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Derivation of the Static Thrust Expression 

•  Force balance in the x direction 
 
 

 
•  Assumption 1: Static firing/ External gas is at rest 
•  Assumption 2: No body forces acting on the rocket 
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Derivation of the Static Thrust Expression 
•  First Integral: 

–  Since As+Ac and Ae+Ac are closed surfaces and Pa is constant 

–  These integrals can be separated and combined to yield the 
following simple expression for the first integral 
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Derivation of the Static Thrust Expression 
•  Second Integral: 

–  Assumption 3: No body forces on the working gas 
–  Momentum equation: 

–  Assumption 4: quasi-steady operation  
–  Define control volume (cv) as volume covered by Ac+Ae 
–  Assumption 5: cv is constant in time 
–  Integral of the momentum eq. over the cv 
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•  Second Integral: 
–  Use Gauss’s Theorem to obtain 

–  With use of the no slip condition, this equation takes the following 
form in the x-direction 

–  We have used the following assumptions 
•  Assumption 6: Quasi 1D flow at the nozzle exit. Higher order averaging 

terms are ignored. Velocity parallel to x-axis at the exit plane 
•  Assumption 7:  

•  Average quantities have been introduced at the exit plane 

 
 
 

Derivation of the Static Thrust Expression 
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•  Combined to obtain the thrust force 

•  Introduce the mass flow rate: 

•  Two terms can be combined by introducing the effective 
exhaust velocity, Ve 

•  Maximum thrust for unit mass flow rate requires 
–  High exit velocity 
–  High exit pressure 

•  This cannot be realized. Compromise -> optimal expansion 

 
 
 

Derivation of the Static Thrust Expression 
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Convergent Divergent Nozzle Design Issues 
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•  For isentropic flow - perfect gas-no chemical rxns 
1. Mass flow rate relation for chocked flow 

2. Area relation (Nozzle area ratio-pressure ratio relation) 

3. Velocity relation 

 

 

•  Solve for pressure ratio from 2 and evaluate the velocity 
using 3. 

 
 
 

 
 
 

Convergent Divergent Nozzle Design Issues 
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•  Thrust equation: 

•  At fixed flow rate, chamber and atmospheric pressures, 
the variation in thrust can be written as 

•  Momentum equation in 1D 

•  Substitute in the differential expression for thrust 

•  Maximum thrust is obtained for a perfectly expanded 
nozzle 

 

 
 
 

Maximum Thrust Condition 
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A)  Equilibrium: 
–  Mechanical:  

–  Needed to define an equilibrium pressure 
–  Very fast compared to the other time scales 

–  Thermal: 
–  Relaxation times associated with the internal degrees freedom of the gas 
–  Rotational relaxation time is fast compared to the other times 
–  Vibrational relaxation time is slow compare to the rotational. Can be important 

in rocket applications.  
–  Calorically perfect gas assumption breaks down. 

–  Chemical: 
–  Finite time chemical kinetics (changing temperature and pressure) 
–  Three cases are commonly considered: 

–  Fast kinetics relative to residence time- Shifting equilibrium (Chemical composition 
of the gases match the local equilibrium determined by the local pressure and 
temperature in the nozzle) 

–  Slow kinetics relative to residence time- Frozen equilibrium (Chemical composition 
of the gases is assumed to be fixed) 

–  Nonequilibrium kinetics (Nozzle flow equations are solved simultaneously with the 
chemical kinetics equations) 
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B) Calorically perfect gas 
–  Typically not valid. Chemical composition shifts, temperature 

changes and vibrational non-equilibrium. 

C) Effects of Friction 
–  Favorable pressure gradient unless shock waves are located inside 

the nozzle. 
–  The effects can be list as 

•  Nozzle area distribution changes due to displacement layer thickness 
•  Direct effect of the skin friction force 
•  Shock boundary layer interaction-shock induced separation. 
•  Viscous effects are small and generally ignored for shock free nozzles 

D) Multi Phase Flow Losses 
E) Effects of 3D flow field 

–  Velocity at the exit plane is not parallel to the nozzle axis, because of 
the conical flow field.   
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–  Types of nozzle geometries 
•  Conical nozzle 

–  Simple design and construction 
–  Typical divergence angle 15 degrees (~2% Isp loss) 
–  3D thrust correction can be significant 

•  Perfect nozzle 
–  Method of characteristics to minimize 3D losses 
–  Perfect nozzle is too long 

•  Optimum nozzle (Bell shaped nozzles) 
–  Balance length/weight with the 3D flow losses 

•  Plug nozzle and Aerospike nozzle 
–  Good performance over a wide range of back pressures 

Other Nozzle Design Issues 
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Optimum Bell Nozzle - Example 
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Plug and Aerospike Nozzles 
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•  Thrust equation: 

•  Thrust coefficient: 

 

•  For isentropic flow and calorically perfect gas in the 
nozzle the thrust coefficient can be written as 
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•  Mass flow equation (choked and isentropic flow of a 
calorically perfect gas in the convergent section of the 
nozzle): 

•  Definition of c*: 

 
•  c* can be expressed in terms of the operational 

parameters as 

 
 
 

Definitions - c* Equation 
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•  Combine the definitions of the thrust coefficient and c* to express the 
thrust 

•  Think of nozzle as a thrust amplifier and CF as the gain 
•  Specific Impulse: Thrust per unit mass expelled 

•  Impulse Density: Thrust per unit volume of propellant expelled 

 
 
 

Definitions – Specific Impulse and Impulse density 
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•  The total impulse is defined as 

•  Average thrust 

•  Delivered Isp 

 
 
 

Definitions – Total Impulse, Average Thrust, Delivered Isp 
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•  For the specific value of 
•  CF varies from 0.75 to 2.246  

–  Assuming chocked flow 
–  CF is order 1 

•  For the case of convergent nozzle  
–  For                     subsonic flow in the nozzle 
–  CF varies from 0.75 (optimal) to 1.25 

•  For convergent divergent nozzles 
–  For a given pressure ratio            there exists an optimum area ratio 

that maximizes the thrust coefficient  
–  Right of the optimum is overexpanded 

•  Shock structure is initially outside the nozzle 
•  For larger area ratios shock moves inside the nozzle and the boundary 

separation takes place  
•  This has a positive impact on the CF 

 
 
 

Observations on the Thrust Coefficient Curves 
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–  Left of the optimal is underexpanded 
•  No separation in this case 

•  Optimal area ratio increases with increasing pressure ratio 
–  Upper stages have large nozzle area ratios (i.e.70) 
–  Booster stages have low area ratios (i.e. 10) 

•  Vacuum Isp and sea level Isp values can be quite different 
–  For example:  

•  Vacuum value: 1.9  
•  Sea Level value: 1.2 (58% reduction in thrust) 

•  All curves are enveloped by the vacuum line. Vacuum Isp is 
always the largest value. 

•  All of the qualitative observations are valid for other gamma 
values. 

 
 
 

Observations on the Thrust Coefficient Curves 
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•  Summerfield Criterion: 
–  Danger of separation is present if 

–  Calculate Pe from isentropic flow equations 
–  Separation is likely if 

–  If                                can be lower 
–  For large nozzles modern data suggests 

•  With separation flow ignores the divergent section beyond the starting 
point of the oblique shock wave 

•  This limits the drop in the thrust coefficient 
•  Conical nozzles operate better at low Pe/Pa ratios for which the 

separation is expected. 
–  Nozzle exit divergence angle determines the stability of the separation zone. 

As the angle increases, the stability of the separation zone improves 

 
 
 

Shock Induced Flow Separation in Nozzles 
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