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ABSTRACT

A technique is described for visualizing unsteady
flows which are self similar in time. The method
makes use of a reduction of the equations for unsteady
particle paths to an autonomous system in similarity
coordinates. The entrainment diagram for a given
flow corresponds to the phase portrait of this system
and the flow structure is analyzed in terms of its
critical points. This approach provides a powerful
method for analyzing the dependence of the flow on
various governing parameters.

NOMENCLATURE

a,b,c,d - matrix coefficients

f,g - self similar Falkner-Skan stream functions

G - self similar round jet stream function

H - self similar vortex ring stream function

M - governing parameter

P,q - trace and determinant of the matrix of coeffi-

cients
Re - Reynolds number
t - time

T - velocity vector
Ue - free stream velocity

Uo - plate velocity

L spatial coordinates
B - pressure gradient exponent
E,n - similarity coordinates

Ec’nc - coordinates of a critical point

€ - polar angle

EC,S - coordinates of a critical point in spherical
coordinates

@ - vorticity

T - Lat

INTRODUCTION

This paper is addressed to the problem of vis-
ualizing unsteady fluid motion. Observations of or-
ganized structure in turbulence have led to an in-
creased emphasis on direct analysis or measurement of
complex unsteady flow fields. An extremely important
element in current research is a renewed emphasis on
the use of flow visualization and a widespread aware-
ness that flow visualization can play a very broad
role in improving our physical understanding of com-
plicated turbulent phenomena (Kline 1978).

The instantaneous streamline patterns which re-
sult from these investigations provide a form of flow

visualization combined with substantial amounts of
quantitative information about the flow. However,
there are significant conceptual problems involved in
interpreting unsteady streamline patterns as they re-
late to entrainment. In an unsteady flow, streamlines
can move across fluid pathlines; thus the unsteady
stream function provides little insight into the be-
havior of the fluid itself.

Particle trajectories drawn in physical coordi-
nates also present similar conceptual difficulties.
If the integration of the particle-path equations is
carried out over a volume of particles, then each
point in space will be traversed by an infinite set of
trajectories, each with a different slope correspond-
ing to the passage of particles through the point at
successive instants of time. In addition, the pat-
tern of particle paths, like the pattern of stream-
lines, depends on the frame of reference.

Certain time-dependent flows can be reduced to
a self-similar form. Such flows usually depend on
one or two global parameters. In this case, some of
the above objections can be removed by reducing the
equations for unsteady particle paths

dxi

T - u &t (1)

to an autonomous system in similarity coordinates.

We shall call the phase portrait of this system, the
entrainment diagram of the flow. It is a Lagrangian
representation of the unsteady flow pattern in a sys-
tem of scaled spatial coordinates. There are several
useful elements of this technique

i) The entrainment diagram provides a visual
picture of the flow which is invariant for
various moving observers.

ii) The flow structure is described in terms of
a limited set of critical points in the en-
trainment diagram. Thus the technique pro-
vides a quantitative scheme for identifying
and classifying related features of various
classes of self-similar flows.

The entrainment diagram can be used to ana-
lyze the dependence of a flow on various
governing parameters.

iii)

At this point it may be noted that the restric-
tion to flows which are self-similar in time turns
out to be remarkably general. Even when we further
restrict ourselves to flows which are amenable to
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simple stretching transformations’ the list of cases
is quite long and includes virtually all of the flows
which we ordinarily think of as self similar in space
(Cantwell 1981).

In the present paper we will focus our attention
on element (iii) of the entrainment diagram technique
and demonstrate its application to the analysis of
three flow problems; the classification of Falkner-
Skan boundary layers, transition in the axisymmetric
jet and reverse transition of the vortex ring. In
each case the dependence of the flow pattern on gov-
erning parameters will be demonstrated.

EXAMPLE 1.
CLASSIFICATION OF FALKNER-SKAN BOUNDARY LAYERS

These are steady boundary layers with an imposed
streamwise pressure gradient which varies according
to a power law in the x-direction. Nevertheless we
will begin the analysis with a similarity form appro-
priate to the unsteady boundary layer equations. In
terms of the stream function

3u 3
_Jk_ 3y _Jk_ L __i __E gy 00 2)
Jyst 3y x93y Ix 3x 3

3y 3y
where the free stream velocity Ue is given by

U () = e €}
The constant, M, determines the rate at which Ug

varies and is the parameter which governs the motion
in the x-direction. The appropriate similarity form
is

118
= 2B 2058 gy )
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Substituting (3), (4) and (5) into (2) leads to
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The governing partial differential equation no longer
depends on time and thus (4) and (5) are correct
forms. When expressed in terms of £ and n the equa-
tions for unsteady particle trajectories become

d& _ __E
dt ~ 8 T 18 ™
dn_ _, _I (8)
at - B T2

where T = {n t.

The Falkner-Skan solutions are usually expressed in
the form

! In the general case in two-dimensions the basic
similarity variables are of the form (Cantwell 1978)

£=t7f (x-X(t))cos(atnt + bt)=(y-I(t))sin(alnt + bt)
(x-X(t))sin(alnt + bt)+(y-Y(t))cos(alnt + bt)
Where k, a and b are arbitrary constants and X(t)
and Y(t) are arbitrary functions of time. In the
case of simple stretching transformations a=b= X(t)-
Y(t)=0.

17.
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One can easily verify that (9) is equivalent to (4)
where

g(E,m) = £AB/2 ¢y 0

0d 5= n/g(l-B)lz‘

In terms of f(s) the equations (7) and (8) become

Lo - Ser e an
1-8
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In the neighborhood of a critical point (E N ), the
above equations may be expanded as

£ - a@-g) + bemny) a»
an _ oo ~
D= eE-£) + dnmn) as
where
AF) 5 alll oF
a= e e N ,
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3F, |
d= (15)
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The nature of the critical point is completely deter-
mined by the trace and determinant of the matrix of
coefficients.

p = -(atd) (16)
= ad - bc 17)

In order to evaluate p and q we make use of the fol-
lowing relations derived from setting (11) and 512)
equal to zero at (5 R ). Note se =N, /& 2.

1-8
' EC
£ (sc) e T (18)
f(sc) =0 19)
Using (15), (18) and (19) the coefficients become
3(B-1)/2
1-£ "
8 ==l ( 2 )‘cgc £(s) (20)
g 5 38/2— 2 fn(s ) (21)
2 3 3
_B__
_ 1-e“c5 M -g2f 2?72,
=i - £ £y 2
_a+8) . (a-8) 38/2 - 3/2 ..
d = 2(1-6) —————ﬂcic f (Sc) (23)
Evaluating p and q we have
(8-3) (24)

P = 7(a-R)
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1+
q= ﬁ (25)
Note that the evaluation of p and q does not require
an explicit knowledge of f(s). Figure 1. indicates
the various critical points associated with different
values of B.
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Figure 1. Trajectory of the critical point of
the Falkner-Skan solutions in the (p,q) plane.

The line gq=p-1 is gotten by eliminating B between (24)
and (25). Well known cases include

i) (B=0) The Blasius Layer - the critical point
in this case is a stable node with (p,q)=
(3/2,1/2). The entrainment diagram for this
flow is shown schematically in Figure 2.

32 7%“
1 % 1 §

Figure 2. Entrainment diagram for the Blasius
Layer.

ii) (B=1/3) Constant stress layer - this occurs
where the line g=p-1 osculates with the
parabola q=p?/4. It represents a situation
in which a mildly favorable pressure gradient
balances diffusion from the wall to produce
a boundary layer with a wall shear stress
which remains constant with x. The entrain-
ment diagram is similar to Figure 2. but
with a star point at the leading edge.

| ’I%
2“/‘“ 1 §

Figure 3. Entrainment diagram for the constant
stress layer.

iii) (B=-1) Jeffrey - Hamel Flow - This represents
the case of flow in a diverging channel pro-
duced by a volume source at the vertex. It
happens to be a case where length scales in
both coordinate directions vary like vE.

The entrainment diagram is shown schematical-
ly in Figure 4.

Figure 4. Entrainment diagram for the flow in a
diverging channel (ewe pesribLe Jolutien),

In the context of discussing the Blasius Layer we may
also consider the case of an impulsively started plate.
For this case

u=U (l-erf(n)); n = =— (26)
@ 4vt

The particle paths in similarity coordinates are

Lo Qrert) - £ @7
dn _ _n
a0 (28)

where £=x/Uot, n=y/v4vt and T=2n t.
with a critical point at (Ec,nc) = (1,0).

Near the critical point (27) and (28) may be expanded
as

%f- -1 2/ £-1

= (29)
dn -
T 0 -1/2 n

The critical point is a stable node with (p,q)=(3/2,
1/2); i.e. the same (p,q) values as for the steady
Blasius Layer. The entrainment diagram for this flow
is shown schematically in Figure 5.

4 2
——;—‘—1-&:45%,,5

Figure 5. Entrainment diagram for the impulsive-
ly started flat plate.

Inclusion of the starting process in the analysis
of the phase portrait of the particle path equations
leads to a powerful method for analyzing the dynamics
of fluid motion. In Example 2 we will briefly re-
view results published previously (Cantwell 1981) for
transition in the axisymmetric jet. This will serve
to introduce Example 3 in which the application of
the entrainment diagram technique to the problem of
relaminarization or reverse transition in the impul-
sively produced vortex ring will be described.
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The purpose for contrasting these two examples with
each other is to illustrate the fundamentally differ-
ent nature of the Reynolds number dependence of the
two flows.

In each case we will be considering solutions of
the linearized equations of motion.

V.au=0 (30)

Uxu =@ (31)

da 2 —

T v w (32)
EXAMPLE 2.

TRANSITION IN THE IMPULSIVELY STARTED ROUND JET

In this section we will review the behavior of
an impulsively started, axisymmetric laminar jet.
The Reynolds number is, Re=(J/p)1 2/\1, where J/p is
the strength of the momentum source which produces
the jet. Dimensional considerations lead to a formu-
lation of the problem which is self similar in time
in the variables £ = r//Vt and 6, where r and 6 are
the raduis and polar angle in spherical polar coordi-
nates.

We will make use of the analytic solution for the
limit Re + 0. The Stokes stream function for this
case is given by

y=v 32 V260 33)
Substituting (33) into (30) to (32) and solving for

G leads to

2
2 -E%/4
_ Re 2 4 5 _ b\erffE
G(E,8)= 167 sin 8<2£ -/_— e (25 E) (2>> (34)

m

By any conventional measure the above solution has
only a trivial dependence on Reynolds number. How-
ever an examination of particle trajectories associ-
ated with (33) and (34) reveals a remarkably complex
structure. The equations for particle trajectories
are given by

9 o u(r,8,t5Re) ; (35)

de - v(r,6,t;Re)
dt dt T
where u and v are the radial and tangential veloci-
ties. In terms of similarity variables the equations
become
9 uee.oirey - & 5 98 o V(E,85Re)
3t - UE,85Re) - 5 5 o= 3 (36)

Where

U(E,BiRe) = ——i— 385 V(E,65Re) = s 28 (37)

Esinf

and T = Int.
(37) leads to

de _ Re? cost <§ el e—gzll» _(% _ %)erf(%))_ % (38)

Substitution of (34) into (36) using

20 A

2 . 2
d8 _ _ Re” sinf (1 1 =£7/4 (1 3 39
T < t=——'e -(7 + T)erf (%)) (39

e £

The structure of the flow is examined by finding and
classifying critical points of (38) and (39); points
(Ec,8.) at which both right hand sides are equal to
zero. The zeros of (39) are at (6 = 0,7 all £) and
(€ = 1.7633 all 6) and are clearly the same for all
Reynolds numbers. Setting the right hand side of (38)
equal to zero gives

(40)

2
3 -E /4 [ €
c 1 c c 1 c
<2_ e '<2_ - e—)“f(z—»wssc

Equation (40) defines a family in the (£,8) plane for
various values of the Reynolds number. Intersections
between (40) and the zeros of (39) locate critical
points in the entrainment diagram of the solution (34).
Figure 6 below shows schematically the entrainment
diagram of (34) at three values of the Reynolds number.

e B e,

O<Re<4706 6T0cRaclo.ONN  Redlo.otor

Figure 6. Entrainment diagrams of G(£,8) (equa-
tion 34) for various Reynolds number ranges.

For sufficiently small Reynolds number, pathlines con-
verge to a single stable node which lies on the axis
of the jet. At a Reynolds number of 6.7806 the pat-
tern bifurcates to a saddle lying on the axis of the
jet, plus two stable nodes lying symmetrically to ei-
ther side of the axis. At a Reynolds number of
10.09089 the pattern bifurcates a second time to form
a saddle and two stable foci. The Reynolds number de-
pendence of the flow is conveniently summarized by the
trajectory of the critical points of (38) and (39) in
the (p,q) plane shown in Figure 7.

9=5%

#

Re= 67806

ReP oo

Figure 7. Trajectory of ‘the critical points of
(38) and (39) in the (p,q) plane.

Several aspects of this work which have important im-
plications for our understanding of unsteady shear
flows should be noted.

i) A vortex rollup such as that depicted in Fig-
ure 6 is usually thought of as an essential-
1y nonlinear phenomenon. Yet here we see
that a rollup process is contained in the
structure of a linearized solution of the
equations of motion.

ii) The vortex rollup, or focus forms just one of
a family of possible critical points which
may describe the structure of a given flow.
In two dimensions possible critical points
include saddles, nodes and foci. In three
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dimensions the entrainment diagram may be
very complex.

iii) One can give a physical interpretation to the
three flow patterns depicted in Figure 6.
Consider an interface between two fluids A
and B in physical coordinates. If the mo-
mentum source is turned on at t=0 then, de-
pending on the Reynolds number, the interface
will distort into one of the three possible
patterns depicted below.

A8
8
7> ?
Re<b780¢
t<o t>o
Als
A8
I->
<o G0 6.7806<Re</0.09987
A8
A\8
I
% Re>10.09089
<o ¢>0

Figure 8. Distortion of fluid interface by
G(£,8) at three Reynolds numbers.

EXAMPLE 3.
RELAXATION OF AN IMPULSIVELY STARTED VORTEX RING

In this section we will examine the behavior of an
impulsively started, axisymmetric vortex ring. T[\7
Reynolds number of the vortex ring is Re = (I/pt)'’?/v,
where I/p is the total impulse applied to the fluid,

©

m
1 3 2
0" 2 (ucos® - vsin6)2rr“sin6drdd (41)

oo
Note that, in contrast to the previous example, the
Reynolds number in this flow depends on time. The
equations of motion in spherical polar coordinates
are

13 ,2 13 . _

s (r"u) + 575 39 (vsing) = 0 (42)

o= v - 28 (43)
or 3

2
& wyll 2 (1 3 , ) 3
Be (T0) = "[rz 39(51:16 2 (wsind))+ a2 (w)| - (44)

with the Stokes stream function defined by

1 ) -1 L)
u= Ve n (45)
rzsine 38 rsind 9r

As before particle paths are given by

L
g—: = u(r, 6, t; o V) (46)

1

d6 _ v(r, 8, t; p; V)
dt T 7

with the parametric dependence of u and v on I/p and v
indicated. The variables r, 6, u and v are the same
coordinates and velocities used in Example 2. The sim-
ilarity forms appropriate to this problem are

v = _pl; \)-1/2 t-l/Z H(E,8) 48)

w= 2022y 49

v= % v3/2 (7312 (g 6y (50)

o= 2 v ue,e 1)
. U5

r
Where U, V, H and W are the self-similar velocities,
stream function and vorticity. Note that we have as-
sumed that these functions do not depend on I/p or v.
We shall check this assumption a posteriori. In terms
of similarity variables, the particle path equations
become

L -rlueEe -5 £ (52)
3

dae 2 V(E,8)
T - Re ——é— (53)
where T=n t and Re2=I/p\)2t. These equations should be
compared with equivalent equations for the round jet
(Equations 36). Note that in this example the particle
path equations do not reduce to an autonomous system.
Rather the right hand sides of the equations depend on
time, with the dependence appearing through the Rey-
nolds number which now comes out as a parameter multi-
plying the as yet unknown functions U(£,8) and V(E,8).
The entrainment diagram for this flow evolves with
time.

Substituting (51) into (44) and solving the re-
sulting equation by separation of variables leads to

1
3/2

2
W(E,8) = sind & e_E/* (54)

16m

where the constant has been chosen to insure that (41)
is satisfied. The stream function is determined using
(54), (45) and (43). The result is

2
H(E,B) = 1];_7 sinze [% erf(%)-/_—l e ° /"] (55)
™

Taking limits gives

si; 28
Lim H(E,8) = 1‘:5 (56)
£
or, in terms of ¥
I si 25
= = 810
Lim ¥ o 4mr (57)

r>®

The flow at infinity is that due to a steady dipole of
strength I/p. Using (45) the particle path equations
become
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2 2
de _ Re” cosé[1 L EE
E%'Z‘n gz [E erf(%)- e ] 3 (58)

m

2 2 2
d8 _ -Re” sind[ 1 ET ot/ _ 1 (5)
pr e €3 = (1 +3 )e £ erf 3 (59)

At this point the analysis follows very closely that
used to analyze the round jet. The structure of the
vortex ring is examined by finding and classifying
critical points of (58) and (59); points (£¢,8.) at
which both right hand sides are equal to zero. The
zeros of (59) are at (6=0, m all £) and (E=3.022437
all 8) and are clearly the same for all Reynolds num-
bers. Setting the right hand side of (58) equal to
zero gives

3
ﬂic

(60)

2
£ E /%
é— erf (—2—9)— - e C/ )cose
c 3 ¢
Intersections between (60) and the zeros of (59) lo-
cate the critical points of the system (58) and (59).

If Re < 18.174936 there is a single node lying on
the axis of the vortex ring (8.=0). In this Reynolds
number range (60) provides a relation between Re and
., the radial coordinate of the node which moves out-
ward along the axis of the vortex ring as Re is in-
creased.

When Re exceeds 18.174936 the flow splits into
three critical points; a saddle situated on the axis
of the vortex ring and two stable nodes lying symme-
trically about the axis at €c=3.022&37 and S

2
6 - ms—l[(w) ]
c Re

As the Reynolds number is further increased, the
nodes move away from the axis on the circle
£.=3.022437. At the same time the &, coordinate of
the saddle continues to follow (60) with 8.=0. For
the critical point on the axis, the invariants of the
matrix of coefficients are

2
2 g2 2 £
3 R’ [1 ( c) =2 ( c)] (62)
P == - —7 1+ —Je ’¢ - erf|—
om0 2 & ) e ilp

(61)

- 3\(3 _
% =0~ (Pe =0~ z)(z 2 pg =o) (63)
c c c

For the critical point off the axis, the invariants
are (gc evaluated as 3.022437)

3
Pg 40" 2 569
c
- -6 5 !
= 2.94130154 x 10°° Re" - 3.20945389 x 10

95 40
£ (65)

The off-axis node changes to a stable focus when
9540 exceeds 9/16. This occurs at Re=23.410465.
Figure 9 shows schematically the entrainment diagram
of the vortex ring at three values of the Reynolds
number

1 Lo,

0<Re</8.17¢93 1813 cRe< Re>23. 404
23,4046
Figure 9. Entrainment diagrams of H(£,8) (equa-

tion 55) for various Reynolds number ranges.

The various patterns and their limiting forms at £.=0
and E.=> (Re=0, Re=®) are summarized in Figure 10
which shows the trajectory of the critical points of
the vortex ring in the (p,q) plane.

Re=13:1747

3

) -
-4 4% Egent

Figure 10.

Re>

Trajectory of the critical points of
(58) and (59) in the (p,q) plane.
Note that the trajectory is almost identical to that

of the round jet (Figure 7 ). The main difference is
in the limiting values of p and q as Re*0 (§c*0). In
the case of the vortex ring the (p,q) trajectory (Equa-
tion (62)) osculates with the parabola q=p°/4; i.e.

the on-axis critical point becomes a star (p=1, q=1/4)
as Re*0. Whereas the zero Reynolds number limit in the
case of the round jet was a stable node (p=5/4, q=1/4).

While the similarities between these two examples
may be quite striking, the physical interpretation of
the results is totally different. In the case of the
round jet the pathline equations are strictly autono-
mous and, in a given realization of the flow the Rey-
nolds number is constant over all space and time. In
the case of the vortex ring the pathline equations are
not autonomous and, in a given realization all Reynolds
numbers are encountered with the Reynolds number de-
creasing with increasing time (Re~1/Yt). The appropri-
ate mixing problem to imagine in this case is one in
which a series of interfaces is encountered by a single
vortex ring as shown schematically in Figure 11.

{=0* A8 B|C ci»
-9
3
c\»
R
Re>23.t10 n.ns<hé-wo Re <1g.175
Figure 11. Mixing at several interfaces by a

vortex ring.

The first interface encountered by the vortex ring
rolls up in the traditional fashion. The second and
third interfaces are placed sufficiently far from the
origin so that the Reynolds number of the arriving
ring has dropped below the appropriate threshold value.
These latter two interfaces never roll-up.
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