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1 Introduction

2 A First Attempt at Measure Theory

We want to define a function which measures the size of a set. First let us work
over R. Then our measure is a map from subsets of the real line to nonegative
reals or infinity if our set is infinite in length.

Definition: The domain of a mesure will be in the set,
Rt ={zeR|z>0}U{oo}
which has the topology of a closed interval.
Definition: A measure is a function p: P (R) — RT satisfying,
1. u(2)=0
2. For any countible collection of pairwise disjoint sets {E;}2, for E; C R
we have additivity,
p <U E1> =) n(E)
i=1 i=1
Lemma 2.1. Let p be a measure. If A C B then p(A) < u(B).

Proof. We can write B= AU (B\ A) and AN(B\ A) = @. Then, applying the
second property of a measure,

p(B) = p(A) +p(B\A) = pu(A)
because p (B \ A) > 0 for any set. O
Example 2.1. The following are well-defined measures on all subsets of R:

1. The counting measure is defined by u (() S) = #(S) when S is finite and
1 (S) = oo when S is infinite.

2. The dirac measure §, for a € R is given by,

1 a€ S

0,(5) =1g(a) = {O g

where 1g is the indicator function given by,

to={; Tgs



3. Let {q;} be a fixed enummeration of the rational numbers Q. Define
ug : P(R) = R by,

— 1s(q)
po(S) = 5
i=1
Since the sum,
(oo}
1
IEES
— 2
=1

converges, the measure ugp(S) < 1 so it is never infinite. This function is
indeed a measure because the measure of a disjoint union gives the sum
over all rationals in each piece with is exactly the sum of the measures.

Definition: We say a measure p : P (R) — Rt is translation-invariant if
(S +x)=pn(S) for any S C R and = € R where,

S+zr={s+z|seS}

Example 2.2.

The counting measure is translation-invariant since S + = has the same number
of elements as S.

The dirac measure is not translation-invariant since §,({a}) = 1 but if z # 0
then §,({a} + a) = §,({a + z}) = 0.

g is not translation-invariant because different rational numbers will appear
in a shifted interval.

Definition: We say a measure p: P (R) — R* is interval-length-compatible if
for any real numbers a < b we have p([a,b]) = b — a. The weaker notion of
being nontrivial on intervals holds if u([a,b]) # 0,00 for all such intervals.

Example 2.3.

The counting measure is trivial on intervals because u([a,b]) = oo.

The dirac measure d, is trivial on all intervals which do not conatain a.

fo is nontrivial on intervals since every interval contains a rational number

¢ € [a,b] so 271 < ug([a, b)) < .

Remark 2.0.1. None of the examples discussed are both translation-invariant
and nontrivial on all intervals. This is not an accident as we will now demon-
strate.

Theorem 2.2 (Vitali). There does not exist a translation-invariant measure
on R which is nontrivial on intervals.



Proof. We will define an equivalence relation ~ on R by,
r~y <= FEQ:x+qg=y

This equivalence relation measures the “irrational part” of a number. Consider
the set of equivalence classes,

R/Q={[z] | x € R} where [z]={teR|x~y}
This is actually a quotient of groups since [z] = z + Q so we can also write,

R/Q={z+Q|z R}

Now we create a set V' by choosing a single element of each equivalence class
such that this element lies in [0,1]. That is, if z € V then V N [z] = {z} so no
element equivalent to x (i.e. differing by a rational from z) can lie in V. Given
any choice of a representitive for [z] we can shif by rationals until we land in
[0,1]. Constructing V formally requires the axiom of choice but more on this
latter.

Now, for ¢ € Q N [—1,1] = Q consider the sets V + ¢. Given any z € [—1,1]
we know that there exists some y € [¢] NV with y € [0,1]. Thus, z —y € Q
since x ~ y and © —y € [—1,1] since z,y € [0,1]. Thus, x = y + ¢ for some
g € QN [-1,1]. However, y € V so x € V + ¢q. But furthermore, if z € V then
xz €1[0,1] so x4+ g € [-1,2] for ¢ € QN [—1,1]. Therefore,

0,1 c |JV+gc[-1,2]
q€Q1

Finally, let 1 : P (R) — RT be a translation-invation measure on R which is
nontrivial on intervals. Applying this measure,

po,)<p| |JV+a] <n(-1,2)
q€Q

However, if ¢ # ¢’ then V + ¢ and V + ¢’ are disjoint because if z € V 4 ¢ and
x € V+¢ then we would have z — g,z —¢ e Vbut (x —q)+(¢g—¢)=z—¢
so these must lie in the same equivalence class and thus v —g¢=2—¢ so ¢ = ¢
since there is exactly one element from each equivalence class in V. Furthermore,
since Q is countible Q; = Q N [—1,1] is also a countible index set. Therefore,
since p is a measure, it is additive over countible collections of disjoint set so
we have,

pl U Vta] =D nlvV+g

g€ q€Q1

Furthermore, p is translation invariant so,

p(V+q)=pV)



Therefore,

pl U Vvtal=> u)

q€Qq q€Q

Plugging into the innequality,

p((0,1) < Y p(V) < p([-1,2])

g€

Finally, because p is nontrivial on intervals we know that 4 ([0,1]) and p ([—1,2])
are positive real numbers (not oo). This is the desired contradiction because,

_ _Joo u(V)#0
2 n=e 2 {0 H(V) =0

so this value cannot possibly fit in the innequality between two positive real
numbers. O

Remark 2.0.2. The axiom of choice is a somewhat controversial axiom of set
theory which states that given any collection of nonempty sets there exists a set
which contains exactly one element from each set in the collection. Applying
this axiom to R/Q gives us a Vitali set V. We can write this axiom in formal
logic as,

VX[@ ¢ X =3f: X = JX VAeX:f(A)e A

which states that there exists a choice function taking a set A and choosing
some element f(A) € A.

Remark 2.0.3. This is a devestating result. We certainally wanted any candidate
length function to be a translation-invariant measure which respects the lengths
of intervals. Vitali showed that this is impossible. We will discuss how the
modern theory circumvents this difficulty in the following section.

3 Sigma Algebras and Measure Spaces

Definition: An outer-measure is a function p* : P (X) — R+ satisfying,
1. w*(2)=0
2. For any subsets A, B C X we have,
ACB = p'(A) <p"(B)

3. For any countible collection of pairwise disjoint sets {E;}2, for E; C X
we have subadditivity,



Definition: The Lebesgue outer-measure p* : P (R) — R is defined as follows.
Let I denote an open interval of the form I = (a,b) and ¢(I) = b—a its canonical
length. Then for S C R we set,

u* (B) = inf {iam

k=1

oo
{Ix}ren is a cover of E by open intervals i.e. E C U I,
k=1

Proposition. The Lebesgue outer-measure defined above satisfies the outer-
measure axioms.

Proof. O

Remark 3.0.1. The concept of an outer-measure will allow us to define the space
of measureable sets. We first need to know what kind of space this will be.

Definition: A o-algebra on X is a collection ¥ C X of subsets of X satisfying,
l. XeXYandoeX
2. f FeXthen E°=X\FE€X.

3. or any countible collection of pairwise disjoint sets {E;}°, for E; € ¥

then,
U FE,eXx
i=1

By taking the compliment of the union of the compliments we also get
coutible intersections i.e. -

(Eiex

i=1

We call the pair (X, ) a measureable space.

Definition: Let (X,Xx) and (Y, Xy ) be measureable spaces. A function f :
X — Y is called measureable if for any Y-measurable set E € 3y its pre-image
is X-measureable i.e. f~1(F) € Ix.

Remark 3.0.2. We now have the tools to give a correct modern definition of a
measure.

Definition: Let (X,Y) be a measureable space i.e. X is a o-algebra on X.
Then a measure on (X,3) is a function p : ¥ — R™ satisfying,

1. u(@)=0

2. For any countible collection of pairwise disjoint sets {E;}2, for F; € ¥

we have additivity,
p (U Ez) = Z,U'(Ez)
i=1 i=1



We call the triple (X, X, 1) a measure space.

Definition: A measure space (X, X, ) is complete if for any E € 3 such that
w(E) =0 and any S C E we have S € %.

Definition: Let p* : P (X) — RT be an outer-measure. We say that £ C X is
measureable if for any A C X we have,

it (A) = p* (AN E) + " (AN E°)

Lemma 3.1. If Fy,Es C X are p*-measurable then E1 U Ey is also p*-
measurable.

Proof. If E1, Ey € ¥ then,
i (A) = (AN Ey) + 0 (A0 ES)

for any A. Furthermore, taking AN EY as the arbitrary subset and applying the
measurability of of Fj,

i (AN ES) = 1" (AN ES 1 By) + pu* (AN B§ 0 ES)

Furthermore, we can split the set A N (E; U E3) as the union of AN E; and
AN EYN Ey. By subadditivity,

pr (AN (EyUEY)) <p*(ANEy) +p" (ANE{NE,)
Combining these results,

(AN (BT UEy))+u" (AN(EfNES) <pu (ANEy)+p" (ANEfNEy) + u* (AN (Ef N EY))
=@ (AN Ey) + 1" (AN EY) = pi* (A)

However, A can be decomposed as the disjoint union of A N (E; U E3) and
AN (BN ES) so by subadditivity,

p'(A) < p” (AN(ELU Ep)) 4+ p* (AN (EY N EY))
Therefore,
it () = (AN (By U Bz)) + i (AN (BS 0 E))
for any set A. Thus, F1 U FEs € ¥ is measureable. O

Lemma 3.2. If {E;}32, is a countible increasing collection of u*-measureable
sets then, for any set A C X,

1 <Aﬁ L_J1E1> :nh_{tgou (ANE,)
1=



Proof. Define,
E=|]JE
i=1

By monotonicity,

pr(ANE,) <p" (ANE) = lim p*(ANE,) <p* (ANE)

n—oo
We can write,

o0 o0
ANE = UAﬂEz‘ = UAmEiJrl NE¢
i=1 i=0
since E; 41 D E; this is a disjoint union since if ¢ < j then Ej1; N EY is disjoint
from E; O E;. Applying subadditivity,

oo

*(ANE) Z (AN E;;, NES)
1=0

Since F; is p*-measureable then taking AN F; 4,

with Fy = @. Thus,

(AQE) < Z,U,* (AﬂEiJrl ﬂE Z AﬁEhLl) *(AﬂEZ;HﬂEi)]
=0 =0

,Mg

«
I
=3

1" (AN Eipr) = p* (AN E)] = lim p* (AN E,) = " (AN Ep) = lim " (AN B,)

n—oo

because,
p(ANEy)) =p*(AN@)=0

Therefore,
uw(ANE)= ILm w(ANE,)

O

Theorem 3.3. The collection of p*-measureable sets ¥, is a o-algebra on X
and p, the restiction of p* to X, makes (X,X,, 1) a complete measure space.

Proof. If E = X or E = @ then clearly,
i (ANE) + " (AN E) = p* (A) + 1* () = * (A)
so X, € X,. Furthermore F € ¥, if and only if

i (A) = 1" (AN E) + p* (AN E°)



for each A C X. So clearly F € ¥, <= FE°¢ € ¥X. We have shown that 3,
contains finite unions. Taking A = E; with disjoint Ey, Ey € X, gives,

p(ErU Ep) = p (EvU E2) N Ey) + p* (Ey U E2) N EY) = p* (E) + p* (E2)

so we have finite additivity on X,. If we have a countible collection of pairwise
disjoint sets {E;}52, for E; € £,,. We have shown that the unions,

T, =] En e 2,
i=1
are measureable. Then,
i (A) = i (ANT) + p* (ANTE)

Furthermore, define,

E=JE
i=1
and then,
ANESCANTY
so we have,
i (ANES) < p* (ANTE)
Thus,

W(A) >t (ANT,) + i (AN E°)

which implies, via Lemma 3.2, that

p (A) > lim p* (ANT,) +p" (ANES)=p" (ANE)+u* (AN E°)

n— oo
Finally, by subadditivty,
1w (A) < pt (AN E) + 1 (AN EY)
and therefore,
1 (A) = p* (AN E) 4+ (AN E)

So E € ¥,,. Therefore £, is a o-algebra. Furthermore, if £ € ¥, with p* (E) =
0 and take S C F then for any A C X using monotonicity we have,

(AN SY) < it (A)

and also,
W(ANS) <t (ANE) < p* (B) =0

Thus,
po(ANSY) +p" (ANS) < p” (4)



and also, by subadditivity,

i (A) < i (ANS) + " (AN S°)
Thus,

p'(A) = p" (ANS) +p" (ANSY)

so S € ¥,,. Finally, we have,

but finite additivity. Thus,

p(B) = lim Yt (B) =) E;
i=1 i=1

Therefore, (X, 3, 1*) is a complete measure space. O

Definition: A o-algeba ¥ on a topological space X is called Borel if 32 contains
every open set of X. If ¥ is Borel then we say that the measureable space (X, X))
is a Borel space and any measure on (X,Y) is a Borel measure. Furthermore,
the Borel algebra B(X) is the intersection of all Borel o-algebras on X so B(X)
is the minimal o-algebra containing all open and thus all closed sets of X.

Theorem 3.4. The o-algebra of Lebesgue-measurable sets X is Borel over R.
Proof. O

Theorem 3.5. The Lebesgue measure on (X,3r) is a translation-invariant
measure which is nontrivial on intervals.

Proof. O

Remark 3.0.3. We can generalize the Lebesgue measure to R™ for arbitrary
dimensions by,

" (E) = int {Zwk)

k=1

{It}ren is a cover of E by open intervals i.e. E C U Ik}
k=1

where T, is a primitive open set [aq,b1] X -+ X [an, b,] and
(T = (by — ar) - (b — )

is the canonical volume.
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