
1 Introduction to the Enumerative Problem
Let k be an algebraically closed field. Suppose I take two random polynomials f, g ∈ k[x]. We
might ask is how many linear combinations f + λg have a double root?

First let’s think about how we might do this without any machinery. We can write down the
descriminant ∆(f + λg) as a polynomial in λ and guess how many roots ∆ has in terms of its
degree. The discriminant ∆(f) is a homogeneous polynomial in the coefficients of f of degree
2(deg f − 1). Therefore, ∆(f + λg) is a polynomial in λ of degree 2(d− 1) for random polynomials
of degree d. Therefore, we expect there should be 2(d − 1) linear combinations with double roots.
Notice already we see that ∆(f + λg) can have double roots in λ which corresponds to having a
particular f +λg with either a root of higher multiplicity or with multiple double roots. Therefore,
we see that, in order to have a better behaved invariant when singularities deform, we should count
not the number of f + λg with multiple roots rather the total exceptional multiplicity of roots
summed over all f + λg.

Now we might want to extend to the problem. Consider f, g ∈ k[x1, . . . , xn] then we want to ask
how many hypersurfaces V (f + λg) ⊂ An have singularities (or rather we should count the total
number of singularities with multiplicity). This is pretty scary already for n = 2.

Let’s rephrase this problem in terms of projective space. For f, g ∈ k[x] we homogenize in two
variables to give f, g ∈ Γ(P1,OP1(d)). Then linear combinations of f, g give a linear system inside
Γ(P1,OP1(d)) so we are asking how many singularities are on a general pencil of degree d divisors
on P1. The more general problem can be phrased as, how many singularities lie on the divisors
corresponding to a general degree d pencil i.e. a linear system V ⊂ Γ(Pn,OX(d)) of dimension 1.

2 Chern Classes
Remark. I am following Grothendieck’s treatment of Chern classes see La théorie does classes de
Chern for details.

Definition 2.0.1. Let V be the category of smooth projective vareities over k. An algebraic
cohomolgy theory is the following data,

(a) a contravariant functor,
A : V → GrdComRing

(b) functorial homomorphisms of abelian groups pX : Pic (X) → A2(X) for X ∈ V .

(c) for closed subvariaties ι∗ : Y ↪→ X of pure codimension p with Y ∈ V there is a group
homomorphism,

ι∗ : A(Y ) → A(X)
of degree 2p. We write pX(Y ) = [Y ] ∈ A(X) for ι∗(1Y ).

such that the following axioms hold,

A1 For X ∈ V and E a rank r vector bundle on X let ξE = pPX(E)(OPX(E)(1)) ∈ A2(PX(E)) then,

1, ξE , ξ
2
E , . . . , ξ

r−1
E

forms a basis of A(PX(E)) as a free A(X)-module
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A2 For X ∈ V and L ∈ Pic (X) and s a regular section of L,

[V (s)] = pX(L)

A3 For ι : Z ↪→ Y and j : Y ↪→ X closed embeddings with X, Y, Z ∈ V then,

(j ◦ ι)∗ = j∗ ◦ ι∗

A4 For ι : Z ↪→ X a closed embedding with Z,X ∈ V we have,

ι∗(α · ι∗β) = ι∗(α) · β

for all α ∈ A(Z) and β ∈ A(X).

Remark. In our definition of a graded commuative ring,

x · y = (−1)deg xdeg yy · x

Some examples,

(a) A2i(X) = CHi(X) and A2i+1(X) = 0

(b) Ai(X) = H i
ét(Xk̄,Qℓ) for char k ̸= ℓ

(c) Ai(X) = H i
dR(X) for char k = 0

(d) Ai(X) = H i
sing(X(C)) for k ⊂ C.

Theorem 2.0.2. For each algebraic cohomology theory, A there exists a unique natural map

c : VectX → A(X)

called the total Chern class such that,

(a) for any f : X → Y morphism in V and E a vector bundle on Y ,

c(f ∗E) = f ∗(c(E))

(b) let L be a line bundle on X ∈ V then,

c(L) = 1 + pX(L)

(c) for X ∈ V and an exact sequence,

0 E1 E2 E3 0

of vector bundles on X then,
c(E2) = c(E1) · c(E2)

Proof. We apply the so called ”splitting principle”. Consider the projective bundle π : PX(E) → X
then by definition there is an exact sequence,
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0 E1 π∗E OP(E)(1) 0

Repeating inductively, I get a morphism π : X̃ → X such that there is a filtration,

π∗E = E0 ⊃ E1 ⊃ · · · ⊃ Er = (0)

where Ei/Ei+1 ∼= OP(Ei)(1) is a line bundle. Then the exact sequences show that,

π∗c(E) = c(π∗E) =
r∏
i=0

c(Ei/Ei+1) =
r∏
i=0

(1 + pX̃(Ei/Ei+1))

Because π∗ : A(X) → A(X̃) is injective this proves uniqueness and also provides a formula for
computing Chern classes. Thus we define c via this construction and prove the required properties.

□

Lemma 2.0.3 (Projective Bundle Formula). Let X ∈ V and E a rank r vector bundle on X let
ξE = pPX(E)(OPX(E)(1)) = c1(OPX(E)(1)). Then in A(PX(E)) we have the relation,

r∑
i=0

π∗ci(E) · (−ξE)r−i = 0

Proposition 2.0.4. Let E be a vector bundle on X ∈ V and s1, . . . , sk ∈ Γ(X, E) generically
independent global sections meaning s1, . . . , sk ∈ Eξ are independent. Then,

Z = {x ∈ X | s1, . . . , sk ∈ Fx ⊗OX,x
κ(x) are dependent} = V (s1 ∧ · · · ∧ sk)

is closed of codimension r − k + 1 and,

cr−k+1(F ) = [Z]

Proof. By considering s = s1 ∧ · · · ∧ sk ∈ Γ(X,∧k E) and Z = V (s) we reduce to the case k = 1 via,

cr−k+1(E) = c(n
k)

(
k∧

E
)

which follows from the splittng principle. Since s1, . . . , sk are generically independent, notice that
s1 ∧ · · · ∧ sk is a regular section. Thus we need to prove that if E is a vector bundle of rank r and
s ∈ Γ(X, E) is a regular section then,

cr(E) = [V (s)]
The case r = 1 is A2. We use the splitting principle to proceed by induction. (GIVE DETAILS) □

Example 2.0.5. We compute the total Chern classes of Ωk
Pn(d). We use the Euler sequence,

0 ΩPn OPn(−1)⊕(n+1) OPn 0

Now to find a similar sequence for Ωk
Pn(d) we use the following lemma to get a sequence,

0 Ωk
Pn OPn(−k)⊕(n+1

k ) Ωk−1
Pn 0

Twisting by d we get,
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0 Ωk
Pn(d) OPn(d− k)⊕(n+1

k ) Ωk−1
Pn (d) 0

Therefore, taking total Chern classes,

c(Ωk
Pn(d)) · c(Ωk−1

Pn (d)) = (1 + (d− k)H)(
n+1

k )

Furthermore, for the k = 0 case we know c(OPn(d)) = 1 + dH. Therefore, by induction,

c(Ωk
Pn(d)) =

k∏
j=0

(1 + (d− j)H)(−1)k−j(n+1
j )

Lemma 2.0.6. Consider a sequence of vector bundles,

0 F E L 0φ ψ

where L is a line bundle. Then for any integer k ≥ 0 there is an induced exact sequence,

0 ∧k F
∧k E L ⊗ ∧k−1 F 0

Proof. We describe the second map and leave the rest to you. Given local sections s1, . . . , sk ∈ E(U)
and let e ∈ L(U) be a local frame. Then ψ(si) = fie where fi ∈ OX(U) since ψ is surjective we can
choose s ∈ E(U) such that ψ(s) = e. Then each fksi−fisk is in the image of φ so fksi−fisk = φ(ti)
for ti ∈ F (U) so,

s1 ∧ · · · ∧ sk = t1 ∧ · · · ∧ tk + f1s ∧ t2 ∧ · · · ∧ tk + · · · + t1 ∧ · · · ∧ tk−1 ∧ fks

Then we send,

s1 ∧ · · · ∧ sk 7→ f1e⊗ (t2 ∧ · · · ∧ tk) + · · · + (−1)kfke⊗ (t1 ∧ · · · ∧ tk−1)

□

3 Jet Bundles
Definition 3.0.1. Let f : X → S be an S-scheme and let F ,G be OX-modules. Let,

Diff n

X/S
(F ,G )

be the sheaf of differential operators of degree ≤ n over S. Its sections over U are f−1OS-linear
maps φ : F |U → G |U such that for all local sections s ∈ OX(V ) for V ⊂ U the sheaf map,

φ(s · −) − φ(−) : F |V → G |V

is a differential operator of degree ≤ n − 1 over S where a differential operator of degree 0 is a
OX-linear map.

Definition 3.0.2. The degree n Jet bundle Jn(F ) of F is the OX-module (if it exists) representing
Diff n

X/S (F ,−) meaning,
HomOX

(Jn(F ),G ) ∼−→ DiffnX/S (F ,G )
Then Jn(F ) is equiped with a universal differential operator dn : F → Jn(F ) such that every
degree n differential operator D : F → G factors through dn : F → Jn(F ) via a unique OX-linear
map φD : Jn(F ) → G .
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Remark. Then by naturality,

HomOX
(Jn(F ),G ) ∼−→ Diff n

X/S
(F ,G )

Definition 3.0.3. Let f : X → S be a separated morphism. Define the nth-order thickening of
the diagonal as follows. The diagonal ∆X/S : X → X ×S X is a closed immersion with ideal sheaf
I∆ ⊂ OX×SX . Let X(n) be the closed subscheme defined by I n+1

∆ equipped with the projection
maps π(n)

i : X(n) → X. Then ∆(n) : X → X(n) is a homeomorphism and π
(n)
i ◦ ∆(n) = idX .

Proposition 3.0.4. Let f : X → S be separated and F is a OX-module. Then,

Jn(F ) = (π(n)
1 )∗(π(n)

2 )∗F = (OX×SX/I
n+1

∆ ) ⊗OX
F

is a representing object for the order ≤ n differential operators. The universal differential operator is
obtained by the unit dn : F → (π(n)

2 )∗(π(n)
2 )∗F where (π(n)

2 )∗(π(n)
2 )∗F = Jn(F ) as abelian sheaves

but with a different OX-module structure explaining why dn is not OX-linear.

Remark. Notice that OX×SX has two different OX-module structures (from the two projections).
We have selected which one F is tensored through (the “right one”) and which Jn(F ) is viewed as
an OX-module through (the “left one”) via the notation, (π(n)

1 )∗(π(n)
2 )∗F . However, when we write,

Jn(F ) = (OX×SX/I
n+1

∆ ) ⊗OX
F

we are implicitly using the “right” module structure in the tensor product and viewing the result
under the “left” module structure. This may be easier to think about in the affine setting:

Jn(M) = (A⊗R A)/In+1 ⊗AM

is viwed as an A-module via a · (1 ⊗ 1 ⊗ m) = a ⊗ 1 ⊗ m while the tensor relation says that
1 ⊗ 1 ⊗ am = 1 ⊗ a⊗m notice that these are not the same so a · (1 ⊗ 1 ⊗m) ̸= (1 ⊗ 1 ⊗ am). This
explains why there is only a map M → (A⊗R A) ⊗AM for the “second” A-module structure.

In EGA IV slightly different notation is used. We write Pn
X/S := ∆−1(OX(n)) = OX×SX/I

n+1
∆

viewed as a OX-bialgebra. We designate the “left“ OX-algebra structure as the structue map
OX → Pn

X/S and the “right” OX-algebra structure as the differntial dnX/S : OX → Pn
X/S. Define,

Pn(F ) = Pn ⊗OX
F

using the dn : OX → Pn
X/S module structure but viewing the result as a OX-module through the

structure map. Then, in fact Pn(F ) is a Pn
X/S-module. In Grothendieck’s terminology this is

called the sheaf of prinicpal parts (refering to the principal part or principal symbol of a differential
operator). Notice that dn : OX → Pn

X/S tensors to give F → Pn(F ) linear for the right OX-
structure but the cooresponding map F → Pn(F ) induced by OX → Pn

X/S is not well-defined
because it does not respect formation of the tensor product on the right (A⊗AM → (A⊗RA)⊗AM
sending a⊗m 7→ a⊗ 1 ⊗m does not give a well-defined map only a⊗m 7→ 1 ⊗ a⊗m does).

Proof of Proposition. Via post composing with the universal derivation we get a map,

HomOX
(Jn(F ),G ) → DiffnX/S (F ,G )
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By naturality and the sheaf condition for both sides, it suffices to check that this is locally an
isomorphism. Therefore, it suffices to show that for A-modules M,N the map,

HomA

(
(A⊗R A)/In+1 ⊗AM,N

) ∼−→ DiffnA(M,N)

is an isomorphism meaning that D : M → N is a differential operator if and only if it factors,

M
d−→ (A⊗R A)/In+1 ⊗AM

φ−→ N

Injectivity is clear because φ is linear and dM generates as an A-module so φ ◦ d determines φ. We
prove surjectivity by induction on n. The case n = 0 is clear. Now, if D is an order ≤ n differential
operator then define,

φ : (A⊗R A) ⊗M → N via φ(a⊗m) = aD(m)

which is well-defined since D is R-linear. Thus it suffices to show that φ(In+1M) = 0. To check
this we only need to show that φ kills generators of the form,

e =
n+1∏
i=1

(1 ⊗ ti − ti ⊗ 1)m

Notice that,

φ(e) =
∑

H⊂[n+1]
(−1)|H|

(∏
i∈H

ti

)
D

(( ∏
i∈Hc

ti

)
m

)

=
∑
H⊂[n]

(−1)|H|
(∏
i∈H

ti

)
D

((
tn+1

∏
i∈Hc

ti

)
m

)
−

∑
H⊂[n]

(−1)|H|
(
tn+1

∏
i∈H

ti

)
D

(( ∏
i∈Hc

ti

)
m

)

=
∑
H⊂[n]

(−1)|H|
(∏
i∈H

ti

)
Dtn+1

(( ∏
i∈Hc

ti

)
m

)
= φtn+1

(
n∏
i=1

(1 ⊗ ti − ti ⊗ 1)
)

= 0

because the linear map φt0 associated to Dt0(−) = D(t0−) − t0D(−) kills InM by the induction
hypothesis. □

Lemma 3.0.5. Let X be a Cohen-Macalay separated finite type k-scheme. Then for any flat
OX-module F and integer n ≥ 0 there is an exact sequence,

0 Symn(ΩX) ⊗OX
F Jn(F ) Jn−1(F ) 0

In particular, since J0(F ) = F if F is locally free and X is smooth then Jn(F ) is locally free.

Proof. Consider the exact sequence of OX×SX-modules,

0 I n
∆/I

n+1
∆ OX×SX/I

n+1
∆ OX×SX/I

n
∆ 0

because F is OX-flat we see that

0 (I n
∆/I

n+1
∆ ) ⊗ π∗

2F (OX×SX/I
n+1

∆ ) ⊗ π∗
2F (OX×SX/I

n
∆) ⊗ π∗

2F 0

is exact as a sequence of OX×SX-modules. Now I n
∆/I

n+1
∆ is a (OX×SX/I

n
∆)-module and thus all

its OX-module structures agree (they all factor through the (standard) diagonal) therefore viewing
this as a sequence of sheaves on the thickened diagonal,
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0 (I n
∆/I

n+1
∆ ) ⊗ F (π(n)

2 )∗F (π(n−1)
2 )∗F 0

and finally pushing forward to X along π(n)
1 (i.e. viewing these as OX-modules via the “left” action),

0 (I n
∆/I

n+1
∆ ) ⊗ F Jn(F ) Jn−1(F ) 0

Now the canonical map,
SymOX

(
I∆/I

2
∆

)
→
⊕
n≥0

I n
∆/I

n+1
∆

is an isomorphism whenever ∆ : X → X ×S X is a regular immersion which occurs when X is
Cohen-Macalay (every closed Cohen-Macalay subscheme of a Cohen-Macalay scheme is cut out
locally by a regular sequence). Therefore,

I n
∆/I

n+1
∆

∼= Symn(ΩX)

so we conclude. □

Corollary 3.0.6. In the previous case,

c(Jn(F )) = c((OX ⊕ · · · ⊕ Symn(ΩX)) ⊗ F ) = c(F ) · · · c(Symn(ΩX) ⊗ F )

And if F is a vector bundle of rank r then Jn(F ) is a vector bundle of rank
(
r+d−1
d

)
with d = dimX.

Remark. Although it may look it from the previous formula, the sequences,

0 Symn(ΩX) ⊗OX
F Jn(F ) Jn−1(F ) 0

are usually not split. Indeed, sections of

0 ΩX ⊗ F J1(F ) F 0

meaning actual OX-linear maps F → J1(F ) (with respect to the “left” OX-structure we always
have d1 : F → J1(F ) linear for the “right” OX-structure) correspond to connections on F .
Therefore, the extension class,

A(F ) = [0 → ΩX ⊗ F → J1(F ) → F → 0] ∈ Ext1
OX

(F ,ΩX ⊗ F ) = H1(X,ΩX ⊗ EndOX
(F ))

is the obstruction to the existence of a connection on F . Indeed, if F = L is a line bundle then,

A(L) = [0 → ΩX ⊗ L → J1(L) → L → 0] ∈ Ext1
OX

(L,ΩX ⊗ L) = H1(X,ΩX)

is c1(L) under the canonical map H1(X,Ω1) → H2
dR(X).

Proposition 3.0.7. A section s ∈ Γ(X,F ) has a zero of multplicitly at least n + 1 at x ∈ X if
and only if ds ∈ Γ(X, Jn(F )) has a zero at x.

Proof. Consider the diagram,

Γ(X,F ) Γ(X, Jn(F ))

Fx Jn(F )x

Jn(F )x ⊗ κ(x)

d

d
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We can compute1 Fx → Jn(F )x ⊗ κ(x) locally on an affine x ∈ U = Spec (A),

Jn(F )x ⊗ κ(x) = (A/p)p ⊗A (A⊗S A)/In+1 ⊗AM

Let (R,m, κ) = (Ap, pAp, κ(x)) be the local ring. Then,

Jn(F )x ⊗ κ(x) = (R ⊗S R)/(m ⊗R + In+1) ⊗RMm

Now, m ⊗R + In+1 = m ⊗R +R ⊗ mn+1 because
n+1∏
i=0

(yi ⊗ 1 − 1 ⊗ yi) − 1 ⊗ y1 · · · yn+1 ∈ m ⊗R

and therefore,
Jn(F )x ⊗ κ(x) = R/mn+1 ⊗RM = M/mn+1M

and thus Fx → Jn(F )x ⊗ κ(x) sends sx 7→ 0 iff sx ∈ mn+1
x . □

(DO THESE ALWAYS GIVE GENERICALLY INDEPENDENT SECTIONS??)
(I THINK SO BECAUSE F → J1(F ) → F is the identity right)

Remark. I got a bit worried that (A⊗R A)/In+1 gives a different sheaf if you localize on the left vs
on the right which would be a problem because pushing forward along π(n)

1 or π(n)
2 is supposed to

give the same abelian sheaf. However, this works because,

a⊗ 1 = (a⊗ 1 − 1 ⊗ a) + 1 ⊗ a

but (a⊗ 1 − 1 ⊗ a) is nilpotent so a⊗ 1 is invertible iff 1 ⊗ a is invertible.

4 Solving Some Enumerative Problems
Example 4.0.1. We return to counting the number of singular points in a general pencil of degree
d divisors on P1. These correspond to the line bundle OP1(d). To compute singularities of order at
least 1 we need the rank two vector bundle J1(OP1(d)). A pencil gives two sections of J1(OP1(d)).
The points at which these are dependent are exactly the singular points of some element of the
pencil counted with the proper multiplicity. Therefore, the divisor of singularities in question is,

c1(J1(OP1(d)) = c1(OP1(d) ⊕ ΩP1(d)) = c1(OP1(d)) + c1(ΩP1(d))

However, ΩP1 = OP1(−2) and c1(OP1(d)) = dH where H is the hyperplane (point) class so,

c1(J1(OP1(d)) = c1(OP1(d)) + c1(OP1(d− 2)) = dH + (d− 2)H = 2(d− 1)H

therefore there are 2(d− 1) points!
Example 4.0.2. Let’s think about counting singularities in a general pencil of degree d on Pn.
This means we should look at cn(J1(OPn(d)) ∈ CHn(X). Recall that J1(OPn(d)) is a vector bundle
of rank n+ 1 so given two sections cn(J1(OPn(d)) ∈ CHn(X) is the locus of singular points. Then,

c(J1(OPn(d))) = c(OPn(d)) · c(ΩPn(d)) = (1 + dH) · (1 + (d− 1)H)n+1

1 + dH
= (1 + (d− 1)H)n+1

Therefore,
cn(J1(OPn(d))) = (n+ 1) · (d− 1)nHn

so there are (n+ 1)(d− 1)n singularities.
1notice that d is not linear and therefore will not generally factor through Fx → Fx ⊗ κ(x)
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Example 4.0.3. Let’s give an example in the case n = 3 and d = 2 to see how this works. Let
f = X2

0 +X2
1 +X2

2 −X2
3 and g = X0X1 +X2X3. It is clear that both f and g define smooth quadric

surfaces. Now we consider,

fλ = f + λg = X2
0 +X2

1 +X2
2 −X2

3 + λ(X0X1 +X2X3)

Let’s look at the Jacobian,
∂fλ
∂X0

= 2X0 + λX1

∂fλ
∂X1

= 2X1 + λX0

∂fλ
∂X2

= 2X2 + λX3

∂fλ
∂X3

= −2X3 + λX2

Thus we need 2X0 = −λX1 and 2X1 = −λX0 so 4X0 = λ2X0 so either X0 = X1 = 0 or λ = ±2.
Similarly we need 2X2 = −λX3 and 2X3 = λX2 so 4X2 = −λ2X3 so either X2 = X3 = 0 or
λ = − ± 2i. Therefore, we get four singular points,

λ = 2 P = [1 : −1 : 0 : 0]
λ = −2 P = [1 : 1 : 0 : 0]
λ = 2i P = [0 : 0 : i : −1]
λ = −2i P = [0 : 0 : i : 1]

as expected from the formula.

Example 4.0.4. The parameter space of degree d curves in P2 is PN = P(Γ(P2,OP2(d))) where
N =

(
2+d
d

)
− 1. Let Z2 ⊂ PN be the singular locus and Z3 ⊂ PN the locus of curves with a triple

point. What are the codimension and degrees of these subvarities?

We can figure this out from intersection theory by slicing these subvarieties with general linear
spaces of different dimensions. Notice that Z2 ∩ V is exactly the singular locus of the linear system
V . The union of the singular points in P2 is then,

c3−r(J1(OP2(d))) ∈ CH3−r(P2)

where r = dim V . Therefore, we get a finite collection of points exactly for r = 1 showing that
codim

(
Z2,PN

)
= 1 and

degZ2 = deg J1(OP2(d)) = 3(d− 1)2

We play the exact same game with Z3. However, points in Z3 correspond to vanishing of sections
of J2(OP2(d)) because the second partial derivatives also vanish at a triple point. Therefore a linear
system V ⊂ PN intersects Z3 in the locus corresponding to,

c6−r(J2(OP2(d))) ∈ CH6−r(P2)

where rank (J2(OP2(d))) = 1 + 2 + 3 = 6. Therefore, for r = 4 we get a finite set of points so we
see that codim

(
Z3,PN

)
= 4 and,

degZ3 = deg c2(J2(OP2(d)))
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Therefore we should compute,

c(J2(OP2(d))) = c(OP2(d)) · c(ΩP2(d)) · c(Sym2(ΩP2) (d))

To compute c(Sym2(ΩP2) (d)) we apply Hartshorne [Ex. 5.16(c)] which says given an exact sequence,

0 F E G 0

of vector bundles then there are exact sequences,

0 A Sym2(E) Sym2(G ) 0

0 Sym2(F ) A F ⊗ G 0

Applying this to the Euler sequence and twising gives,

0 A(d) OPn(d− 2)⊕(n+2
2 ) OPn(d) 0

0 Sym2(ΩPn) (d) A(d) ΩPn(d) 0

Therefore,

c(Sym2(ΩP2) (d)) = (1 + (d− 2)H)(
n+2

2 )
(1 + (d− 1)H)n+1

Plugging in n = 2 we find,

c(Sym2(ΩP2) (d)) = 1 + 3(d− 3)H + 3(d2 − 6 + 10)H2

In fact, notice that,

c(J2(OPn(d))) = c(OPn(d)) · c(ΩPn(d)) · c(Sym2(ΩPn) (d)) = (1 + (d− 2)H)(
n+2

2 )

I’m not sure why there is such nice cancellation. Then we get,

c2(J2(OP2(d))) = 1 + 6(d− 2)H + 15(d− 2)2H2

cn(J2(OPn(d))) =
((

n+2
2

)
n

)
(d− 2)nHn

Therefore, we see that,
degZ3 = deg c2(J2(OP2(d))) = 15(d− 2)2

In particular, for d = 3 we recover the fact that the subvariety of three lines meeting at a single
point inside the space of cubics has degree 15.

Example 4.0.5. Let X be a smooth projective surface and L a line bundle. How many singularities
are there on a general pencil of L-curves?

The process is somewhat standard now. A pencil is given by two sections s0, s1 ∈ Γ(X,L) and we
want to compute the dependancy locus of ds0, ds1 ∈ Γ(X, J1(L)) which is,

c2(J1(L)) = (c(L) · c(ΩX ⊗ L))2

10



To compute the first term, we use the splitting principle. Write (after pulling back to a projective
bundle)

ΩX = F 1 ⊃ F 2 ⊃ F 3 = (0)

with F i/F i+1 a line bundle. Then,

c(ΩX) =
2∏
i=1

(1 + γi)

where γi = c1(F i/F i+1) are the Chern roots. Tensoring with L we get a similar filtration with
F̃ i/F̃ i+1 = (F i/F i+1) ⊗ L and thus Chern roots,

γ̃i = c1(F̃ i/F̃ i+1) = c1((F i/F i+1) ⊗ L) = γi + c1(L)

Thus,

c(ΩX ⊗ L) =
2∏
i=1

(1 + γi + c1(L)) = (1 + γ1)(1 + γ2) + (2 + γ1 + γ2)c1(L) + c1(L)2

= c(ΩX) + (2 + c1(ΩX))c1(L) + c1(L)2

Therefore,

c(J1(L)) = c(L) · c(ΩX ⊗ L) = c(ΩX) + (3 + 2c1(ΩX))c1(L) + 3c1(L)2

Therefore,
c2(J1(L)) = c2(ΩX) + 2c1(ΩX)c1(L) + 3c1(L)3

Since K = c1(ΩX) writing D = c1(L) for the associated divisor and c2 = c2(ΩX) we get a formula,

deg c2(J1(L)) = c2 +D · (2K + 3D)

In particular, for D = −K,

deg c2(J1(ω∨
X)) = c2 +K ·K = 12χ(0)
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