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1 Introduction

Consider the infinite sum (series):

1 + 2 + 4 + 8 + 16 + · · · = S

we want to find the value of this expression. Undaunted by the criticism
“you can’t count up infinitely many things” , we proceed by taking,

S−2S = (1+2+4+· · · )−2(1+2+4+· · · ) = (1+2+4+8+· · · )−(2+4+8+· · · ) = 1

Therefore, −S = 1 so S = −1 so we have the marvelous result that,

1 + 2 + 4 + 8 + 16 + · · · = −1

This is an application of the more general formula that,

1 + x+ x2 + x3 + · · · = 1

1− x

were we have plugged in x = 2. Now, your calculus teacher may object that this
formula is only defined for |x| < 1 but if we listened to every naysayer screaming
that our ideas don’t quite make sense how far can we really get? In this class we
are going to consider an alternative to the real numbers in which this formula
makes sense. First, we need to think about what an infinite sum really means
and how we can define its value.

2 Equivalence Relations

Definition: A relation ∼ on a set X is an equivalence relation if for every
a, b, c ∈ X,

1. a ∼ a

2. if a ∼ b then b ∼ a

3. if a ∼ b and b ∼ c then a ∼ c

Definition: Under and equivalence relation ∼ on the set X, the equivalence
class of x ∈ X is [x] = {y ∈ X | x ∼ y} the set of all equivalent elements.

Lemma 2.1. if x ∼ y then [x] = [y].

Proof. If a ∈ [x] then a ∼ x but x ∼ y so a ∼ y so a ∈ [y]. Likewise, if a ∈ [y]
then a ∼ y but y ∼ x so a ∼ x so a ∈ [x]. Therefore, [x] = [y]. □

Lemma 2.2. If [x] ∩ [y] ̸= ∅ then [x] = [y].

Proof. Take a ∈ [x]∩[y] then a ∼ x and a ∼ y so x ∼ y. Therefore, [x] = [y]. □

Lemma 2.3. If a ∈ [x] then [a] = [x].
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Proof. Since a ∈ [x] we have a ∼ x so [a] = [x]. □

Lemma 2.4. Equivalence classes of ∼ over a set X partition X.

Proof. Because for any x ∈ X, x ∼ x so x ∈ [x] and therefore, the union of all
equivalence classes is X. Also, if [x]∩ [y] ̸= ∅ then [x] = [y]. Therefore, distinct
equivalence classes are disjoint. □

3 Norms

We begin by defining a notion of distance from 0 in the rational numbers Q.

Definition: A norm on Q is a function || · || : Q → Q satisfying:

1. ||x|| ≥ 0

2. ||x|| = 0 if and only if x = 0

3. ||xy|| = ||x|| · ||y||

4. (Triangle Inequality) ||x+ y|| ≤ ||x||+ ||y||

Remark 3.0.1. We have || − x|| = ||x||

Example 3.1. The standard absolute value:

||x|| = |x|

Example 3.2. The p-adic norm: Let x = a
b where a, b ∈ Z. Let vp(a), vp(b) be

the exponent of highest power of p dividing a, b respectively, then:

||x|| = |x|p = pvp(b)−vp(a)

For example,

� 54 = 2 · 33 so v3(54) = 3 and therefore |54|3 = 1
33

�
24
25 = 23·3

52 so v3(
24
25 ) = 3 and therefore | 2425 |3 = 1

33

�
24
25 = 23·3

52 so v5(
24
25 ) = −2 and therefore | 2425 |5 = 52

Proposition. The p-adic norm is non-archimedean, that is, |a+b|p ≤ max{|a|p, |b|p}.

Proof. First, write the numbers in reduced form, a = pvp(a)a′ and b = pvp(b)b′

where a and b are rational numbers with both numerator and denominators not
containing multiples of p. Now, because vp(a), vp(b) ≥ min{vp(a), vp(b)} we can
write a+ b = pmin{vp(a),vp(b)}(a′px+b′py) where x and y are nonnegative. Thus,
vp(a + b) ≥ min{vp(a), vp(b)} because (a′px + b′py) can only contain positive
powers of p. Therefore,

|a+ b|p ≤ p−min{vp(a),vp(b)} = max{p−vp(a), p−vp(b)} = max{|a|p, |b|p}

where I have used the fact that −min{x, y} = max{−x,−y}. □
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Theorem 3.1 (Ostrowski). The only norms on Q are the p-adic norms for any
prime p and the absolute value norm up to raising a given norm to a power
greater than one.

We will not provide a proof of this deep result here, however, Ostrowski’s Theo-
rem motivates the study of the p-adic numbers. Together with the real numbers,
they exhaust the possible normed completions of the rational numbers.

This notion of distance from 0, gives us a notion of distance between any two
points x, y through the expression ||x − y||. We’ll now use this notion of 0, to
define more rigorously the notion of the terms of a sequence approaching some
value. The intuition here is that the distance between points of the sequence
and the value has to get closer and closer to zero.

4 Cauchy Sequences and Completion

Definition: A metric space is a set M and a function d : M ×M → R which
satisfies the following properties for any x, y ∈ M ,

1. d(x, y) ≥ 0

2. d(x, y) = 0 if and only if x = y

3. d(x, y) = d(y, x)

4. for any z ∈ M , d(x, y) ≤ d(x, z) + d(z, y)

Example 4.1. Any norm on Q gives a metric defined by d(x, y) = ||x− y||. In
particular, the standard distance on Q is given by taking the metric defined by
the absolute value norm, d(x, y) = |x− y|.

Definition: A sequence an tends to a value a (written an → a) if for all ϵ > 0,
there exists N such that for all n ≥ N we have

d(an, a) < ϵ

Example 4.2. For sequences in Q with respect to the absolute value norm, the

sequences 1
n → 0 and

n∑
k=0

1
2k

→ 2

Remark 4.0.1. If the sequence
n∑

k=0

ak → L then we write
∞∑
k=0

1
2k

= L.

This gives us a notion of some sequence approaching a value. However, we
want a further notion of convergence which loosely means that the sequence
should approach a value, we just don’t necessarily know what that value is.
Such a sequence is known as a Cauchy sequence:
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Definition: A sequence an is called a Cauchy sequence if for all ϵ there exists
N such that for all m,n ≥ N we have:

d(an, am) < ϵ

Theorem 4.1. If an ∈ M is a sequence such that there exists a ∈ M for which
an → a, then an is a Cauchy sequence.

Proof. Take the N such that for all k ≥ N we have d(ak − a) ≤ ϵ
2 . If m,n ≥ N

we have by the triangle inequality:

d(am, an) ≤ d(am, a) + d(a, an) <
ϵ

2
+

ϵ

2
= ϵ

□

Now we feel like if we have a Cauchy sequence, there should be some value it
approaches. Cauchy is the technical way of capturing the idea that a sequence
should converge. We define a complete set to reflect this:

Definition: A set is complete if all Cauchy sequences converge to some value.
A completion of Q with respect to some norm, is the set of all possible values a
Cauchy sequence could converge to.

Remark 4.0.2. A more rigorous way to do this is to define the completion as the
set of all possible Cauchy sequences and call two sequences equivalent if they
tend to the same value.

Example 4.3. An important thing to note though is that all Cauchy sequences
tend to some value in R. For instance, partial expressions for π and the newton’s
method approximation for

√
2. This means that R is a complete metric space.

Definition: Sequences an and bn are equivalent if d(an, bn) → 0 as a sequence
in Q with the standard absolute value distance. We write an ∼ bn. Note that
d(an, bn) → 0 is equivalent to the statement: for any ϵ > 0 there exists N such
that for all n ≥ N we have,

d(an, bn) < ϵ

Proposition. Sequence equivalence is an equivalence relation.

Proof. d(an, an) = 0 so clearly d(an, an) → 0 therefore an ∼ an. Let an ∼ bn
then d(an, bn) = d(bn, an) so d(bn, an) → 0 and thus bn ∼ an.

Suppose that an ∼ bn and bn ∼ cn then for any ϵ > 0, by the definition of
convergence, there exist N1, N2 corresponding to ϵ

2 such that n > N1 =⇒
d(an, bn) <

ϵ
2 and n > N2 =⇒ d(bn, cn) <

ϵ
2 . Thus for any n > N we have,

d(an, cn) ≤ d(an, bn) + d(bn, cn) < ϵ

so d(an, cn) → 0 and thus an ∼ cn. □
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Definition: The metric completion of a metric space is the set of equivalence
classes of Cauchy sequences under sequence equivalence.

Remark 4.0.3. The set R can be defined as the completion of Q with respect
to the distance given by the standard absolute value. This is one of many
equivalent constructions of the real numbers from Q.

5 The p-adic Numbers

Definition: The set Qp is the completion of Q with respect to the p-adic norm.

Remark 5.0.1. Two sequences are p-adic equivalent an ∼ bn if |an − bn|p → 0
as a sequence of distances in Q with the standard absolute value notion of
convergence. This is equivalent to the statement that the sequence (an−bn) → 0
under the metric derived from the p-adic norm.

Definition: The set Zp is the completion of Z with respect to the p-adic norm.
Equivalently, it is the set of all α ∈ Qp such that α can be represented by a
Cauchy sequence with only integer terms.

Remark 5.0.2. There is no equivalent notion of ”real” integers in R viewed as
the completion of Q. The only Cauchy sequences with integer terms under
the absolute value distance are eventually constant and therefore approach a
standard integer in Z. This is because no distinct integers get arbitrarily close
under the usual notion of distance. However, under the p-adic notion of distance,
powers of p do get arbitrarily close so we can have always non-constant Cauchy
sequences with integer terms. Therefore, there can be p-adic integers which are
not standard integers in Z.

Example 5.1. As 2-adic numbers, 1 + 2 + 4 + 8 + · · · = −1. The technical
statement is that the sequence an =

∑n
k=0 2

k and the sequence bn = −1 are
equivalent so the equivalence classes are equal:

[∑n
k=0 2

k
]
= [−1].

To prove this fact, note that,

an =

n∑
k=0

2k = 2n+1 − 1

Therefore, |an − (−1)|2 = |2n+1|2 = 1
2n+1 → 0 so the sequences are equivalent.

Example 5.2. In general, in the p-adics, 1 + p+ p2 + p3 + · · · = 1
1−p .

To prove this fact, note that,

an =

n∑
k=0

pk =
pn+1 − 1

p− 1

Therefore, |an − 1
1−p |p = |p

n+1

p−1 |p = 1
pn+1 → 0 so the sequences an and 1

1−p are
equivalent. Thus,

n∑
k=0

pk → 1

1− p
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so we can say,
∞∑
k=0

pk = 1 + p+ p2 + p3 + · = 1

1− p

This fact shows that the validity of the formula 1 + x + x2 + x3 + · · · = 1
1−x

extends somewhat beyond its interpretation as a Taylor series or a convergent
sum in R.

Lemma 5.1. If an → a and bn → b for a, b ∈ Q then (an + bn) → a+ b.

Proof. Let ϵ > 0 then, by the definition of convergence, there exist N1, N2

corresponding to ϵ
2 such that n > N1 =⇒ ||an − a|| < ϵ

2 and n > N2 =⇒
||bn − b|| < ϵ

2 . Then for any n > N we have,

|(an + bn)− (a+ b)|p ≤ |an − a|p + |bn − b|p < ϵ

so (an + bn) → a+ b. □

A similar result holds for the product of two sequences. This suggests the
following definition of the sums and products of p-adic numbers.

Definition: Let α, β ∈ Qp so there are Cauchy sequences an and bn such that
α = [an] and β = [bn] then α+ β = [an + bn] and similarly αβ = [anbn].

It follows immediately from this definition that if f is a polynomial and
α ∈ Qp then f(α) = [f(an)] ∈ Qp.

Theorem 5.2. The series
∞∑

n=0
an exists if and only if the sequence an → 0.

Proof. First suppose that the sum exists. Then, because the sum exists, its
terms form a Cauchy sequence. For any δ > 0 we can choose N so that k−1, k >
N implies that ∣∣∣∣ k∑

n=0

an −
k−1∑
n=0

an

∣∣∣∣
p

= |ak|p < δ

which is exactly the definition of ak → 0. Conversely, let an → 0 then for any
δ > 0 there exists N such that n > N =⇒ |an|p < δ. Now, we apply the
ultrametric inequality. Suppose that m > n > N then,

|an+1 + an+2 + · · ·+ am|p ≤ max{|an+1|p, |an+2|p, · · · , |am|p} < δ

because each term is less than δ. Therefore,∣∣∣∣ m∑
n=0

an −
n∑

n=0

an

∣∣∣∣
p

= |ak|p < δ

which implies that

{
k∑

n=0
an

}
is a Cauchy sequence. However, the p-adics are

complete meaning that every Cauchy sequence converges to some limit. There-

fore, the series
∞∑

n=0
an exists. □
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Remark 5.0.3. For those who have studied the convergence of series in the real
numbers, this theorem should come as quite a shock. In R, the conditions for
when a given series converges are extremely subtle and complex. However, in
Qp there is a simple to check necessary and sufficient condition. The analogous
statement for the real numbers is emphatically false. For example, 1

n → 0 but
∞∑

n=1

1
n → ∞. Due it its marvelous simplicity and power compared to the much

less appealing situation for the more widely studied series over R, this theorem
is sometimes referred to as “The Freshman’s Dream”.

Example 5.3. In the p-adics, the sequence pn → 0 because |pn|p = p−n → 0

in the real numbers. Therefore,
∞∑

n=0
pn exists and in fact equals −1

Example 5.4. In the p-adics, the sequence pn

n! → 0 because n! has at most
n

p−1 powers of p so vp(
pn

n! ) > np−2
p−1 and therefore the sequence goes to zero.

Therefore, ep =
∞∑

n=0

pn

n! exists in the p-adics

6 Ultrametric Geometry

We have seen that the p-adic norm satisfies a stronger version of the trian-
gle inequality than the standard euclidean “length” does, namely, |a + b|p ≤
max{|a|p, |b|p}. A space with a distance function which satisfies this inequality
is called an ultrametric space. Formally,

Definition: An ultrametric space is a metric space satisfying the ultrametric
inequality: d(x, y) ≤ max{d(x, z), d(z, y)} for any x, y, z. Explicitly, an ultra-
metric space is a set M and a function d : M × M → R which satisfies the
following properties for any x, y ∈ M ,

1. d(x, y) ≥ 0

2. d(x, y) = 0 if and only if x = y

3. d(x, y) = d(y, x)

4. for any z ∈ M , d(x, y) ≤ max{d(x, z), d(z, y)}

The p-adic numbers with the function d(x, y) = |x−y|p satisfies these conditions.
We will deduce geometric properties of a general ultrametric space.

Definition: A ball centered at x with radius δ is Bδ(x) = {y ∈ M | d(x, y) < δ}

Proposition. In an ultrametric space, all triangles are isosceles.
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Proof. Take three points x, y, z ∈ M and let the side lengths of the triangle be
a = d(x, y), b = d(y, z), c = d(z, x). We can suppose without loss of generality
that a ≤ b ≤ c. Using the Ultrametric inequality, c ≤ max{a, b} = b so c ≤ b.
Therefore, c ≤ b and b ≤ c so c = b. Therefore, two sides of the triangle have
equal lengths. Furthermore, a ≤ b = c so no isosceles triangles that are more
obtuse than an equilateral triangle exist. □

Proposition. In an ultrametic space, every point inside a ball is the center.

Proof. Take the ball Bδ(c) and the point a ∈ Bδ(c). I claim that a is the center.
This is true if Bδ(a) = Bδ(c). We know that d(a, c) < δ because a ∈ Bδ(c). Take
any x ∈ Bδ(a) then d(a, x) < δ but d(c, x) < max{d(c, a), d(a, x)} < δ because
both terms are less than δ. Thus, d(c, x) < δ so x ∈ Bδ(c). We have shown that
every point in Bδ(a) is in Bδ(c). The reverse holds by the exact same argument.
Take any x ∈ Bδ(c) then d(c, x) < δ but d(a, x) < max{d(a, c), d(c, x)} < δ
because both terms are less than δ. Thus, d(a, x) < δ so x ∈ Bδ(a). Therefore
Bδ(a) = Bδ(c). □

Definition: The boundary of a set A, denoted by ∂A, is the set of points x
such that for any positive radius δ, the ball Bδ(x) contains points in A and
points not in A.

Proposition. In an ultrametric space, no ball has boundary points.

Proof. Let x be a boundary point of Br(c) then for any δ > 0 we must have
a, b ∈ Bδ(x) with a ∈ Br(c) and a /∈ Br(c). Therefore, d(x, a) < δ and
d(x, b) < δ so d(a, b) ≤ max{d(a, x), d(x, b)} < δ. We take δ < r so d(c, b) ≤
max{d(c, a), d(a, b)} < r because d(c, a) < r (since a ∈ Br(c)) and d(a, b) <
δ < r. Therefore d(c, b) < r so b ∈ Br(c) which contradicts the definition of a
boundary point. Therefore, no ball can have any boundary points. □

The property that no balls have a boundary makes the topology of an ul-
trametric space totally disconnected. Basically this means that any subset that
contains more than one point is disconnected in the sense that it can be broken
up into disjoint parts that have no boundary points.

7 Polynomials with roots in Qp

Lemma 7.1 (Bezout). There exists x, y ∈ Z such that ax+ by = gcd(a, b).

Proof. Consider the set,

Ta,b = {ax+ by | x, y ∈ Z and ax+ by > 0}

Because Ta,b ⊂ Z+ it has a least element, namely g = ax0+by0 ∈ Ta,b. Consider
any element ax + by ∈ Ta,b. Because g > 0, by the division algorithm, we can
write,

ax+ by = qg + r
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where 0 ≤ r < g. Therefore,

r = ax+ by − gq = (ax+ by)− q(ax0 + by0) = a(x− qx0) + b(y − qy0)

Thus, if r > 0 then r ∈ Ta,b. However, r < g which is the least element of
Ta,b. This is a contradiction unless r = 0. Therefore the remainder is zero so,
g | ax+ by. In particular, a, b ∈ Ta,b so g | a and g | b. Furthermore, if any c | a
and c | b then c | ax0 + by0 = g. Thus, any divisor of both a and b is a divisor
of g so g is maximal. Thus, g = gcd(a, b). □

Lemma 7.2. If a and n are coprime, which means gcd(a, b) = 1, then there
exists s ∈ Z such that as ≡ 1 (mod n) so we can write, s ≡ a−1 (mod n).

Proof. If a and n are coprime then by Bezout’s identity, there are integers
x, y ∈ Z such that ax+ ny = 1. Therefore, n | ax− 1 so ax ≡ 1 (mod n). □

Theorem 7.3 (Hensel). If f(x) ∈ Zp[x] and a ∈ Zp satisfies

f(a) ≡ 0 (mod p)

f ′(a) ̸≡ 0 (mod p)

then there exists a p-adic integer α such that f(α) = 0 and α ≡ a (mod p)

Proof. We construct a series rn such that r1 = a and for n ≥ 1 we have:

rn+1 = rn − f(rn) · s

where s ≡ [f ′(rn)]
−1 (mod pn+1). We’ll show by induction that

f(rn) ≡ 0 (mod pn)

and that such an integer s exists at every step. Our base case holds because
f(a) ≡ 0 (mod p) and f ′(a) ̸≡ 0 (mod p) implies that f ′(a) is coprime with
p and therefore an inverse exists modulo p2. We’ll now do the inductive step.
Assume that for all k ≤ n for some n the above equation holds. By hypothesis,

f(rn) ≡ 0 (mod pn)

Therefore, we can write,
f(rn) · s+mpn = 0

and thus
rn+1 = rn − f(rn) · s = rn +mpn

for some integer m. In particular,

rn+1 ≡ rn (mod pn)

Now consider the polynomial in t: f(rn+ tpn). Suppose f is of degree d and let
ai be the coefficients of f . Then we have:

f(rn + tpn) =

d∑
k=0

ak(rn + tpn)k
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This can be written as

f(rn + tpn) =

d∑
k=0

ck(tp
n)k

for some terms ck. We can get c0 by just plugging in t = 0. This gives:
f(rn) = c0 Now if we take the derivative with respect to t, the constant term
goes to 0 so we get:

f ′(rn + tpn) =

d∑
k=1

kck(tp
n)k−1

If we plug in t = 0 this time we get: c1 = f ′(rn). First, we use this to show
that s ≡ [f ′(rn+1)]

−1 (mod pn+2) exists. We know that rn+1 = rn +mpn so,

f ′(rn+1) = f ′(rn +mpn) =

d∑
k=1

kck(mpn)k−1

every term past k = 1 contains a factor of p so,

f ′(rn+1) ≡ c1 = f ′(rn) ̸≡ 0 (mod p)

therefore, f ′(rn+1) is coprime with p and therefore also coprime with every
power of p. In particular, s ≡ [f ′(rn+1)]

−1 (mod pn+2) exists.

Now, taking the next term in the sequence modulo pn+1:

f(rn+1) = f(rn +mpn)

= f(rn) + f ′(rn)mpn +

d∑
k=2

ckm
k(pn)k

≡ f(rn) + f ′(rn)mpn (mod pn+1)

From its definition:
mpn = −f(rn)s

So we get:

f(rn+1) ≡ f(rn) + f ′(rn)(−f(rn)s) (mod pn+1)

≡ f(rn)− f(rn)f
′(rn)[f

′(rn)]
−1 (mod pn+1)

≡ f(rn)− f(rn) (mod pn+1)

≡ 0 (mod pn+1)

As desired. Now note that rn+1 ≡ rn (mod pn). This means for all m,n ≥ N
we have rm ≡ rn (mod pN ). Thus,

|rm − rn|p ≤ 1

pN
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Because the sequence is Cauchy, rn converges to some p-adic number α = [rn].
The p-adic number f(α) is defined (by the definitions of multiplication and
addition of p-adic numbers) as the limit of the sequence f(rn) (technically
f(α) = [f(rn)] the equivalence class of this sequence). However, we know that
f(rn) ≡ 0 (mod pn) so |f(rn)| ≤ 1

pn implying f(rn) → 0. Thus, f(α) = 0. □

Example 7.1. The cool thing about Hensel’s Lemma is it implies that
√
−1 is

a p-adic number if p ≡ 1 (mod 4). If we let f(x) = x2 + 1. If p ≡ 1 (mod 4)
then there exists a such that

a2 + 1 ≡ 0 (mod p)

Furthermore f ′(x) = 2x, and we cannot have 2a ≡ 0 (mod p). By Hensel’s
lemma the function f(x) = x2 + 1 has a root in the p-adics.

8 Appendix: Derivatives of Polynomials

Definition: A derivative d
dx is a function that takes polynomials to other poly-

nomials that satisfies

1. d
dxx

n = nxn−1

2. d
dxcP = c · d

dxP

3. d
dx (P +Q) = d

dxP + d
dxQ

Remark 8.0.1. For simplicity sake, we often denote d
dxP as P ′

Example 8.1. The derivative of x2 + 2x+ 1.
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