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Chapter 5 - Kinematics of fluid motion 



Steady flow pattern in the wake of a circular cylinder.  



Surface flow patterns.  



4.1  Elementary flow patterns 

A lot about the flow can be learned by plotting the velocity 
field.  Critical points occur where the velocity is zero. 

Let’s return to the equations for particle paths in a 
steady flow.  

Reference: 



Linear flows 
Assume the velocity field is an analytic function of position. Then the 
velocity field can be expanded in a Taylor series about any point in 
the flow. Near a critical point 

where 

is the velocity gradient tensor evaluated at the critical point.  
To first order this is a linear system of equations that is solved 
in terms of exponential functions and only a relatively small 
number of flow patterns are possible. These patterns are 
determined by the invariants of the velocity gradient tensor A. 



Linear flows in two dimensions. 

where. 

The eigenvalues of A satisfy. 

The solution is. 

The topology of the local flow is determined by the 
sign of the quadratic discriminant. 



The various possible flow patterns can be described in a 
cross-plot of the invariants. 



2-D Point source in a uniform stream. 

Velocity potential. 
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Velocity field and derivatives. 
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Critical point is at  

Near the critical point. 
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Invariants. 
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Irrotational saddle point. 
Eigenvectors are orthogonal 



Problem 1.5 



Perry and Fairlie - A study of turbulent boundary layer separation and 
reattachment, Journal of Fluid Mechanics Vol 69, 1975  

Experiment to measure separated flow  



Low Re 

High Re 







Linear flows in three dimensions. 

The eigenvalues of A satisfy a cubic equation. 

The invariants P, Q and R are related to powers of A. 

Solutions are either all real or one real and two 
complex conjugates. 



The quadratic term can be eliminated by the  
following change of variables. 

The new invariants are as follows. 



The solution of the modified cubic is generated as follows. Let 

The real solution is 

and the complex or remaining real solutions are 



When solving a cubic equation one is led to the cubic discriminant. 

The surface D=0 is shown below. 



If the eigenvalues are all real then the invariants can be 
expressed as follows. 

If the eigenvalues are one real and two complex conjugate 
then the invariants can be expressed as follows. 

Where b is the real eigenvalue and sigma and omega are the 
real and imaginary parts of the complex conjugate 
eigenvalues. 



Three-dimensional incompressible flow patterns are characterized by 

This corresponds to P=0. 



In this case the cubic discriminant simplifies to 

and the invariants are 



Frames of reference. 
For a general smooth flow the particle path equations can be 
expanded in a Taylor series about any point x0. 

The flow pattern seen by the moving observer is determined by 

Transform to a frame of reference attached to and moving with a 
fluid element at the point x0. The position and velocity in the moving 
coordinates are 

The velocity gradient tensor determines the local flow pattern 
seen in a frame of reference moving with a fluid element. 



The velocity gradient tensor. 

Can be split into a symmetric and an anti-symmetric part. 

4.2  Rate-of-strain and Rate-of-rotation tensors 

The symmetric part is the rate-of-strain tensor. 

The anti-symmetric part is the rate-of-rotation or spin tensor. 

The vorticity vector is related to the spin tensor. 



Viscous incompressible Flow near a wall 

Expand the velocity field near the wall up to second order. 

Derivatives of the velocity in the (x,y) plane are zero to all orders. Therefore 



The velocity field near the wall reduces to 

Apply the continuity equation. 

The coordinates x, y, z are arbitrary so continuity is 
satisfied only if. 



The viscous incompressible stress tensor also simplifies 

The surface traction vector reduces to a two-dimensional vector 
field in the wall 
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Scale the velocity field by the distance from the wall.  

Three-dimensional “No-slip” critical points are characterized using  

dτ = zdt
where 

is a scaled time 

Critical points occur where  Fx ,Fy( ) = 0,0( )

The wall viscous 
traction vector can 
be viewed as 
defining limiting 
streamlines at the 
surface. 



Model of a three-dimensional separation bubble.  



Traction vector lines on a sphere.  N − S = 2∑∑

The "hairy tennis ball" 
theorem 



Topological rules 

Murray Tobak and David Peake - Topology of three-dimensional 
separated flows Annual Reviews of Fluid Mechanics 1982 



These ideas form the basis of a method for visualizing the flow near a 
wall using drops of pigmented oil placed on the surface of a body.  

Oil flow, china clay visualization 



Topological methods have greatly improved our understanding of 3-D 
separated flows.  

3-D Separation 

Jean Delery - Robert Legendre and Henri Werle: Toward the elucidation of 
three-dimensional separation Annual Reviews of Fluid Mechanics 33, 2001 













Circa 1985 there was a problem with 3-D separation over the wing upper 
surface behind the engine nacelle on a Boeing 767 during high angle-of-attack 
operation. This problem led to a significant loss of lift and poor low speed 
performance. The problem was studied using oil flow and china clay 
visualization. 

A success story 



It was decided to add a large vortex generator to the inboard side of 
the engine nacelle to control the separation. The chine vortex 
reattaches the flow over the wing and recovers the lost lift during low-
speed high angle-of-attack flight. The device reduced approach 
speeds by 5 knots and landing field length by 250 feet. 



Homework Problem 



4.3  Problems 
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Viscous incompressible 
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Continuity 

Wall viscous 
stress 

Wall viscous 
traction vector 

Wall viscous 
traction vector 
forms a 2-D 
vector field 

U



Incompressible velocity field near the wall 
Expand the velocity field near the wall to second order 
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Near the wall the velocity field is 
U
z
= Fx + B113x + B123y + B133z

V
z
= Fv + B213x + B223y + B233z

W
z
= B313x + B323y + B333z

At a critical point in the wall traction vector field  Fx ,Fy( ) = 0,0( )
The streamlines in the neighborhood of a critical point in the wall 
traction vector field can determined from 

The wall viscous 
traction vector can 
be viewed as 
defining limiting 
streamlines at the 
surface. 
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Where ��= zdt is 
a pseudo-time along 
a streamline. 



Traction vector lines on a sphere.  N − S = 2∑∑



To first order this is a linear system of equations that is solved 
in terms of exponential functions and only a relatively small 
number of flow patterns are possible. These patterns are 
determined by the invariants of the velocity gradient tensor A. 
The invariants are expressed as traces of various powers of A. 
To see this transform the matrix A. 

Take the trace. 

For traces of higher powers the proof of invariance is similar. 


