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AA200A Homework 7 2014 -2015
Due Thursday May 28

Read: Chapters 12 and 13

Problem 1 — Take the 2-D wing you studied in Homework 6 and use it as the cross-section of an elliptical
planform 3-D wing with aspect ratio 10. Determine the lift, skin friction drag, induced drag and moment
coefficients of the wing for several angles of attack. Ignore possible cross-flow effects.

Problem 2 — Estimate the effect on the pressure distribution and lift if the wing in problem 1 is flown at a
Mach number of 0.5.
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Figure 12.1 Images of the flow past a finite span wing at low speed. From An Album of
Fluid Motion by M. Van Dyke.
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Figure 12.2 — Velocity field normal to a wing comprising a transverse bound vortex of
circulation T" plus downwash generated by a semi-infinite system of free vortices in the
wake.
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Figure 12.3 Upstream and downstream effect of the wake of a finite span lifting wing.

0,0,0
a, =ArcTan(%”)j<O (12.1)
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Spanwise flow above the wing is toward the centerline
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Figure 12.4 Span-wise flow in a plane perpendicular to the wing trailing edge

Spanwise flow below the wing is away from the centerline
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Circulation on the
wing and circulation (2)
at the trailing edge
are connected
(b)

Figure 12.5 Contour used to connect the circulation bound to a lifting wing, the span-
wise flow at the wing trailing edge and free vorticity in the wake.

$U-2dC=PVPeidC=dO =, - D, =0 (12.2)

initial ~

$U-edC= [TsedC+ [UsedC=0 (12.3)
Cy Cy

1ﬂTrazilingEdge (y) = _rWing (y) (124)
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Linearized derivation
of the relation
between circulation
and pressure.

12.2 Circulation and pressure

dL jC(x) 1 1 i

+pU_u,,. =Pk, . +tpU.u

1
P +—_pU_ =P, Upper

wer Upper

Z_;J - pU°° Joc(uUpper ~ ULower ﬁx - pU“F(y)

= gSCﬁ-adc

(12.5)

(12.6)

(12.7)

(12.8)

(12.9)
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Fig 12.7 Differential forces on a section of a 3-D wing

dF_(y)=pUx(y)T (y)dy (12.10)
dL(y) = dF, (y)Cos (o) = dF, (») (g‘”y 5= PU-T0) (12.11)
dD, (y) = —dF, (y)Sin(er) = —aF, () 22220 _ o 05.0)T(r)dy  (12.12)

U,(0,,0)
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dD,(y)=-a;(y)dL(y) (12.13)
bl2
L=pU.[  T(y)dy (12.14)
bl2
D,=-p| U,(0,5,0)T(y)dy (12.15)
b/2 bl/2

M, =My, =] ydL(y)=pU. [, T (y)y (12.16)

b/2 b/2

M, =My, =-| ydD,(y)=p|  yU,(0,5,0)0(y)dy (12.17)

Total pitching moment is

j X’}/ X y)dx dy determined by integrating the 2-D
section pitching moment along the

M. =pU._ jb/z

b2

Span.
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12.4 Lifting line theory, vortex sticks

Z
Zero 1:
o

R o+

E— !
o0 _al x

o.

U,(0,y,0) i

Figure 12.8 Wing cross section at spanwise position y .

’ o)

X

@ We will construct the wake
using “vortex sticks”.

Figure 12.9 Wing and trailing vortex sheet model for inviscid lifting line theory.

Wing aspect ratio

A, =— (12.18)

Relative velocity vector U,(0,y,0)={U..,0,U,(0,y,0)} (12.19)




FSTANFORD

AERONAUTICS &
ASTRONAUTICS

2

a2t x
L’
.

Recall the Poisson equation for
the vector potential . Q(x.1)=0

Figure 12.10 Vorticity source distribution surrounded by irrotational flow

Vzg(x,y,z,t) = —ﬁ(x,y,z,t) (12.20)
VA =-Q. Vsz =-Q, VZAZ =-Q, (12.21)
iA = 2Tt )drdy d, (12.22)
4ﬂx—%

A(%,1) —LL :Q %,.1) dx, dy, dz, (12.23)
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Figure 12.11 Two parallel semi-infinite vortex lines of opposite sign
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Q" (x,t)={Tu(x)8(y-y,)8(z),0,0} (12.24)

USSR B L e S 1G9 (6 79 LI NN
47rJ‘—MJ.—MI—W((x—xs)2+(y—ys)2+(Z—Zs)2) Y

1 r L dx =1im£Ln[x_a+\/(x—a)2+(y—yo)2+22]

R A W

(12.25)

A = L(Ln(x+ \/x2 +(y=y,) +2* )— Ln((y— ¥) + zz)— ann(i)) (12.26)

Ar ame \ 2a
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Q (x)={-Tu(x)8(y+y,)8(z),0,0} (12.27)
T )80 +3)8(z) 4 g
J-_ooJ-_ooJ‘_oo( B ) (y y) (_23)2)1/2 s @Y a2
- Jm L dz, _thLn[x_0+\/(x—a)2+(y+y0)2+zzJ
Ll CES TR e e e

(12.28)

A = 41;_( Ln(x+\/ y+y0) )+Lﬂ((y+y0)2+z2)+£i_r)£1°Ln(2l—a)) (12.29)
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o [ xelesoen o) (o-n )

4 (x+(x2 +(y-n) +22)1/2)((y+y°)2 +22)

(12.30)

Velocity field
o) e€) ool 2o ) Y 2oy )
2 2 +
_i (x2+(y-y0)2+z )h (x+(x + y yo) +22) )( y+y0 )
M ECEN )+21(x+(x ++y) )2)(x2+ y+y,) +2)

\ (£ +(+y) +2') 2(x+(x t(y+y,) +2) 2)( y=3) +2) )
(=3 +2) +2)-20+5)(x+(# + (-2 +2)")(# + (-3 +2)" +\
(¢ 40y +2) (x4 (# + G- +2) )43, +2)
) G (0-0) +2)+2=3)(x+ (¢ + O3 +2) ) +G+2) +2)”

I T RCTEE e e

(12.31)
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U,(0,y,0)y
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Figure 12.12 Downwash induced by two parallel semi-infinite vortex lines of opposite
sign on the line {x,z} ={0,0} viewed from the vortex wake (positive x).

U,(0,,0)= 21;[ (yzy_ﬂyz)] (12.32)

U,(0,0,0) B (12.33)

21y,
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(
r 1—2(x/y0+(1+

(x/yo)z)l/z)(l +(x/y0)2)

1/2 )

U,(x,0,0)=

Downwash velocity along
the centerline of the flow

-0.20

-0.25

-0.30

27[)’0\ (l+(x/y0)2)u2 x/y0+(l+(x/y0)2)”2) )

im0, (+,0,0) = ‘W
X—>o0 n'yo Z—>—c n'yo

(12.34)

(12.35)

Figure 12.13 Downwash induced by two parallel semi-infinite vortex lines of opposite

sign on the line {y,z}={0,0}.
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F1eure 6. Horseshoe vortices in reattaching flow behind circular rod. (@) General illumination,
(b) illumination by transverse light plane.

F1cure 39. S ion of curled hairpins ph hed by Bergh (1957).

F16URE 7. Horseshoe vortices in low-Reynolds-number boundary layer (cross-stream illumination,
Rey ~ 500).

82 Wallace et al.

F1oure 16. Boundary-layer structure at a low Reynolds number (Re, ~ 500; see also figure 34).

C N N\

Ficure 17. Effect of Reynolds number on features composing an outer region of turbulent
boundary layer. (a) Very low Re (loops); (b) low-moderate Re (elongated loops or horseshoes);
(c) moderate-high Re (elongated hairpins or vortex pairs).

(b)
FIGURE 6. (a) Hairpin vortex in developed turbulence at Res = 1850 indicated by isosurfaces of
Q. (b) Closeup of highlighted hairpin with vorticity lines superimposed.

New aspects of turbulent boundary-layer structure -

Boundary layer turbulence in transitional and developed states —
M. R. Head and P. Bandyopadhyay — JFM Vol 107 1981

Wallace, Park, Wu and Moin — CTR Summer Program 2010
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<::’ FLOW <FLow

K /
Light plane Vi:w\ ]
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View

Inclined feature Inclined feature

(@) )
F1cure 18. Inclined features being convected past hight plane.

(a) Downstream light plane; (b) upstream light plane. é)j g c
1rection of
mean flow
\ <m> {} FIGURE 2. Sketch of a representative attached eddy.
Apparent downward
‘ ‘ | T e A wall-wake model for the turbulence structure of

boundary layers. Part 1. Extension of the attached eddy
© o hypothesis — Perry and Marusic — JFM Vol 298 1995

F1GURE 19. Views seen by camera as feature convected past light plane.
(a) 45° downstream light plane; (b) 45° upstream hght plane.

—
S| N

New aspects of turbulent boundary-layer structure - e
M. R. Head and P. Bandyopadhyay — JFM Vol 107 1981 '

Theoretical and experimental study of wall turbulence 167
y 0
8 10*
2z
136
- Puslky2)
U
107t = -
View X-X
F1cuRE 1. A sketch of three attached eddies of varying scales together with - A T e - w 100
the instantaneous streamline pattern generated by each. y 0 ~kz
< ®
é

FioURE 25. Spectra computed using the A-vortex model for varying values of z/4g scaled
with ‘inner-flow "-scaling coordinates. (a) u, spectra. (b) u, spectra.

A theoretical and experimental study of wall turbulence - Perry, Henbest and Chong — JFM Vol 165 1986
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Figure 12.15 Contour used to relate the incremental circulation on the wing to the
incremental circulation shed into the wake
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Differential strength of the vortex sheet

$U-cdC = jU-cdc+ [Usedc+ [ U-edc + j UedC =0 (12.36)

Cy Cur

jﬁ-adc:r>o

dr
[ e6dC =-T - —dy (12.37)
CIII y
[ UetdC + j JeedC = —Hre g,
dy

Cu Cr

dr, , =—dT (12.38)
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1
dA, =7 —dlr g () Ln
dA _—idr(y )Ln
P 4” 0
A __ L aT(yo)Ln
T 4md-bz gy,

Vector potential of the vortex sheet

((x+(x2 +(y—=y,) +z2)“2)\
EECh
(ol =trmnie])
(r=20)" +27)

\ y,

\

((x+(x2 +(y-y,) +z2)l/2)\

dy,

((y—y0)2 +Z2)

\ J

(12.39)

(12.40)

(12.41)
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Velocity field of the vortex sheet

U, (xyz)——L o2 dl
4702 gy,

((r-w)+2) ‘2Z(x+(x2 +H(y=y) +Zz)m)(x2 t(r=n)+2) (-3 +2)
1/2 1/2 2 dyO
(x2+(y—y0)2+z2) (x+(x2+(y—y0)2+z2) )((y—y0)2+zz)

b/2 d]"
4g A dy

(=) (=) “2) _z(y_y")(“(xz+(Y—yo)2”2)1/2)("2+(y—yo)2+z2)l/2((y—yo)2+z2)
(x2+(y—y0)2+zz)l/2[x+(x2+(y—y0)2+z2)”2)((y_y0)2+z2)2

U,(x.y,2)=

dy,

(12.42)
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Fig 11.3 Effect of starting vortex downwash on lift and drag of an airfoil.

We worked out an equation for the circulation based on the modified
angle of attack induced by the starting vortex.

L

C, =1 =a,(a+a,) (11.16)
pU’C
2
-pUT, =a lpUZC o+ L g (11.17)
o Wing 0 2 o0 27Z'U°2°t . .
( 4nU_t
_2FWing (t) aOC
= a,x=C,(t) (11.18)
U.C 47rUWt+1
L %C J



STANFORD 12.5 Prandtl’s equation of finite wing theory

AERONAUTICS &
ASTRONAUTICS

The velocity vector on the lifting line is

U,=(U..0,U,)

Downwash velocity along the lifting line

U, (0,y,0)=—— blz(dr(y())]( 1 ]dyo

4 dy, Y=o

Relative flow velocity approaching the wing

1/2

U (y)=(U2+U,(0.y,0)°)

Relative angle of attack of the velocity vector approaching the wing

Uy ()’) = a(}’)'l'ai(}’)

(12.43)

(12.44)

(12.45)
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U, 0,y,0
ai(y):ArcTan( Z(Uy )]<O (12.46)
c o At small angle of attack the circulation about an infinite wing is
L= Qg
——=ag, [(y)=K(y)Ug(y)og () (12.47)
5 pU:C

Wing shape factor depends on airfoil form — 2-D theory tells us

1
pU, T = EpU,%CaOaR

r= %aOCURocR K(y)==a,(y)C(y) (12.48)

a,(y)= (ch (y)) (12.49)
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L(y)=a()C()UL ()

1 b2 dr()’o) 1 e
s

Simplify U,=U_ o,=U_ U,

Prandtl's equation of finite wing theory - an integro-differential equation for the circulation.

F(y)=lao(y)C(y)[Uth(y)—1 m[dr(y‘)))(( 1 ))d)’oJ (12.51)

2 4 d-on dy, Y=Y,

Solve subject to the condition that the circulation goes to zero at the wing tips.

b b
r(5)=r(—a)=o (12.52)
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Total lift

12.6 Elliptic lift distribution

2 1/2
r(y) =[1_(2—y) ] (12.53)
T, b
(2y\
dT 4T b
()’):_ 0 \ )2 - (12.54)
dy b | (2y)
\ b )

(12.55)
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( 21)
Lot b 1 2y )
U,(0,y,0) = —2 d| =2 12.56
(0.3.0) M,L[ P Ty (b (12.56)
1- —) b b
\ b
Let 2y /b =Sin(0) and 2y, /b= Sin(6,)
. Sin(6,)Cos (8
U.(0,6,0) =~ [ in(8,)Cos (6, de, (12.57)

27b *-72 (1 Sin* (6,)) " (Sin(6) - Sin(6, ))

U.(0,6,0) = 0 [ Sin(6,)

db 12.58
27h ( )

~xl2 (Sin(e) - Sin(go )) 0

Uz (0,9,0) = FO [—90 + Tan(O) Ln( COS(GO + 9)]]

271h Sin(6, — 6)

/2

(12.59)

-m/2

For an elliptic lift distribution the downwash velocity is constant along the span

U,(0.9.0) =52 (12.60)
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The downwash velocity everywhere is

1 ¢eor2 dIC
UZ(.X,)’,Z)—E —b/2d_y0x

=)o) &) =20-n)w+ [+ =0) +2) o2+ (=2 +2) (-2 +2)

1/2 1/2 2 d 0
(2 +2) (e s oy +2) -2 +2) y

(12.63)
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The downwash velocity on the centerline

1/2

1 es2 dT yg—2(x+(x2+y§)1/2)(x2+y§)

U, (x,0,0)=-— dy (12.64)
4r b2 dy, Yy (xz +y2 )1/2 (x N (x2 +y? )1/2) 0
( ( 1)
U,(x,0,0)= Loz + Sign(x) X EllipticK | — ! > (12.67)
‘ rb| 2 ( 2x )
\ \ \b)))
-10 5 2x 10
b The downwash

velocity in the far
wake is twice the
downwash at the

. lifting line.
-10
Figure 12.17 Downwash induced along the x-axis by a continuous distribution of semi-
infinite vortex lines of attached to the y-axis for the case of elliptic loading. Note the
somewhat larger magnitude compared to two single vortex lines.
. T,
limU, (x,0,0)=——2 (12.68)

x—>o00
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r, 1—(2,%] =1ao(y)C(y)(Uma(y)—5) (12.69)

There is an infinite variety of airfoils with different lift slopes a,(y), chord distributions

C(y) and angle of attack distributions ¢¢(y) that can generate an elliptic lift distribution.

However if we assume the wing has the same cross-section geometry all along the span
and that the angle of attack is constant as well, then a, and « are constant and (12.69)

can be solved for the chord distribution.

For constant lift curve slope angle of attack and wing cross-section.

C(y)=C, [1—(3)2]1/2 (12.70)

C = 4b1",
o (2bUma0a—aol"0)

(12.71)
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Figure 12.18 British Spitfire showing elliptic planform wing. Note the wing is formed
from two ellipses of different minor axis. This shifts the major axis and center of lift
forward.

Republic P-47D Thunderbolt.
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Recall the aspect ratio.

S=nC,b/4

2bU_a,C,0
I'y=
a,C, +4b

Lift coefficient.

\
mpU.b _ﬂb2 1
2 pUX ° S 4b
00 1+7
a, 0/
b2
AR=§
( )
a.o
C,=| —
’ 1+ %o

(12.72)

(12.73)

(12.74)

(12.75)
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CL | A (12.76)
2+ A,

2o B

10¢

0 5 10 15 20 25 30
A R

Figure 12.19 The effect of aspect ratio on the lift slope of a thin elliptical wing.
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12.7 Drag due to lift of an elliptic wing

L=FCos(a,)=F, U. (12.77)

(U2 +U,(0,0,07)"

. -U,(0,0,0
D,=F,Sin(-a,)=F [(U2 +UZ ((0 o z)m (12.78)
Fig 12.7 Differential forces on a section of a 3-D wing
F, = (%) p(U2+U,(0,0,07) Tpb (12.79)
L= (%)P(Ui +U, (0’0,0)2 )1/2 L'ob ) - NE (%)pUmrob (12.80)
(U2 +0,(0.0,0))
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D, = (%) p(U+0,(0,0,07)" Fob[

Recall for an elliptic wing.

Induced drag.

-U,(0,0,0)

(v2+U,(0,0.0))

I
U (0,y,0)=——
(0.5,0)=~—
T
DF(g)PFé
L nlyp
pUZS 2U_.8
D, & T
= 472
lpUiS 4 U_S

] _ ‘(%) pU.(0,0,0)T,b

(12.81)

(12.82)

(12.83)

(12.84)
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2
c, =L¢ (ij 14 (12.85)
' T

Figure 12.20 Lift to drag parabola for an elliptical wing with aspect ratio A, =5
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2
Cp, 1
= A, (12.86)
4na 2+ A,
0.14p
0.12
C“’ 0.10
4ro’
0.08p
0.06p
0.04

0.02

0 5 10 15 20 25 30

AR

Figure 12.21 The effect of aspect ratio on the induced drag slope of a thin elliptical wing



B};ﬁﬂﬁg&% Effect of aspect ratio on lift to drag ratio for an elliptic wing. l
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(12.87)

Figure 12.22 Solar powered aircraft, left and U2 reconnaissance aircraft, right.

The unique feature of the elliptically loaded wing is that the downwash is constant along
the span. This leads to simple analytical results for the lift, drag and shape of the wing.
The really fortunate thing about these results is that they are not only elegant but
important as well. The main reason is that all slender wings, whether they are rectangular,
diamond or trapezoidal shaped can be viewed as modest variations away from the elliptic
case. As for non-slender wings the elliptic case tells us how far from two-dimensional the
wing behavior is as the aspect ratio becomes small.
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Why aren't all wings designed to be elliptic?

1. At high angles of attack a wing with uniform cross section along the span and
no twist will stall simultaneously all along the span causing sudden loss of aileron
control. Increased chord at the wing tips helps maintain control authority.

2. Stall near the wing root is preferred and the wing can be twisted to reduce
the angle of attack near the tips. This is called washout.

3. The induced drag penalty is relatively small even for relatively large
deviations from an elliptical shape.

4. The compound curves involved in constructing an elliptic wing increase cost
and complexity of manufacture.
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F(y)=1ao(y)C(y)[Uma(y)—1 ”’Z(dr(y‘))][( 1 )]dyo] (12.88)

2 E b2\ dy, Y=Y

Assume the downwash far downstream of the wing is twice the
downwash at the wing at every spanwise point.

U.(0,0,0)= 2z (,0,0) (12.89)
U.(0,y,0) = lim 2= (xz’y 0) (12.90)

U

F(y)=%ao (y)C(y)(Uwa(y)+)lci_r)£1° Z("z’y ’O)) (12.91)
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y
x%
. o
e | B i ‘
Problem we would " ~——— () |
0 L 4
like to treat e e '
Lift ~h/2
Y
Trefftz plane
=1/2

172

Figure 12.23 Trefftz plane intersecting the rolled up wake far behind an aircraft.

Problem we
actually treat

Trefftz plane

Figure 12.24 Trefftz plane intersecting the flat, straight vortex sheet from a wing
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Far wake velocity field in the the (y,z) plane - the Trefftz plane

limUy (x,y,z) =

X—>oo

limU, (x,y,z)=—

x—»o0

If the wing loading is elliptic

1 Jcb/z dl’ Z dy
=2 | e o
/
L bi2 dr (y_yO) dy
27 Y-b12 dy, \((y_yo)z +Zz) 0

( 3\
2 [
2r0r b b 4l 2
b 1 2\1/2 2 2 b
n 1_(@) ((zy_zyo) +(22))
W W b)),
( \
(2y, ) (2}’_2)’0)

2,0 b ) b b 4 2o
b L Foy VY 2 2 b
LT G-6)

vy b b b)),

(12.92)

(12.93)
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Velocity field in
the Trefftz plane
for an elliptically
loaded wing

Let 2y /b= Cos(8) and 2y, /b= Cos(6,)

cOs(eO)(%)

U, (=2 " ~ |d6,
g Cos(6)— Cos(6, = )
( () +[”) (12.94)
Uz(y,2)=_2ﬂrl;0 [ COS(OO)(COS(O)_fOS(§°))2 d6,
(Cos(6) - Cos(8,)) +(bz )

=N\ ==
=\W=
AN
P\ W72\
Z o ({ (SHEEN))
\&:«/f///f \\\\§§:Jj//};
Al == NS
:x_:;,;////// \\ Q«\st.‘_,
=/ NS
== IS
-2 -1 0 1 2

Figure 12.25 Flow in the Trefftz shown for an elliptically loaded wing.

U, (y’0+) =Y, (y,O')

(12.95)
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The difference in spanwise velocity across the sheet is related to the
circulation gradient in the y direction

Trefftz plane potential

The downwash velocity is
continuous across the vortex
sheet

Express the Prandtl
equation in terms of the
Trefftz plane potential.

dr ; - ;
%zuy(y,o )-u,(y,07)=2u,(y,0%) (12.96)
i, (x.3.2) =1, (72) = 5
| % (12.97)
limU, (x.y,2) =, (y.2) = =~
aUG) _ (00" ) —u (v.0-)=2%2(, o
oy =W (0:07) =1, (3.07)=257(».07) (12.98)
T(y)=26(y.0) or  T(y)=-2(y.0) (12.99)
1y, (+.0)=1,(0:0) = £2(3.0) (12,100
F(y)=lao(y)C(y)(Uwa(yH——f(y,o)) (12.101)
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Determine the Trefftz plane potential.

The problem boils down to determining the Trefftz plane potential ¢(y,z). The problem
formulation is as follows.

1) The potential satisfies Laplace’s equation

0’9 ¢
Viop=—+—=0 12.102
¢ ayz azz ( )
2) The velocity goes to zero at large distances from the vortex sheet.
lim V¢p—>0 (12.103)
y2 +2% oo

3) The velocity potential is an odd function of z.

0(y.2)=-6(y,~2) (12.104)
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The condition (12.104) comes from

9(3,0")=-9(y,07) for —b/2<y<b/2

and

¢(y,0)=0 for y<-b/2 and

In addition, at the end points of the vortex sheet

{4242}

4) The Prandtl equation provides the boundary condition

1 1 9¢

20(3.0°) = 38 (0)C ) U.0) + 3 2(00) | or

where (12.99) has been used.

y>b/2

—b/2<y<b/2

(12.105)

(12.106)

(12.107)

(12.108)
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Use complex analysis to solve the problem.

E=y+iz=pe” = p(COS(l?)+ iSin(??))

F(&)=¢(y.z)+iy(y.z)

iy 0 (7:2) =3
e 0 (92)= =52
99 _dy I __dy

(12.109)

(12.110)

(12.111)

(12.112)

(12.113)
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Complex velocity.

The derivative of an analytic function is independent of the path in the complex plane
along which AE — 0. Therefore the complex velocity can be either

w(&)= ar _ dF( 1 ]: 3¢(y.z) +l.all/(y,z)

T dE =u,(y,2)—iu,(y, 12.114
d§  dy\ d&/dy dy dy u, (y,2)=iu(y.2) )

or

W(‘S)‘dF—dF( 1 )=—ia¢(y’z)+a‘l/(y,z)

N - = ’ -1 ’ 12115
dé dz\ df/dz oz oz ”y(y Z) ‘”z()’ Z) ( )

Either derivative generates the same velocity field.
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Joukowsky transformation in reverse

n=p+ig=re® =r(Cos(8)+iSin(6))

r=yp°+q° 9=ArcTan(%]

(12.116)

(12.117)

(12.118)

(12.119)

(12.120)
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y:Cos(H)[r+(%)2 ﬂ 2= Sin(G)[r—(%)z %j (12.121)

( b? )
b4 b2 yr——
p= ~+r’+—Cos(20) = ArcTan —3T Tan(6) (12.122)
16r 2 b
r4-—
\  4r J

The mapping (12.116) takes the line z=0, —b/2 <y<b /2 in the £ plane to the circle

b

Nopoes = (gj(cc)s(e) +iSin(8)) = (—je“’ (12.123)

4



STANFORD Map the vortex sheet in the Trefftz plane to a circle
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iz i iq

bl4
—b/2 25 = /‘m p

Figure 12.26 Mapping the vortex sheet to a circle

G(n)=o(r.0)+i(r,0) (12.124)
G(n)=F(&(n)) (12.125)
F(&§)=G(n(%)) (12.126)

0(y.2) = 0(r(7.2).0(».2)) (12.127)
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Assume the complex potential (b +ia
in the eta plane is of the form G(TI) = 2( - 7 - j (12.128)
n=1
i((b Cos(nf)+a, Sm(n@)) : (a Cos(n6)— bnSin(nO))) (12.129)
r
= [ (b Cos(n@)+a Sin(nd
(p(r,@):Z[( ,Cos ) — ( ))] (12.130)
n=1 r
(p(r,9)=—(p(r,—9) for r=>b/4 (12.131)
q)(r,O):qo(r,ﬂ:) for r>b/4 (12.132)
Coefficients of the > a Sin(né
symmetric terms in (p(r,O) = Z s n( ) (12.133)
12.130 must all be zero =1 r
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Complex potential in the eta plane )= Z(a—) (12.134)
=1
_ > a,Sin(n6(y,z))
0(3,2) = 9(r(1,2).0(3,2) = 3= (12.135)
n=1 y,z)
Complex potential in the _ . _dF _dG 1
i plane W(E)=u,(y,z)—iu,(y,z) = &= an\ Eidr (12.136)
( )
772
u,(y,z)—iu, (,2)= —12( m] = (12.137)
2 —
¥ (4)J
( )
oo -n@ 2
Complex velocity in the . __:\'| ra,e r
Xi plane U, (3.2) i, (7,2) lnz:‘l,( ] J Ny _(b)z o (12.138)
\ 4 )
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( ) ( 2 _-if (b \2 i )
. ~( nae™ r e 4 ¢
R e |
n=1 12610 _( ) o0 || ;2070 _ i

\ 4 AN \4) )
( ( b 2 b 2 \ )

([ﬂ +(Z] ]Cos(nO)Sin(0)+[r2 ‘(Z) Sin(nH)Cos(G)]+

J

na

m Li((ﬁ —(Z)Z]Cos(nO)Cos(G)—[rz +(Z)2)Sin(n9)sm(e)] j
" r"! (r4 - (ZT = 2(2)2 r2c0s(29)]

\ y,

(12.139)
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Separate the complex velocity into real and imaginary parts

09(y,2) _.99(y:2)
dy 0z

. (nan {[(rz +(Z)2jCos(n6)Sin(9)+(r2 —(ZJZ]Sin(nB)Cos(O)n
n=l i (r“ + (2)4 - Z(ZT rzCos(ZO)]
\

w (na,, [[[r _ (Z )Z)COS(ne)COS(e)- (rz +(’; )stm(ne)sm(e)]]
" ! (r4 - (2)4 - 2(2)2 rZCOS(29))

u, (y,2) = iu(y.2) =

\

(12.140)

\
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9¢(,2) _
0z
Downwash ( by b\ )
velocity in the ) na,.[ (rz—( 4) ]COS(nG)COS(G)—(r2+ 4) }Sin(ne)sl'n(@)n (12.141)
Xi plane z
~ ) b 4 b 2
"1( +(—) —2(—) r’C (29)]
4 4
\ J
9(y.2) _
0z

(12.142)
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( A
Downwash . .
velocity in the p(y.2)| _ N Sin(nf) (12.143)
xi plane at z=0 0T |, z(b)"“ Sin(6)

4 )
Potential in the = a,Sin(nf(y,z)) = a,Sin(no)
xi plane at z=0 o(y, )Z=0+ = Z n = Z n (12.144)

n=1 r(y’z r=b/4 "=l (b)
4

Substitute 12.143 and 12.144 into the Prandtl equation and rearrange

Po0) Lo E) L2500 L, () C)a) e -2 <<

U.b 8 b U, oz 4 2

(12.145)
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)LL) e Pt

e ()] sl ol
3o = oo

Ziysbéa’)(s ©) ”a(ﬁ)cw)):- O Ja)sino

(12.146)
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Solution for the potential

Evaluate the
Prandtl equation
on the vortex
sheet

Coefficients are
determined from

/

b

i a,Sin(nd)

00
\ 4

¢(y,Z)=i "

Hesf?)
4

ZCos(B)

sin(6) + nao(

a Sin(n@(y,z))

n=1 r(y,Z)

\

) M(Sm(e)mao(y)c(y)] _ (ao(y)C(y)

4b

J

ZCos(e))c(z

4b

a, (y

4b

) a(gCos(B))Sin(e)

J

(12.147)

)a(y)Sin(O) (12.148)

(12.149)
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Check against the case of
an elliptic wing

Centerline chord

(12.150)

(12.151)

> anSin(nGn)(l_l_naoco) zao(cosm(e)]a

= 4b
)
4

a,=0,n=2,3,...
lza_o(&]m(é)a_aoco _c, &Uw(é)a_a_o
a\ 4 4 4b 4a, "\ 4 4b
4b
C, =




FSTANFORD

AERONAUTICS &
ASTRONAUTICS

Compare to the equation for the
centerline chord that we derived
when we established the theory of
an elliptic wing (12.71)

Where we choose

The downwash also checks

c - 4bT, _ 4b _
° (2bU_ayx —a,T,) . (2bUwa_ 1]
0
1_‘0
. b (12.152)
0 a U (éjza—l
"\ (Teb/8)\ 2
I
a, = Leb (12.153)
8
99(y.2) z_(%)
aZ z=0 b2
a, =% (12.154)
0¢(y.2) =_(5)
0z | _, b
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That is some reassurance that (12.148) is correct. Since y=bCos(9)/2 we can let
C(y)=C(0), a,(y)=a,(6) and a(y)= (). The Prandtl equation becomes

( 3\
)y a,Sin(nb) Sin(6)+n (0)C(6) )| _{ a(6)C(6) o (6)Sin(6) (12.155)
n=1 (b )” 4b 4b
U_b| —
L 4 y
Ty <, o
—7 =M% AS 7] 12.156
The circulation 2U_b ; ! ln(n ) ( )
and downwash
on a general ,
wing shape M — _i nA Sin(nf) (12.157)
Uw n=1 " Sln’(e) .
where A = _ G (12.158)
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Lift dL(y)= pU_T'(y)dy (12.159)
Induced drag | 4D, (y)= pU,(0,y,0)T(y)dy (12.160)
y= %COS(G) and  dy— —gsm(e)de (12.161)
!

Therangeon y is—b/2<y<b/2 and -1 <60<0.

dL(y)= pU’b* ) A,Sin(n0)Sin(0)d6 (12.162)
n=1

dD,(y) = pU’b’ (i(nAnSin(nB))i AmSin(mB))dB (12.163)

n=1 m=1
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L=pU*Y A, | sin(n6)sin(6)a6 (12.164)
n=1 7
D, =pU*Y Y nA A, [ Sin(n6)Sin(m6)d6 (12.165)
n=1 m=1 &

J‘_O Sin(nB)Sin(mb)d6 =0 if n#m , J_O Sin(nG)Sin(mG)d9=§ if n=m (12.166)

Lift only depends on the T -
first coefficient in the L=—pU_b"A (12.167)
series 2

Induced drag depends T ... )
on all coefficients inthe | D, = Eonob znAn (12.168)
n=1

series
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bl2

M, =M, =pU., J.

bl2

yr y)dy———pU2b32Aj Sin(n6)Cos(0)Sin(6)do (12.169)

fo Sin(nB)Cos(0)Sin(0)d6=0  all n#2, j_” Sin(20)Cos(0)Sin(6)d6 = Z

(12.170)

b/2

Roll moment only M =M,, pUj

F =—— U2b3A
depends on A, on? y)dy p

Yaw moment

bl2 bl2
M, =M,, == ydD/(y)=p|  yU,(0.y.0)(y)dy

hi2

M MYaw = pJ. b/2 O,y,O)F(y)dy =

EpUile Z nA A, J._O Sin(n6)Sin(m0)Sin(6)Cos(6)do

n=1 m=1
Yaw moment depends M, =M, = EPUib3Z(2n+ 1)AA .,
on all coefficients 8

n=1

(12.171)

(12.172)

(12.173)

(12.175)
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Force and moment coefficients

L b’
C, = = n(?)Al =(7mAL)A,

1
—pU’S
5 PU..
D- 2 oo oo
Cp =7 =7r(b—)2nAf = (wAg) Y, nA?
' pUzS S n=1 n=1
2 2 (12.176)
M, b T
Crront = 1 . - _Z( < ]Az = _(ZAR)Az
—pUZSh
2
M 2 oo oo
Cotton = T——= (b )2 (2n+1)AA ., = (”A )2(2n+1)A,,A,,+1
2pU2Sb 4 S 4 n=1

Pitching moment coefficient is determined from 2-D wing profile analysis - Chapter 11
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ASTRONAUTICS

M 1 ¢=

C, = ["7(8)(1+ Cos(8))Sin(6)d6 =

Pitching moment %pUiC2 20,

due to camber (11.117)

_g(ZBo +Bl)_ %(BI +Bz)

The moment coefficient due to camber can be thought of as a pure moment or couple
about the leading edge plus a moment due to lift acting at the 1/4 chord point.

C, &
—TL—Z(BI+BZ). (11.118)

M

Figure 11.16 Forces and moments on a thin cambered airfoil at zero angle of attack.



The angle-of-attack problem

FSTANFORD

ﬁg%gg ﬁ] ‘i\TUITCISC&SL Finally we look at the incompressible potential flow past a flat plate at a small angle of
attack illustrated below. The source is modeled as a distribution of vortices as in the

camber problem.

Y (“) Vortex strength/length

7(x)

S
0 c
aYaYaYata'ata alale e NN

U < (AL OL L L WL WA WL WA L

- U.Sin(ar) %7 dé '
U_Cos(a) -
s x—-&

Figure 11.17 Distribution of vortices generating lift on a flat plate at angle-of-attack o .

1—Cos(6)
0)=2U_o : 11.122
y(6) Sin(0) (11.122)
m—— - C, =2nx
itching moment due
to angle-of-attack c =, (11.123)
M
2
C . In 3D the effect of downwash on the
CM = — pitching moment is felt through the
4 modified angle-of-attack
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Potential flow for a flat plate at an angle of attack in low speed flow.

1—Cos(0)
0)=2U_« : 11.122
7(6)=20. ( Sin(6) J (122
C, =2nc
Pitching moment T . (11.123)

due to camber C,=—0
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ASTRONAUTICS 12.10 Minimum induced drag wing

The coefficients in (12.176) depend on the distributions of a,(y),C(y),o(y) along the

span of the wing. The lift only depends on the the first coefficient. The drag depends on a
sum of squares of all the coefficients. Clearly the lowest drag occurs when A =0 for all

n > 1. In this case the circulation (12.156) becomes

2\ /2 2\ /2
F(y):2U°obAlSin(9):2waA1[1—(%j ] :8%[1—(%j ] (12.177)

Recall (12.153), a,=T";b /8. Now

r(y):r(,(l—(z—yj ] (12.178)

b

Minimum induced drag occurs when the lift distribution on a wing is elliptic. For an
untwisted wing this corresponds to an elliptic chord distribution.



B%{iﬁ?&% 12.11 Induced drag of a rectangular wing

ASTRONAUTICS

10,
\\’\\‘4:\\\ R
8 NG
ry) NN “§
Ly 6 K’,:/\\‘\
O
' e
N
-
[/ 2 N3 b .8 10

2y/b

Figure 12.27 Circulation distribution along straight wings of various aspect ratios from
Prandtl & Tietjens (Applied Hydro and Aeromechanics). The aspect ratio parameter is
P=(2ln)bil €

U.(0,5,0) ]

D, 1

1

Figure 12.28 Typical variations of lift, downwash and induced drag for a rectangular
wing from Prandtl & Tietjens.
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D, =O.99+0.015(2—b) (12.179)
i min ﬂ:C
LIS T
_—
110 =
D, il
D, sl
w105 =
// |
L0 =
0 P ¢ ,p 6 8 /0

Figure 12.29 Induced drag of a straight wing of varying aspect ratio compared to the
induced drag of an elliptic wing D, . from Prandtl & Tietjens.



STANFORD Recall the induced drag result for an elliptic wing
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2
¢, -GS

= (12.180)
T

Profile drag is the sum of viscous drag plus pressure drag due to the deviation of the
pressure field from the potential flow solution.

C,=Cy+Cp, (12.182)
Cy
= 4
L e
ho) ) [
10 VA
On a real wing profile ’ 7
drag is almost c. | 44
independent of angle of é / 30 From Prandtl and Tietjens
attack. ¢ 0)»
1
Al
6 T 1o 2
2 \ D
D\
94

Figure 12.30 Lift-drag parabola for a rectangular wing with aspect ratio parameter
P=(2/m)b/C =5 compared to the induced drag of a rectangular wing.



STANFORD Consider two wings with the same profile but different aspect ratio
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C:S
C, _L_1+CD
| T b12 P
12.183
cs, ( )
Co. = 52 T o

Since the profile drag coefficient is the same for both wings the
drag coefficient of one wing can be converted to the other using

ci(s, S )
C. =C, +—*L|=2_-L 12.184
D, D, T (bzz blZ ( )
; g K4 p
124 7
P - C” r LAY
IRk From Prandtl
¥ and Tietjens
Lt
.ZC t' al CD 22
-2 n,’.

Figure 12.31 Left, lift-drag parabola for a rectangular wing of various aspect ratios.
Same data scaled to P=(2/7m)b/C =5 using (12.184).
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The same idea can be used to collapse lift data.
Recall the downwash velocity for an elliptic wing

r
U (0,y,0)=—-2 12.185
(0.y.0)=-2> ( )
Recall the lift for an elliptic wing
/4
L= (Z) pU_T' b (12.186)
L r
cL=1—=(£) 0 (12.187)
2
Combine 12.185 and 12.187
U
o Lo _ G S (12.188)
U 2bU T b

o0

Recall that one of the effects of the downwash of a finite wing is to decrease the effective
angle of attack of the wing and thereby reduce the lift. If a section of a finite wing were to
have the same lift as the same section considered to be part of an infinite wing at angle of

C
attack o, its angle of attack would have to be increased by —o, = —L% The angle of

attack of the wing would need to be

C
=0 — 0, =0y +—— (12.189)
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Consider two wings with the same profile but different aspect ratio

L 1

Since the reference angle of attack is the same for both wings the
angle of attack of one wing can be converted to the other using

c (S, S
o, =0, +—= —;——; (12.191)
T \b, b
1.2 7 - 1.2 =
r6 AP~
- 0 /5 Y . {10 <
L 63 L <
*" f /\/2 ,/.,/ S EEEE From Prandtl
AN T s d Tieti
W' //4 i§ o and Tietjens
/ / o+
W A P
y 28% &
A X
2
- /0° [ 10° 5 20° ~/p° r. ] 2 70° A 20°
5 52 - 2
(4

Figure 12.32 Left, Lift versus angle-of-attack for a rectangular wing of various aspect
ratios. Same data scaled to P=(2/m)b/C =5 using (12.191).



T?Ifg‘ﬁljggg 12.12 Unsteady momentum integral in a Trefftz plane

PTRORATHEY T fixed with respect to the surrounding fluid

A 3-D momentum balance on a point force (see Chapter 10 section 10)
suggests that two-thirds of the applied impulse by a lifting aircraft in steady
flight is contained in the downward momentum generated by the force

U.t[ [ U.dyde= —ggu(t)t (12.192)
U,dydz=—=| —— 12.193

Figure 12.33 Aircraft wake with Trefftz plane fixed with respect to the surrounding fluid



STANFORD Carry out a 2-D momentum balance on an infinite impulsive line force
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R F(xp) [ 1
f 06 l 2 _fo-L5()60)0(0)

Ve Drag . L

Impulse per unit
length of aircraft
wake

L
e i p pU.

UUdAJ+j[UU+P1}ndc+vj Q)dA = j( pt))dA (12.194)

p

where C 1is a fixed circular contour of large radius R surrounding the 2-D momentum
source (force) located at the origin. The force divided by density acting on the flow is

really a force per unit length with units L’ /T instead of L' /T as in the 3-D case. In the

far field the velocity behaves as U ~1/R?, the vorticity is zero and the momentum
balance becomes

lim = [UaaA |+ (ET}ﬁdc:j(F(x”)JdA (12.195)
ke Dt c\p A
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ASTRONAUTICS The impulsive force creating the flow is
F(x,t) I
== 0,-6()3(:)8(:) (12.196)

Total impulse produced by a force

L{O J;;(s( )dt} {o ﬁ} (12.197)

p

Momentum balance

_ _£5(t) (12.198)
p

P=).
hm—UU dA]+1im [—I}ndC
R—)oth Rowd(C p

Z



|7$TANF ORD Far field vector potential
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- 2mp y +7z

Zz{AX,Ay,AZ}z{ ! u(t)( Y ),0,0} (12.199)

Far field velocity

ﬁ:{Uy,UZ}:{Lu(t) 2yzz)z,2i_pu(t)[—( 2y, 1 ]} (12.200)

y? +zz)2 ()’2 +z2)

Far field scalar potential

Far field flow is a ® I (1 z (12.201)
dipole 27rpu V7
Far field pressure disturbance
U ylPl g L__9 (12.202)
ot p p ot

£=_L5(t)( L 2) (12.203)
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Integrate the
pressure

Rate of change
of the total
downward
momentum

I 2 1171
=——3§ Sin®(0)d6=—-——6
70500, 5in (6)d0 =2 5(1)

lim (ffj-ﬁdc
R—ooedC p

Z

lim BUUZ dA) LRI TA
R DE\ 5 2p

Momentum integral is
one-half the applied
impulse

H,= [ Udde=—

Impulse is related to the lift

L

I_
p pU.

Momentum integral
related to lift

H, = J:OJ._:UZdydz = —%p%

oo

(12.204)

(12.205)

(12.206)

(12.207)

(12.208)
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AERONAUTICS &
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We need to determine by

and a(t)

Vorticity source - one vortex

3D vector potential - one
vortex

2
~b, /2 by 12
y
a(t) a(t)
a(t)>0
» | G
Vortex position
-, I = - a(t)
Figure 12.34 Inviscid vortex pair.
Q(x,1)={T,8(y—b, /2)8(z+a(t)),0,0} (12.209)
N
((x_xx) o) +(Z_ZS)) (12.210)
A =T ! dx

to4n _m((x—xs)z+(y—b0/2)2+(z+a(t))2)”2 s
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3D vector potential -
two vortices

2D vector potential of
one vortex

A —F"lian[ l+x+\/(x+l)2+(y—b0/2)2+(z+a(t))2 J (12211
o Amios —/'t+x+\/(x—/l)2+(y—b0/2)2+(z+a(t))2
A =_&(Ln((y—b /2)2 +(z+a(t))2)l/2 —Ln(2))
X 271_ 0
po Ty, (-5, 12) +(z+a(0))) (12212)
2 2

2D vector potential of two
vortices

(12.213)

2D scalar potential of two
vortices

®(y,2) = 0| ArcTan e+alt) ) | 2+al) (12.214)
o y—b, 12 y1b, 12
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Velocity field of an inviscid vortex pair

T,b, o
y b, /2 (z+a(t)))(y+b0/2)2+(z+a(t))2)
[—Zy z+alt ( Z+a(t))2]]
_ —(z+a) 4 (z+a) )
zn\ma) +(y=b,12)"  (z+a) +(y+5,/2)
Uzro( (y—b,/2) ) (y+b,/2) )
©o2m\(z+a) +(y-b,/2) (z+a) +(y+b,12)

(12.215)
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Momentum of an
inviscid vortex pair

H= I: _Eljdzdy = J:n drnd6

r, JZ[ ArcTan( rSin(6)+a(t) )_ A,,CT(m[ rSin(6) + (1) Dr{cos(e),sm(e)}de

H= J:J:ﬁdzdy =

rO 2

Momentum integral
of an inviscid
vortex pair

m 7o rCos(6)—b, /2 rCos(0)+b, /2
(12.216)
ArcTan(u)— ArcTan(v) = ArcTan( lu—_u\;) (12.217)
U—v _ bo(rSin(?)+a(t)) : (12.218)
1—uv  r’Cos*(0)— (b, /2) —(rSin(6)+al(t))
— ArcTan % (rSin(?) i a(t)) > | |7 {Cos(@) ,Sin(G)}dG
2 70 r*Cos®(0)— (b, /2)” —(rSin(0)+a(t))
(12.219)
7 Loby
H={H H}= {0,— : } (12.220)




FSTANFORD

AERONAUTICS & Recall the connection to aircraft lift 12.208
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L=pU_TI b,
T
For an elliptic wing L=pU_T, (Zb)
Vortex spacing needed to match b = 4 b
the lift of an elliptic wing 074

_ro I“o

o oo 1 L
HZ_I_MJ_WUZdde__EE
g - T

- 2
(12.221)
(12.222)
(12.223)

Figure 12.35 Vortex spacing in the wake of an elliptically loaded wing.
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Figure 12.1 Images of the flow past a finite span wing at low speed. From An Album of
Fluid Motion by M. Van Dyke.
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z-momentum on the z-axis

Kl (P(O,z)) _U.(0.2) U 0,z)aUz (0,2)

az{ p ot 0z
90.{0.2) (O’Z)d—a+uz (0,2) oU(0.2) _ 9V, (O’Z)d—“+Uz(o,z)aUz (0.2) (12.225)
da dt 0z dz dt 0z
Pressure on the z- P P | da 1 2
i —(p ; J_(UZ (0,z) o 2Uz(0,z) )
Net pressure
: (P P o da 1
integrated along —J' (___w)dzzj' (UZ(O,z)—a+—UZ(0,Z)2)ﬂ'Z=0 (12.226)
the z-axis should P P e dar 2
be zero
) U,(0,z ? Jz
da _ 1 [_(v.0.2 (12.227)

a2 [ (U 0o
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( A
z-velocity on the z-axis UZ(O,z)=—r2°b° 1 T (12.228)
Y 0
\(z+a) +(5) )
- % i
_[ 1/[(z+a)2+(°) ) dz
da _Toby~~ 2 _
dt  4Am .. )
J [1/((z+a)2 +(b2°) Ddz
(12.229)

) 2
Iw y (z+a] . d[z+a)
da B ', 1 - b, /2 by /2 ~ T, Downward

drift speed

dt 4rm b, 2 _ i+a 2 i+a - 27mb, of the vortex
— > ) [ |1 +1 pair
—eo by /2 b, /2



FSTANFORD

AERONAUTICS &
ASTRONAUTICS

Recall unsteady scalar potential, vector potential and velocity

®(y,z)= ;—70[ ArcTan

It It
Z+27rb 2:+277:b
O |- ArcTan g (12.230)
y=>b,/2 y+b, /2
¢ 2
—by 12) +| z+ 20
L By
——Ofn . (12.231)
4r 2 't
(y+b,/2) +| z+ -2
rh,
Tt Tt
- z+ z+
27, 2mh,
Tt b, ) T\ b, \’
7+ ( —0) e +( + "]
27, 2 27h, 2
(12.232)
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Transform to an observer moving downward with the vortex pair

=& ArcTan ; — ArcTan| —=—— | |+
2w y—b,/2 y+b,/2

r
+—20 (12.233)

I')Z
27h,

~ 2 ~2 ~
(5 ~)=—&Ln (5 1’0/2)2+Z T,y
dn \(5+b,/2) +7* ) 2mb,

(12.234)

(12.235)
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Figure 12.36 Streamline pattern of an inviscid trailing vortex pair as seen by an observer
convecting downward with the pair.



§£’§§\59§59 A plausible correction to the induced drag
ASTRONAUTICS

Z

—LCOS(Q) L—r‘)
2b i 2b
| / x
0 2K,
b \

U°° Downward drift speed of
wake modeled as an
inviscid vortex pair

Downward drift speed of

the vortex pair created by )
an elliptic wing based on Uydrift =-21 /(7[ b)

wing span

U, (O,y,O):—%Cos(O)

U(0y0). T, [, 16( T :
u. 20U\ 27\ 26U

o0
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C; S
Recall for an Cpi = T b (12.180)
elliptic wing
Cp=Cp+ CDp (12.182)

The Oswald efficiency is used to adjust for a non-elliptic lift distribution

C, S

Typically between CD — CDp +

g, b’

0.7 and 0.9
/'

Span efficiency

in practice the profile drag may have a small quadratic dependence on the square
of the lift coefficient.

C*>S
Cp= CDpO + CDpICL2 +—= ')

/eln b



rﬂ%{iﬁ?&? 12.14 Effect of a ground plane on the downwash velocity

ASTRONAUTICS

~-b/2
4

Figure 12.37 Continuous distribution of vortex lines with image system beneath the
ground plane.
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Vector potential of the main vortex sheet plus the image sheet below the ground plane

Ln

dy,

(12.237)
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AERONAUTICS & Velocity field

ASTRONAIITICS

0
FO b/2 b
. (21)
b

(_(y _ yo)((y + yo)2 + (z - h)z) - 2(y + yo)()c+(x2 +(y— yo)2 - (z - h)z)m)(x2 +(y -y, )2 + (z - h)z)l»'z

Uz (x,y,z) = X

(x+(y-9) +(Z-h)2)”2(X+(x2 +(y-y,) +(z—h)2)“2)((y+y0)2 +(z-h))
(y+y0)((y—yo)2 +(z—h)2)+2(y—y0)(x+(x2 +(y+y0)2 +(z—h)2)“2)(x2 +(y+y0)2 +(Z_h)2)”2
\ (x +(+y,) +(z-n))" (x+(x2 +(y+y,) +(z—h)2)m)((y—yo)2 +(z-h))

2%,
Fo J'b/'z b x
1/2
2mb " 1_(2y0)2
b

(—(y- yW G+, +(z+n))-2(y+ y(,)(x+(x2 +(y-y,) +(z+ h)z)m)(xz t(y-y, ) +(z+n))"

(x+(&-5) +(Z+h)2)”2(x+(x2 +(y-y,) +(Z+h)2)w)((y+y0)2 +(z+h))
(y+y0)((y—yo)2 +(z+h)2)+2(y—y0)(x+(x2 +(y+y,) +(z+h)2)“2)(x2 +(y+y,) +(Z+h)2)”2

\ (x2 +(y+y,) +(z+ h)z)”2 (x+(x2 +(y+y,) +(z+h)2)“2)((y—y0)2 +(z+ h)z)
(12.238)

+

+
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U,(0,0,h)=
P rl oo 1 5 : (2); ") 5y Y| (12:239)
On the lifting line ol | 1/2d( Zo)_j { b d( ZOJ
T 0 2y, 2 0 2& 2 2& 2 % 2
-G) -G () ()
(43
Which integrates to UZ(O,O,h)=—& b 2 (12.240)
1+(4%)
b

1.0

0.8
_2bU,(0,0,h)

rU
Ground effect comes 0.6

into play when the 04
wing height above the

ground plane is less 02
than about 3/4 of the 1 : 3 4 5
wing span 47;1

Figure 12.38 Effect of the presence of a ground plane on the downwash at the center of
the lifting line.
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NACA airfoil numbering system

y
. Oyt pyy/! .
| ) ~Mean line
0 [M ”fv

~Radius through end of chord X Xy, sin@ Y,"). %y, cos@
(meon line skope of 0.5 % )
chord) X Xy, sin@ y, .-y cos@

NACA airfoil geometrical construction
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NACA Four-Digit Series:

The first family of airfoils designed using this approach became known as the NACA Four-Digit
Series. The first digit specifies the maximum camber (m) in percentage of the chord (airfoil length),
the second indicates the position of the maximum camber (p) in tenths of chord, and the last two
numbers provide the maximum thickness (t) of the airfoil in percentage of chord. For example, the
NACA 2415 airfoil has a maximum thickness of 15% with a camber of 2% located 40% back from
the airfoil leading edge (or 0.4c). Utilizing these m, p, and t values, we can compute the coordinates
for an entire airfoil using the following relationships:

1. Pick values of x from 0 to the maximum chord c.
2. Compute the mean camber line coordinates by plugging the values of m and p into the
following equations for each of the x coordinates.

ybzﬂ(sz-x:'jZI fromx=0to x=p
02

Yo =0 [f172‘pfu 2px—x:'j from x=p to x=c¢

(1-p)]

where

x = coordinates along the length of the airfoil, from 0 to ¢ (which stands for chord, or length)
y = coordinates above and below the line extending along the length of the airfoil, these are
either y; for thickness coordinates or y. for camber coordinates

t = maximum airfoil thickness in tenths of chord (i.e. a 15% thick airfoil would be 0.15)

m = maximum camber in tenths of the chord

p =position of the maximum camber along the chord in tenths of chord
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3. Calculate the thickness distribution above (+) and below (-) the mean line by plugging the
value of t into the following equation for each of the x coordinates.

£y, = 55(0.2969/x - 0.1260x- 0.3516¢" + 0.2843x" - 0.1015¢"

4. Determine the final coordinates for the airfoil upper surface (xu, yu) and lower surface (x., y.)
using the following relationships.

Xy =X-Y¥; sin@
Yu =Y +Yi cosb
X =X+Y; sind

YL =YY cosb

where 0 = arctan[dy°J
dx

anz O 2
9412 ( e
6412 / \
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NACA Five-Digit Series:

The NACA Five-Digit Series uses the same thickness forms as the Four-Digit Series but the mean
camber line is defined differently and the naming convention is a bit more complex. The first digit,
when multiplied by 3/2, yields the design lift coefficient (c)) in tenths. The next two digits, when
divided by 2, give the position of the maximum camber (p) in tenths of chord. The final two digits
again indicate the maximum thickness (t) in percentage of chord. For example, the NACA 23012
has a maximum thickness of 12%, a design lift coefficient of 0.3, and a maximum camber located
15% back from the leading edge. The steps needed to calculate the coordinates of such an airfoil
are:

andsoon.....
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5-Digit

16-Series

6-Series

7-Series

8-Series

Advantages

1. Good stall characteristics

2. Small center of pressure movement
across large speed range

3. Roughness has little effect

1. Higher maximum lift coefficient

N

. Low pitching moment

w

. Roughness has little effect
1. Avoids low pressure peaks

N

. Low drag at high speed
1. High maximum lift coefficient

2. Very low drag over a small range of
operating conditions

3. Optimized for high speed

1. Very low drag over a small range of
operating conditions

2. Low pitching moment

Unknown

Disadvantages Applications

1. Low maximum lift coefficient 1. General aviation
2. Horizontal tails

2. Relatively high drag
Symmetrical:

3. High pitching moment
3. Supersonic jets
4. Helicopter blades
5. Shrouds
6. Missile/rocket fins

1. Poor stall behavior 1. General aviation
2. Piston-powered bombers,
2. Relatively high drag yansports

4. Business jets

1. Relatively low lift 1. Aircraft propellers
2. Ship propellers

1. High drag outside of the
optimum range of operating
conditions

. Piston-powered fighters
. Business jets

. Jet trainers

. Supersonic jets

S WN =

2. High pitching moment

3. Poor stall behavior

4. Very susceptible to roughness

1. Reduced maximum lift Seldom used

coefficient

2. High drag outside of the
optimum range of operating
conditions

3. Poor stall behavior

4. Very susceptible to roughness
Unknown Very seldom used



