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Course Goal

Learn how to find the symmetries of a differential equation.

Learn how to use those symmetries to solve the equation.

AA218 is fundamentally a course about solving ODEs and PDEs.

What sets symmetry methods apart from other analytical methods for 
solving differential equations is that they provide a procedure for 
systematically solving nonlinear equations. 
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Typical applications of interest

The two-body problem

Turbulent flow

Solitary waves

Elliptic curves and flow patterns

Geometry of 3D vector fields

Light transmission

Sound propagation

Propulsion

Boundary layers

Flexural waves in beams

Dimensional analysis



4



5

Recommended references
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(1.1)  Symmetry in Nature

Iconaster Longimanus Sunflower
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(1.4)  The twelve-fold discrete symmetry group of a snowflake

Figure 1.1  Hexagonal structure of ice crystals and snowflakes



One can tell that the snowflake has been rotated. 
Therefore the 30° rotation is not a symmetry operation 
for the snowflake. 

Symmetry operations

Suppose we rotate the snowflake by 30°

Figure 1.2  Counter-clockwise rotation by 30°



Symmetry operations

Suppose we rotate the snowflake by 30°

Figure 1.2  Counter-clockwise rotation by 30°

Suppose we rotate the snowflake by 120°

Figure 1.3  Counter-clockwise rotation by 120°



(1.1)

(1.2)

Insert the discrete values 60°, 120°, 180°, 240°, 
300° and 360°. The result is a set of six matrices 
corresponding to the six rotations. 

We can express the symmetry properties of the snowflake 
mathematically as a transformation. 



(1.3)

What about reflections?

The reflection through A-D can be expressed as

Figure 1.4  Reflection through a vertical axis



Another reflectional symmetry is through axis a-d which splits 
the angle between A-D and B-E as shown in the figure below.

Figure 1.5  Reflection axes of a snowflake



(1.4)

The six reflections are



(1.5)

(1.6)

If we combine operations via matrix multiplication, the result is 
always equal to one of the twelve members of the set. For example.

Group properties

Note that commutation leads to a different result

The group is closed under matrix multiplications



The twelve matrices

Are said to form a discrete group with respect to the operation 
of multiplication



(1.7)

(1.8)

Every member of the group has an inverse.  For example

The group is associative. For example

Finally there is an identity element, E, which is a member of the group



Groups may contain subgroups. For example the subset

constitutes a group whereas the subset

does not, since

is not a member of the subset



(1.4)  The principle of covariance



(1.5)  Continuous symmetries of functions and 
differential equations

F and G are real 
analytic functions in 
the group parameter s
and so can be 
expanded in a Taylor 
series about any value 
on the open interval 
that contains s. 

One parameter Lie groups in the plane

Figure 1.6 Mapping of a point and a curve by the group

At s=0 the transformation reduces to an identity

(1.10)

(1.9)



Sometimes we use the word smooth to describe analytic 
functions but not all smooth functions are analytic. For example

Derivatives at x = 0 are zero to all orders and so the 
function cannot be expanded in a Taylor series about x=0.

e−1/x
2

x



(1.11)

(1.12)

Invariance of functions, ODEs and PDEs under Lie groups

A function is transformed as follows

Figure 1.7  Mapping of source to target points by the group

A function is invariant if



(1.13)

Use the transformation (1.9) and (1.13) to transform an ODE of the form

(1.14)

The symmetry of a first order ODE is analyzed in the tangent space (x, y, dy/dx)

Transform the first derivative with the group parameter s constant.



(1.15)

(1.16)

Transform a first order ODE as follows.

If the equation reads the same in new variables,

then the equation is invariant under the group



Example 1.1  Invariance of a first-order ODE under a Lie group

Figure 1.8  The surface defined by a first order ODE



(1.17)

(1.18)

Extended translation group

Transform the equation



(1.19)

(1.20)

(1.21)

General solution

Action of the group on a given solution curve

The solution curve (1.19) is transformed to



(1.22)

(1.23)

Example 1.2  Invariance of a PDE – Diffusion of heat in a conducting solid

The problem is governed by the linear diffusion equation

with boundary conditions



(1.24)

(1.25)

(1.26)

Test for invariance under a three-parameter dilation group.

The exponential factors out of the derivative

The equation transforms as



(1.27)

Invariance holds only if

This is clear from the following

The equation reads exactly the same in new variables.

b = 2a



(1.28)

(1.29)

x = ∞

The boundaries at  t = 0, x = 0

And                   are invariant under the group     

The value of the solution on the boundary

is invariant only if

c = 0

Therefore the problem as a whole is invariant 
under the one-parameter group



(1.30)

(1.31)

(1.32)

We can exploit this symmetry to solve the problem

Similarity variables that are invariant under the group are:

We can expect a solution of the form

Without loss of generality



(1.34)

(1.35)

Substitute the similarity form into the heat equation

where

The solution is expressed in terms of the complimentary error function

ς = x
κ t

Uςς +
ς
2
Uς = 0,          U 0( ) = 1,           U ∞( ) = 0

U = erfc ς( ) = 1− 1
π

e−ς '
2 /4

0

ς

∫ dς '



(1.36)

(1.37)

(1.38)

In general, suppose a Lie group of the form

transforms some partial differential equation

to itself, ie, the untildaed variables satisfy

Then the transformation can be used to construct one 
solution from another.

 !u!t



(1.39)

(1.40)

Example 1.3 – Solutions generated from symmetries

The nonlinear PDE

where

Is invariant under the transformation

ft − fxx = 0



For example, let u be the 
so-called vacuum 
solution,  u=0, and let  f = 
- t - x2/2 then

is an exact solution of the 
given nonlinear equation.

Approach - Generate transformations of the various terms that appear in the 
equation and add them together. 

 !u

x
t = 0.0
t = 0.5
t = 1.0
t = 1.5
t = 2.0
t = 3.0

Another important question: How do we prove that this transformation maps 
the equation to itself?

The transformation (1.40) raises some obvious questions: Where in the world 
does it come from and can it be found through a systematic procedure? Is it a 
Lie group? The answer to both is YES. 



 
!u!t = Dt u − 2 ln 1− f x,t[ ]eu/2⎡⎣ ⎤⎦( ) = ut +

ft +
f
2
ut

⎛
⎝⎜

⎞
⎠⎟ 2e

u/2

1− feu/2

 
!u !x = Dx u − 2 ln 1− f x,t[ ]eu/2⎡⎣ ⎤⎦( ) = ux +

fx +
f
2
ux

⎛
⎝⎜

⎞
⎠⎟ 2e

u/2

1− feu/2

 

!u !x( )2 = ux( )2 +
2ux fx + f ux( )2( )2eu/2

1− feu/2
+

fx +
f
2
ux

⎛
⎝⎜

⎞
⎠⎟
2

4eu

1− feu/2( )2

 

!u !x!x = Dxx u − 2 ln 1− f x,t[ ]eu/2⎡⎣ ⎤⎦( ) =

         uxx +
fxx + fxux +

f
2
uxx +

f
4
ux( )2⎛

⎝⎜
⎞
⎠⎟ 2eu/2

1− feu/2 +
fx +

f
2
ux

⎛
⎝⎜

⎞
⎠⎟

2

2eu

1− feu/2( )2

 

!u!t +
1
2
!u !x( )2 − !u !x!x = ut +

1
2
ux( )2 − uxx

⎛
⎝⎜

⎞
⎠⎟ +

                               
ft − fxx( ) + f

2
ut +

1
2
ux( )2 − uxx

⎛
⎝⎜

⎞
⎠⎟

1− feu/2 2eu/2

Generate 
derivatives

Add to form the 
equation. If     is a 
solution and 

Then     is a solution
ft − fxx = 0

u

 !u



(1.6)  Some Notation Conventions

In group theory we make use of transformations of the following form

(1.42)

where the partial derivatives are

(1.43)



Notation



Einstein used the following notation for partial derivatives. Note the comma

(1.44)

We use the Einstein convention on the summation of repeated indices

(1.45)



Much of the theory of Lie groups relies on the infinitesimal form of 
the transformation expanded about small values of the group 
parameter.

The function that infinitesimally transforms the derivative is of the form

(1.46)

(1.47)

Function 
label

Derivative



 

!x = X x,t,u, s( )
!t = T x,t,u, s( )
!u =U x,t,u, s( )
∂ !u
∂ !x

= ???

∂ !u
∂!t

= ???

 

u(x,t)
!u !x, !t( )

 
d !u !x, !t( ) = ∂ !u

∂ !x
d!x + ∂ !u

∂!t
d!t

Transforming partial derivatives. 

Consider the Lie group 

Note that u is a dependent variable 

The differential in tildaed coordinates is 



 

d!x = ∂X
∂x

+ ∂X
∂u

∂u
∂x

⎛
⎝⎜

⎞
⎠⎟ dx +

∂X
∂t

+ ∂X
∂u

∂u
∂t

⎛
⎝⎜

⎞
⎠⎟ dt =

DX
Dx

dx + DX
Dt

dt

d!t = ∂T
∂x

+ ∂T
∂u

∂u
∂x

⎛
⎝⎜

⎞
⎠⎟ dx +

∂T
∂t

+ ∂T
∂u

∂u
∂t

⎛
⎝⎜

⎞
⎠⎟ dt =

DT
Dx

dx + DT
Dt

dt

d !u = ∂U
∂x

+ ∂U
∂u

∂u
∂x

⎛
⎝⎜

⎞
⎠⎟ dx +

∂U
∂t

+ ∂U
∂u

∂u
∂t

⎛
⎝⎜

⎞
⎠⎟ dt =

DU
Dx

dx + DU
Dt

dt

 

DU
Dx

dx + DU
Dt

dt = ∂ !u
∂ !x

DX
Dx

dx + DX
Dt

dt⎛
⎝⎜

⎞
⎠⎟ +

∂ !u
∂!t

DT
Dx

dx + DT
Dt

dt⎛
⎝⎜

⎞
⎠⎟

 

DU
Dx

− ∂ !u
∂ !x

DX
Dx

− ∂ !u
∂!t

DT
Dx

⎛
⎝⎜

⎞
⎠⎟ dx +

DU
Dt

− ∂ !u
∂ !x

DX
Dt

− ∂ !u
∂!t

DT
Dt

⎛
⎝⎜

⎞
⎠⎟ dt = 0

Now work out the differentials at a fixed value of the group parameter s.

and substitute

Gather terms



 

DU
Dx

= ∂ !u
∂ !x

DX
Dx

+ ∂ !u
∂!t

DT
Dx

DU
Dt

= ∂ !u
∂ !x

DX
Dt

+ ∂ !u
∂!t

DT
Dt

 

DX
Dx

DT
Dx

DX
Dt

DT
Dt

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
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∂!t

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

DU
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DU
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⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

 

∂ !u
∂ !x
∂ !u
∂!t

⎡

⎣

⎢
⎢
⎢
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⎤

⎦

⎥
⎥
⎥
⎥

=

DX
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DT
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DX
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⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

−1
DU
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⎡

⎣

⎢
⎢
⎢
⎢
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⎥
⎥
⎥
⎥

the differentials dx and dt are independent therefore 

Solve for                 and               . ∂ !u / ∂ !x  ∂ !u / ∂!t



 

!x = eax
!t = ebt
!u = ecu

 

∂U
∂x

+ ∂U
∂u

∂u
∂x

⎛
⎝⎜

⎞
⎠⎟ =

∂ !u
∂ !x

∂X
∂x

+ ∂X
∂u

∂u
∂x

⎛
⎝⎜

⎞
⎠⎟ +

∂ !u
∂!t

∂T
∂x

+ ∂T
∂u

∂u
∂x

⎛
⎝⎜

⎞
⎠⎟

∂U
∂t

+ ∂U
∂u

∂u
∂t

⎛
⎝⎜

⎞
⎠⎟ =

∂ !u
∂ !x

∂X
∂t

+ ∂X
∂u

∂u
∂t

⎛
⎝⎜

⎞
⎠⎟ +

∂ !u
∂!t

∂T
∂t

+ ∂T
∂u

∂u
∂t

⎛
⎝⎜

⎞
⎠⎟

 

0 + ec ∂u
∂x

⎛
⎝⎜

⎞
⎠⎟ =

∂ !u
∂ !x

ea + 0 ∂u
∂x

⎛
⎝⎜

⎞
⎠⎟ +

∂ !u
∂!t

0 + 0 ∂u
∂x

⎛
⎝⎜

⎞
⎠⎟

0 + ec ∂u
∂t

⎛
⎝⎜

⎞
⎠⎟ =

∂ !u
∂ !x

0 + 0 ∂u
∂t

⎛
⎝⎜

⎞
⎠⎟ +

∂ !u
∂!t

eb + 0 ∂u
∂t

⎛
⎝⎜

⎞
⎠⎟

ec ∂u
∂x

= ea ∂
!u

∂ !x

ec ∂u
∂t

= eb ∂
!u

∂!t
 

∂ !u
∂ !x

= ec−a ∂u
∂x

∂ !u
∂!t

= ec−b ∂u
∂t

Example – dilation group



(1.7)  Concluding Remarks

(1.8)  Exercises






