Therefore, it is suprising
and powerful that we can capture probability logic inside PA with the decidable theory GL.
Remark. We will end with a application of arithmetic completeness to generating undecidable arith-
metical sentences. It is not difficult to show that GL ̸⊢ □p ∨ ¬□p. Then Solovay’s proof alows us
to construct a realization such that PA ̸⊢ (□p ∨ ¬□p)∗. However,

(□p ∨ ¬□p)∗ = ℬℯ𝓌Γ(⌜p∗⌝) ∨ ¬ℬℯ𝓌Γ(⌜p∗⌝)

so if PA ⊢ p∗ or PA ⊢ ¬p∗ then by HB1 we would have PA ⊢ ℬℯ𝓌Γ(⌜p∗⌝) or PA ⊢ ℬℯ𝓌Γ(⌜¬p∗⌝)
contradicting Solovay’s construction. Thus p∗ is an undecidable arithmetic sentence giving us further
examples of oddities besides Gödel sentences.

17

	Introduction
	First-Order Languages
	Proof Theory

	A Theory For the Natural Numbers
	The Language of Number Theory
	Robinson Arithmetic and Peano Arithmetic
	Representing Functions and Relations

	Computability Theory
	-Recursive Functions
	Recursive and Recursively Enumerable Sets
	Church-Turing Thesis

	The Representability Theorem

	Number Theory Swallows Itself
	Gödel Numbering
	The Provability Predicate
	Self-Reference
	Godel Incompleteness I
	Löb's Theorem
	Godel Incompleteness II
	Löb's Theorem Formalized inside Number Theory
	Gödel Incompleteness Formalized inside Number Theory

	GL Provability Logic
	Modal Logic
	Modal Semantics
	Arithmetic Soundness
	The Existence of Modal Fixed Points
	Arithmetic Completeness

