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An investigation of topological features of the velocity gradient field of turbulent 
channel flow has been carried out using results from a direct numerical simulation 
for which the Reynolds number based on the channel half-width and the centreline 
velocity was 7860. Plots of the joint probability density functions of the invariants 
of the rate of strain and velocity gradient tensors indicated that away from the wall 
region, the fine-scale motions in the flow have many characteristics in common with 
a variety of other turbulent and transitional flows: the intermediate principal strain 
rate tended to be positive at sites of high viscous dissipation of kinetic energy, while 
the invariants of the velocity gradient tensor showed that a preference existed for 
stable focus/stretching and unstable node/saddle/saddle topologies. Visualization of 
regions in the flow with stable focus/stretching topologies revealed arrays of discrete 
downstream-leaning flow structures which originated near the wall and penetrated 
into the outer region of the flow. In all regions of the flow, there was a strong 
preference for the vorticity to be aligned with the intermediate principal strain rate 
direction, with the effect increasing near the walls in response to boundary conditions. 

N A G 1  N. M A N S O U R 2  AND B R I A N  J. CANTWELL3 

1. Introduction 
Turbulence modelling remains the major challenge in our ability to predict turbulent 

flows. Model development has been slow because it seems that different models are 
needed for different flows, as the large-scale features of the turbulence appear to be 
flow-dependent. A major motivation for the development of large-eddy simulations 
has been the belief that although large structures may vary from flow to flow, at 
smaller scales the features should be less flow-dependent and more amenable to 
modelling. This belief in the fine-scale universality of turbulent flows is supported by 
evidence from recent investigations, as outlined below. Universal fine-scale features, 
if they can be identified, should potentially be of greater utility in construction of 
subgrid-scale models than assumptions concerning statistical isotropy of turbulent 
fluctuations at high wavenumbers. 

A number of recent studies of the properties of the velocity gradient and rate of 
strain fields from direct numerical simulations of turbulent and transitional flows 
have produced results which indicate a number of common features of the fine-scale 

t Current address: CSIRO, Division of Building, Construction and Engineering, PO Box 56, 
Highett, Vic 3190, Australia. 
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motions in a variety of flow geometries, despite different large-scale motions. Authors 
have typically presented combinations of statistical analyses and flow visualizations 
based on one or more realizations from the simulations. 

Ashurst et aE. (1987) studied a simulated incompressible isotropic turbulent flow 
with Taylor microscale Reynolds number ReA = 83 and a homogeneous incompress- 
ible shear flow with similar Reynolds number. The isotropic flow was forced into a 
state of statistical equilibrium (‘driven’) by adding energy at low wavenumbers. In 
both flows, they found that on average the intermediate principal strain rate tended 
to have a positive value which increased as the local viscous kinetic energy dissipation 
rate on which the sample was conditioned rose, with the ratios of principal strain 
rates A1, A2, A3 approaching 3:l:-4 at higher conditioning levels. In addition, they 
found that the vorticity o tended to align with the intermediate principal strain rate 
direction e2, based on a study of the probability density function (PDF) of the cosine 
of the angle between their directions. 

Vincent & Meneguzzi (1991) studied a simulation of driven isotropic turbulence with 
Ken 21 150. Again, the intermediate principal strain rate was positive at approximately 
two-thirds of the grid points. Vortex ‘tubes’ were observed, with a typical diameter 
intermediate between the Kolmogorov and Taylor microscales and length of the order 
of the integral scale of the flow (similar observations have been published by She, 
Jackson & Orszag 1990). The highest rates of strain in the flow were seen in the 
vicinity of the vortex tubes, with the eigenvectors of the most positive and negative 
principal strain rates (el and e3)  perpendicular to the vorticity which thus tended to 
align with the intermediate principal strain rate direction e2. Vortex tubes were also 
observed by Ruetsch & Maxey (1991) in results from a simulation of driven isotropic 
turbulence with Re1 N 60. In a study of sites of kinetic energy dissipation in the flow, 
they found that the bulk of the dissipation occurred in regions of moderate dissipation 
which surrounded the vortex tubes and that the most intense dissipation was observed 
between tubes where the induced strain rate fields of the tubes overlapped. In a more 
recent paper, Vincent & Meneguzzi (1994) reported that most vortex tubes found 
in their simulation of homogeneous turbulence evolved from shear layers by an 
instability mechanism, during the influence of transverse straining. The sites of 
highest dissipation were in the vicinity of, but outside, vorticity tube cores. In a 
study of alignment properties in a simulation of decaying homogeneous turbulence, 
Vincent & Meneguzzi found that the tendency for alignment of the vorticity with 
the intermediate principal rate of strain direction occurred before the roll-up of the 
vortex sheets into tubes. 

In a study of transitional Reynolds number inhomogeneous shear flows, Chen 
et at. (1990) presented results from simulations of time-developing compressible 
and incompressible mixing layers with Reynolds numbers (based on the velocity 
difference and the initial vorticity thickness) of 1600 and 3000 respectively. Chen 
et al. introduced the use of flow visualization based on classification of local flow 
topologies and demonstrated that for the mixing layers there was a correspondence 
between visualization based on physical quantities such as enstrophy on the one 
hand, and on topological classification on the other. Examination of scatter plots 
of the second and third invariants of the rate of strain tensor showed that the 
intermediate principal strain rate again tended to be positive, especially when the 
local rate of turbulent kinetic energy dissipation was high. Flow visualization showed 
that regions of high enstrophy and high dissipation tended to be associated in 
these flows, although the incompressible mixing layer contained streamwise counter- 
rotating. vortices with high enstrophy but relatively low dissipation. The work of 
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Sondergaard et al.  (1991) extended the range of flows to include time-developing 
compressible and incompressible plane wakes with Reynolds numbers of 300 and 
500; the two additional flows also showed a tendency for the intermediate principal 
strain rate to be positive where dissipation was high. In that paper, properties of 
the local alignment between the vorticity vector and the principal rate of strain 
directions for the mixing layers were studied and it was shown that the vorticity 
tended to align with the intermediate principal strain rate direction at sites of high 
dissipation. Scatter plots of the second and third invariants of the velocity gradient 
tensor showed that of the four possible local flow topologies there tended to be 
a preference for stable focus/stretching and unstable node/saddle/saddle in all the 
flows (we present a more extensive discussion of tensor invariants and flow topologies 
below). Soria et al.  (1994) studied the topology of plane mixing layers computed from 
laminar as well as turbulent initial conditions. They found that virtually all of the 
dissipation was accomplished by intermediate- and fine-scale motions characterized 
by two positive principal rates of strain. 

Finally we mention the experimentally based study of Tsinober, Kit & Dracos 
(1992), where results for alignment effects in grid-generated and boundary layer 
turbulence were presented. In both cases the propensity for alignment between the 
vorticity and the intermediate rate of strain eigenvector was observed. As in the 
studies of Ashurst et ul. (1987) and Vincent & Meneguzzi (1994), this conclusion was 
based on an examination of the PDFs of the cosines of the angles between the 
vorticity and the principal strain rate directions. 

The picture which has begun to emerge from these studies is that for a variety 
of turbulent and transitional flows with differing large-scale structure, much of the 
kinetic energy dissipation occurs in regions which surround elongated structures with 
high enstrophy. In all cases for which alignment results have been presented, it has 
been found that the vorticity o tends to align with the intermediate principal strain 
rate direction e2. In addition, the intermediate principal strain rate i2 is positive on 
average. Jimenez (1992) suggested a kinematic model which would indicate that this 
strain-vorticity geometry should occur in the neighbourhood of a local maximum 
of vorticity and Burgers’ stretched vortex solution was used to illustrate the point. 
Although this model describes a flow situation in which the observed geometry can 
occur it does not explain the tendency for turbulent flows to evolve to such a state. 
The observed preference for two of four possible local flow topologies in the fine-scale 
motions of inhomogeneous shear flows remains unexplained and it is unknown if this 
preference is common to other flows or at higher Reynolds numbers. 

In this paper, we examine results from one realization of a direct numerical 
simulation of an incompressible turbulent channel flow with Reynolds number based 
on the centreline mean flow speed and the channel half-width of 7860. This expands 
the range of flow types to include situations in which the presence of a wall has an 
effect. In addition, flow visualization based on topological classification of the velocity 
gradient tensor has been used to examine features of the turbulent boundary layer. 

2. Classification of local flow topology 
The flow pattern at each point in the flow may be assessed from the viewpoint 

of an observer travelling with the local velocity of the flow. For such an observer, 
each point is a critical point (that is, the local streamlines have indeterminate slope) 
and the topology can be categorized using critical point terminology (Perry & Chong 
1987). 
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R 
FIGURE 1. Plot showing the space of tensor invariants Q and R for incompressible flow, with lines 
corresponding to constant values of the discriminant D = (27/4)R2 + Q3.  The different regions are 
labelled according to the terminology of Chong et a / .  (1990). 

2.1. lnvariants of the velocity gradient tensor and flow topology 

The velocity gradient tensor A = Vu with Cartesian components Aij.= dui/dxi may 
be decomposed into the symmetric rate of strain tensor S with Cartesian components 
Sij = (Aij+Aji)/2 and the skew-symmetric rate of rotation tensor i2 with c.omponents 
52 ,  = (A,  - Aji)/2. The eigenvalues A of A are obtained as solutions of the 
characteristic equation 

with the tensor invariants P ,  Q and R given by 
1 1 3  + P A ' +  Q A  + R  = 0, (2.1) 

P = -Sii = -tr(A) 

Q = i ( P 2  - SijSji  - QijQji) = 

(= 0 for incompressible flow), 

{ [tr(A)I2 - tr(A')} , 

( 2 . 2 ~ )  
(2.2b) 

R = f(-p3 + 3PQ - SijSjkSki - 352ijfijkSki) = -det(A). (2.2c) 

The topological features of the velocity gradient tensor as a function of position 
in (P,Q,R) space have been detailed by Chong, Perry & Cantwell (1990). The surface 
given by 

divides the space of the invariants into two regions, one where A takes one real, two 
complex-conjugate values, the other with three real distinct eigenvalues. 
- 

For the P = 0 plane to which the rate of strain tensors for incompressible flows 
are restricted, the value of the discriminant 

(2.4) 

27R' + (4P3 - 18PQ)R + (4Q3 - P2Q2)  = 0 (2.3) 

D = (27/4)R2 + Q3 

determines the nature of the eigenvalues of A. D > 0 gives rise to one real, two 
complex-conjugate eigenvalues; D < 0 gives the three real, distinct values, while on 
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FIGURE 2. Local flow fields (streamlines) for an observer travelling with the fluid for the topological 
classifications: upper left, stable focusfstretching ; upper right, unstable focusfcompressing ; lower 
left, stable node/saddle/saddle; lower right, unstable node/saddle/saddle. 

the lines R = +(2q'?/9)(-Q)''2 for which D = 0 there are three real eigenvalues of 
which two are equal. A further classification is made according to the sign of R;  in 
the left half of the (Q,R) plane the real parts of the complex-conjugate eigenvalues 
or two of the three real eigenvalues are negative and the critical points of the flow 
are classified as stable, while in the right half-plane the real parts of the complex- 
conjugate or two of the three real eigenvalues are positive and the critical points are 
classified as unstable, following standard terminology. A diagram of the (Q,R)-plane 
for which P = 0 is shown in figure 1, with labels for the various classifications. 

In the terminology of Chong et ul., critical point topologies which fall in the 
upper left-hand region of the plane are called stable focus/stretching, the upper 
right-hand region unstable focus/cornpressing, those in the lower left-hand re- 
gion stable node/saddle/saddle and those in the lower right-hand region unstable 
node/saddle/saddle. The shapes of the local flow fields corresponding to these 
topologies (the local flow pattern which would be seen by an observer travelling with 
a fluid particle) are indicated in figure 2. 

2.2. Invariants of the rate of strain tensor 
The local topology of any second-order tensor field may be classified in the same way. 
In the following, we also discuss the topological features of the local rate of strain 
tensor S in terms of its invariants R, and QS ( P s  = P = 0 due to incompressibility). 
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FIGURE 3. Lines in (Q,,R,)-space corresponding to different ratios of principal strains dl :dz:i,. 
All Q,,R, pairs must fall below thc lines corresponding to the ratios 2:-1:-1 and 1:l:-2 as a 
consequence of the symmetry of S. 

For this symmetric tensor, 

Qs = -1s 2 &I S I t  - - -itr(S’)), ( 2 . 5 ~ )  

R, = -+SIjS& = -ftr(S3). (2.5b) 

Owing to the symmetry of S all eigenvalues must be real, hence in the (R,,Q,)-plane 
only classifications for which D, = (27/4)R: + Qi < 0 can be obtained. Since the 
ratios of the principal rates of strain (eigenvalues of S; A2,  2 3  in descending order) 
will be discussed, we remark here that each set of ratios corresponds to a line in the 
R,-QS plane. If a = Az/Al then 

(2.6) 2 -312 R, = (-Qs)3/2a(l + a)(l + a + a ) 

(note that Qs < 0). Curves corresponding to the principal strain rate ratios 3.1 :A’:& ; 
1:1:-2, 3:l:-4, 1:O:-1 and 2:-1:-1 are shown in figure 3. Note also that Qs is 
proportional to the local rate of kinetic energy dissipation: 4 = 2vS,,Sj, = -4vQ,, so 
that regions with large negative values of Q5 are sites of high dissipation. Finally, the 
three principal rate of strain directions are orthogonal, again owing to the symmetry 
of s. 

Classical scaling arguments presented by Chen et al. (1990) imply that fluctuating 
velocity gradients scale with the square-root of mean flow Reynolds numbers so that 
Q,  scales with Re and R, with Re3I2; since the range of length scales of motion in 
turbulent flows increases with Reynolds number, fine-scale motion can be said to 
correspond to points far from the origin in (Q,,R,) space. 

2.3. Relative importance of rates oj strain and rotation 
The second invariant of A, Q, is a measure of the relative importance of the straining 
and rotational parts of the velocity gradient tensor: where Q is large and positive, the 
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FIGURE 4. Mean velocity profile for the channel flow. The logarithmic-law region is fitted by the 

equation U +  = 5.136 + 0.4053-' lny+. 

enstrophy (square of the vorticity magnitude, twice the second invariant of the rate 
of rotation tensor QS2) -QijQii is large and dominates the strain rate (as expressed 
by SijSj i  or -2QS);  where Q is large and negative the reverse is true. This relative 
importance may be expressed graphically by plotting S,Sji against --Oijyji. Points 
which lie near the -QijQji-axis are in nearly pure solid-body rotation, points which 
lie near the SijSji-axis have motions which are nearly pure straining, while 'sheet-like' 
motions where strain rate and rotation are of the same magnitude (e.g. boundary 
layer mean flow) map to points near the 45" line where A f i i j f i j i  = SijSji. See 
Soria et al. (1994), figure 3. 

3. Data set 
The data set used for this investigation was one realization (time step) from a 

direct numerical simulation of a turbulent channel flow by John Kim (1990, private 
communication). The Reynolds number based on the semi-channel width (6) and 
the mean centreline flow speed gc, Reb = 7860, while that based on 6 and the 
friction velocity (u: = vi?U/dyl,,,l), Re, = 395. The dimensions of the channel were 
x x y x z = 2716 x 26 x x6 or 2482 x 790 x 1241 in wall units (v/u,). 

The mean velocity, obtained from a number of realizations, displayed a typical well- 
developed turbulent profile with a distinct log-law region, as shown in figure 4, where 
the normal coordinate is given in wall units and the mean velocity is normalized with 
the friction velocity: U+ = U/u,. A curve fit for the log-law region (35 < y+ < 150) 
gave 

1 
U+ = 5.136 + - 

0.4053 In '+' 
The numerical method used was the same as that employcd by Kim, Moin & Moser 

(19871, with spatial derivatives obtained from Fourier expansions in the streamwise 
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(x) and spanwise ( 2 )  directions and Chebyshev expansions in the normal (y) direction 
(the derivatives used here were also obtained spectrally). A larger number of grid 
points was used in the present Simulation, 256 x 193 x 192 in the x-, y -  and z-directions 
respectively, giving a total of approximately 9.5 million points. 

The simulation data base from which the present data set was drawn has been 
examined in a number of previous papers (Kim 1989; Antonia, Kim & Browne 1991 ; 
Antonia et aE. 1992; Rodi & Mansour 1993; Kim & Antonia 1993). In particular, 
Antonia et aE. (1992) presented comparisons between statistics compiled from the 
data base and those derived from laboratory data. While there were no experimental 
results specifically for Re, = 395, the statistics presented (distributions of longitudinal 
and normal turbulence intensities, Reynolds shear stress, turbulent energy production) 
for the simulation fell between experimentally derived curves for lower and higher 
Reynolds numbers (see figures 4, 5, 8 and 11 of the paper). 

Ensemble-average statistics were compiled from the data base and examined in 
the context of k e ~  modelling by Rodi & Mansour (1993). There, the fields for 
Re, = 395 were analysed for resolution. It was found that the e budget was 
slightly unbalanced near the wall (y' < 5). This slight imbalance is unlikely to have 
significantly affected the results presented herein. When the terms in the E budget 
were examined in spectral space it was found that all the terms were well resolved (a 
decay of two orders of magnitude in the coefficients). The lack of balance was due to 
the term ((a2u:/ax,ax,)(a2u:/ax,axk)) which involves the second derivatives of the 
(fluctuating) velocity. In this case the coefficients dropped two orders of magnitude 
but more slowly than the other budget terms. Antonia et al .  (1992, p. 584) have also 
discussed detailed resolution studies for results in the data base. 

Zang (1991) has raised concern about the degree of resolution required in boundary 
layer simulations and it seems likely that the extreme near-wall resolution discussed 
in his article is required to accurately capture the details of transitional flows with 
spanwise-symmetric initial perturbations. The simulation of transition, however, is 
significantly different from the simulation of a developed turbulent flow, in which there 
are continuous, large-amplitude, temporally and spatially random disturbances. In a 
simulation of transition with imposed symmetry, vortex structures that arise through 
instability are stretched for very long periods of time, leading to very high gradients. 
In a turbulent simulation the probability of such lengthy periods of stretching being 
applied to a particular vortex structure is extremely low. The asymmetry present 
in developed wall turbulence acts to quickly reduce the spanwise and wall-normal 
gradients which require such high resolution in symmetric simulations of transition. 
This probably accounts for the apparent discrepancy between Zang's findings with 
regard to resolution requirements in transitional flows and those required in direct 
numerical simulation of developed turbulence. 

To conclude discussion of resolution in the present data set, we present in figure 5 a 
plot of contours of the streamwise component of vorticity near the wall at a section of 
the flow. The smoothness of the contours at mesh length scales in this case is significant 
because in the spectral computational scheme used for the simulations, a lack of spatial 
resolution tends to show up as oscillatory behaviour on the length scale of the mesh. 
This is due to the low numerical diffusion of the method. Oscillatory behaviour tends 
to be emphasized in plots of higher-order quantities such as vorticity; examples of the 
oscillatory behaviour of under-resolved spectral schemes applied to boundary layer 
transition appear in Zang, Krist & Hussaini (1989). On the other hand, mesh-scale 
smoothness is not necessarily significant for low-order numerical schemes that are 
under-resolved, where smoothness may be due to inherent numerical diffusivity. 
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FIGURE 5. Contours of the streamwise component of vorticity near the wall for one plane taken 
from the data set. Computational mesh shown for comparison. 

It should be noted that the results considered in the present paper describe the flow 
topology near the wall but not at the wall. In order to resolve the topology at the 
wall a second-order expansion of the velocity field is required which in turn requires 
numerical computation of higher-order derivatives which may be computed from the 
present simulation data, but we have not yet carried out such a study. A discussion 
of the expansion process and the constraints on the invariants of the higher-order 
field can be found in Chong et al, (1990). 

In parts of the following discourse, data will be presented in four groups, based 
on standard terminology: viscous sublayer (0 d y+ d 5), buffer layer ( 5  d y+ < 35), 
logarithmic-law (35 d y+ d 150) and wake (150 d y+ < 395) regions; these are also 
indicated in figure 4. 

4. Results: joint probability density plots of tensor invariants 
The approach taken in this section was to compute the second and third invariants 

of the velocity gradient and rate of strain tensors at each grid point in the flow, 
then use the results to prepare approximations to the joint PDFs of the invariants. 
In addition, values of SiiSji  and -Q,jQji were generated and used to prepare joint 
PDF estimates. The velocity gradient tensor A was normalized by g c / 6  prior to 
preparation of the plots so that all quantities are shown in dimensionless form. The 
results are shown in figure 6 (one graph of each kind has been prepared in each of the 
four regions of the flow). The aspect ratio in each set of plots has been kept the same 
but the scales changed to reflect the change in magnitude of the plotted quantities 
in the four regions of the flow. Since the relative frequencies in the approximations 
to the joint PDFs were computed over all the grid points in each region without 
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correction for grid spacing, it should be noted that more weight is given to points 
closer to the walls as a result of the cosinusoidal y-direction spacing of collocation 
points demanded by the Chebyshev expansions used in the wall-to-wall direction. The 
plots show half-decade contours of relative frequency over a four-decade range. 

Turning first to the plots of Q 0s. R ,  note that for this flow the values of Q and R for 
the mean flow are identically zero everywhere, so that any deviation is a consequence 
of turbulent fluctuations. As an indication of the rapid growth and subsequent slower 
decay in the magnitudes of Q and R moving away from the wall, we present in 
figure 7 a plot of the 90th percentile of Q in each y-plane as a function of y+ for 
the single realization analysed. Study of the y-plane-mean values of Q and R showed 
they stayed close to zero throughout the flow, as expected. 

In the plots of Q us. R (figure 6a-d), all topologies are observed, but outside 
the viscous sublayer a preference for the second and fourth quadrants is apparent, 
indicating preference for stable focus/stretching and unstable node/saddle/saddle 
topologies. This preference was previously observed in inhomogeneous shear flows 
(Chen et al. 1990; Sondergaard et al. 1991; Soria et aE. 1994). Moving away from 
the wall, the preference for the second and fourth quadrants became somewhat 
more apparent, while the magnitudes of the invariants decreased in accordance with 
figure 7. 

Figure 6(e-h) shows plots of QF vs. R, in the four regions of the flow. The influence 
of the wall can be most clearly seen in figure 6 ( e ) ;  right at the wall the velocity 
gradients are, to first order, 

(4.1) 

which produces Qs = -[(du/dyj2 + (dw/ayj2]/2 and R, = 0. This accounts for some 
of the shape of figure 6(e) ;  the values of Q T  and R, for the first few planes nearest the 
wall fell on vertical lines, with some of the highest dissipations of the flow. Moving 
away from the wall, an increasing preference for the rate of strain field to have 
unstable node/saddle/saddle topologies (intermediate principal strain rate positive j 
can be observed. There does not seem to be any particular preference for the set of 
ratios 3:1:-4 reported by Ashurst et al.  (1987) (see figure 3); in the outer region of 
the flow it would appear that the ratios 1:l:-2 model the behaviour more closely. 

The initially high, then decreasing influence of the wall can also be seen in the plots 
of SJ,, us. -O,JO,, in figure 6(i-l). The values for the mean flow would follow 45" 
lines and in the viscous sublayer this was closely true for all the points, as would be 
expected from a decomposition of (4.1) into symmetric and skew-symmetric parts. 

The influence of the wall extended into the buffer layer but is not observed in 
the outer region (6g ,h) ,  where the PDFs closely resemble plots computed from other 
inhomogeneous shear flows (Sondergaard et al. 1991; Soria et al .  1994). The contours 
in the joint PDFs of the strain invariants (6g,h j show a characteristic, nearly straight 
line, shape similar to the mixing layer with turbulent initial conditions (Soria et al. 
1994, figure 17). This appears to be associated with flow structures at intermediate 
scales with invariants which behave as y3 + Q y  + R = 0 where y is the local real 
eigenvalue. Physically, this can be interpreted as a locally two-dimensional (tube- 
like) flow with an out-of-plane rate of strain (y)  which is approximately constant 
over the volume of the structures. This behaviour of the invariants associated with 
intermediate-scale motions is in contrast to nearly constant ratios of the principal 
rates of strain implied by (2.6) which seems to apply only to the finest-scale regions 
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FIGUKH 6. PDF plots of (a-d) Q vs. R ,  (e-h) Qr us. %, (i-l) SZjSji: us. -Qi,Rj, in the four flow 
regions: viscous sublayer ( 0 ,  e, i),  buffer layer ( b ,  f, j ) ,  log-law region (c, g, k ) ,  wake region (d, 
h ,  I ) .  The plots show half-decade contours of relative frequency over a four-decade range. In the 
plots of Q us. R and Qs us. RA, the line D = (27/4)R2 + Q3 = 0 which divides the plane into regions 
where the tensor has purely real and complex-conjugate pair/real eigenvalues is shown as reference. 
Velocity gradients have been normalized by UJLi. 
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FIGURE 7. Plot of the 90th percentile of Q as a function of yL from one realization of the flow. 

Velocity gradients have been normalized by U,/fi. 

of the flow with the highest rates of dissipation. It is interesting that in the outer 
region, the PDFs indicate that pure rotational motion was rare. This is in contrast 
to the observations in the mixing layer by Chen et al. (1990) and Soria et al. (1994) 
where streamwise rib vortices were found to be in nearly solid-body rotation. This 
behaviour can also be noted in the buffer layer (close to the origin in figure 4f). 

5. Results: flow structures 
In order to gain an understanding of the spatial structure of the turbulence, a 

number of plots of flow field quantities were viewed interactively using a graphics 
workstation. 

In figure 8 we present three views of a subset of the flow bounded below by the 
wall. In vertical extent, the subset reaches nearly to the centre of the channel; the 
dimensions in wall units are: Ax+ = 670, Ay+ = 375 and Az+ = 640. The view is 
from upstream and to the side of the box, near the wall. 

In figure 8(a)  the plot is of an iso-surface of enstrophy -s),,sE,,. A number of 
tube-like structures can be seen, with a general inclination downstream and away 
from the wall. Since the highest mean-flow enstrophy occurs at the wall and drops 
to zero in the centre of the channel, the surface for the chosen level terminates 
above the wall. This characteristic of the flow also explains the distorted sheet-like 
shape of the surface near the wall: for the mean flow only one surface would be 
visible, a plane near and parallel to the wall; the perturbation enstrophy is apparently 
manifested as tube-like structures which begin near the wall and extend away from 
it, thus resulting in the appearance of an elastic sheet distorted by protruding tubes. 
Visualization of vortex lines confirmed that the tube-like shapes away from the wall 
contained vorticity aligned with the axes of the tubes. Very close to the wall, vortex 
lines extended in the spanwise ( z )  direction as expected. 

The iso-surface plotted in figure 8(b) is of S,,SJ1, proportional to the local viscous dis- 
sipation of kinetic energy. The contour level was the same as for the enstrophy in fig- 
ure 8(a). Near the wall, the shape of the surface was very similar to that for the enstro- 
phy, in agreement with the PDFs of figure 6(ij). Away from the wall, high enstrophy 
and dissipation tended to occur in the same regions of space (on the scale of the length 
of the tube-like structures in figure 8u), but definite structure is less easy to discern. 
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FIGURF 8. Flow visualization in subset of the flow bounded below by the wall. ( a )  iso-surfaces of 
enstrophy -QL,QJt, ( b )  iso-surfaces of viscous dissipation (proportional to S,,S,,), (c) iso-surfaces of 
discriminant D (for R < 0: intensity of stable focus/stretching topology). Box size in wall units: 
Axi = 670, Ay+ = 375 and Azf = 640. Mean flow direction indicated by arrows. 
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In figure 8(c) we present a plot of flow structures which have strong stable focus/ 
stretching topologies. More specifically, the plot is of an iso-surface of the discriminant 
D = (27/4)R2 + Q3 for which the third invariant of the velocity gradient tensor R d 0; 
this corresponds to a contour in the upper-left side of the (Q,R)-plane (see the contour 
lines in figure 1). The structures had tubular shapes; close to the wall the structures 
tended to lie parallel to it while away from the wall they tended to align with the 
most extensive mean principal strain rate direction (45"). At some distance from 
the wall, the structures with stable focus/stretching topology displayed a high degree 
of correspondence to the structures with large enstrophy shown in figure 8(a). We 
would like to emphasize, however, that the means of visualization employed here is 
significantly different to previous methods derived from the velocity or vorticity field 
alone. The flow structures revealed by the discriminant, which involves a balance 
between rotation and strain, are distinct from those obtained from contours of 
enstrophy or dissipation. This is particularly apparent in the wall region, where the 
discriminant reveals discrete structures. In fact, using this method, one can identify 
individual structures which begin very close to the wall and extend all the way to the 
middle of the channel. 

A digression concerning the motivation for contour plots based on topological 
characteristics of the velocity gradient tensor is in order. Chen et al. (1990) demon- 
strated with two-dimensional plots based only on topological classification (i.e. the 
four classes shown in figure I )  that structures thus revealed were in many ways similar 
to those shown using more conventional scalar quantities such as enstrophy and in 
addition could reveal e.g. sites where vorticity was being stretched or compressed. 
That approach had utility for the flows they investigated, in which many features 
had large planar extent and could be dealt with easily using two-dimensional plots. 
In the channel flow, the turbulence is more strongly three-dimensional and three- 
dimensional contour plots based on classification alone are very difficult to visualize 
successfully since each point in space must belong to one of the four topological 
classes, meaning that a view of zero-threshold contours of any one topology may be 
of a very complex space-filling object. To overcome this difficulty, a scalar magnitude 
was needed which could be assigned to each flow classification and it was decided 
to use the discriminant D as a measure of intensity, since in a model based on the 
solution of a restricted Euler equation, the discriminant is a conserved quantity for 
fluid particles (see $7). Hence the structures that are revealed are related to PDFs 
such as those of figure 6(a -d ) ;  points which lie above a contour of constant D in 
the second quadrant of a (Q,R)-diagram fall inside the structures with stable fo- 
cus/stretching topology in figure 8(c). In this way spatial information which is absent 
in the PDFs may be recovered. Intensities based simply on radius from the origin 
in (Q,R)-space revealed the same structures but with slightly different shapes. On the 
other hand, a visualization method that is not based on computed contour surfaces 
(e.g. a pointwise or 'fog' plot) might reveal similar three-dimensional structures based 
on topological classification alone: we have not attempted to use such a method 
here. 

Figure 9 presents different views of the structures seen in figure 8(c). Figure 9(a) 
is a view from above and slightly downstream of the region which again emphasizes 
the fact that each of the structures tended to be a separate entity. Figure 9(b) is a 
view across the flow at wall level, which shows that the structures did not reach to 
the wall but that those nearest the wall originated in the buffer layer; as in figure 9(a) 
the change in alignment from streamwise near the wall towards the most extensive 
mean principal strain rate direction can be clearly seen. In figure 9(b) the structures 
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283 

FIGURE 9. View of structures with stable focus/stretching topologies shown in figure 8(c), looking: 
(a)  from above and downstream, (b)  spanwise along the wall, (c )  from above (this last view shows 
only structures in the outer regions of the flow, using a lower contouring level than in a and b). 
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FIGURE 10. Structures with stable focus/stretching topology (shaded yellow) showing vortex lines 
which run through selected cores. Box size in wall units: Ax+ = 590, byf = 190 and Az' = 285. 

FIGURE 11. Structures with stable focus/stretching topology showing vortex lines which run through 
the cores, together with overlay of contours of a low-pressure isosurface (thin contour lines parallel 
to wall). Data set is the same as for figure 10. 
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seem to disappear at about the beginning of the wake region, which was largely a 
consequence of the contour level of D chosen for the plot, since at a lower value the 
structures may be observed at the centre of the channel. 

To illustrate the shape of the structures near the centre of the channel, we present 
in figure 9(c) a view of structures with stable focus/stretching topologies in the top of 
the same region as chosen for figures 8, 9(a) and 9(b), looking towards the wall. The 
contour level was set at a lower value than for the previous figures and contours were 
only drawn in the top two-thirds of the region to prevent confusion with structures 
nearer the wall. This shows that, in the outer region of the flow, the structures tended 
to obtain a spanwise orientation. 

As a consequence of the similarity between structures with stable focus/stretching 
topologies and structures with high enstrophy in regions away from the wall (fig- 
ure 8a, c), it might be expected that the structures shown in figures 8(c) and 9 would 
contain aligned vorticity undergoing stretching. Indeed this was most often the case. 
To illustrate this, we concentrate in figure 10 on a smaller subset of the flow than pre- 
viously shown (in fact, a subset of the space shown in figures 8 and 9). An iso-contour 
of D for stable focus/stretching topologies is shown as a translucent yellow surface. 
In addition to the surfaces are shown (thick) vortex lines which were chosen to run 
through two of the structures, one near to and predominantly parallel to the wall, 
the other inclined at nearly 45" to it. The lines were obtained by releasing particle 
traces in the vorticity field near the axes of these two structures and integrating up 
and downstream. It is evident that the vortex lines tended to be well-aligned and 
tightly bunched within the two structures, with divergence of the lines associated with 
a breakdown of the structure nearly aligned with the wall. 

Another view of this region is shown in figure 11, where we have also over- 
laid contours corresponding to an iso-surface of low pressure (thin lines parallel 
to the wall). It may be seen that the two structures in which the vortex traces 
were released were also regions of low pressure. The correspondence between the 
shapes of structures was often observed in other regions of the flow, but was not 
universal. 

6. Results: vorticity alignment 
A feature revealed in previous investigations of turbulent flows (Ashurst et al.  1987; 

Sondergaard et al .  1991; Vincent & Meneguzzi 1991; Tsinober et al. 1992; Vincent 
& Meneguzzi 1994) has been the tendency for alignment between the intermediate 
principal strain rate direction and the vorticity, particularly at sites of high viscous 
dissipation of kinetic energy. This alignment has been described as a kinematic effect 
by Jimenez (1992). A similar kinematic alignment should occur near the wall in 
boundary layer flows since on average the most extensive principal strain rate points 
downstream, away from the wall at 45" and the most compressive principal strain 
rate points downstream, towards the wall at 45", leaving the intermediate principal 
strain rate direction to align spanwise with the average vorticity. 

We present in figure 12 estimates of the PDFs of the angle made between the local 
vorticity w and the three principal strain rate directions el, e2, e3 (01, 0 2  and 0,) for all 
points in each of the four regions of the flow. While figure 12(u) displays the expected 
alignment effect, with the density for 02 peaking near zero angle, the remaining plots 
show that the probability density dropped towards zero at an angle of zero, with the 
effect being most marked in the outer region of the flow. 
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FIGURE 12. Probability density function (PDF) estimates for the angle made between the vorticity 
and the principal strain rate directions. ( a )  viscous sublayer, ( b )  buffer layer, (c) log-law region, (d) 
wake region. 

These results may seem at variance with previous numerical and experimental 
investigations in that they seem to indicate a forced slight misalignment between the 
vorticity and the intermediate principal rate of strain direction. This feature, of proba- 
bility densities falling to zero, is, however, a consequence of the computation of prob- 
ability densities of angle, rather than cosine of angle (R. Sondergaard 1994, private 
communication). If one is interested in the probabilistic properties of the alignments 
of two vectors, one, e.g. the vorticity, with given fixed direction, and the other with 
random orientation, then the lengths of the vectors are clearly irrelevant and both may 
be normalized to unity. Then the given vector may be fixed with one end at the origin 
and considered to point along a coordinate axis; if the random vector also has one 
end fixed at the origin, the probability density of finding its other end at any point on 
the unit sphere is uniform (value: 1/4n). Using this spherical geometry and elementary 
calculus, it may be shown that the probability density of the angle 8 between the given 
vector and the random vector is sin 0 (0 < 0 < x / 2 )  while the probability density of the 
cosine of 8 is constant at 1/2 (-1 < cos 0 < 1). Thus the fall in values of probability 
density of 82 in figure 12(b,c) near zero angle is an indication of a slight randomness 
in the orientation of the intermediate principal strain rate direction with respect to 
the vorticity, rather than forced misalignment. The issue of weighting effects inherent 
in PDFs of transformed variables has also been raised by Lund & Rogers (1994) in 
discussion of functions of the intermediate principal rate of strain 12. 

In figure 13 we present, as an alternative to figure 12, PDFs of the cosine of the 
angle made between the local vorticity o and the three principal strain rate directions 
el, e2, e3 (61, 02 and 03). The high preference for alignment of the vorticity with the 
intermediate principal rate of strain direction is shown by the large deviation of the 
PDF for 8 2  from the value of 1 /2  near cosines of f l .  This preference is apparently 
a robust feature of turbulent flows in general, and is reinforced near the walls by the 
boundary conditions of this flow. 
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FIGURE 13. Probability density function (PDF) estimates for the cosine of the angle made between 
the vorticity and the principal strain rate directions. (a )  viscous sublayer, ( b )  buffer layer, ( c )  log-law 
region, ( d )  wake region. 

7. Discussion 
The results obtained here are of particular interest in the way they are related to 

results obtained in simulations of other turbulent flows and visualization of boundary 
layer flows. 

Of considerable significance is the prospect of finding universal features of fine- 
scale motions in turbulent flows. Recent investigations of simulations of driven 
isotropic turbulence (Ashurst et al. 1987; She et al. 1990; Vincent & Meneguzzi 
1991; Ruetsch & Maxey 1991) have indicated a number of common featurcs which 
we summarize as follows. The most intense vorticity is concentrated in tube-like 
structures with lengths of the order of the integral scale of the flow and typical 
diameters intermediate between the Taylor and Kolmogorov microscales. Most of the 
viscous dissipation in the flow occurs in annular regions surrounding the tubes and 
in these regions the intermediate principal strain rate is positive and aligned with the 
vorticity (tube axis), indicating stretching of the vorticity in the tubes. She et LEI. found 
that intermediate levels of vorticity tended to be organized in sheet-like structures. 
Vincent & Meneguzzi ( 1  994) have indicated that the vortex tubes form by the rolling 
up of vortex sheets which themselves evolve from pancake-like regions of high strain 
rate. 

Our results (e.g. figure 8a) show that away from the wall, regions of intense vorticity 
in the channel flow tended also to be organized into tubular-shaped structures with 
x,y alignments which ranged in direction from 0" to 45" to the wall (45" being the 
extensive principal strain rate direction of the mean flow). Significant z-components 
of alignment could also be observed (consistent with the existence of vortex loops), 
particularly further from the wall, although no evidence of a full loop or ring was 
found in the plots of surfaces of iso-enstrophy. The tubular shapes became less 
easy to discern close to the wall since there the most intcnse vorticity tends to be 
directed spanwise, parallel to the wall. PDFs of the second and third invariants of 
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the rate of strain tensor (figure 6i-1) show that the intermediate principal strain rate 
tended to be positive when viscous dissipation was high at sites away from the wall. 
These features indicate a degree of similarity at small scales between the structures 
observed in driven isotropic turbulence simulations and the outer regions of the 
channel flow. 

While some explanations for the tendency for alignment between the intermediate 
principal strain rate direction and vorticity have been advanced on a kinematic basis 
(e.g. Jimenez 1992), dynamical models have also produced this result. The transport 
equation for the evolution of the velocity gradient tensor A in incompressible flow is 

where 

is a term which links the evolution of the velocity gradient tensor for a fluid particle 
to the surrounding flow through cross-derivatives of the pressure field and viscous 
diffusion. 

Setting H = 0 converts (7.1 j into a system of ODES which will be referred to as the 
Restricted Euler equations. These equations describe the evolution of the components 
of A for a particle moving in the absence of any influence from nearby particles 
though the pressure-viscous diffusion term. The only effect of the surroundings is 
that imposed by continuity. The behaviour of this system has been studied and it was 
given linearized, then asymptotic solutions by Vieillefosse (1982, 1984). Subsequently 
the Restricted Euler equations were solved exactly by Cantwell (1992). In this solution, 
the second and third invariants R and Q evolve along a trajectory of constant D in the 
(Q,R)-plane (see figure 11, with R increasing as time proceeds. The invariants and the 
various components of A become singular in finite time for all initial conditions apart 
from those on the trajectory which leads to the origin, in which case the components of 
A become singular as Q and R approach zero. The interesting feature of the Restricted 
Euler system is that as the solution evolves towards singularity, the geometry of the 
gradient tensor is such that the intermediate principal strain rate is positive and the 
vorticity is exactly aligned with the intermediate principal strain rate direction. In 
this model, the vorticity alignment is inherent in the dynamics of a single particle. 

PDFs of Q vs. R (figure 6a-d) show a number of similarities with scatter plots 
prepared from inhomogeneous shear flow simulations, with the most obvious com- 
mon feature being the observed preference for stable focus/stretching and unstable 
node/saddle/saddle topologies. Unstable node/saddle/saddle topologies tended to 
have low values of the discriminant D. In general, there is a tendency for Q and 
R to lie in a roughly elliptical region near the origin, with a branch extending into 
the lower-right quadrant. While at this stage there is no full theoretical explanation 
for these trends, they are consistent with behaviour predicted by the Restricted Euler 
model (Cantwell 1992) and its extension to the H # 0 case (Cantwell 1993). 

The use of flow visualization based on invariants of the velocity gradient tensor A 
provides a new and unambiguous means for identifying flow structures based directly 
on the velocity field, whereas in many other methods the structures observed depend 
on the frame of reference of the observer. The invariants Q and R (but not Qr, R, 
or Qa) are also invariant under affine transformations of the velocity field. The flow 
visualization based on structures with stable focus/stretching topologies (figures 8c, 
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9-1 1) provides some interesting evidence of direct linkage between the inner and 
outer regions of the flow, with structures which originate at the outer edge of the 
viscous sublayer and extend through the log-law layer in some instances to the outer 
wake region. 

Many, if not all, of the observed structures seem likely to be associated with hairpin 
or horseshoe vortices (note e.g. the similarity between figure 10 here and figure 20 of 
Kim & Moin 1986, observed at a lower Reynolds number). A more extensive study 
of the relationship between the structures and vortex lines is needed to establish this 
conclusively. The apparent lack of observations of full loops of stable focus/stretching 
topology reaching from the wall region out into the outer region and back to the 
wall could be a consequence of either the thresholding obtained by plotting only 
surfaces of one value of D or a change in topological classification e.g. to unstable 
focus/compressing along the axis of the vortex lines. The lack of such symmetrical 
features is to be expected in turbulent boundary layer flows of moderate to high 
Reynolds numbers, as discussed by Smith et aE. (1991). 

The observed close relationship between structures with stable focus/stretching 
topology and elongated regions of low-pressure is given added significance by the 
finding of Robinson, Kline & Spalart (1988) that elongated low-pressure regions cor- 
responded with ‘vortical structures’ in boundary layers. The implication is that such 
features may also be located by searching for regions of stable focus/stretching topol- 
ogy. We note the apparent similarity between the general shape of the structures 
shown in figures 8-10 here and those presented in a sketch of ‘vortical structure 
populations’ by Robinson (1991, figure 13a). 

The relationship to flow visualization based in physical, rather than numerical 
experiments is not easy to establish, but we also note the apparent similarity between 
the observations of structures of stable focus/stretching topology made here and the 
experimental results of Head & Bandyopadhyay (1981) obtained in zero-pressure- 
gradient smoke tunnels. Their observations suggested that the predominant boundary 
layer feature was structures formed from groups of hairpin vortices or stretched vortex 
loops ‘substantially straight over a large portion of their length and inclined to the 
surface at a characteristic angle of something like 45”’. They suggested in addition 
that longitudinal vortex pairs which they observed formed in the wall layers were 
likely to be associated with the hairpin vortices observed in the outer region. Our 
results support this suggestion, since it can be observed in figure 9(a,h) that many of 
the structures begin in the wall region, almost parallel to the wall, before turning out 
into the main flow. Further experimental evidence for this change in characteristic 
angle of structures when moving from the inner to the outer region of the flow has 
recently been presented by Jovic (1993). 

In the ‘attached eddy’ model for wall turbulence first proposed by Townsend (1976) 
and subsequently developed by Perry and co-workers (e.g. Perry & Chong 1982; 
Perry, Li & MaruSiC 1991; Perry, MaruSiC & Li 1994), turbulence statistics for the 
boundary layer are calculated on the assumption that the turbulence can be modelled 
by a random array or hierarchy of geometrically similar eddies. The basic features of 
characteristic ‘A’ vortices assumed in the later versions of the model are as follows: 
vortices originate in the buffer layer and leave two long tails in this zone; the two 
legs which form the A shape protrude into the turbulent wall region are inclined at 
approximately 45” to the mean velocity and lean downstream. The distance between 
the two tails of the vortex follows the Kline scaling of approximately 100 wall units. 
In broad terms the above description is in agreement with the shapes and distribution 
of structures seen in our figures 8-10. Since the channel half-width here is 395 wall 
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units, an extensive hierarchy of scales is not to be expected; however the range of 
scales should increase with Reynolds number. The apparent qualitative agreement 
encourages a review of the assumptions and predictions of the attached model in 
relation to the present simulation results. 

8. Conclusions 
Probability density functions of tensor invariants for the outer regions of the 

channel flow showed a similarity to other turbulent flows with apparent preference 
for stable focus/stretching and unstable node/saddle/saddle topologies. At sites of 
high viscous dissipation of kinetic energy, the intermediate principal strain rate was 
positive, becoming more positive, closer to the most extensive principal strain rate, 
away from the wall. 

A novel visualization method, based on thresholding on the discriminant of the 
velocity gradient tensor and on the sign of its third invariant, was employed to show 
structures with stable focus/stretching topology. This method revealed arrays of 
discrete tube-like structures connecting the buffer layer with the outer region of the 
flow. In the wall region, the structures were nearly parallel to the wall, acquiring 
characteristic directions near 45" to the wall followed by a spanwise orientation at 
their outer limit in the outer region. 

Study of the probability density of angle between the intermediate principal strain 
rate direction and the vorticity showed that the two directions tended towards align- 
ment, as reported in previous studies of other turbulent flows. We have discussed a 
theoretical framework within which the dynamics of such effects may be investigated. 
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