MATHEMATICS OF OPERATIONS RESEARCH in'm

Vol. 31, No. 2, May 2006, pp. 234-244 ®

1sSN 0364-765X | EIsSN 1526-5471 |06 | 3102 | 0234 por 10.1287/moor.1060.0188
©2006 INFORMS

Performance Loss Bounds for Approximate
Value Iteration with State Aggregation

Benjamin Van Roy
Stanford University, Stanford, California 94305, bvr@stanford.edu

We consider approximate value iteration with a parameterized approximator in which the state space is partitioned and
the optimal cost-to-go function over each partition is approximated by a constant. We establish performance loss bounds
for policies derived from approximations associated with fixed points. These bounds identify benefits to using invariant
distributions of appropriate policies as projection weights. Such projection weighting relates to what is done by temporal-
difference learning. Our analysis also leads to the first performance loss bound for approximate value iteration with an
average-cost objective.

Key words: approximate value iteration; state aggregation; temporal-difference learning

MSC2000 subject classification: Primary: 90C39, 90C40; secondary: 68T05, 68T37

OR/MS subject classification: Primary: dynamic programming/optimal control; Markov; finite state
History: Received August 2, 2004; revised August 12, 2005.

1. Preliminaries. Consider a discrete-time communicating Markov decision process (MDP) with a finite
state space ¥ ={1,...,|F|}. At each state x € &#, there is a finite set %, of admissible actions. If the current
state is x and an action u € U, is selected, a cost of g,(x) is incurred and the system transitions to a state y € &
with probability p,(u). For any x € ¥ and u € U, 3° . p,,(u) = 1. Costs are discounted at a rate of a € (0, 1)
per period. Each instance of such an MDP is defined by a quintuple (¥, %, g, p, @).

A (stationary deterministic) policy is a mapping w that assigns an action u € U, to each state x € &. If actions
are selected based on a policy p, the state follows a Markov process with transition matrix P,, where each
(x, y)th entry is equal to p,,(u(x)). The restriction to communicating MDPs ensures that it is possible to reach
any state from any other state.

Each policy u is associated with a cost-to-go function J, € M1, defined by

J,=> a'Plg,=(— aPM)’lgM,
t=0

where, with some abuse of notation, g, (x) = g, (x) for each x € ¥. A policy u is said to be greedy with
respect to a function J if
() eargmin(2,00+ @ X, (070).
ue, yeF
for all x € &.

The optimal cost-to-go function J* € R’! is defined by J*(x) = min, J, (x), for all x € ¥. A policy p* is
said to be optimal if J,. = J*. It is well known that an optimal policy exists. Further, a policy u* is optimal if
and only if it is greedy with respect to J*. Hence, given the optimal cost-to-go function, optimal actions can be
computed minimizing the right-hand side of the above inclusion.

Value iteration generates a sequence J; converging to J* according to J,,; = TJ;, where T is the dynamic
programming operator, defined by

(1)) =i (8,0 + 0 T 2y (070,

yes

for all x € ¥ and J € %1, This sequence converges to J* for any initialization of J,.

2. Preview of results. Let the state space ¥ be partitioned into K subsets, represented by a matrix ® €
MIYI¥K in which each kth column is made up of binary-valued components indicating whether or not each state
is in the kth partition. Approximate value iteration computes a vector 7 that solves ®7 =1I1_T®r, where T is
the dynamic programming operator and the matrix II,. projects onto the column space of ® with respect to a

234

mailto:bvr@stanford.edu

Van Roy: Performance Loss Bounds for Approximate Value Iteration with State Aggregation
Mathematics of Operations Research 31(2), pp. 234-244, © 2006 INFORMS 235

weighted Euclidean norm, with weights 7 € m‘;". If the support of 7 intersects every partition, the cost-to-go
function J, of each policy u; that is greedy with respect to ®r satisfies

(1= @), — 'l = o min 7~ r]l. n
— RE
as established in Tsitsiklis and Van Roy [46].

The left-hand side of Equation (1) is a measure of performance loss in which the coefficient 1 — & serves
as a normalizing constant. In particular, (1 — @)J, (x) represents an exponentially weighted average of expected
future costs, given that the process starts in state x and is controlled by policy u. A natural question is why the
term min, g« [|J* — ®Pr|, should not be similarly normalized. The short answer is that the part of J*(x) that
grows with 1/(1 — «) is constant over x and therefore offset by part of ®r. We will discuss this later in greater
depth.

Typically, @ is close to 1 and, therefore, the coefficient 4a/(1 — @) on the right-hand side of Equation (1)
is large. Unfortunately, this dependence on « is necessary because, as we will establish, for any a € (0, 1) and
value taken by min, g« ||J* — ®r||,, the bound is sharp.

Let 7; denote an invariant state distribution when the process is controlled by policy w;. We consider a
vector 7 that solves @7 =1II, @7 and for which the support of 7; intersects every partition. We will establish
that if a solution 7 exists, each associated greedy policy w; satisfies

(1—a)m}(J, —J)<2am1n||J* dr|.. (2)

For any , lim,, (1 —a)(J,(x) —J*(x)) is nonnegative and independent of x and, therefore, for any probability
distribution 77,

lim(1 = @), = [l = lim(1 -)" (J, =).
As such, for @ close to one, the left-hand sides of Equations (1) and (2) are comparable. Relative to the right-hand
side of Equation (1), the omission of a factor of 2/(1 — @) in Equation (2) represents a major improvement.

The dependence of the projection on 7 is motivated by a version of temporal-difference learning that can be
viewed as trying to compute a solution to ®7 =11, T®7. A solution need not exist. As established in de Farias
and Van Roy [20], one approach to ensuring existence involves incorporating exploration in the learning process
and using a modified dynamic programming operator 7€ that accounts for this. We will show that a bound
similar to Equation (2) holds for an approximately greedy policy w¢, which we will refer to as the e-greedy
Boltzmann exploration policy, when ®7 =1II_T<®r, where 7§ is the corresponding invariant state distribution.

As we will show, the analysis behind Equatlon (2) can be extended to accommodate an average-cost objective.
This results in the first performance loss bound for approximate value iteration with an average-cost objective. In
particular, the natural generalization of Equation (1) to the average-cost case gives rise to an infinite right-hand
side.

Our results indicate that weighting a Euclidean norm projection by the invariant distribution of a greedy (or
approximately greedy) policy can lead to a dramatic performance gain. It is intriguing that temporal-difference
learning implicitly carries out such a projection and, consequently, any limit of convergence obeys the stronger
performance loss bound.

This is not the first time that the invariant distribution has been shown to play a critical role in approximate
value iteration and temporal-difference learning. In prior work involving approximation of a cost-to-go function
for a fixed policy (no control) and a general linearly parameterized approximator (arbitrary matrix &), it was
shown that weighting by the invariant distribution is key to ensuring convergence and an approximation error
bound (Tsitsiklis and Van Roy [47, 48], Van Roy [52]). Earlier empirical work anticipated this (Sutton [42, 43]).

An important caveat to the line of work presented in this paper is that no known algorithms are guaranteed
to solve the equations &7 =11 T®r or &r =11 _T<dr for a broad class of relevant problem instances. One
can apply versions of the temporal -difference learnlng algorithm in such a way that in the event of convergence
the limit solves the latter equation. However, there are no convergence let alone efficiency guarantees.

3. State aggregation. The state spaces of relevant MDPs are typically so large that computation and storage
of a cost-to-go function is infeasible. One approach to dealing with this obstacle involves partitioning the
state space & into a manageable number K of disjoint subsets &,,..., ¥ and approximating the optimal
cost-to-go function with a function that is constant over each partition. This can be thought of as a form
of state aggregation—all states within a given partition are assumed to share a common optimal cost-to-go.

Van Roy: Performance Loss Bounds for Approximate Value Iteration with State Aggregation
236 Mathematics of Operations Research 31(2), pp. 234-244, © 2006 INFORMS

There is substantial literature on the use of state aggregation to accelerate computation of effective policies for
Markov decision processes (Fox [23], Bertsekas [4], Whitt [57], Morin [34], Hinderer [27], Mendelssohn [32],
Axsiter [1], Birge [11], Bean et al. [3], Bertsekas and Castafion [6], Chow and Tsitsiklis [18, 19], Kushner
and Dupuis [30], Gordon [24, 25, 26], Moore and Atkeson [33], Barraquand and Martineau [2], Tsitsiklis and
Van Roy [46], Rust [38], Lambert et al. [31]).

To represent an approximation, we define a matrix ® € %/”1*X such that each kth column is an indicator
function for the kth partition ;. Hence, for any r € RX, k, and x € ¥,, (®r)(x) = r,. In this paper, we study
variations of value iteration, each of which aims to compute a vector r so that ®r approximates J*. Another
important issue is how to partition the space. Though we will not make this a central topic of the paper, we
discuss it briefly in the closing section.

The use of a policy u, that is greedy with respect to ®r is justified by the following result:

THEOREM 3.1. If w is a greedy policy with respect to a function J € RV, then
1y = T < o]
® *“l—a o
This result is easy to prove and has appeared in multiple contexts (see Singh and Yee [39] for a proof).

4. Approximate value iteration. One common way of approximating a function J € il with a function
of the form ®r involves projection with respect to a weighted Euclidean norm ||-||,,. The weighted Euclidean
norm of a function J is defined by

1, = (z W(x)Jz(x)) "

xXe¥

Here, 7 € ‘Rfl is a vector of weights that assign relative emphasis among states. The projection II_J is the
function ®r that attains the minimum of ||J — ®r||, ,; if there are multiple functions ®r that attain the minimum,
they must form an affine space and the projection is taken to be the one with minimal norm ||®r||, . Note that
in our context, where each kth column of ® represents an indicator function for the kth partition, for any , J,

d Fs
and ¥ &, (L 7)) = 22 TOMO)
7)) = Zyerfk m(y)

Approximate value iteration begins with a function ®r(© and generates a sequence according to
I+1 1
Ort) =11, Tdr?.

It is well known that the dynamic programming operator 7 is a contraction mapping with respect to the maximum
norm. Further, IT_ is maximum-norm nonexpansive (Tsitsiklis and Van Roy [46], Gordon [24, 25, 26]). (This is
not true for general ®, but is true in our context in which columns of ® are indicator functions for partitions.)
It follows that the composition II_T is a contraction mapping. By the contraction mapping theorem, I1_ 7 has
a unique fixed point ®7, which is the limit of the sequence ®r"). Further, the following result holds:

THEOREM 4.1. For any MDP, partition, and weights 7 with support intersecting every partition, if ®r =
I1.T®F, then

- 2 .
[®F —J*||, < —— min [|[J* — Dr|,,
1 — a rem
and
da .
1=V, = < —— min |[J* — ®r||.
K 1 —« rentk

The first inequality of the theorem is an approximation error bound, established in Tsitsiklis and Van Roy [46]
and Gordon [24, 25, 26] for broader classes of approximators that include state aggregation as a special case.
The second is a performance loss bound, derived by simply combining the approximation error bound and
Theorem 3.1. Closely related results have been established in the context of observation-based control of partially
observable MDPs (Jaakkola et al. [29]) and in the context of state aggregation methods for discretization in an
MDP with a continuous state space (Whitt [57]).

Note that J, (x) > J*(x) for all x, so the left-hand side of the performance loss bound is the maximal
increase in cost-to-go, normalized by 1 — . This normalization is natural, since a cost-to-go function is a linear
combination of expected future costs, with coefficients 1, a, @2, ... which sum to 1/(1 — a).

Van Roy: Performance Loss Bounds for Approximate Value Iteration with State Aggregation
Mathematics of Operations Research 31(2), pp. 234-244, © 2006 INFORMS 237

Our motivation of the normalizing constant begs the question of whether, for fixed MDP parameters
(#,U, g, p) and fixed @, min, ||J*—Pr|,, also grows with 1/(1 —). It turns out that min, ||J* — Dr||, = O(1).
To see why, note that for any wu,

1
—1
Jl-’-= (I—CYPP') g# = E)L”‘i‘hﬂ,

where A, (x) is the expected average cost if the process starts in state x and is controlled by policy u,

7—1
t
A, = lim ZP;ng
1=0
and h,, is the discounted differential cost function

h,=—-aP,)"'(g,—A,).

Both A, and h, converge to finite vectors as a approaches 1 (Blackwell [12]). For an optimal policy u*,
lim,,; A« (x) does not depend on x (in our context of a communicating MDP). Since constant functions lie in
the range of P,

— ¢ < e}
ltiglline‘}grll(||J r”OO _103‘111”}1”'*”oo < '

The performance loss bound still exhibits an undesirable dependence on « through the coefficient 4a/(1 — «).
In most relevant contexts, « is close to 1; a representative value might be 0.99. Consequently, 4a/(1 — «) can
be very large. Unfortunately, the bound is sharp, as expressed by the following theorem. We will denote by 1
the vector with every component equal to 1.

THEOREM 4.2. For any 6 >0, a € (0,1), and A >0, there exists MDP parameters (&,U, g, p) and a
partition such that min, g« ||J* — ®r|l, = A and, if ®F =11, TDF with =1,

4
(—a)J, —J*. > 1—“ min [|J* — ®r|, — 6.

= — a renk

This theorem can be established by a variation of an example from Tsitsiklis and Van Roy [46]. We will
discuss this new example in §6. The choice of uniform weights (7 = 1) is meant to point out that even for such
a simple, perhaps natural, choice of weights the performance loss bound is sharp.

Based on Theorems 4.1 and 4.2, one might expect that there exists MDP parameters (&, U, g, p) and a
partition such that with 7 =1,

(1=a)ls,, =l =0 min = arl.).

in other words, that the performance loss is both lower and upper bounded by 1/(1 — «) times the smallest
possible approximation error. It turns out that this is not true, at least if we restrict to a finite state space. However,
as the following theorem establishes, the coefficient multiplying min, y« || J* — ®r|, can grow arbitrarily large
as « increases, keeping all else fixed.

THEOREM 4.3. For any L and A > 0, there exist MDP parameters (<, U, g, p) and a partition such that
lim, min, g« [|[J* — ®r|, = A and, if PF =11, TOF with m =1,

liminf (1 — a)(J, (x) —J*(x)) > Llim min |[J* — ®r|,
atl " atl remk

forall xe &.

This theorem is also established by the example we will present in §6.
For any p and x,
lim((1 = @), (x) = 1, (x)) = Hm(1 = @)h, (x) = 0.

Combined with Theorem 4.3, this yields the following corollary.

COROLLARY 4.1. For any L and A >0, there exist MDP parameters (¥, U, g, p) and a partition such that
lim,, min, ey« | J* — @, = A and, if &7 =11, T 7 with m=1,

lirBTilnf()\M (x) = A (x)) > Ll;?f 52}2 |J* — ®r],

forall xe F.

Van Roy: Performance Loss Bounds for Approximate Value Iteration with State Aggregation
238 Mathematics of Operations Research 31(2), pp. 234-244, © 2006 INFORMS

5. Using the invariant distribution. In the previous section, we considered an approximation ®7 that
solves II_T®7 = &7 for some arbitrary pre selected weights 7. We now turn to consider use of an invariant
state distribution 7r; of P, as the weight vector.! This leads to a circular definition: The weights are used in
defining 7 and now we are defining the weights in terms of 7. What we are really after here is a vector 7 that
satisfies 11, T®7 = ®r. The following theorem captures the associated benefits.

THEOREM 5.1. For any MDP and partition, if ®r =11, T®r and m; has support intersecting every partition,
1- a)ﬂ';T(JM, —J") 22« mir} |J* — Pr|.-
g rem

PrOOF. We first set out to prove that 7! T®r = 7! J,..- A simple argument will then be used to show that
this implies the theorem. First, note that

o0
1
T _ T t pt _ T
WFJM;_WF Zap;gw_l_aﬂfgﬂf'
=0

Let D; = diag(7;) and note that D;I1, = HlTL;D;. and I1, 1=1 (projections are self-adjoint and 1 is in the range
of ours). Using these relations, we have

7} OF = 7] 11, TOF
=1"D;I1, T®F
= (1, 1)" D;T®F
=1"D; Td7

wl TOF

= W;T(gﬂ; +aP, ®F)

7} g, +am OF.
It follows from the fifth and final expressions that

. 1
7 TOF = 7! &F = mﬂ{gw =mlJ,.

Using this relation, we obtain

7} (J, —J) =7l (TPF —J*)
|T®r—J*
al|®r —J*

IA

oo

IA

lloo

20 . .
—— min |J* — &r| .,
1 — a renx

IA

where the final inequality follows from Theorem 4.1. [

When « is close to 1, which is typical, the right-hand side of our new performance loss bound is far less than
that of Theorem 4.1. The primary improvement is in the omission of a factor of 1 — & from the denominator.
However, for the bounds to be compared in a meaningful way, we must also relate the left-hand-side expressions.
A relation can be based on the fact that for all u,

lim /(1 = @)J,, = A, =0.
as explained in §4. In particular, based on this we have
lim(1 =)|, ="l = A, = X'
=A,—A
= 1;%111 ' (J, =T,

' By an invariant state distribution of a transition matrix P, we mean any probability distribution 7r such that 77 P = 7r”. In the event that
P, has multiple invariant distributions, 7; denotes an arbitrary choice.

Van Roy: Performance Loss Bounds for Approximate Value Iteration with State Aggregation
Mathematics of Operations Research 31(2), pp. 234-244, © 2006 INFORMS 239

for all policies w and probability distributions 7. Hence, the left-hand-side expressions from the two performance
bounds become directly comparable as a approaches 1.

Another interesting comparison can be made by contrasting Corollary 4.1 against the following immediate
consequence of Theorem 5.1.

COROLLARY 5.1. For all MDP parameters (¥,U,g,p) and partitions, if ®r = I T®r and
liminf,,, 3", .o 7:(x) > 0 for all k,

xeF

li Ay — Al <21 in ||J* — Dr||.
erTS]up A, = Al < lim min [7l
The comparison suggests that solving ®7 = I1, T®r is strongly preferable to solving ®7 =11, 7®7 with
m=1.

6. A simple example. We will present a simple example that serves two purposes. First, it provides a proof
of Theorems 4.2 and 4.3. Second, it offers a concrete illustration of benefits afforded by use of the invariant
distribution. The example we present builds on one used in Tsitsiklis and Van Roy [46].

Consider an MDP with states ¥ = {1, 2,...,2n} for some positive integer n. With the exception of state 2,
for which U, ={1,2}, U, = {1} for x # 2. Let the transition probabilities be

pu()=(1—-€)(l—€)+e€/2n,
pi(1)=(1—¢€)€, +¢€/2n,
pi.(1)=¢€/2n for x#1,
pu(l)=1—¢€ +¢€/2n,

Pn(2)=1—¢€ +€/2n,

P(2) =¢€,/2n for x #2,
pa()=1—€,+¢€/2n for x+#1,o0dd,
pw(1)=¢€/2n for x#1,0dd,y # 1,
Po(l)=1—¢€ +¢€/2n for x #2,even,
Py(1)=¢€/2n for x#2,even,y#2,

for some scalars €, €, € (0, 1). Note that €, can be thought of as a “reset probability;” upon reset, the process
draws its next state from a uniform distribution. A positive reset probability ensures that the MDP is commu-
nicating. From state 1, if there is no reset, the system transitions to state 2 with probability €, and otherwise
remains in state 1.

Let the per-period costs be

& (1) =0,
&(2) =0,
£(2) =k,

g1(x) =2A for x# 1, 0dd,
g (x) = —2A for x #2, even,

for some scalars k > 0 and A > 0. Note that each instance of this MDP is identified by a quintuple
(n,€,, €, A, k).
It is easy to see that the policy w* which selects action 1 at state 2 is optimal and

0 if xe{l,2},
J'(x)=142A if xe{3,5,7,...,2n—1},
—2A if xe{4,6,8,...,2n}.

The only other policy u' selects action 2 at state 2.

Partition & into two subsets: ¥, contains the odd indices and &, the even ones. Parameters 7, and 7, will be
used to approximate cost-to-go values in &, and ¥, respectively, with ®7 denoting the approximation. Note
that

M=

ptoif ar, <k/(1—€) + afy,
wtif aF, > k/(1 —€) + af,.

Van Roy: Performance Loss Bounds for Approximate Value Iteration with State Aggregation
240 Mathematics of Operations Research 31(2), pp. 234-244, © 2006 INFORMS

% %

— = - —_—

FIGURE 1. Illustration of the MDP and partitions for the case of n =8 and €, = €, =0. Numbers in parentheses represent actions.

Further,
min ||J* — dr||, = A.

Figure 1 offers an illustration of the MDP and partitions for the case of n =8 and €, = €, =0. In this case,
all transitions are deterministic. A diagram with €, >0 and €, > 0 would be too cluttered.

If m =1, the equation II_7T®7 = &7 can be rewritten as
—1 -1
F=_ 2A+(1—e,)<n
n

1 - - 1 . .
ar + ;((1 —&)ar, +€2ar2)> +51a§(’”l +7),

n—1 _ 1 . - |
- arz—i-;mm(arl,x/(l—el)—l—arz))—i—elai(rl—i—rz).

= a8 ()

Some algebra shows that for any x < 4aA/(1 — «) and €, > 0, for sufficiently small €, > 0 and sufficiently
large n, a7, > /(1 — €,) + af, and therefore u; = u'. Theorem 4.2 follows. Fixing k = L, Theorem 4.3 also
follows.

Now consider solving IT, T®7 = ®7. Fix n, A >0, and k > 0. Under either policy (u* or uh), as €, and €,
approach O the probability of being in state 1 conditioned on being in &, and that of being in state 2 conditioned
on being in &, converge to 1. Hence, 7 approaches the solution to

o= ar,
7, = min(ar, kK + ar,),
which is 7 =0. It follows that for sufficiently small €, and €,, u; = u*.

7. Exploration. If a vector 7 solves ®7 =11, TP and the support of 7; intersects every partition, The-
orem 5.1 promises a desirable bound. However, there are two significant shortcomings to this solution concept
which we will address in this section. First, in some cases, the equation H,TFT<IJF = @7 does not have a solution.
It is easy to produce examples of this; though no example has been documented for the particular class of
approximators we are using here, Bertsekas and Tsitsiklis [9] offer an example involving a different linearly
parameterized approximator that captures the spirit of what can happen. Second, it would be nice to relax the
requirement that the support of 7; intersect every partition.

To address these shortcomings, we introduce a form of exploration. Exploration involves randomizing deci-
sions so that at each state, each action is selected at least some of the time. Exploration has been a central issue
in the reinforcement learning literature (see Sutton and Barto [44] for discussion).

To introduce exploration, we need to consider stochastic policies. A stochastic policy p maps state-action
pairs to probabilities. For each x € & and u € U,, w(x, u) is the probability of taking action u when in state x.
Hence, u(x,u) >0 for all x€ ¥ and u € U,, and }_, .y p(x,u)=1 for all x€ &.

Given a scalar € > 0 and a function J, the e-greedy Boltzmann exploration policy with respect to J is
defined by

e~ @u(DF+aX ey Poy ()T) (|7 =1)/ee

Y ucu e~ @) ralyey Py I M)y -1)/ee
uel,

plx, u) =

Van Roy: Performance Loss Bounds for Approximate Value Iteration with State Aggregation
Mathematics of Operations Research 31(2), pp. 234-244, © 2006 INFORMS 241

For any € > 0 and r, let ¢ denote the e-greedy Boltzmann exploration policy with respect to ®@r. Further, we
define a modified dynamic programming operator that incorporates Boltzmann exploration:

s, € OO P @IONII-D/ee (g () + @Y p, ()J (3))
S e Gl P ION T ee :

(T () = =

As € approaches 0, e-greedy Boltzmann exploration policies become greedy and the modified dynamic
programming operators become the dynamic programming operator. More precisely, for all r, x, and J,
lim, o ps(x, u,(x)) =1 and lim, , 7¢J = TJ. These are immediate consequences of the following result (see
de Farias and Van Roy [20] for a proof).

Lemma 7.1. For any n,v € R",

Z_ e—ui(n—l)/eev_)
Because we are only concerned with communicating MDPs, there is a unique invariant state distribution
associated with each e-greedy Boltzmann exploration policy u; and the support of this distribution is &. Let
¢ denote this distribution. We consider a vector 7 that solves ®7 =1II_T®r. For any € > 0, there exists a
solution to this equation (this is an immediate extension of Theorem 5.1 from de Farias and Van Roy [20]).
We have the following performance loss bound which parallels Theorem 5.1 but with an equation for which
a solution is guaranteed to exist and without any requirement on the resulting invariant distribution.

minv; + € >
1

THEOREM 7.1. For any MDP, partition, and € > 0, if &7 =11 _T<Dr, then

(I =a) (7)) (J,e —J*) <2a min [[J* — @7l +e.
7 regt
ProOF. Note that for any 7 € ntl, IT, is nonexpansive with respect to the maximum norm and for any J,
I/ =T <2min |[J — ®r.
Using these properties and Lemma 7.1, we establish an error bound:
|PF — T = T e TCPF — J*||o
S M Te®F =1 J* || + (|7 = T e

lloe

lloe

< || T*®F — J*| +2min |J* — Pr|

IA

|T®7F —J*| .+ €+ 2min|J* — Dr|

IA

al|®r —J*

lloo

+e+2min|J* — Dr|,

and it follows that) .
|®F —J*|.,, < —— min ||J* — ®r| +——.
l—a - l—«

An argument entirely analogous to one used in the proof of Theorem 5.1 establishes that
(m) T OF = (7)) OF = (7T§)TJM§.
Using this relation, we obtain
(T (Je = ") = (79 (T°DF — J*)
< IT°®r = J

< |T®r—J*|+e€
< a|Pr—J,+e€
. ae
< min ||[J* — ®r|,+ ——+€
-«

1 — a renx

min [J* — drfl, + ——. O

1 — a renk l—«

Van Roy: Performance Loss Bounds for Approximate Value Iteration with State Aggregation
242 Mathematics of Operations Research 31(2), pp. 234-244, © 2006 INFORMS

8. Computation. Though computation is not a focus of this paper, we offer a brief discussion here. First,
we describe a simple algorithm from Tsitsiklis and Van Roy [46] which draws on ideas from temporal-difference
learning (Sutton [40, 41]) and Q-learning (Watkins [53], Watkins and Dayan [54]) to solve ®7 =11, T ®r (related
methods for deterministic control problems are also proposed in Werbos [55]). It requires an ability to sample a
sequence of states x(@, x(, x® . each independent and identically distributed according to 7. Also required
is a way to efficiently compute

(rene) =min(8.00 +a X p, @)).

yes

for any given x and r. This is typically possible when the action set %, and the support of p, (u) (i.e., the
set of states that can follow x if action u is selected) are not too large. The algorithm generates a sequence of
vectors #() according to

r0 =10 4y (O (TR D) () = (@r) (),

where v, is a step size and ¢(x) denotes the column vector made up of components from the xth row of ®. In
Tsitsiklis and Van Roy [46], using results from Tsitsiklis [45] and Jaakkola et al. [28], it is shown that under
appropriate assumptions on the step size sequence, r) converges to a vector 7 that solves ®7 =II_T®F.

We now move on to a version of temporal-difference learning that aims at solving ®7 =II_T°®r. The
algorithm requires simulation of a trajectory x,, x,, x,, ... of the MDP, with each action u, € OM'xr generated
by the e-greedy Boltzmann exploration policy with respect to ®r. The sequence of vectors r") is generated
according to

P = 0 oy, b () (TP (x,) — (@) ().

Under suitable conditions on the step size sequence, if this algorithm converges, the limit satisfies ®7 =
I1,T<®dr. Whether such an algorithm converges and whether there are other algorithms that can effectively
solve ®F = I1..T<®7 for broad classes of relevant problems remain open issues.

There is a lot more to be said about algorithms of the sort we have described. We close this section briefly
mentioning just two noteworthy issues. First, these algorithms serve as simple cases to study. There is a body
of literature on variations that may converge more quickly (Werbos [56], Bradtke and Barto [15], Bertsekas
and Ioffe [7], Boyan [13, 14], Choi and Van Roy [16, 17], Nedic and Bertsekas [35], Bertsekas et al. [10]).
Second, when the support of p_(u) is too large, computation of (7®r)(x) becomes intractable. In this case, one
may resort to variations of Q-learning (Watkins [53], Watkins and Dayan [54]), which approximate a cost-to-go
function over state-action pairs rather than over states. This approach essentially uses a Monte-Carlo method
to compute the expectation > ¢ p, (u)(Pr)(y) (see Bertsekas and Tsitsiklis [9], Sutton and Barto [44] for
discussion). The variation of Qllearning that is closest in spirit to the second update procedure we described is
called SARSA (Rummery and Niranjan [37], Rummery [36], Sutton and Barto [44]).

9. Extensions and open issues. The temporal-difference learning algorithm presented in §8 is a version of
TD(0). This is a special case of TD(A), which is parameterized by A € [0, 1]. It is not known whether the results
of this paper can be extended to the general case of A € [0, 1]. Prior research has suggested that larger values
of A lead to superior results. In particular, an example of Bertsekas [5] and the approximation error bounds of
Tsitsiklis and Van Roy [47, 48] and Van Roy [52], both of which are restricted to the case of a fixed policy,
suggest that approximation error is amplified by a factor of 1/(1 — «) as A is changed from 1 to 0. The results
of §85 and 7 suggest that this factor vanishes if one considers a controlled process and performance loss rather
than approximation error.

Whether the results of this paper can be extended to accommodate approximate value iteration with general
linearly parameterized approximators remains an open issue. In this broader context, error and performance
loss bounds of the kind offered by Theorem 4.1 are unavailable, even when the invariant distribution is used
to weight the projection. Such error and performance bounds are available, on the other hand, for the solution
to a certain linear program (de Farias and Van Roy [21, 22]). Whether a factor of 1/(1 — @) can similarly be
eliminated from these bounds is an open issue.

We have considered state aggregation based on a prespecified partition. An interesting direction for research
concerns how to automate partitioning based on problem data. To this end, adaptive aggregation schemes have
been proposed and studied in Bertsekas and Castafion [6] and Moore and Atkeson [33].

Van Roy: Performance Loss Bounds for Approximate Value Iteration with State Aggregation
Mathematics of Operations Research 31(2), pp. 234-244, © 2006 INFORMS 243

Natural extensions to the results of §§4, 5, and 7 can be established for the general-state-space (e.g.,
continuous-state) bounded-cost model of Bertsekas and Shreve [8]. One notable difference, though, is that solv-
ing &7 =11, T®r or &7 =11, T*Pr requires p; to yield an invariant distribution. For a given MDP and
partition, there may be no such solution.

There is a literature on discretization methods for MDPs with continuous state-spaces (Fox [23], Bertsekas [4],
Whitt [57], Hinderer [27], Chow and Tsitsiklis [18, 19], Kushner and Dupuis [30], Rust [38]). Discretization is
closely related to state-aggregation; states are essentially partitioned into subsets, each of which is represented
by a point in a grid. An important issue is to understand the granularity required to limit performance loss to
some desired level € for a given class of continuous-state MDPs. An interesting research question is whether
the ideas in this paper can be used to reduce granularity requirements.

Our results can be extended to accommodate an average cost objective, assuming that the MDP is communi-
cating. With Boltzmann exploration, the equation of interest becomes

OF =1 (TDF — A1).

The variables include an estimate A € % of the minimal average cost A* € N and an approximation ®7 of the
optimal differential cost function 4*. The discount factor « is set to 1 in computing an e-greedy Boltzmann
exploration policy as well as T¢. There is an average-cost version of temporal-difference learning for which
any limit of convergence (A, F) satisfies this equation (Tsitsiklis and Van Roy [49]-[51]). Generalization of
Theorem 4.1 does not lead to a useful result because the right-hand side of the bound becomes infinite as «
approaches 1. On the other hand, generalization of Theorem 7.1 yields the first performance loss bound for
approximate value iteration with an average-cost objective:

THEOREM 9.1. For any MDP with an average-cost objective, partition, and € > 0, if ®F =11 _(T*Pr — /N\I)
then
Aye — A" =2min | A" — Pr|, +e.

remk

Here, A, € N denotes the average cost under policy uf, which is well defined because the process is irre-

ducible under an e-greedy Boltzmann exploration policy. This theorem can be proved by taking limits on the

left- and right-hand sides of the bound of Theorem 7.1. It is easy to see that the limit of the left-hand side is

Aue — A*. The limit of min, gy« [|J* — @r|,, on the right-hand side is min, g« [|2* — ®r||,.. (This follows from
the analysis of Blackwell [12].)

Acknowledgments. This material is based upon work supported by the National Science Foundation under
Grant ECS-9985229 and by the Office of Naval Research under Grant MURI N00014-00-1-0637. The author’s
understanding of the topic benefited from collaborations with Dimitri Bertsekas, Daniela de Farias, and John
Tsitsiklis. A number of useful comments and suggestions from anonymous reviewers helped to improve the

paper.

References

[1] Axsiter, S. 1983. State aggregation in dynamic programming: An application to scheduling of independent jobs on parallel processors.
Oper. Res. Lett. 2 171-176.
[2] Barraquand, J., D. Martineau. 1997. Numerical valuation of high dimensional multivariate American securities. J. Financial Quant.
Anal. 30(3) 383-405.
[3] Bean, J. C., J. R. Birge, R. L. Smith. 1987. Aggregation in dynamic programming. Oper. Res. 35 215-220.
[4] Bertsekas, D. P. 1975. Convergence of discretization procedures in dynamic programming. IEEE Trans. Automat. Control 20 415-419.
[5] Bertsekas, D. P. 1994. A counterexample to temporal-difference learning. Neural Comput. 7 270-279.
[6] Bertsekas, D. P, D. A. Castafion. 1989. Adaptive aggregation for infinite horizon dynamic programming. /[EEE Trans. Automat. Control
34(6) 589-598.
Bertsekas, D. P, S. Toffe. 1996. Temporal differences-based policy iteration and applications in neuro-dynamic programming. Technical
report LIDS-P-2349, MIT Laboratory for Information and Decision Systems, Cambridge, MA.
[8] Bertsekas, D. P., S. E. Shreve. 1996. Stochastic Optimal Control: The Discrete Time Case. Athena Scientific, Belmont, MA.
[9] Bertsekas, D. P., J. N. Tsitsiklis. 1996. Neuro-Dynamic Programming. Athena Scientific, Belmont, MA.
Bertsekas, D. P., V. Borkar, A. Nedic. 2004. Improved temporal difference methods with linear function approximation. J. Si,
A. G. Barto, W. B. Powell, D. C. Wunsch, 11, eds. Handbook of Learning and Approximate Dynamic Programming. IEEE Press and
John Wiley & Sons, Boston, MA.
[11] Birge, J. R. 1985. Aggregation bounds in stochastic linear programming. Math. Programming 31 25-41.
Blackwell, D. 1962. Discrete dynamic programming. Ann. Math. Statist. 33 719-726.
[13] Boyan, J. A. 1999. Least-squares temporal difference learning. I. Bratko, S. Dzeroski, eds. Machine Learning: Proc. 16th Internat.
Conf. (ICML), Cambridge, MA.
[14] Boyan, J. A. 2002. Technical update: Least-squares temporal difference learning. Machine Learning 49 2-3.

[7

= =

—
—
(=

=

Van Roy: Performance Loss Bounds for Approximate Value Iteration with State Aggregation

244 Mathematics of Operations Research 31(2), pp. 234-244, © 2006 INFORMS

[15] Bradtke, S.J., A. G. Barto. 1996. Linear least-squares algorithms for temporal-difference learning. Machine Learning 33-57.

[16] Choi, D. S., B. Van Roy. 2001. A generalized Kalman filter for fixed point approximation and efficient temporal-difference learning.
Machine Learning: Proc. 18th Internat. Conf. (ICML), Palo Alto, CA.

[17] Choi, D. S., B. Van Roy. 2006. A generalized Kalman filter for fixed point approximation and efficient temporal-difference learning.
Discrete Event Dynamic Systems 16(2).

[18] Chow, C. S., J. N. Tsitsiklis. 1989. The complexity of dynamic programming. J. Complexity 5 466-438.

[19] Chow, C. S., J. N. Tsitsiklis. 1991. An optimal one-way multigrid algorithm for discrete-time stochastic control. IEEE Trans. Automat.
Control 36(8) 898-914.

[20] de Farias, D. P., B. Van Roy. 2000. On the existence of fixed points for approximate value iteration and temporal-difference learning.
J. Optim. Theory Appl. 105(3) 589-608.

[21] de Farias, D. P, B. Van Roy. 2002. Approximate dynamic programming via linear programming. Advances in Neural Information
Processing Systems, Vol. 14. MIT Press, Cambridge, MA.

[22] de Farias, D. P., B. Van Roy. 2003. The linear programming approach to approximate dynamic programming. Oper. Res. 51(6) 850-865.

[23] Fox, B. L. 1973. Discretizing dynamic programs. J. Optim. Theory Appl. 11 228-234.

[24] Gordon, G. J. 1995. Stable function approximation in dynamic programming. Technical report CMU-CS-95-103, Carnegie Mellon
University, Pittsburgh, PA.

[25] Gordon, G. J. 1995. Stable function approximation in dynamic programming. Machine Learning: Proc. 12th Internat. Conf. (ICML),
San Francisco, CA.

[26] Gordon, G. J. 1999. Approximate solutions to Markov decision processes. Ph.D. thesis, Carnegie Mellon University, Pittsburgh, PA.

[27] Hinderer, K. 1979. On approximate solutions of finite-stage dynamic programs. M. Puterman, ed. Dynamic Programming and Its
Applications. Academic Press, New York.

[28] Jaakkola, T., M. I. Jordan, S. P. Singh. 1994. On the convergence of stochastic iterative dynamic programming algorithms. Neural
Comput. 6 1185-1201.

[29] Jaakkola, T., S. P. Singh, M. L. Jordan. 1995. Reinforcement learning algorithms for partially observable Markov decision problems.
Advances in Neural Information Processing Systems, Vol. 7, 345-352.

[30] Kushner, H. J., P. G. Dupuis. 1992. Numerical Methods for Stochastic Control Problems in Continuous Time. Springer-Verlag,
New York.

[31] Lambert, III, T., M. A. Epelman, R. L. Smith. 2004. Aggregation in stochastic dynamic programming. Technical report 04-07, Depart-
ment of Industrial and Operations Engineering, Ann Arbor, MIL.

[32] Mendelssohn, R. 1982. An iterative aggregation procedure for Markov decision processes. Oper. Res. 30 62-73.

[33] Moore, Andrew, Chris Atkeson. 1995. The parti-game algorithm for variable resolution reinforcement learning in multidimensional
state-spaces. Machine Learning 21(3) 199-233.

[34] Morin, T. 1979. Computational advances in dynamic programming. M. Puterman, ed. Dynamic Programming and Its Applications.
Academic Press, New York, 202-207.

[35] Nedic, A., D. P. Bertsekas. 2003. Least-squares policy evaluation algorithms with linear function approximation. Discrete Event Dynam.
Systems 13 79-110.

[36] Rummery, G. A. 1995. Problem solving with reinforcement learning. Ph.D. thesis, Cambridge University, Cambridge, UK.

[37] Rummery, G. A., M. Niranjan. 1994. On-line Q-learning using connectionist systems. Technical report CUED/F-INFENG/TR 166,
Engineering Department, Cambridge University.

[38] Rust, J. 1997. Using randomization to break the curse of dimensionality. Econometrica 65(3) 487-516.

[39] Singh, S. P, R. C. Yee. 1994. An upper-bound on the loss from approximate optimal-value functions. Machine Learning 16(3) 227-233.

[40] Sutton, R. S. 1984. Temporal credit assignment in reinforcement learning. Ph.D. thesis, University of Massachusetts Amherst, Amherst,
MA.

[41] Sutton, R. S. 1988. Learning to predict by the methods of temporal differences. Machine Learning 3 9-44.

[42] Sutton, R. S. 1995. On the virtues of linear learning and trajectory distributions. Proc. Workshop Value Function Approximation,
Machine Learning Conf.

[43] Sutton, R. S. 1996. Generalization in reinforcement learning: Successful examples using sparse coarse coding. Advances in Neural
Information Processing Systems, Vol. 8. MIT Press, Cambridge, MA.

[44] Sutton, R. S., A. G. Barto. 1998. Reinforcement Learning: An Introduction, MIT Press, Cambridge, MA.

[45] Tsitsiklis, J. N. 1994. Asynchronous stochastic approximation and Q-learning. Machine Learning 16 185-202.

[46] Tsitsiklis, J. N., B. Van Roy. 1996. Feature-based methods for large scale dynamic programming. Machine Learning 22 59-94.

[47] Tsitsiklis, J. N., B. Van Roy. 1997. An analysis of temporal-difference learning with function approximation. IEEE Trans. Automat.
Control 42(5) 674-690.

[48] Tsitsiklis, J. N., B. Van Roy. 1997. Analysis of temporal-difference learning with function approximation. Advances in Neural Infor-
mation Processing Systems, Vol. 9. MIT Press, Cambridge, MA.

[49] Tsitsiklis, J. N., B. Van Roy. 1997. Average cost temporal-difference learning. Proc. IEEE Conf. Decision Control, IEEE, San Diego,
CA.

[50] Tsitsiklis, J. N., B. Van Roy. 1999. Average cost temporal-difference learning. Automatica 35(11) 1799-1808.

[51] Tsitsiklis, J. N., B. Van Roy. 2002. On average versus discounted reward temporal-difference learning. Machine Learning 49(2-3)
179-191.

[52] Van Roy, B. 1998. Learning and value function approximation in complex decision processes. Ph.D. thesis, Massachusetts Institute of
Technology, Cambridge, MA.

[53] Watkins, C. J. C. H. 1989. Learning from delayed rewards. Ph.D. thesis, Cambridge University, Cambridge, UK.

[54] Watkins, C. J. C. H., P. Dayan. 1992. Q-learning. Machine Learning 8 279-292.

[55] Werbos, P. J. 1977. Advanced forecasting methods for global crisis warning and models of intelligence. General Systems Yearbook 22
25-38.

[56] Werbos, P. J. 1990. Consistency of HDP applied to a simple reinforcement learning problem. Neural Networks 3 179-189.

Whitt, W. 1978. Approximations of dynamic programs 1. Math. Oper. Res. 3(3) 231-243.

	Preliminaries.
	Preview of results.
	State aggregation.
	Approximate value iteration.
	Using the invariant distribution.
	A simple example.
	Exploration.
	Computation.
	Extensions and open issues.

