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Recall the discussion of flow patterns in Chapter 1. The equations for particle
paths in a three-dimensional, steady fluid flow are

 

. (5.1)

 

Although the position of a particle depends on time as it moves with the flow, the
flow pattern itself does not depend on time and the system (5.1) is said to be 

 

auton-
omous

 

. Autonomous systems of differential equations arise in a vast variety of
applications in mechanics from the motions of the planets to the dynamics of pen-
dulums to velocity vector fields in steady fluid flow. A great deal about the flow
can be learned by plotting the velocity vector field . When the flow pattern

is plotted one notices that among the most prominent features are stagnation
points also known as 

 

critical points

 

 that occur where 

 

. (5.2)

 

Quite often the qualitative features of the flow can be almost completely described
once the critical points of the flow field have been identified and classified.
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If the  are analytic functions of , the velocity field can be expanded in a

Taylor series about the critical point and the result can be used to gain valuable
information about the geometry of the flow field. Retaining just the lowest order
term in the expansion of  the result is a linear system of equations,
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where  is the gradient tensor of the velocity field evaluated at the critical point

and  is the position vector of the critical point. 

 

. (5.4)

 

The linear, local solution is expressed in terms of exponential functions and only
a relatively small number of solution patterns are possible. These are determined
by the invariants of . The invariants arise naturally as traces of various powers

of . They are all derived as follows. Transform 

 

(5.5)

 

where  is a non-singular matrix and  is its inverse. Take the trace of (5.5)

 

. (5.6)

 

The trace is invariant under the affine transformation . One can think of the

vector field, , as if it is imbedded in an -dimensional block of rubber. An affine

transformation is one which stretches or distorts the rubber block without ripping
it apart or reflecting it through itself. For traces of higher powers the proof of
invariance is similar.

 

. (5.7)

 

The traces of all powers of the gradient tensor remain invariant under affine trans-
formation. Likewise any combination of the traces is invariant.
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In two dimensions the eigenvalues of  satisfy the quadratic
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(5.8)

where  and  are the invariants

. (5.9)

The eigenvalues of  are

. (5.10)

and the character of the local flow is determined by the quadratic discriminant 

 . (5.11)

The various possible flow patterns can be summarized on a cross-plot of the
invariants as shown in Figure 5.1. If  the eigenvalues are complex and a spi-
raling motion can be expected in the neighborhood of the critical point. 

Figure 5.1  Classification of linear flows in two dimensions
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Depending on the sign of  the spiral may be stable or unstable (spiraling in or
spiraling out). If  the eigenvalues are real and a predominantly straining
flow can be expected. In this case the directionality of the local flow is defined by
the two eigenvectors of . The case  corresponds to incompressible flow

for which there are only two possible kinds of critical points, centers with 
and saddles with . The line  in Figure 5.1 corresponds to a degener-
ate case where (5.8) reduces to . In this instance the critical point
becomes a line with trajectories converging from either side of the line. 

5.1.3 LINEAR FLOWS IN THREE DIMENSIONS

In three dimensions the eigenvalues of  satisfy the cubic

(5.12)

where the invariants are

. (5.13)

Any cubic polynomial can be simplified as follows. Let

(5.14)

Then  satisfies

(5.15)

where

(5.16)
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(5.17)

The real solution of (5.15) is expressed as.

(5.18)

and the complex (or remaining real) solutions are

(5.19)

When (5.12) is solved for the eigenvalues one is led to the cubic discriminant

. (5.20)

The surface , is depicted in Figure 5.2 below.

Figure 5.2   The surface dividing real and complex eigenvalues in three dimensions.
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To help visualize the surface (5.20) it is split down the middle on the plane 
and the two parts are rotated away to provide a better view. Note that (5.20) can
be regarded as a quadratic in  and so the surface  is really composed of
two roots for  that meet in a cusp. If  the point  lies above the
surface and there is one real eigenvalue and two complex conjugate eigenvalues.
If  all three eigenvalues are real.

The invariants can be expressed in terms of the eigenvalues as follows. If the
eigenvalues are real,

(5.21)

and if the eigenvalues are complex

(5.22)

where  is the real eigenvalue and  and  are the real and imaginary parts of
the complex conjugate eigenvalues.

5.1.4 INCOMPRESSIBLE FLOW

Flow patterns in incompressible flow are characterized by

 . (5.23)

This corresponds to . In this case the discriminant is 

(5.24)

and the invariants simplify to
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. (5.25)

The various possible elementary flow patterns for this case can be categorized on
a plot of  versus  shown in Figure 5.3. 

.

Figure 5.3  Three-dimensional flow patterns in the plane .

Figure 5.1 and Figure 5.3 are cuts through the surface (5.20) at  and
 respectively. 

5.1.5 FRAMES OF REFERENCE

We introduced the transformation of coordinates between a fixed and moving
frame in Chapter 1. Here we briefly revisit the subject again in the context of crit-
ical points. For a general smooth flow, the particle path equations (5.1) can be
expanded as a Taylor series about any point  as follows
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. (5.26)

If a coordinate system is attached to and moves with the particle at  with the

velocity  so that

(5.27)

then in that frame of reference the origin of coordinates in effect becomes a critical
point (since the velocity is zero there) and the flow pattern that an observer in this
coordinate system would see is determined by the second and higher order terms
in (5.26).

. (5.28)

The elementary flow patterns described above are what would be seen locally at
an instant by an observer moving with a fluid element. Notice that the velocity
gradient tensor referred to either frame is the same. In this way the velocity gra-
dient tensor can be used to infer the geometry of the local flow pattern at any point
in an unambiguous, frame-invariant manner.

Categorizing flow patterns using the invariants of the velocity gradient tensor has
a long history of applications in fluid mechanics particularly in the kinematic
description of flow separation and reattachment near a solid surface. More
recently these methods have been used to describe light propagation near complex
apertures and to describe changes in the electron charge density field in  molecules
during the making and breaking of chemical bonds.

5.2 RATE-OF-STRAIN AND RATE-OF-ROTATION TENSORS

The velocity gradient tensor

. (5.29)

can be split into a symmetric and antisymmetric part 
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. (5.30)

The symmetric part is the rate-of-strain tensor

(5.31)

The anti-symmetric part is the rate-of-rotation tensor or spin tensor

. (5.32)

The vorticity vector  is related to the velocity gradients by

(5.33)

and the spin tensor is related to the vorticity by

. (5.34)

All local flow patterns can be regarded as a linear sum of a purely rotational
motion and a purely straining motion. The balance between these two components
determines which of the local flow fields shown in Figure 5.1 or Figure 5.3 will
exist at the point. As we move into our studies of compressible flow we shall see
that a natural division exists between flows that are irrotational, where the effects
of viscosity can often be neglected, and flows that are strain-rate dominated where
viscosity plays an important and sometimes dominant role. 

5.3 VISCOUS INCOMPRESSIBLE FLOW NEAR A WALL

One of the most important applications of the theory described in this chapter is
to the problem of flow separation in two and three dimensions. Particularly in
three dimensions, the geometry of the velocity field in separated flows was very
poorly understood until the 1960’s when a variety of experimental techniques
were developed that enabled researchers to visualise the flow very near the surface
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of a solid body. When the images from these experiments were analyzed, it
quickly became clear that topological methods would be needed to organize and
understand the complex patterns that were observed. 

Fast forward to today and in many ways we still face the same problem. Compu-
tational tools can be used to generate immense masses of data on complex three-
dimensional flows including detailed velocity fields. Topological methods are
essential to the analysis of the data. 

In this section we will examine the viscous flow very near a wall where the no-
slip condition applies. The figure below shows the coordinate system. The unit
normal vector to the wall is .

Figure 5.4   Velocity vector above a no-slip wall.

Expand the velocity field  near the wall to second order.

(5.35)

Derivatives of the velocity in the  plane are zero to all orders. Therefore
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(5.36)

The expansion of the velocity field near the wall reduces to

(5.37)

Apply the continuity equation to (5.37).

(5.38)

Although  in (5.38) is small, it is essentially arbitrary, as are  and  , and (5.38)
can only be satisfied if

 (5.39)

Using (5.39) the velocity field reduces further.

(5.40)

The viscous stress tensor also simplifies considerably. At the wall
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(5.41)

The viscous part of the traction vector on the wall is

(5.42)

The traction vector on the wall forms a two-dimensional vector field. The velocity
field near the wall can now be expressed as

(5.43)

The surface traction vector field defines limiting streamlines at the wall. At a crit-
ical point  , and stream lines in the neighborhood of the critical

point are determined by a three-dimensional vector field of a particular form.

(5.44)

ij------
z 0=

2 U
x

------- U
y

------- V
x

-------+ U
z

------- W
x

--------+

U
y

------- V
x

-------+ 2 V
y

------- V
z

------- W
y

--------+

U
z

------- W
x

--------+ V
z

------- W
y

--------+ 2 W
z

--------
z 0=

0 0 U
z

-------

0 0 V
z

-------

U
z

------- V
z

------- 0
z 0=

= =

Fiwall

ij------n j z 0=

0 0 U
z

-------

0 0 V
z

-------

U
z

------- V
z

------- 0

0
0
nz

U
z

-------nz

V
z

-------nz

0

A13

A23

0

Fx

Fy

0

= = = = =

U
z
----

Fx------ B113x B123y B133z+ + +=

V
z
----

Fy------ B213x B223y B233z+ + +=

W
z

-----
B113 B223+( )

2
-----------------------------------– z=

Fx Fy,( ) 0 0,( )=

dx
d
------ B113x B123y B133z+ +=

dy
d
------ B213x B223y B233z+ +=

dz
d
------

B113 B223+( )

2
-----------------------------------z–=



Viscous incompressible flow near a wall

bjc 5.13 4/19/13

where  is a transformed time variable. Equation (5.44) can be used to
classify so-called “no-slip’ critical points.using the theory discussed above and
the roadmap provided by Chong, Perry and Cantwell Physics of Fluids A, Vol. 2,
No. 6, 1990. The figure below shows a model flow from this paper used to simu-
late a three-dimensional separation bubble.

Figure 5.5   Model flow used to study three-dimensional separation. On the left lim-
iting streamlines at the wall are shown with streamlines in a symmetry 
plane normal to the wall. On the lft a small degree of asymmetry is added 
to the flow along with depiction of several individual streamlines.

5.3.1 TOPOLOGICAL RULES

The global flow patterns on the surface in which the critical points are imbedded
are smooth vector fields subject to certain rules depending on the topological
structure of the surface. The most well known rule is the so-called “hairy ball”
theorem” that applies to a simply connected three-dimensional body that can be
developed into a sphere.  If a sphere is covered by hair and all the hairs are combed
along the surface from the north pole to the south pole the result would be an
unstable node at the north pole and a stable node at the south pole; 2 nodes and

d zdt=
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no saddles. If at some point on the sphere one were to gather local vectors into a
new node, there would also have to appear a saddle to maintain a topologically
consistent vector field with no gaps or tears; 3 nodes and one saddle. It is pretty
clear that one cannot add, say a node to the surface flow without also adding a
saddle.

Figure 5.6   Vector field on the surface of a sphere.

Figure 5.6 shows a number of nodes and saddles on a sphere connected by
selected streamlines. If the nodes and saddles are counted, the difference is always
two  regardless of how many critical points are on the surface of the sphere.

1) On a simply connected three-dimensional body

(5.45)

The result (5.45) is specific to a sphere. If the vector field were on the surface of
a torus, an object with one hole, the number of nodes and saddles would be the
same. This whole subject leads to a major area of mathematics  called topology
that is concerned with the properties of spaces that remain invariant under contin-
uous deformations.

nodes saddles– 2=
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Tobak and Peake (Annual Reviews of Fluid Mechanics 1982) in their review of 3-
D separation include a number of additional rules that are useful for interpreting
visualization images.

2) On a 3-D body B attached to a plane wall P without gaps that extends to infinity
upstream or downstream or is the surface of a torus.

(5.46)

3) Streamlines on a 2-D plane cutting a 3-D body. The count includes half nodes
and half saddles attached to the surface of the body.

(5.47)

4) Streamlines on a vertical plane cutting a surface that extends to infinity
upstream and downstream. See Figure 5.5 for an example with two half saddles
on the wall and a single focal node off the surface in the cutting plane. 

(5.48)

5) Streamlines on the projection onto a spherical surface of a conical flow past a
3-D body.

(5.49)

5.3.2 A SUCCESSFUL APPLICATION

During flight testing of the Boeing 767 in 1985 there was a problem with 3-D sep-
aration over the wing upper surface behind the engine nacelle during high angle-
of-attack operations. This problem led to a significant loss of lift and poor low
speed performance.

The problem was studied using oil flow visualization and it was decided to add a
large vortex generator to the inboard side of the engine nacelle to control the sep-
aration. The chine vortex reattaches the flow over the wing and recovers the lost
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lift during low-speed, high-angle-of-attack flight. This device reduced the
approach speed of the B767 by 5 knots and the landing distance by 250 feet. It is
used by the B767 and the B737-400.

The condensation at the low pressure (low temperature) center of the chine vortex
is easily visible from a window seat on a humid day.

Figure 5.7   Condensation reveals the core of a chine vortex.

The theory described in this chapter finds a wide variety of applications to flow
separation about aircraft, automobiles, trucks, and buildings as well geophysical
flows and convective mixing of scalars in the built environment.

5.4 PROBLEMS

Problem 1 - The simplest 2-D flows imaginable are given by the linear system

(5.50)

dx
dt
------ ax by+=

dy
dt
------ cx dy+=



Problems

bjc 5.17 4/19/13

Sketch the corresponding flow pattern for the following cases

i) 

ii) 

iii) 

Work out the invariants of the velocity gradient tensor as well as the various com-
ponents of the rate-of-rotation and rate-of-strain tensors and the vorticity vector.
Which flows are incompressible?

Problem 2 - An unforced damped pendulum is governed by the second order
ODE

(5.51)

Let  and . Use these variables to convert the equation to
the canonical form.

(5.52)

Sketch the “streamlines” defined by (5.52). Locate and categorize any critical
points according methods developed in this chapter. Identify which points are
dominated by rotation and which are dominated by the rate-of-strain. You can do
this graphically by drawing line segments of the appropriate slope in  coor-
dinates. The picture of the flow that results is called the phase portrait of the flow
in reference to the fact that, for the pendulum, a point in the phase portrait repre-
sents the instantaneous relation between the position and velocity of the
pendulum. For what value of  can the “flow” defined by the phase portrait be
used as a model of an incompressible fluid  flow?

Problem 3 - Use (5.14) to reduce (5.12) to (5.15).

Problem 4 - Sketch the flow pattern generated by the 3-D linear system
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(5.53)

Work out the invariants of the velocity gradient tensor as well as the components
of the rate-of-rotation and rate-of-strain tensors and vorticity vector. The vector
field plotted in three dimensions is called the phase space of the system of ODEs. 

In fluid mechanics the phase portrait or phase space is the physical space of the
flow.

Problem 5 - Show that

(5.54)

and is therefore greater than or equal to zero.

Problem 6 - Work out the formulas for the components of the vorticity vector and
show that the spin tensor is related to the vorticity vector by

. (5.55)

Problem 7 - The velocity field given below has been used in the fluid mechanics
literature to model a two dimensional separation bubble.

. (5.56)

Draw the phase portrait and identify critical points. 

Problem 8 - Consider the laminar flow near a 2-D separation point.
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Use an expansion of the velocity field near the wall of the form

. (5.57)

Use the 2-D incompressible equations of motion and critical point theory to show
that the angle of the separating streamline is

(5.58)

where  and  are the x-derivatives of the vorticity and pressure at the wall.

See Perry and Fairlie, Advances in Geophysics B18, 299, 1974 and Perry and Fair-
lie, Journal of Fluid Mechanics Vol 69, 657 1975 for a discussion of this problem
and an experiment to study boundary layer separation and reattachment.
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