
Tetris:
A Study of Randomized Constraint Sampling

Vivek F. Farias and Benjamin Van Roy

Stanford University

1 Introduction

Randomized constraint sampling has recently been proposed as an approach
for approximating solutions to optimization problems when the number of
constraints is intractable – say, a googol or even infinity. The idea is to define
a probability distribution ψ over the set of constraints and to sample a subset
consisting of some tractable number N of independent identically distributed
constraints. Then, a relaxed problem, in which the same objective function is
optimized but only the sampled constraints are imposed, is solved.

An immediate question raised is whether solutions to the relaxed problem
provide meaningful approximations to solutions of the original optimization
problem. This question is partially addressed by recent theory developped first
in the context of linear programming [8] and then convex programming [6].
In particular, it has been shown that, for a problem with K variables, given
a number of samples

N = O

(
1
ε

(
K ln

1
ε

+ ln
1
δ

))
,

with probability at least 1 − δ, any optimal solution to the relaxed problem
violates a set of constraints V with measure ψ(V) ≤ ε. Hence, given a rea-
sonable number of samples, one can ensure that treating the relaxed problem
leads to an “almost feasible” solution to the original problem. One interesting
aspect of this result is that N does not depend on the number of constraints
associated with the original optimization problem.

The aforementioned theoretical result leads to another question:

In order that a solution to the relaxed problem be useful, does
it suffice to know that the measure of the set set V of constraints it
violates, ψ(V), is small?

It is not possible to address this question without more specific context. In
some problems, every constraint is critical. In others, violating a small fraction

2 Vivek F. Farias and Benjamin Van Roy

of the constraints may be acceptable. Further, the context should influence
the relative importance of constraints and therefore how the distribution ψ is
selected.

Approximate dynamic programming offers one context in which random-
ized constraint sampling addresses a pressing need. The goal is to synthesize
a suboptimal control policy for a large scale stochastic control problem. One
approach that has received much recent attention entails solving a linear pro-
gram with an intractable number of constraints [13, 7, 14]. For certain special
cases, the linear program can be solved exactly [10, 12] while [15, 14] study
constraint generation heuristics for general problems. Most generally, con-
straint sampling can be applied [8]. The linear programming approach to ap-
proximate dynamic programming provides a suitable context for assessing the
effectiveness of constraint sampling. In particular, violation of constraints can
be translated to a tangible metric – controller performance. The relationship
is studied in [8], which offers motivation for why violation of a small fraction
of constraints should not severely degrade controller performance. However,
the theory is inconclusive. In this chapter, we present experimental results
that further explore the promise of constraint sampling in this context.

Our study involves a specific stochastic control problem: the game of
Tetris. In principle, an optimal strategy for playing Tetris might be computed
via dynamic programming algorithms. However, because of the enormity of
the state space, this is computationally infeasible. Instead, one might synthe-
size a suboptimal strategy using methods of approximate dynamic program-
ming, as has been done in [16, 2, 11]. In this chapter, we experiment with the
linear programming approach, which differs from others that have previosly
been applied to Tetris. This study sheds light on the effectiveness of both
the linear programming approach to approximate dynamic programming as a
means of producing controllers for hard stochastic control problems, and ran-
domized constraint sampling as a way of dealing with an intractable number
of constraints.

The remainder of this chapter is organized as follows: In section 2, we
make precise the notion of a stochastic control problem and present Tetris as
an example of such a problem. In section 3, we introduce the linear program-
ming approach to dynamic programming. In the following section, we discuss
how this linear programming approach might be extended to approximate dy-
namic programming and in doing so, discuss results from [7, 8] on the quality
of approximation such an approach might achieve, and a practically imple-
mentable constraint sampling scheme. Finally in section 5 we describe how a
controller for Tetris was constructed using the LP approach for approximate
dynamic programming along with constraint sampling.

Tetris: A Study of Randomized Constraint Sampling 3

2 Stochastic Control and Tetris

Consider a discrete-time dynamic system which, at each time t, takes on a
state xt ∈ S and takes as input an action at ∈ Axt

. We assume that the state
space S is finite and that for each x ∈ S, the set of actions Ax is finite. Let
pa(x, y) denote the probability that the next state is y given that the current
state is x and the current action is a.

A policy is a mapping π : S → A from state to action. A cost function
g : S × A → < assigns a cost g(x, a) to each state-action pair (x, a). We
pose as the objective to select a policy π that minimizes the expected sum of
discounted future costs:

E

[∞∑
t=0

αtg(xt, at)
∣∣∣x0 = x, at = π(xt)

]
, (1)

where α ∈ (0, 1) is the discount factor.
Tetris is a popular video game in which falling pieces are positioned by

rotation and translation as they fall onto a wall made up of previously fallen
pieces. Each piece is made up of four equally-sized bricks, and the Tetris
board is a two-dimensional grid, ten-bricks wide and twenty-bricks high. Each
piece takes on one of seven possible shapes. A point is received for each row
constructed without any holes, and the corresponding row is cleared. The
game terminates once the height of the wall exceeds 20. The objective is to
maximize the expected number of points accumulated over the course of the
game. A representative mid-game board configuration is illustrated in Figure
1.

Fig. 1. A representative Tetris board configurtaion

Indeed, Tetris can be formulated as a stochastic control problem:

• The state xt encodes the board configuration and the shape of the falling
piece.

• The action at encodes the rotation and translation applied to the falling
piece.

4 Vivek F. Farias and Benjamin Van Roy

• It is natural to consider the reward (i.e., negative cost) associated with
a state-action pair to be the number of points received as a consequence
of the action, and to consider as the objective maximization of the ex-
pected sum of rewards over the course of a game. However, we found that,
with this formulation of reward, our approach (section 5) did not yield
reasonable policies. We found that a different cost function, together with
discounting, lead to effective policies. In particular, we set the cost g(xt, at)
to be the height of the current Tetris wall, and let the objective be to mini-
mize the expected sum of discounted future costs 1, with a discount factor
α = 0.9. Further, we set the cost of a transition to a termination state
at 20

1−α which is a trivial upper bound on the cost-to-go for a state under
any policy. With this formulation, an optimal policy maximizes the num-
ber of rows cleared prior to termination with a greater emphasis on the
immediate future, due to discounting.

Several interesting observations have been documented in the literature
on Tetris. It was shown in [5] that the game terminates with probability one,
under any policy. In terms of complexity, it is proven in [9] that for an off-
line version of Tetris, where the player is offered knowledge of the shapes
of the next K pieces to appear, optimizing various simple objectives is NP-
complete, even to approximate. Though there is no formal connection between
such results and the on-line model we consider, the results suggest that finding
an optimal policy for on-line Tetris might also be difficult.

3 Dynamic Programming

For each policy π, define a cost-to-go function,

Jπ(x) = E

[∞∑
t=0

αtg(xt, at)
∣∣∣x0 = x, at = π(xt)

]
.

Given the optimal cost-to-go function

J∗(x) = min
π
Jπ(x),

an optimal policy can be generated according to

π(x) ∈ argmina∈Ax

g(x, a) + α
∑
y∈S

pa(x, y)J∗(y)

 .

Define the dynamic programming operator T : <|S| → <|S|:

(TJ)(x) = min
a∈Ax

g(x, a) + α
∑
y∈S

pa(x, y)J(y)

 .

Tetris: A Study of Randomized Constraint Sampling 5

It is well-known that the optimal cost-to-go function J∗ is the unique solu-
tion to Bellman’s equation: TJ = J . Dynamic programming offers a suite of
algorithms for solving this equation. One example involves a linear program:

maxJ c
′J

s. t. TJ ≥ J

Note that, as written above, the constraints are nonlinear. However, they can
be converted to linear constraints since each constraint (TJ)(x) ≥ J(x) is
equivalent to a set of linear constraints:

g(x, a) + α
∑
y∈S

pa(x, y)J(y) ≥ J(x) ∀a ∈ Ax.

It is well-known that for any |S|-dimensional vector c > 0, J∗ is the unique
optimal solution to this linear program (see, e.g., [1]).

In principle, stochastic control problems like Tetris can be solved by dy-
namic programming algorithms. However, the computational requirements are
prohibitive. For example, the above linear program involves one variable per
state and one constraint per state-action pair. Clearly, Tetris presents far too
many states (∼ 21400!) for such a solution method to be viable. One must
therefore resort to approximations.

4 Approximate Dynamic Programming

In order to deal with an intractable state space, one might consider approx-
imating the optimal cost-to-go function J∗ by fitting a parameterized func-
tion approximator, in a spirit similar to statistical regression. A number of
methods for doing this are surveyed in [3]. We will consider here cases where
the approximator depends linearly on the parameters. Such an approxima-
tor can be thought of as a linear combination of pre-selected basis functions
φ1, . . . , φK : S 7→ <, taking the form

∑K
k=1 rkφk, where the parameters are

weights r1, . . . , rK ∈ <. Generating such an approximation involves two steps:

1. Selecting basis functions φ1, . . . , φK .
2. Computing weights r1, . . . , rK so that

∑K
k=1 rkφk ≈ J∗.

In our study of Tetris we will select basis functions based on problem spe-
cific intuition and compute weights by solving a linear program that with a
reasonably small number of parameters but an intractable number of con-
straints. In this section, we discuss this linear program approach and the use
of randomized constraint sampling in this context.

4.1 A Linear Program for Computing Basis Function Weights

It is useful to define a matrix Φ ∈ <|S|×K by

6 Vivek F. Farias and Benjamin Van Roy

Φ =

 | |
φ1 · · · φK

| |


The linear program presented in Section 3, which computes J∗, motivates
another linear program for computing weights r ∈ <K :

maxr c
′Φr

s. t. TΦr ≥ Φr.

To distinguish the two, we will call this linear program the ALP (approximate
linear program) and the one from Section 3 the ELP (exact linear program).
Note that, while the ELP involves one variable per state, the ALP only has
one variable per basis function. However, the ALP has as many constraints as
the ELP. We will later discuss the use of constraint sampling to deal with this.
For now, we will discuss results from [7] that support the ALP as a reasonable
method for approximating the optimal cost-to-go function.

Let r̃ be an optimal solution to the ALP, and ‖J‖1,c =
∑

x c(x)J(x) denote
a weighted `1-norm. One result from [7] asserts that r̃ attains the minimum
of ‖J∗ − Φr‖1,c within the feasible region of the ALP.

Lemma 1. A vector r solves

maxr c
′Φr

s. t. TΦr ≥ Φr

if and only if it solves
minr ‖J∗ − Φr‖1,c

s. t. TΦr ≥ Φr.

Recall that J∗ is the optimal solution to the ELP for any c > 0. In the case of
the ALP, however, the choice of c determines relative emphasis among states,
with states corresponding to higher values of c likely to benefit from smaller
approximation errors.

J*

J = Φr

Φr~

Φr*

J(1)

J(2)

TJ J>

Fig. 2. Graphical interpretation of the ALP

Tetris: A Study of Randomized Constraint Sampling 7

It is easy to see that if J∗ is in the range of Φ then Φr̃ = J∗. One might
hope that if J∗ is close to the range of Φ then the Φr̃ will be close to J∗. This
is not promised by the above result, because of the restriction to the feasible
region of the ALP. In particular, as illustrated in Figure 2 from [7], one might
imagine Φr̃ being close to or far from J∗ even though there is some (infeasible)
r∗ for which Φr∗ ≈ J∗. The following theorem (Theorem 4.1 from [7]) offers
some assurance through a bound on how far Φr̃ can be from J∗ in terms of
the proximity of J∗ to the range of Φ. The result requires that e, the vector
with every component equal to 1, is in the range of Φ.

Theorem 1. Let e be in the range of Φ and let c be a probability distribution.
Then, if r̃ is an optimal solution to the approximate LP,

‖J∗ − Φr̃‖1,c ≤
2

1− α
min

r
‖J∗ − Φr∗‖∞.

As discussed in [7], this bound is rather loose. In particular, for large state-
spaces, ‖J∗ − Φr∗‖∞ is likely to be very large. Further, the bound does not
capture the fact, that the choice of c has a significant impact on the error
‖J∗−Φr̃‖1,c. More sophisticated results in [7] address these issues by refining
the above bound. To keep the discussion simple, we will not present those
results here.

After computing a weight vector r̃, one might generate decisions according
to a policy

π̃(x) = argmaxa∈Ax

g(x, a) + α
∑
y∈S

pa(x, y)(Φr̃)(y)

 . (2)

Should this policy be expected to perform reasonably? This question is ad-
dressed by another result, adapted from Theorem 3.1 in [7].

Theorem 2. Let J be such that TJ ≥ J . Then,

νT (Jπ̃ − J∗) ≤ 1
1− α

‖J − J∗‖1,c,

where ν(y) = 1
1−α (c(y)− α

∑
x c(x)pπ(x)(x, y)).

For each state x, the difference Jπ̃(x) − J∗(x) is the excess cost associated
with suboptimal policy π̃ if the system starts in state x. It is easy to see that
ν sums to 1. However, νT (Jπ̃ − J∗) is not necessarily a weighted average of
excess costs associated with different states. Depending on the choice of c,
individual elements of ν may be positive or negative. As such, the choice of c
influences performance in subtle ways. [7] motivates choosing c to reflect the
relative frequencies with which states are visited by good policies.

8 Vivek F. Farias and Benjamin Van Roy

4.2 Randomized Constraint Sampling

If there are a reasonably small number of basis functions, the ALP involves a
manageable number of variables but an intractable number of constraints. To
deal with these constraints, we will use randomized constraint sampling, as
proposed in [8]. In particular, consider the following relaxed linear program
(RLP):

max c′Φr
s. t. ga(x) + α

∑
y∈S Pa(x, y)(Φr)(y) ≥ (Φr)(x), ∀(x, a) ∈ X ,

where X is a set of N constraints each sampled independently according to a
distribution ψ.

The use of constraint sampling is motivated to some extent by the following
result from [7]. (An important generalization that applies to convex programs
has been established in [6].)

Theorem 3. Consider a linear program with K variables and any number
of constraints. Let ψ be a probability distribution over the constraints and
let X be a set of N constraints sampled independently according to ψ, with
N ≥ 4

ε

(
K ln 12

ε + ln 2
δ

)
, ε ∈ (0, 1) and δ ∈ (0, 1). Let r ∈ <K be an optimal

solution to the linear program with all constraints relaxed except for those in
X , and let V be the set of constraints violated by r. Then, ψ(V) ≤ ε with
probability at least 1− δ.

1 0.5 0 0.5 1 1.5

0

0.5

1

1.5

2

Fig. 3. Graphical interpretation of the ALP

In spite of the above result, it is not clear whether the RLP will yield
solutions close to those of the ALP. In particular, it might be the case that
a few constraints affect the solution dramatically as Figure 3 (which is from
[8]) amply illustrates. Fortunately, the structure of the ALP precludes such
undesirable behavior, and we have the following result, which is adapted from
[8].

Theorem 4. Let ε and δ be scalars in (0, 1). let π∗ be an optimal policy and
X be a random set of N state-action pairs sampled independently according
to the distribution

Tetris: A Study of Randomized Constraint Sampling 9

ψ∗α(x) = (1− α)E

[∞∑
t=0

αt1{xt = x}
∣∣∣x0 ∼ c, at = π∗(xt)

]
.

Let r̂ be a solution to the RLP. If

N ≥ 16‖J∗ − Φr̂‖∞
(1− α)εcTJ∗

(
K ln

48‖J∗ − Φr̂‖∞
(1− α)εc′J∗

+ ln
2
δ

)
,

then, with probability at least 1− δ, we have

‖J∗ − Φr̂‖1,c ≤ ‖J∗ − Φr̃‖1,c + ε‖J∗‖1,c

In the proof of this error bound, sampling according to ψ∗α ensures that
with high probability, ‖J∗−Φr̂‖1,c ≈ ‖J∗−Φr̃‖1,c+ a term that can be made
arbitrarily small with N large. As such this is a weakness; sampling according
to ψ∗α requires knowledge of the optimal policy. Nevertheless, one might hope
that for a distribution sufficiently “close” to ψ∗α, the bound of Theorem 4 still
holds for a reasonable value of N . In any case, Theorem 4 offers some hope
that the RLP is a tractable means for finding a meaningful approximation to
J∗.

5 Synthesis of a Tetris Strategy

We’ve already seen that playing Tetris optimally is an example of a stochastic
control problem with an intractable state-space. As a first step to coming
up with a near-optimal controller for Tetris we select a linear approximation
architecture for the tetris cost-to-go function. In particular, we will attempt
to approximate the cost-to-go for a state using a linear combination of the
following K = 22 basis functions:

• Ten basis functions, φ0, . . . , φ9, mapping the state to the height hk of each
of the ten columns.

• Nine basis functions, φ10 . . . φ18, each mapping the state to the absolute
difference between heights of successive columns: |hk+1−hk|, k = 1, . . . , 9.

• One basis function, φ19 that maps state to the maximum column height:
maxk hk .

• One basis function, φ20 that maps state to the number of ‘holes’ in the
wall.

• One basis function, φ21 that is equal to one at every state.

Such an approximation architecture has been used with some success in
[2, 11]. For example, in [2], the authors used an approximate dynamic pro-
gramming technique – approximate policy iteration – to generate policies that
averaged 3183 points a games which is comparable to an expert human player.
The controller presented surpasses that performance.

10 Vivek F. Farias and Benjamin Van Roy

In the spirit of the program presented in section 4.2, we formulate the
following RLP:

max
∑

x∈X (Φr)(x)
s. t. (TΦr)(x) ≥ (Φr)(x), ∀x ∈ X .

where X is a sample of states. Observe that in the above RLP, the sampling
distribution takes on the role of c.

In our most basic set-up, we make use of a heuristic policy generated
by guessing and adjusting weights for the basis functions until reasonable
performance is achieved. The intent is to generate nearly i.i.d. samples of
states, distributed according to the relative frequencies with which states are
visited by the heuristic policy. To this end, some number N of games are
played using the heuristic policy, and for some choice of M , states visited
at times that are multiples of M are incorporated in the set X . Note that
time, here, is measured in terms of the number of time-steps from the start of
the first of the N games, rather than from the start of a current game. The
reason for selecting states that are observed some M time-steps apart is to
obtain samples that are near-independent. When consecutively visited states
are incorporated in X , samples exhibit a high degree of statistical dependence.
Consequently, a far greater total number of samples |X | is required for the
RLP to generate good policies. This is problematic, as computer memory
limitations become an obstacle in solving linear programs with large numbers
of constraints.

Now recall that in light of the results of sections 4.1 and 4.2, we would
like c to mimic the state distribution induced by the optimal policy as closely
as possible. Thus, in addition to the basic set-up we have described above,
we have also experimented with a bootstrapped version of the RLP. To un-
derstand the motivation for bootstrapping, suppose that the policy generated
as an outcome of the RLP is superior to the initial heuristic used to sample
states. Then, it is natural to consider producing a new sample of states based
on the improved policy and solving the RLP again with this new sample.
But why stop there? This procedure might be iterated to repeatedly amplify
performance. This idea leads to our bootstrapping algorithm:

1. Begin with a simulator that uses a policy u0.
2. Generate a sample X k of states using policy uk.
3. Solve the RLP based on the sample X k, to generate a policy uk+1.
4. Increment k and go to step 2.

Other variants to this may include a more guarded update of the state-
sampling distribution, wherein the sampling distribution used in a given iter-
ation is the average of the distribution induced by the latest policy and the
sampling distribution used in the previous iteration. That is, in Step 2 we
might randomize between using samples generated by the current policy uk,
and the samples used in the generation of the previous collection, X k−1.

Tetris: A Study of Randomized Constraint Sampling 11

Table 1. Comparison with other algorithms

Algorithm Performance Computation Time

TD-Learning 3183 hours
Policy Gradient 5500 ?
LP w/ Bootstrap 4274 hours

In the next section, we discuss results generated by the RLP and boot-
strapping.

5.1 Numerical results

Our numerical experiments may be summarized as follows. All RLPs were
limited to two million constraints, this figure being determined by available
physical memory. Initial experiments with the simple implementation helped
determine a suitable sampling interval, M . All subsequent RLPs were gener-
ated with a sampling interval of M = 90.

For a fixed simulator policy, five RLPs were generated, of which the best
was picked for the next bootstrap iteration. Figure 1 summarizes the per-
formance of policies obtained from our experiments with the bootstrapping
methodology. The ‘median’ figures are illustrative of the variance in the qual-
ity of policies obtained at a given iteration, while the ‘best policy’ figures
correspond to the best performing policy at that iteration. Table 1 compares
the performance of the best policy obtained in this process to that of other
approaches used in the past [2], [11].

We now make some comments on the computation time required for our
experiments . As mentioned previously, every RLP in our experiments had two
million constraints. For general LPs this is a very large problem size. However,
the RLP has special structure in that it has a small number of variables (22 in
our case). We take advantage of this structure by solving the dual of the RLP.
The dual has number of constraints equal to the number of basis functions
(22 in our case) and so is effectively solved using a barrier method whose
complexity is dominated by the number of constraints [4]. Using this, we are
able to solve an RLP in minutes. Hence, the computation time is dominated
by the time taken in generating state samples, which in our case translates
to several hours for each RLP. These comments apply, of course, to RLPs for
general large scale problems since the number of basis functions is typically
several orders of magnitude smaller than the number of sampled states. We
have found that solving smaller RLPs at leads to larger variance in policy
quality, and lower median policy performance.

Finally, one might expect successive iterations of the bootstrapping method-
ology to yield continually improving policies. However, in our experiments, we
have observed that beyond three to four iterations, median as well as best pol-
icy performance degrade severely. Use of a more guarded update to the state

12 Vivek F. Farias and Benjamin Van Roy

0 1 2 3 4 5 6
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000
Bootstrapping Performance

Iteration #

Av
er

ag
e

Sc
or

e

+ Median Policy
* Best Policy

Fig. 4. Bootstrapping Performance

sampling distribution as described in Section 4, does not seem to alleviate this
problem. We are unable to explain this behavior.

6 Concluding remarks

We have presented what we believe is a successful application of an exciting
new technique for approximate dynamic programming that uses a ‘constraint
sampling’ technique in a central way. Our experiments accentuate the impor-
tance of the question asked in the introduction, namely, what is the effect of
the (small) number of violated constraints? The approximate LP of section
4.1 provided an interesting setting in which we attempted to answer this ques-
tion, and we concluded that the answer (in the case of approximate dynamic
programming via the LP method) was intimately related to the sampling dis-
tribution used for sampling constraints. This connection was strongly borne
out in our Tetris experiments; naive sampling distributions led to relatively
poor policies.

As such, theorems in the spirit of Theorem 3, while highly interesting rep-
resent only a first step in the design of an effective constraint sampling scheme;
they need to be complemented by results and schemes along the lines of those
in section 4.2 that assure us that the violated constraints cannot hurt us
much. In the case of approximate dynamic programming, strengthening those

Tetris: A Study of Randomized Constraint Sampling 13

results and developing an understanding of schemes that sample constraints
effectively is an immensely interesting direction for future research.

Acknowledgments

This material is based upon work supported by the National Science Foun-
dation under Grant ECS-9985229 and by the Office of Naval Research under
Grant MURI N00014-00-1-0637.

References

1. D. P. Bertsekas. Dynamic Programming and Optimal Control. Athena Scientific,
Belmont, MA, 1995.

2. D. P. Bertsekas and S. Ioffe. Temporal Differences–Based Policy Iteration and
Applications in Neuro–Dynamic Programming. Technical Report LIDS–P–2349,
MIT Laboratory for Information and Decision Systems, 1996.

3. D. P. Bertsekas and J. N. Tsitsiklis. Neuro-Dynamic Programming. Athena
Scientific, Belmont, MA, 1996.

4. S. Boyd and L. Vandenberghe. Convex Optimization. Book Draft, 2002.
5. H. Burgiel. How to lose at Tetris. Mathematical Gazette, page 194, July, 1997.
6. G. Calafiore and M. C. Campi. Uncertain Convex Programs: Randomized So-

lutions and Confidence Levels. unpublished manuscript, 2003.
7. D. P. de Farias and B. Van Roy. The linear programming approach to approxi-

mate dynamic programming. Operations Research, 51(6):850–865, 2003.
8. D.P. de Farias and B. Van Roy. On constraint sampling in the linear program-

ming approach to approximate dynamic programming. to appear in Mathemat-
ics of Operations Research, 2001.

9. Susan Hohenberger Erik D. Demaine and David Liben-Nowell. Tetris is Hard,
Even to Approximate. In Proceedings of the 9th International Computing and
Combinatorics Conference, 2003.

10. C. Guestrin, D. Koller, and R. Parr. Efficient Solution Algorithms for Factored
MDPs. Journal of Artificial Intelligence Research, 19:399–468, 2003.

11. S. Kakade. A Natural Policy Gradient. In Advances in Neural Information
Processing Systems 14, Cambridge, MA, 2002. MIT Press.

12. D. Schuurmans and R. Patrascu. Direct value-approximation for factored MDPs.
In Advances in Neural Information Processing Systems, volume 14, 2001.

13. P. Schweitzer and A. Seidmann. Generalized polynomial approximations in
Markovian decision processes. Journal of Mathematical Analysis and Applica-
tions, 110:568–582, 1985.

14. M. Trick and S. Zin. A linear programming approach to solving dynamic pro-
grams. Unpublished manuscript, 1993.

15. M. Trick and S. Zin. Spline approximations to value functions: A linear pro-
gramming approach. Macroeconomic Dynamics, 1, 1997.

16. J. N. Tsitsiklis and B. Van Roy. Feature–Based Methods for Large Scale Dy-
namic Programming. Machine Learning, 22:59–94, 1996.

