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One of the simplest trajectory programs for the powered flight of a missile through the atmosphere is the
“gravity turn,” which results from simply keeping the propulsive thrust always parallel to the vector
velocity. However, even for a “point mass” missile, in a uniform gravitational field with constant thrust
and no aerodynamic forces, the differential equations for the motion are nonlinear and require numerical
integration. To avoid the necessity of deing this computation anew for each missile preliminary design, a
method has been found for integrating the equations for the singular case of zero initial velocity. When
expressed in terms of appropriate dimensionless variables, the resulting solutions are “universal” in the
sense that they constitute a good approximation to any gravity turn with a small, nearly vertical, initial
velocity. The solutions depend upon two parameters, the initial thrust to weight ratio » and a parameter %
which corresponds to the initial “kick angle” of nonsingular gravity turns.

I. INTRODUCTION

HE powered flight trajectories of long-range
missiles, satellites, etc., usually involve an
“atmospheric” portion, in which aerodynamic forces
and moments are of importance, and a “post atmos~
pheric” section, in which these effects are negligible.
During this latter part of the flight, the trajectory to be
followed is fairly simple. Holding the thrust attitude
angle ¢ (relative to the horizontal) constant yields
(approximately) maximum range for a surface-surface
missile,! while varying ¢ so that its tangent is a linear
function of time, tamy=a—0f, results in a satellite
orbit of (approximately) maximum altitude? (These
programs are the exact solutions of the maximum range
or maximum satellite altitude problems, respectively,
if the gravitational field is uniform, in magnitude and
direction, over the powered portion of the flight. They
will be good approximations to the optimum programs
provided the length of the powered flight trajectory is
small compared to the earth’s radius.)

Neither of these programs is feasible for the atmos-
pheric portion, since both would give rise to large angles
of attack. A sensible and (in principle) simple trajectory
which can be used for this part is the “gravity turn,”
sometimes referred to as a “zero angle of attack” or
“no-lift” trajectory. It consists simply in keeping the
thrust always parallel to the velocity, starting from
some nonzero, nonvertical, initial velocity, v,.

While the equations which describe this trajectory
are quite simple, they are nonlinear (even if we neglect
aerodynamic forces and thrust variations) and not easy
to handle except by numerical methods. Thus, each
missile preliminary design involves the integration of
these same gravity turn equations on a computing
machine. Considerable time and effort could be saved
if universal, albeit approximate, solutions of these
equations were available.

(I;B') D. Fried and J. M. Richardson, J. Appl. Phys. 27, 935
56).

2B. D. Fried, “On the powered flight trajectory of an earth
satellite,” Jet Propulsion (to be published).

We describe here a method which has been used to
obtain such universel solutions for gravity turns which
begin very shortly after the launching time. The
physical problem is presented in Sec. II, and an analy-
tical solution for the case of constant thrust-weight
ratio is given in Sec. III. A method of numerical
solution for the case of constant thrust and mass flow
rate is discussed in Sec. IV and some illustrative curves
are given. A more complete set of such curves has also
been prepared.

IL THE GRAVITY TURN EQUATIONS OF MOTION

We treat the missile as a mass point, subject to a
thrust F, whose magnitude is a specified function of
time and whose direction can be varied at will. The
gravitational force field is assumed to be uniform and
aerodynamic forces are neglected. The velocity v then
satisfies the equation

mdv/dt=F—mgk, 1)

where k is a unit vector in the vertical direction and m
is the instantaneous mass.

A “gravity turn” is defined as one of the class of
trajectories obtained when the thrust is kept parallel
to the velocity,

F=Fz, where =1=v/s. @
Since
V=197
we have
dv/di=?.)‘=1+7«’0', (3)

where e=dry/d! is normal to v. Resolving (1) along =,
and ¢ we have

9= g{n—cos B,
18=g sinp,
n=F/mg

@

where

is the thrust to weight ratio and
B=cos!(%1-k)
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is the angle between the velocity vector and the vertical.

We assume that the thrust magnitude and the mass
are prescribed functions of time. (Thus we neglect, for
example, any varlations of thrust with altitude.) Then
#(t) is known, and given any nonzero, initial values of
7 and 8 we can integrate Eqs. (4) to find »(¢) and B(2).
Zero values for v(0) and B(0) are conventionally ex-
cluded, (a) on physical grounds, for if v=0 the velocity
attitude angle is no longer well defined, and (b) on
mathematical grounds, for if R is any closed region of
the (1,8,v) space, then the system of Eqs. (4) satisfies a
Lipschitz condition if and only if R does not contain
the origin. We shall return to this question later.

Two particular functions #(f) are of interest. If
n=constant, then (4) can be integrated explicitly.?
This is not the situation usually encountered in appli-
cations, but the results nevertheless provide useful
insight regarding gravity turns. The case where F is
constant and m is a linear function of ¢ is a fairly good
approximation to many actual situations. With

m=mo—ut 0<i<T
and
F=gul=puc
we have
n=pl (my—pt) ' =n(1—pt/mo)7, S)

where 9= F/mqg is the initial thrust-weight ratio. This
case, which requires a numerical solution of the differ-
ential equations, will be discussed more fully in Sec. IV.
Before considering either of these special cases, it is
convenient to write (4) in terms of dimensionless
variables,*
t='mg1'/u

(6)

v=cu/n.

To avoid the manipulation of trigonometric identities,
we also introduce

z=tang/2. 9,

Then (4) becomes
du/dr=n(t)— (1—2%) (1+2z5)? 8)
udz/dr=z. ©

L AN EXACT SOLUTION FOR CONSTANT
THRUST TO WEIGHT RATIO

We now specialize to the case where #(}) is constant,
with #n>1. The quotient of (8) and (9) gives

d(lnw)/dz=nz"1— (1 —2%) (14-22) 1z (10)
which can be integrated to give
u=Az" (142, 11)

# Kooy and Uytenbogaart, Ballastics of the Future (Technical
Pub;lZSéuin:fg Company, H. Stam, Haarlem, Netherlands, 1946),
pp- .

* Note that the final value of = (corresponding to t=T) is just »=
pT/mo=(r—1)/r, where r (mass ratio) and » (propellant weight/
gross weight) are parameters commonly used to characterize one
stage of a missile. Thus, 0<7<1. Since a gravity turn is usually
ended before 8==/2, we have also 0<z<1.
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where 4 is determined by the initial values, %o and 2,

A=u a2 (1422 T (12)
Then (9) and (11) give
r=Az"[ (n— 1)1+ (n+1)"1] (13)

if we choose our origin of time so that =0 when z=0.

Examination of (11), (12), and (13) reveals several
items of interest.

(a) We can find # as a function of = by eliminating 2
between Eqs. (11) and (13). If we write this in the form
u=Af(r/A), then for a given value of », the resulting
function f will be a universal one, in the sense that it
does not depend on the initial conditions %, and 2.

(b) Equations (11) and (13) satisfy the differential
equations (8), (9) subject to the initial condition %=1,
when z=2,. (This occurs at a time

ro=uo(14+2) [ (n— 1)+ (n+1)"152].  (14)

However, we notice that they also satisfy the initial
condition #=2=0 at 7=0, irrespective of the value of
4. Because of the singularity at #=0, this initial con-
dition does not select a unique solution of the differ-
ential equations, but rather a one-parameter family of
solutions.

This limiting case, #=2=0 initially, is of practical
interest when we consider gravity turns which begin
very shortly after launch. At this time, %, and 2, will
have nonzero values and there is no objection in
principle to a straightforward integration of the dif-
ferential equations. However, if #,, 201, the solutions
obtained for the limiting case, %o, 200, will be a good
approximation to the desired ones. In fact, the use of
nonzero initial values in computing gravity turns is, in
most instances, essentially a computational artifice to
avoid dealing with the singularity at u#y=2,=0.

In the following section we shall show how to obtain
such a one-parameter family of solutions of the differ-
ential equations, for the case where # is given by (5),
which satisfy the initial conditions #=2z=0.

IV. CONSTANT THRUST AND MASS FLOW RATE

For a thrust to weight ratio which varies with time,
e.g., as given by (5), the differential equations must be
solved numerically. Because of the singularity at
u=23=0, a straightforward numerical integration start-
ing from this initial condition is impossible. Instead, it
is convenient to convert (8) and (9) to a single integral
equation, with the desired boundary conditions in-
cluded. With

Z=¢? (13)

(8) and (9) become
du/dr=n(1—r)"+tanhe, (16)
w(do/dr)=1, an
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whence and has the correct boundary condition, ¢(0)=—1.

T This equation is well adapted for iteration, starting,
u(r)=~—nlog(1— TH’f tanhg(s)ds (18) e.g., with the initial choice ¢(s)=—1.
0

0 s
a form which already takes care of the initial condition l ke
#(0)=0. From (17) we have ) 7215 /
( ) T dS k 9 /
p(r)=) ——
1 u(s)

1 ds -8 k=223
=f k. (19) /
! r;log(l—s)-f tanhg(s)ds’ S /
0

This satisfies the initial condition 2(0)=0 (i.e., ¢(0)

= — ), irrespective of the value of the constant of 6 ke5
integration %, for with any ¢, 0<a<1, we have (p—1)s ]
<u(s)<bs for 0<s<a, where _ - /
b=1+4n—nlog(1—a)>0. E [ x=7
Then /%
lna/r<f“ ds ( k)<lna/r /
> et+k)< 4 k=9
b 1 u(s) n—1 ]

yd
and since fi%ds/u(s) is finite it follows that for any s / // )
(finite) value of %, ’ / // kri2
o(0)= lim o(r) = — = 2 A AT L
Because the range of ¢ is not finite, it is convenient //
to introduce / =
Yy=tanhe. (20) K A
Then y satisfies the integral equation 7 %K
1 ds o
¥(r)=tanh f k] (21) 0 1 2 3 a4 3 6 7 & 9 0
! 7log(l—s)— f Y (s)ds’ J Fic. 2. Attitude variable, z=tang/2, as a function of time for
0 n=1.5 and several values of &.
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The parameter k, which plays a role analogous to 8

that of 4 in the previous section, labels the various
curves of the one-parameter family.® From (7), (15), -
and (19) we see that 7

1
k=—p(1)=—Inz(1)=—1In tanﬂ—(z—)— (22)

B(1) being the attitude angle at “time” r=1, i.e., that I~ w0
time at which the mass becomes zero. In practice, the L /
final value of 7, i.e., », is frequently in the range between 5
0.7 and 1.0 so that % is approximately equal to —Inz(»). -
{Since #—w at =1, and Z=2z/u, the slope of the B /
z vs T curve will be small in this region.) : k=223
Once (21) has been iterated to give a sufficiently
accurate ¥ (7), we can find %(z) and z(r),

Ty tp1}
-y
T

I
\\
~N

w(r)=—nlog(1—7)+ f y)ds  (23) -

(H-nﬁ)* (24 . L /// vr
z={——). : i
1 L
o ’ - oD ;
- Il : o5
- / d / // | w2
g i jamezz===cak
B o 4 2 3 4 5 6 7 8 8 10
8 / I Fic. 4. Incremental speed ii as a function of time for
o / n=1.5 and several values of %.
. / / We find that the curves of # vs 7 for given  depend so
- /1] little on the value of  that it is difficult to make a
B readable plot showing more than a few curves of the
R / ” family (see Fig. 1). It is therefore convenient to split
| /] u(r) into two parts,
- / / () =1s(7)+3i(7), (25)
2s
27 L / / / /I where
B / // us(r)=—nlog(l—7)—r (26)
‘T / / / / / l is the velocity corresponding to a vertical “sounding”
flight (z=0) and is thus independent of &, while

A T
Z VA 5
B AT a()= [ Tpo)+134s @
yAVA Vi I z 0
: i A .
2r / 2 ~7 e is;a function of % as well as of 9. Since |#(7) | << |us(7) |
/] A4LA L~ f—r 7178 in almost all of the cases which have been calculated,
B / // / 2 V' TZ ;’:; #,(r) provides a good first approximation, which can
T v o be corrected, if necessary, by adding 7 (7).
& e In Fig. 2, we show z vs 7 for n=1.5 and several values
Npgr— L of k. Figure 3 shows the function %,(7), defined by
P rerarea e Eq. (.26), for seYeral valuf:s of #, while Fig. 4 gives the
€ velocity correction # which must be added to #, for
Fic. 3. Sounding speed #, as a function of time for the case n=1.5 and various values of k. Finally, Fig. 5
several values of 7. shows % plotted against z for the same values of 4 and
& It can be shown that Eq. (21) has exactly one solution for each k. Lines O_f constant 7 are a!so given. The small slope
positive value of &. of these is another expression of the already noted
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circumstance that # is a much weaker function of %,
for given 7, than is z.

We have made many curves, similar to Figs. 2, 4,
and 5, with values of # ranging from 1.0 to 4.0.

V. CONCLUSIONS

A technique has been described for obtaining “uni-
versal” solutions to the equations describing the gravity
turn of a point missile with constant thrust and mass
flow rate. Although numerical integration is required,
the number of parameters is diminished by using ap-
propriate dimensionless variables and by working with
the limiting case obtained by allowing the initial

velocity magnitude to approach zero, while its direc-
tion approaches the vertical. The singularity in the
differential equations associated with this limiting
initial condition is avoided by using the equivalent
integral equation. For each choice of initial thrust-to-
weight ratio, a one-parameter family of trajectories
results. The parameter k which distinguishes individual
members of the family is analogous to the “initial kick
angle”’ of nonsingular gravity turns. The results ob-
tained by the present method may be considered as a
good approximation to those obtained by numerical
integration of the differential equations (16) and (17),
starting with a small, nearly vertical initial velocity.
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