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Steady flow pattern in the wake of a circular cylinder.

42. Circular cylinder at R=26. The downstream dis-
tance to the cores of the eddies also increases linearly with
Reynolds number. However, the lateral distance between
the cores appears to grow more nearly as the square root.

Photograph by Sadatoshi Taneda

42. Circular cylinder at R=26. The downstream dis-
tance to the cores of the eddies also increases linearly with
Reynolds number. However, the lateral distance between
the cores appears to grow more nearly as the square root.
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Surface flow patterns.
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4.1 Elementary flow patterns

Let’s return to the equations for particle paths in a

steady flow.
dx _ dy _ dz _
—_— = N —_—= ,‘ _—= W .
T U(x.) C V(x) T (x)

A lot about the flow can be learned by plotting the velocity
field. Critical points occur where the velocity is zero.

Ulx,] = 0.

Reference:

CHONG, M. S., PERRY, A. E. and CANTWELL, B. J. 1990 A general classification of three-
dimensional flow patterns. Physics of Fluids A Vol. 2 (5): 765-777.
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Linear flows

Assume the velocity field is an analytic function of position. Then the
velocity field can be expanded in a Taylor series about any point in
the flow. Near a critical point

dx.

2
—J:S—l - Aik(xk—xkc) + O((x, —x.) )+ ...

where
- (o,
Ajg =

axk x=xc.

Is the velocity gradient tensor evaluated at the critical point.

To first order this is a linear system of equations that is solved
in terms of exponential functions and only a relatively small
number of flow patterns are possible. These patterns are
determined by the invariants of the velocity gradient tensor A.
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Linear flows in two dimensions.

The eigenvalues of A satisfy.

/12+PA+Q =

where.

P=-A. ; Q = Det(A;) .

li

The solution is.

A = __+1JP ~40 .

The topology of the local flow is determined by the
sign of the quadratic discriminant.

2
P
=0-—.
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The various possible flow patterns can be described in a
cross-plot of the invariants.

Q

@)A%

P=S

Figure 4.1 Classification of linear flows in two dimensions
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2-D Point source in a uniform stream.

Velocity potential.

O = Umx—i—ﬁLn(x2 +y2)
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Velocity field and derivatives.

D A
U:a—:Um+ 2x >
ox 27r(x +y)
® A
y=2%_ Y

~Jdy 2« (x2+y2)
U A (x2+yz)—2x2
ox 27 (xz+yz)2

W _A_ —x
dy ﬂ(x2+y2)2
aV_é —Xy

ax (x2+y2)
oV _ A (x7+)7)-2y°
0y 21 (¥ 4y
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Critical pointis at  (x..y,)= (—ﬁ,oj

oo

Near the critical point.

U U
U | | 9x dy X—X,
vV || v ov Y=Y,
0 0
- * Y A(xy)=(x )
2
2
{ U }: A [ xX—X, ]
1% 2 —
0 2%{]00 Y=Y,
L A -
Invariants.
P=0
Ar*U_* Irrotational saddle point.
Q= - Eigenvectors are orthogonal

A
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Experiment to measure separated flow

Flexible roof

Floor
F1GURE 4. Arrangement of false roof. Duet width = 610 am.
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Ficure 5. Velocity vector field for case 1 obtained from experiment.

Perry and Fairlie - A study of turbulent boundary layer separation and
reattachment, Journal of Fluid Mechanics Vol 69, 1975
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F1Gure 6. Streamline patterns for (a) case 1, experiment; (b) case 1, analog solution;
(c) case 2, experiment; (d) case 2, analog solution.
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F16ure 7. Surface pressure distributions. (a) Case 1. (b) Case 2. (c) Detail in separated region
of case 1 showing osculating parabolae. C, = (P — P,.)[3p(U,):_,. (After Perry & Fairlie

1974.)
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(b)

Ficure 8. Flow patterns for case 1 showing classification of eritical points. (a) Surface
streamlines. (b) ‘ Separation surface’ streamlines. 1, ‘saddle’ in plane of floor, ‘node’ in
plane of separation surface; 2, ‘node’ in plane of floor, ‘saddle’ in plane of side wall;
3, centre’ on side wall.
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Linear flows in three dimensions.

The eigenvalues of A satisfy a cubic equation.

3 2
A+PA+0A+R =0
The invariants P, Q and R are related to powers of A.

P = —tr[A] = -A,,

i

0 = é(PZ—tr[Az]) = é(PZ—-AikAki)

1 3 3 1 3
R = §(_P + 3PQ—-tr[A"]) = 3(—1) +3PQ—AikAkmAmi)d

Solutions are either all real or one real and two
complex conjugates.
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The quadratic term can be eliminated by the
following change of variables.

The new invariants are as follows.
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The solution of the modified cubic is generated as follows. Let

The real solution is
(X] —_ aI + a2

and the complex or remaining real solutions are

%_é(al “az)

JE’

l

1
o, = —é-(a1+a2)+
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When solving a cubic equation one is led to the cubic discriminant.

D = 24-7 e (P3—gPQ)R ¥ QZ(Q—ﬁPZ).

The surface D=0 is shown below.

surface sl.a

Intersection of constamt
P planes with equation 12
shows outline of
surface 8l
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If the eigenvalues are all real then the invariants can be
expressed as follows.

P = —(AI + l‘? + 13)
0 = A2+ 2127 + %A
R

_Afa%a?

v

If the eigenvalues are one real and two complex conjugate
then the invariants can be expressed as follows.

P = —(20+ b)
Q

R = —b(0° + @)

2 2
O +w® +20b

Y

Where b is the real eigenvalue and sigma and omega are the
real and imaginary parts of the complex conjugate
eigenvalues.
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Three-dimensional incompressible flow patterns are characterized by

VelU = - = A; =0.
l
This corresponds to P=0.
0
stable focus stable focus
stretching compressing
— _— —— -
g
/ /
) i
Q3 + %4—7R2 =0

unstable node
stable node | " saddle-saddle /
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In this case the cubic discriminant simplifies to

D=0’ +2R
4
and the invariants are
= ]A A R = IA A, LA
Q__§. ik ki — 3%k km T mi -
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Frames of reference.
For a general smooth flow the particle path equations can be
expanded in a Taylor series about any point X,.
dx.
l

— = U,

2
dt +Alk| ('xk—ka)+O((xk_x0k) )+

x=x0

x=)'co

Transform to a frame of reference attached to and moving with a
fluid element at the point x,. The position and velocity in the moving
coordinates are

X = X-Xp

U=U-U| _.
X = )CO

The flow pattern seen by the moving observer is determined by

i ' |2
—_— = Aikl_. X+ O(X') )+ ...
X=0

The velocity gradient tensor determines the local flow pattern
seen in a frame of reference moving with a fluid element.
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4.2 Rate-of-strain and Rate-of-rotation tensors
The velocity gradient tensor.

T an/8xj.-

Can be split into a symmetric and an anti-symmetric part.

8Ul- ] 8Ui aU . BU 8U
A.. = — = | — + _J + - —=
Y 8xj 2| dx i axi 2 8xj 8x

The symmetric part is the rate-of-strain tensor.

8U 8U
Sij = x *5;

The anti-symmetric part is the rate-of-rotation or spin tensor.

8U 8U
Wij = aT - 797

The vorticity vector is related to the spin tensor.
Q. = eijk((?Uk/axj)
1

2 z]kQ

Wi =
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Viscous incompressible Flow near a wall

N

cl
<

Wall

Expand the velocity field near the wall up to second order. 535)

2 2 2
U = AHx+A12y+A13z+B]Hx +B”2xy+Bu3xz+3122y +B]23yZ+BI33Z
2 2 2
V = A21x+A22y+A23z+B2Hx +B2]2xy+B213xz+3222y +B223yz+3233z

2 2 2
W = Az x+ Ay + Az32+ By x +Byppxy+ Bypsxz+ Biyyy + Biysyz + Bysz

Derivatives of the velocity in the (x,y) plane are zero to all orders. Therefore

A=A =By, =B, =B =0
Ayp = Ayy = By = Byjy = Byyy =0 (5.36)
Az; = Agy = By = B3y = Bgyy = 0
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The velocity field near the wall reduces to
2
U= Aj3z+Bj 352+ Bpsyz+ B33z

2
V = A23z+B2]3xz+BZZ3yz+BZ33z (5.37)

2
W = A33z+B3]3xz+B323yz+B333z

Apply the continuity equation.
(5.38)

oU 9V W
ox Ty T T Azt (Buust Bz 2B3s3)zt Byjgx+ Byyzy = 0

The coordinates x, y, z are arbitrary so continuity is
satisfied only if.

A33 =0
Bj3+Byyz+2B335 = 0 (5.39)
B;;3 = B3z =0
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The viscous incompressible stress tensor also simplifies

i

z=0

o
o0x

oUu a9V
_+ R
dy Ox

oU dV

+

dy Oox
v
dy

(BU BW)
+
] Jdz  ox

ov. Iw
R + R
dz  dy

(aU BWJ oV oW (awj
—+— —+—— 2| —
dz  ox dz dy 0z

oV
(a—z) (5.40)

The surface traction vector reduces to a two-dimensional vector

field in the wall

0 0
Tij
F. = —n. = vV
Lwall P jz=() 0 0
oU 3V
| 0z 92

U
az
vV
3z

N, is a unit vector normal to the wall

ou, |
0z % Fx
oV = |F 5.41)
a—nz y
z 0
— 0 —J ) )
oV
= =ZA —| =
a 0 13 aZ 0 A23
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Scale the velocity field by the distance from the wall.

U Fx
— = =t By3x+ B3y + B33z
b4 v :
- The wall viscous
Vv y traction vector can
- =2 542
Z v Ba13* + Bpzy + Byzsz 642 be viewed as
defining limiting

(B;,.+B,,>) )
w_ T3 Z streamlines at the
z 2 surface.

Critical points occur where (FxFy) =(0,0)

Three-dimensional “No-slip” critical points are characterized using

dx
Z= = Bris¥+ Bypzy + B33z
Y _ B, .x+B,.y+B
dv . C213% T P223Y T P332 (5.43)
dz _ _(3113“9223')Z
dt 2
where
dt = zdt

IS a scaled time
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Model of a three-dimensional separation bubble.

Figure 5.5 Model flow used to study three-dimensional separation. On the left lim-
iting streamlines at the wall are shown with streamlines in a symmetry
plane normal to the wall. On the Ilft a small degree of asymmetry is added
to the flow along with depiction of several individual streamlines.
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Traction vector lines on a sphere. ZN — ZS =2

The "hairy tennis ball"
theorem
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Topological rules

1. Skin-friction lines on a three-dimensional body (Davey 1961, Lighthill
1963):

2v— 2s=2. (6)

2. Skin-friction lines on a three-dimensional body B connected simply
(without gaps) to a plane wall P that either extends to infinity both up-
stream and dowsstream or is the surface of a torus:

ZN—ES p+ = 0. @)

3. Streamlines on a two-dimensional plane cutting a three-dimensional
body:

(Z+520) = (2e#33s)= 1. ®)

4. Streamlines on a vertical plane cutting a surface that extends to
infinity both upstream and downstream:

(2~+§E~'>—(Es+§2y)=o. (9)

5. Streamlines on the projection onto a spherical surface of a conical
flow past a three-dimensional body (Smith 1969):

<2N+%EM>—<28+%23,>=0. (10)

Murray Tobak and David Peake - Topology of three-dimensional
separated flows Annual Reviews of Fluid Mechanics 1982
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Oil flow, china clay visualization

These ideas form the basis of a method for visualizing the flow near a
wall using drops of pigmented oil placed on the surface of a body.

o

Oil Drops

Oil Flow

Separation

I o e
S )

WA o %ﬂo:«-—.\

e R —

Nose separation bubble Line of separation
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3-D Separation

Topological methods have greatly improved our understanding of 3-D
separated flows.

attachment surface

\

separation surface

Y

(b)

Figure 6 Flow behavior in the vicinity of a separator line: (a) separation process, (b)

Figure 6 (continued)
attachment process.

Jean Delery - Robert Legendre and Henri Werle: Toward the elucidation of
three-dimensional separation Annual Reviews of Fluid Mechanics 33, 2001
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separator

body surface

(b) _

Figure 7 Three-dimensional saddle point: (a) sketch of the flow field topology, (b)
attachment point on a high-speed train.
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Figure 14 Sct ic rep i ion surfaces over a highly swept delta

Figure 9 Vortices over a 75°-sweep angle delta wing.

Figure 10  Cross flow over a 75°-sweep angle delta wing: (a) air bubbles visualization,
(b) topological interpretation.
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92. Horseshoe vortices ahead of a cylinder in a
boundary layer. The laminar boundary layer on a flat
plate separates ahead of a short circular cylinder, whose
height is about three times the boundary-layer thickness.
The vorticity in the boundary layer concentrates into
three vortices that wrap around the front of the cylinder.
Closer to the plate, two vortices of opposite sign form in
the reverse flow, and are reflected in the plate. The Rey-
nolds number is 5000 based on cylinder diameter. Visuali-

93. Horseshoe vortices ahead of a cylinder in a
boundary layer. In this plan view the thickness of the on-
coming Blasius boundary layer is one-third of the diameter
of the cylinder, as in the photograph above, and the Rey-
nolds number is 4000 based on the diameter, but the cylin-
der is two diameters rather than half a diameter high. The
horseshoe vortices are made visible by a sheet of smoke
introduced into the boundary layer upstream. Photograph
by Sadatoshi Taneda

zation is by smoke filaments in air, illuminated by a thin
slice of light in the symmetry plane. This shows three stag-
nation points on the plate, three points of attachment,
and two free stagnation points between the vortices.
Another picture of the same flow appears as the frontis-
piece to Thwaites’ Incompressible Aerodynamics. Photograph
from E. P. Sutton and the Cambridge University Engineering
Department.

FiG. 9. Laminar separation in front of cylindrical obstruction. 4, B, C. D. and E are viscous
critical points. F, G, H, and J are invisad-constant-vorticity critical points. Plan view shows
surface trajectories. Note the sequence of saddles and nodes.

(S1):

Figure 22 Schematic representation of the horseshoe vortex induced by the obstacle.
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Figure 25 Schematic representation of the vortex system induced by the obstacle.

F (So)/
2
_._/ (S4) Q; /

N1 z-—‘*——

Figure 24  Separation behind a cylindrical obstacle. Topology of the skin-friction-line pattern.
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(b)

Figure 27 Flow downstream of a cylindrical afterbody with central jet: (@) air-bubbles
visualization, (b) topological interpretation for an axisymmetric field.
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A success story

Circa 1985 there was a problem with 3-D separation over the wing upper
surface behind the engine nacelle on a Boeing 767 during high angle-of-attack
operation. This problem led to a significant loss of lift and poor low speed

performance. The problem was studied using oil flow and china clay
visualization.

o
o
(=}
.
<
~
™
Ive)
=
Q,
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It was decided to add a large vortex generator to the inboard side of
the engine nacelle to control the separation. The chine vortex
reattaches the flow over the wing and recovers the lost lift during low-
speed high angle-of-attack flight. The device reduced approach
speeds by 5 knots and landing field length by 250 feet.
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Homework Problem

Problem - The image below by Werle shows a visualization of the flow around a circular cylinder attached
to a wall in a water channel. The flow is visualized using dye of several colors introduced very close to the
wall. This experiment models the effect of tall buildings on the spread of ground contaminants in cities.
The atmospheric boundary layer in which the buildings are embedded is on the order of the building height.

Use reasonable assumptions to determine the dependence of pressure on height along the back of the
cylinder. Can you explain the mechanism by which dye is drawn upward from the wall in the near wake of

the cylinder?
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4.3 Problems

Problem 1 - The simplest 2-D flows imaginable are given by the linear system

Z,—': = ax + by 35
Q = cx+d |
dt Y

Sketch the corresponding flow pattern for the following cases
i) (a,b,c,d) = (1,-1,-1,-1)
ii) (a,b,c,d) = (1,-3,1,-1)
iii) (a,b,c,d) = (-1,0,0,-1)

Work out the invariants of the velocity gradient tensor as well as the various com-
ponents of the rate-of-rotation and rate-of-strain tensors and the vorticity vector.
Which flows are incompressible?
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Problem 2 - An unforced damped pendulum is governed by the second order
ODE

2
49, 629, Esin(h) = 0 (4.36)
22 latTL

Let x = 6(¢t) and y = d6./dt. Use these variables to convert the equation to
the canonical form.

dx

i U(x,y)
d 4.37)
ay _

Sketch the “streamlines” defined by (4.37). Locate and categorize any critical
points according methods developed in this chapter. Identify which points are
dominated by rotation and which are dominated by the rate-of-strain. You can do
this graphically by drawing line segments of the appropriate slope in (x, y) coor-
dinates. The picture of the flow that results is called the phase portrait of the flow
in reference to the fact that, for the pendulum, a point in the phase portrait repre-
sents the instantaneous relation between the position and velocity of the
pendulum. For what value of B can the “flow” defined by the phase portrait be
used as a model of an incompressible fluid flow?
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Problem 3 - Use (4.14) to reduce (4.12) to (4.15).
Problem 4 - Sketch the flow pattern generated by the 3-D linear system

dx
dt
dy _
= = X (4.38)
dz

dt:Z

Work out the invariants of the velocity gradient tensor as well as the components
of the rate-of-rotation and rate-of-strain tensors and vorticity vector. The vector
field plotted in three dimensions is called the phase space of the system of ODEs.

In fluid mechanics the phase portrait or phase space is the physical space of the
flow.
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Problem 5 - Show that

S;Ai =SS (5.54)

and is therefore greater than or equal to zero.

Problem 6 - Work out the formulas for the components of the vorticity vector and
show that the spin tensor is related to the vorticity vector by

1

Problem 7 - The velocity field given below has been used in the fluid mechanics
literature to model a two dimensional separation bubble.

U(x,y) = -y +3y2 + 3x2y— (2/3)y3

(5.56)
V(-xa y) = _3xy2

Draw the phase portrait and identify critical points.
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Problem 8 - Consider the laminar flow near a 2-D separation point.

L=

| ] X

Use an expansion of the velocity field near the wall of the form

2 2
(5.42)
V= b x> +b by’
= QX+ AnY + 0y 1X +Dy15XY +0355)

Use the 2-D incompressible equations of motion and critical point theory to show

that the angle of the separating streamline is
+

Q

Tan(0) = 23 vP—x (5.43)

X

where Q_ and P are the x-derivatives of the vorticity and pressure at the wall.

See Perry and Fairlie, Advances in Geophysics B18,299, 1974 and Perry and Fair-
lie, Journal of Fluid Mechanics Vol 69, 657 1975 for a discussion of this problem
and an experiment to study boundary layer separation and reattachment.
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Viscous incompressible

<

A

Flow near a wall

Continuity y
V-ﬁ:aU+aV+aW:O:>a—W:O
ox dy 0z 0z > X
oU oU dV U oW oU
V== — = — oy
Vo v(8y+8x) v(az+ax) 0 0 v(az)
Wall viscous 7, (au avj 1% (av awj (avj
—=| V|—+— 2v— V[ —+— 0 0 V| —
stress p dy  ox dy dz  dy dz
U 1%
(a_va_Wj SV, ow 2(8_Wj (_j (_j 0
dz  Ox dz dy 0z 0z 0z
oU
0 0 v(—) (BU)
0z vl — |n,
0 0z F
Wall viscous F=——=| 0 0 vi5o 0 |= (a ) =l K
z V| — |n, 0

traction vector

Wall viscous
traction vector
forms a 2-D
vector field
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Incompressible velocity field near the wall

Expand the velocity field near the wall to second order

2 2 2
U=Ax+A,y+A;z+ B x" + B, ,xy+ B, ;x2+ B,,y" + B,;y2+ B3;Z

2 2 2
V=Ax+A,y+A,;z+ B, x"+B,,xy+ B, ;x2+ B,,,y" + B,,;yz2+ B,;;z

2 2 2
W=Ax+A,y+ A2+ By x™ + By ,xy+ Bysx2+ By, y™ + By yz + Bys2

U= A2+ B ;x2+ B,;yz+ 8133Z2
V =A,;z+ B, ;x2+ B,,;yz+ Bz33Z2

2
W =B, xz+ By, y7+ B2
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Near the wall the velocity field is

The wall viscous
traction vector can
be viewed as
defining limiting
streamlines at the
surface.

=F,+ B 5x+ B,y + B|352

=F,+ B, ;x+ B,;y+ B3z

= B;3x+ B3y + B3z

N|%N|<N|Q

At a critical point in the wall traction vector field (FxFy) =(0,0)

The streamlines in the neighborhood of a critical point in the wall
traction vector field can determined from

dx U

R — Bmx + B123y + B133Z

dt 7

dy V Where [Z][Z])= zdt is
—=—=B,x+B,,;y+ B,3;2 a pseudo-time along
dt < a streamline.

dz W

i B313x + B323y + B333Z

dt z
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To first order this is a linear system of equations that is solved
in terms of exponential functions and only a relatively small
number of flow patterns are possible. These patterns are
determined by the invariants of the velocity gradient tensor A.
The invariants are expressed as traces of various powers of A.
To see this transform the matrix A.

nm' mk

B, = M_A

l

Take the trace.

For traces of higher powers the proof of invariance is similar.

tr(BY) =

M A M, .=

. A M_-M. A M_ ... .M.

= tr(A%



