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1 Introduction

2 A First Attempt at Measure Theory

We want to define a function which measures the size of a set. First let us work
over R. Then our measure is a map from subsets of the real line to nonegative
reals or infinity if our set is infinite in length.

Definition: The domain of a mesure will be in the set,

R̂+ = {x ∈ R | x ≥ 0} ∪ {∞}

which has the topology of a closed interval.

Definition: A measure is a function µ : P (R)→ R̂+ satisfying,

1. µ (∅) = 0

2. For any countible collection of pairwise disjoint sets {Ei}∞i=1 for Ei ⊂ R
we have additivity,

µ

( ∞⋃
i=1

Ei

)
=

∞∑
i=1

µ (Ei)

Lemma 2.1. Let µ be a measure. If A ⊂ B then µ (A) ≤ µ (B).

Proof. We can write B = A∪ (B \A) and A∩ (B \A) = ∅. Then, applying the
second property of a measure,

µ (B) = µ (A) + µ (B \A) ≥ µ (A)

because µ (B \A) ≥ 0 for any set. �

Example 2.1. The following are well-defined measures on all subsets of R:

1. The counting measure is defined by µ (()S) = #(S) when S is finite and
µ (S) =∞ when S is infinite.

2. The dirac measure δa for a ∈ R is given by,

δa(S) = 1S(a) =

{
1 a ∈ S
0 a /∈ S

where 1S is the indicator function given by,

1S(x) =

{
1 x ∈ S
0 x /∈ S
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3. Let {qi} be a fixed enummeration of the rational numbers Q. Define

µQ : P (R)→ R̂+ by,

µQ(S) =

∞∑
i=1

1S(qi)

2i

Since the sum,
∞∑
i=1

1

2i
= 1

converges, the measure µQ(S) ≤ 1 so it is never infinite. This function is
indeed a measure because the measure of a disjoint union gives the sum
over all rationals in each piece with is exactly the sum of the measures.

Definition: We say a measure µ : P (R) → R̂+ is translation-invariant if
µ (S + x) = µ (S) for any S ⊂ R and x ∈ R where,

S + x = {s+ x | s ∈ S}

Example 2.2.

The counting measure is translation-invariant since S+x has the same number
of elements as S.

The dirac measure is not translation-invariant since δa({a}) = 1 but if x 6= 0
then δa({a}+ a) = δa({a+ x}) = 0.

µQ is not translation-invariant because different rational numbers will appear
in a shifted interval.

Definition: We say a measure µ : P (R) → R̂+ is interval-length-compatible if
for any real numbers a < b we have µ ([a, b]) = b − a. The weaker notion of
being nontrivial on intervals holds if µ([a, b]) 6= 0,∞ for all such intervals.

Example 2.3.

The counting measure is trivial on intervals because µ([a, b]) =∞.

The dirac measure δa is trivial on all intervals which do not conatain a.

µQ is nontrivial on intervals since every interval contains a rational number
qi ∈ [a, b] so 2−1 ≤ µQ([a, b]) <∞.

Remark 2.0.1. None of the examples discussed are both translation-invariant
and nontrivial on all intervals. This is not an accident as we will now demon-
strate.

Theorem 2.2 (Vitali). There does not exist a translation-invariant measure
on R which is nontrivial on intervals.

3



Proof. We will define an equivalence relation ∼ on R by,

x ∼ y ⇐⇒ ∃q ∈ Q : x+ q = y

This equivalence relation measures the “irrational part” of a number. Consider
the set of equivalence classes,

R/Q = {[x] | x ∈ R} where [x] = {t ∈ R | x ∼ y}

This is actually a quotient of groups since [x] = x+ Q so we can also write,

R/Q = {x+ Q | x ∈ R}

Now we create a set V by choosing a single element of each equivalence class
such that this element lies in [0, 1]. That is, if x ∈ V then V ∩ [x] = {x} so no
element equivalent to x (i.e. differing by a rational from x) can lie in V . Given
any choice of a representitive for [x] we can shif by rationals until we land in
[0, 1]. Constructing V formally requires the axiom of choice but more on this
latter.

Now, for q ∈ Q ∩ [−1, 1] = Q1 consider the sets V + q. Given any x ∈ [−1, 1]
we know that there exists some y ∈ [x] ∩ V with y ∈ [0, 1]. Thus, x − y ∈ Q
since x ∼ y and x − y ∈ [−1, 1] since x, y ∈ [0, 1]. Thus, x = y + q for some
q ∈ Q ∩ [−1, 1]. However, y ∈ V so x ∈ V + q. But furthermore, if x ∈ V then
x ∈ [0, 1] so x+ q ∈ [−1, 2] for q ∈ Q ∩ [−1, 1]. Therefore,

[0, 1] ⊂
⋃
q∈Q1

V + q ⊂ [−1, 2]

Finally, let µ : P (R) → R̂+ be a translation-invation measure on R which is
nontrivial on intervals. Applying this measure,

µ ([0, 1]) ≤ µ

 ⋃
q∈Q1

V + q

 ≤ µ ([−1, 2])

However, if q 6= q′ then V + q and V + q′ are disjoint because if x ∈ V + q and
x ∈ V + q′ then we would have x− q, x− q′ ∈ V but (x− q) + (q − q′) = x− q′
so these must lie in the same equivalence class and thus x− q = x− q′ so q = q′

since there is exactly one element from each equivalence class in V . Furthermore,
since Q is countible Q1 = Q ∩ [−1, 1] is also a countible index set. Therefore,
since µ is a measure, it is additive over countible collections of disjoint set so
we have,

µ

 ⋃
q∈Q1

V + q

 =
∑
q∈Q1

µ (V + q)

Furthermore, µ is translation invariant so,

µ (V + q) = µ (V )
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Therefore,

µ

 ⋃
q∈Q1

V + q

 =
∑
q∈Q1

µ (V )

Plugging into the innequality,

µ ([0, 1]) ≤
∑
q∈Q1

µ (V ) ≤ µ ([−1, 2])

Finally, because µ is nontrivial on intervals we know that µ ([0, 1]) and µ ([−1, 2])
are positive real numbers (not ∞). This is the desired contradiction because,

∑
q∈Q1

µ (V ) = µ (V )
∑
q∈Q1

1 =

{
∞ µ (V ) 6= 0

0 µ (V ) = 0

so this value cannot possibly fit in the innequality between two positive real
numbers. �

Remark 2.0.2. The axiom of choice is a somewhat controversial axiom of set
theory which states that given any collection of nonempty sets there exists a set
which contains exactly one element from each set in the collection. Applying
this axiom to R/Q gives us a Vitali set V . We can write this axiom in formal
logic as,

∀X[∅ /∈ X =⇒ ∃f : X →
⋃
X ∀A ∈ X : f(A) ∈ A]

which states that there exists a choice function taking a set A and choosing
some element f(A) ∈ A.

Remark 2.0.3. This is a devestating result. We certainally wanted any candidate
length function to be a translation-invariant measure which respects the lengths
of intervals. Vitali showed that this is impossible. We will discuss how the
modern theory circumvents this difficulty in the following section.

3 Sigma Algebras and Measure Spaces

Definition: An outer-measure is a function µ∗ : P (X)→ R̂+ satisfying,

1. µ∗ (∅) = 0

2. For any subsets A,B ⊂ X we have,

A ⊂ B =⇒ µ∗ (A) ≤ µ∗ (B)

3. For any countible collection of pairwise disjoint sets {Ei}∞i=1 for Ei ⊂ X
we have subadditivity,

µ∗

( ∞⋃
i=1

Ei

)
≤
∞∑
i=1

µ∗ (Ei)
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Definition: The Lebesgue outer-measure µ∗ : P (R)→ R̂+ is defined as follows.
Let I denote an open interval of the form I = (a, b) and `(I) = b−a its canonical
length. Then for S ⊂ R we set,

µ∗ (E) = inf

{ ∞∑
k=1

`(Ik)

∣∣∣∣∣ {Ik}k∈N is a cover of E by open intervals i.e. E ⊂
∞⋃
k=1

Ik

}

Proposition. The Lebesgue outer-measure defined above satisfies the outer-
measure axioms.

Proof. �

Remark 3.0.1. The concept of an outer-measure will allow us to define the space
of measureable sets. We first need to know what kind of space this will be.

Definition: A σ-algebra on X is a collection Σ ⊂ X of subsets of X satisfying,

1. X ∈ Σ and ∅ ∈ Σ

2. If E ∈ Σ then Ec = X \ E ∈ Σ.

3. or any countible collection of pairwise disjoint sets {Ei}∞i=1 for Ei ∈ Σ
then,

∞⋃
i=1

Ei ∈ Σ

By taking the compliment of the union of the compliments we also get
coutible intersections i.e.

∞⋂
i=1

Ei ∈ Σ

We call the pair (X,Σ) a measureable space.

Definition: Let (X,ΣX) and (Y,ΣY ) be measureable spaces. A function f :
X → Y is called measureable if for any Y -measurable set E ∈ ΣY its pre-image
is X-measureable i.e. f−1(E) ∈ ΣX .

Remark 3.0.2. We now have the tools to give a correct modern definition of a
measure.

Definition: Let (X,Σ) be a measureable space i.e. Σ is a σ-algebra on X.

Then a measure on (X,Σ) is a function µ : Σ→ R̂+ satisfying,

1. µ (∅) = 0

2. For any countible collection of pairwise disjoint sets {Ei}∞i=1 for Ei ∈ Σ
we have additivity,

µ

( ∞⋃
i=1

Ei

)
=

∞∑
i=1

µ (Ei)
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We call the triple (X,Σ, µ) a measure space.

Definition: A measure space (X,Σ, µ) is complete if for any E ∈ Σ such that
µ(E) = 0 and any S ⊂ E we have S ∈ Σ.

Definition: Let µ∗ : P (X)→ R̂+ be an outer-measure. We say that E ⊂ X is
measureable if for any A ⊂ X we have,

µ∗ (A) = µ∗ (A ∩ E) + µ∗ (A ∩ Ec)

Lemma 3.1. If E1, E2 ⊂ X are µ∗-measurable then E1 ∪ E2 is also µ∗-
measurable.

Proof. If E1, E2 ∈ Σ then,

µ∗ (A) = µ∗ (A ∩ E1) + µ∗ (A ∩ Ec1)

for any A. Furthermore, taking A∩Ec1 as the arbitrary subset and applying the
measurability of of E2,

µ∗ (A ∩ Ec1) = µ∗ (A ∩ Ec1 ∩ E2) + µ∗ (A ∩ Ec1 ∩ Ec2)

Furthermore, we can split the set A ∩ (E1 ∪ E2) as the union of A ∩ E1 and
A ∩ Ec1 ∩ E2. By subadditivity,

µ∗ (A ∩ (E1 ∪ E2)) ≤ µ∗ (A ∩ E1) + µ∗ (A ∩ Ec1 ∩ E2)

Combining these results,

µ∗ (A ∩ (E1 ∪ E2)) + µ∗ (A ∩ (Ec1 ∩ Ec2)) ≤ µ∗ (A ∩ E1) + µ∗ (A ∩ Ec1 ∩ E2) + µ∗ (A ∩ (Ec1 ∩ Ec2))

= µ∗ (A ∩ E1) + µ∗ (A ∩ Ec1) = µ∗ (A)

However, A can be decomposed as the disjoint union of A ∩ (E1 ∪ E2) and
A ∩ (Ec1 ∩ Ec2) so by subadditivity,

µ∗ (A) ≤ µ∗ (A ∩ (E1 ∪ E2)) + µ∗ (A ∩ (Ec1 ∩ Ec1))

Therefore,

µ∗ (A) = µ∗ (A ∩ (E1 ∪ E2)) + µ∗ (A ∩ (Ec1 ∩ Ec1))

for any set A. Thus, E1 ∪ E2 ∈ Σ is measureable. �

Lemma 3.2. If {Ei}∞i=1 is a countible increasing collection of µ∗-measureable
sets then, for any set A ⊂ X,

µ∗

(
A ∩

∞⋃
i=1

Ei

)
= lim
n→∞

µ∗ (A ∩ En)
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Proof. Define,

E =

∞⋃
i=1

Ei

By monotonicity,

µ∗ (A ∩ En) ≤ µ∗ (A ∩ E) =⇒ lim
n→∞

µ∗ (A ∩ En) ≤ µ∗ (A ∩ E)

We can write,

A ∩ E =

∞⋃
i=1

A ∩ Ei =

∞⋃
i=0

A ∩ Ei+1 ∩ Eci

since Ei+1 ⊃ Ei this is a disjoint union since if i < j then Ej+1 ∩Ecj is disjoint
from Ej ⊃ Ei. Applying subadditivity,

µ∗ (A ∩ E) ≤
∞∑
i=0

µ∗ (A ∩ Ei+1 ∩ Eci )

Since Ei is µ∗-measureable then taking A ∩ Ei+1,

µ∗ (A ∩ Ei+1) = µ∗ (A ∩ Ei+1 ∩ Ei) + µ∗ (A ∩ Ei+1 ∩ Eci )

with E0 = ∅. Thus,

µ∗ (A ∩ E) ≤
∞∑
i=0

µ∗ (A ∩ Ei+1 ∩ Eci ) =

∞∑
i=0

[µ∗ (A ∩ Ei+1)− µ∗ (A ∩ Ei+1 ∩ Ei)]

=

∞∑
i=0

[µ∗ (A ∩ Ei+1)− µ∗ (A ∩ Ei)] = lim
n→∞

µ∗ (A ∩ En)− µ∗ (A ∩ E0) = lim
n→∞

µ∗ (A ∩ En)

because,
µ∗ (A ∩ E0) = µ∗ (A ∩∅) = 0

Therefore,
µ∗ (A ∩ E) = lim

n→∞
µ∗ (A ∩ En)

�

Theorem 3.3. The collection of µ∗-measureable sets Σµ is a σ-algebra on X
and µ, the restiction of µ∗ to Σµ, makes (X,Σµ, µ) a complete measure space.

Proof. If E = X or E = ∅ then clearly,

µ∗ (A ∩ E) + µ∗ (A ∩ Ec) = µ∗ (A) + µ∗ (∅) = µ∗ (A)

so X,∅ ∈ Σµ. Furthermore E ∈ Σµ if and only if

µ∗ (A) = µ∗ (A ∩ E) + µ∗ (A ∩ Ec)
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for each A ⊂ X. So clearly E ∈ Σµ ⇐⇒ Ec ∈ Σ. We have shown that Σµ
contains finite unions. Taking A = E1 with disjoint E1, E2 ∈ Σµ gives,

µ∗ (E1 ∪ E2) = µ∗ ((E1 ∪ E2) ∩ E1) + µ∗ ((E1 ∪ E2) ∩ Ec1) = µ∗ (E1) + µ∗ (E2)

so we have finite additivity on Σµ. If we have a countible collection of pairwise
disjoint sets {Ei}∞i=1 for Ei ∈ Σµ. We have shown that the unions,

Tn =

n⋃
i=1

En ∈ Σµ

are measureable. Then,

µ∗ (A) = µ∗ (A ∩ Tn) + µ∗ (A ∩ T cn)

Furthermore, define,

E =

∞⋃
i=1

Ei

and then,
A ∩ Ec ⊂ A ∩ T cn

so we have,
µ∗ (A ∩ Ec) ≤ µ∗ (A ∩ T cn)

Thus,
µ∗ (A) ≥ µ∗ (A ∩ Tn) + µ∗ (A ∩ Ec)

which implies, via Lemma 3.2, that

µ∗ (A) ≥ lim
n→∞

µ∗ (A ∩ Tn) + µ∗ (A ∩ Ec) = µ∗ (A ∩ E) + µ∗ (A ∩ Ec)

Finally, by subadditivty,

µ∗ (A) ≤ µ∗ (A ∩ E) + µ∗ (A ∩ Ec)

and therefore,
µ∗ (A) = µ∗ (A ∩ E) + µ∗ (A ∩ Ec)

So E ∈ Σµ. Therefore Σµ is a σ-algebra. Furthermore, if E ∈ Σµ with µ∗ (E) =
0 and take S ⊂ E then for any A ⊂ X using monotonicity we have,

µ∗ (A ∩ Sc) ≤ µ∗ (A)

and also,
µ∗ (A ∩ S) ≤ µ∗ (A ∩ E) ≤ µ∗ (E) = 0

Thus,
µ∗ (A ∩ Sc) + µ∗ (A ∩ S) ≤ µ∗ (A)
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and also, by subadditivity,

µ∗ (A) ≤ µ∗ (A ∩ S) + µ∗ (A ∩ Sc)

Thus,
µ∗ (A) = µ∗ (A ∩ S) + µ∗ (A ∩ Sc)

so S ∈ Σµ. Finally, we have,

µ∗ (Tn) =

n∑
i=1

µ∗ (Ei)

but finite additivity. Thus,

µ∗ (E) = lim
n→∞

n∑
i=1

µ∗ (Ei) =

∞∑
i=1

Ei

Therefore, (X,Σµ, µ
∗) is a complete measure space. �

Definition: A σ-algeba Σ on a topological space X is called Borel if Σ contains
every open set of X. If Σ is Borel then we say that the measureable space (X,Σ)
is a Borel space and any measure on (X,Σ) is a Borel measure. Furthermore,
the Borel algebra B(X) is the intersection of all Borel σ-algebras on X so B(X)
is the minimal σ-algebra containing all open and thus all closed sets of X.

Theorem 3.4. The σ-algebra of Lebesgue-measurable sets ΣL is Borel over R.

Proof. �

Theorem 3.5. The Lebesgue measure on (X,ΣL) is a translation-invariant
measure which is nontrivial on intervals.

Proof. �

Remark 3.0.3. We can generalize the Lebesgue measure to Rn for arbitrary
dimensions by,

µ∗ (E) = inf

{ ∞∑
k=1

`(Ik)

∣∣∣∣∣ {Ik}k∈N is a cover of E by open intervals i.e. E ⊂
∞⋃
k=1

Ik

}

where Ik is a primitive open set [a1, b1]× · · · × [an, bn] and

`(Ik) = (b1 − a1) · · · (bn − an)

is the canonical volume.
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