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Introduction to Symmetry Analysis

Symmetry analysis based on Lie group theory is the most important method for
solving nonlinear problems aside from numerical computation. The method can
be used to find the symmetries of almost any system of differential equations,
and the knowledge of these symmetries can be used to simplify the analy-
sis of physical problems governed by the equations. This text offers a broad,
self-contained introduction to the basic concepts of symmetry analysis and
is intended primarily for first- and second-year graduate students in science,
engineering, and applied mathematics. The book should also be of interest to
researchers who wish to gain some familiarity with symmetry methods. The text
emphasizes applications, and numerous worked examples are used to illustrate
basic concepts.

Mathematica® based software for finding the Lie point symmetries and Lie–
Bäcklund symmetries of differential equations is included on a CD, along with
more than sixty sample notebooks illustrating applications ranging from simple,
low-order ordinary differential equations to complex systems of partial differ-
ential equations. The notebooks are carefully coordinated with the text and are
fully commented, providing the reader with clear, step-by-step instructions on
how to work a wide variety of problems. The Mathematica® source code for
the package is included on the CD.

Brian J. Cantwell is the Edward C. Wells Professor in the School of Engineering
at Stanford University, where he holds a joint appointment in the departments
of Aeronautics and Astronautics and Mechanical Engineering.
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Author’s Preface

This textbook grew out of the lectures for a course by the same name that I have
given at Stanford University since the mid 1980s. The course is designed mainly
for first- and second-year graduate students in science, engineering, and applied
mathematics, although the material is presented in a form that should be un-
derstandable to an upper-level undergraduate with a background in differential
equations. The students who come into the course usually have no knowledge
of symmetry theory whatsoever and more often than not, they have been imbued
with the notion that the only method available for solving nonlinear problems
is numerical analysis. By the end of the course they recognize that symmetry
analysis provides not an alternative to computation but a complementary ana-
lytical approach that is applicable to almost any system of differential equations
they are likely to encounter.

The main goal is to teach the methods of symmetry analysis and to instill in
the student a sense of confidence in dealing with complex problems. The central
theme is that any time one is confronted with a physical problem and a set of
equations to solve, the first step is to analyze the problem using dimensional
analysis and the second is to use the methods of symmetry analysis to work out
the Lie groups (symmetries) of the governing equations. This may or may not
produce a simplification, but it will almost always bring clarity to the problem.
Knowledge of symmetries provides the user with a certain point of view that
enhances virtually any other solution method one may wish to employ. It is my
firm belief that any graduate program in science or engineering needs to include
a broad-based course on dimensional analysis and Lie groups. Symmetry anal-
ysis should be as familiar to the student as Fourier analysis, especially when so
many unsolved problems are strongly nonlinear.

I have tried to design the book to serve this need and to help the reader become
skilled at applying the techniques of symmetry analysis. Therefore, wherever

xvii
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possible I have included the detailed steps leading up to the main theoretical
results. Most of the theory is developed in the first half of the book and a
large number of relatively short worked examples are included to illustrate the
concepts. I have also provided, in Chapters 9 through 16, a number of fully
worked problems where the role of symmetry analysis as part of the complete
solution of a problem is illustrated. Enough detail is included for the reader
to follow each problem from formulation to solution. Although the worked
problems are mostly taken from heat conduction, fluid mechanics and nonlin-
ear wave propagation, they are designed to explore many of the different facets
of symmetry analysis and therefore should be of general interest. Phase-space
methods are established in Chapter 3 and used extensively throughout the rest
of the text. The emphasis is on applications, and the exercises provided at the
end of each chapter are designed to help the reader practice the material. They
range in difficulty from straightforward applications of the theory to challeng-
ing research-level problems. Many of the exercises include a reference to the
literature where details of the solution can be found.

Some of the exercises involving the identification of Lie symmetries should
be worked by hand so that the reader has a chance to practice the Lie algorithm.
When this is done, it will become quickly apparent that the calculational effort
needed to find symmetries can be huge, even to reach a fairly simple result. To
analyze by hand any but the simplest problem, a discouragingly large amount
of effort is required. When the subject is approached this way, it is essentially
inaccessible to all but the most dedicated workers. This is one of the main
reasons why Lie theory was never adopted in the mainstream curricula in science
and engineering. It is systematic and powerful but can be very cumbersome!
Fortunately, we now live in an era when powerful symbol manipulation software
packages are widely available. This allows the vast bulk of the routine effort in
group analysis to be automated, bringing the whole subject completely within
the reach of an interested student.

Several years ago, I developed a set of Mathematica®-based software tools to
use in my course. The package is called IntroToSymmetry.m and has been
exercised by about five generations of students working hundreds of problems
of varying complexity. So far it seems to work quite well. The package is very
good at constructing the list of determining equations of the group for pretty
much any system of equations, and it contains limited tools for solving those
equations. The main benefit the package brings to the book is a large number of
worked examples and an opportunity for the reader to rapidly gain experience
by working lots of problems on their own with the aid of the package. Details
of the package are described in Appendix 4. The package with its source code
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is included on a CD along with more than sixty sample notebooks that are
carefully coordinated with the examples and exercises in the text. The source
code and the sample runs are fully and extensively commented. The sample
runs range in complexity from single low-order ODEs, to systems of ODEs,
to single PDEs, and large systems of PDEs. Applications to both closed and
unclosed systems are illustrated along with the use of built-in Mathematica
functions for manipulating the results.

There is a good deal more in this book than can be absorbed in one quarter.
The course I teach at Stanford covers Chapters 1 to 3 and 5 to 10 with selected
examples from Chapters 11 to 13 as well as some of the main results on nonlinear
waves in Chapter 16. In a one-semester course I would include the lengthy
but relatively self-contained Chapter 14 on Lie–Bäcklund symmetries (also
called generalized symmetries). A full two-quarter sequence would include
the material on Lagrangian dynamics in Chapters 4 and 15 as well as all of
Chapter 16. In the second quarter, I would supplement the book with material
from other sources on approximate symmetries and on discrete symmetries with
applications to numerical analysis, two important topics that are not covered
in the book. In addition, I would add more examples of variational symmetries
that are covered briefly in Chapter 15.

My course is introductory in nature and this is the basis of the book title, but
for the sake of completeness I have not shied away from including some material
of an advanced nature. Appendicies 2 and 3 provide the background needed to
understand the infinite order nature of Lie–Bäcklund groups. The development
is straightforward but the math is fairly intricate and a little hard to follow. Yet
this material underlies the whole treatment of such groups and without these
appendicies, there would be a large hole in the development of the theory in
Chapter 14. Chapter 9 ends with a rather advanced problem in nonlinear heat
conduction and then a brief discussion of nonclassical symmetries, which is an
active area of current research.

Chapters 10, 11 and 12 constitute a series of examples, all of which are drawn
from heat conduction and fluid mechanics. The examples are intended to show
in detail how groups relate to solutions, i.e., to show how symmetry analysis is
really used. If the reader does not have a background in fluids, then I recommend
three basic references: Van Dyke’s collection of flow pictures called An Album
of Fluid Motion, Batchelor’s An Introduction to Fluid Dynamics and Liepmann
and Roshko’s Elements of Gasdynamics (complete references are given at the
end of Chapters 10 and 12). These provide a good deal of the basic knowledge
one may need to get through these examples. Chapter 13 is even more spe-
cialized and will probably appeal mainly to someone with a strong interest in
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turbulence. Yet it is hard to envision a text that does not touch on this important
and complex subject where, in the absence of a complete theory, symmetry
methods are an essential tool for solving problems.

I would like to acknowledge the fruitful association with my colleague Milton
Van Dyke during the times we spent co-teaching his course on similitude when
I first came to Stanford in 1978. That course was the predecessor of the one
I teach today. I also want to express my appreciation to Nicholas Rott for our
shared collaborations in fluid mechanics and for his words of encouragement
on this project. Carl Wulfman from the University of the Pacific kindly re-
viewed an early version of the manuscript, and I thank him for his valuable and
timely advice. Substantial parts of the book were developed while I was visiting
the University of Notre Dame as the Melchor Chair Professor during the Fall
semester of 1998, and I would like to thank Bob Nelson for supporting my visit.
I would also like to thank my good friends at ND, Sam Paolucci, Mihir Sen,
and Joe Powers, who sat through the course that semester and who provided
so many helpful comments and suggestions. Thanks also to Nail Ibragimov for
graciously hosting my visit to South Africa in December 1998. I would espe-
cially like to thank Stanford graduate students Alison Marsden and Jonathan
Dirrenberger for their valuable comments and criticisms of the nearly final text.
Finally, I would like to remember my good friend and a great scientist, Tony
Perry (1937–2001) who first inspired my interest in the geometry of fluid flow
patterns and whose insight was always on the mark. I wish we could meet just
one more time in Melbourne to drink a few beers, shed a tear for Collingwood
and share a laugh at the world.

Palo Alto, January 2001

This Book is dedicated to my loving family: Ruth, Alice, Kevin, and Tom.
(I promise to pick up all those piles of books, papers, photos, etc.,

and put them away now.)



Historical Preface

In his biography of Sophus Lie and Felix Klein, Isaak Yaglom (1988) states:

It is my firm belief that of all of the general scientific ideas which arose in the 19th
century and were inherited by our century, none contributed so much to the intellectual
atmosphere of our time as the idea of symmetry.

Few would disagree with that statement. Lie and Klein were the main protago-
nists in the historical development of the theory of symmetry used widely today.
It is a remarkable coincidence how these two late-19th-century mathematicians
from such different backgrounds became friends and how their careers both
diverged and remained intertwined throughout their lives. Toward the end of
the 18th century, one of the main themes of European academic culture, fos-
tered by the age of Enlightenment, was a remarkably free exchange of scholars
and ideas across national boundaries. This freedom contributed mightily to the
revolution in physics and mathematics that was to come in the 19th and early
20th centuries. It had such a profound effect on the development of the theory
of symmetry that to understand the theory and its language one is compelled
to understand its history. The story of Klein and Lie, as the reader will see,
is virtually the story of the development of modern mathematics, and almost
every mathematician whose name is familiar to our experience had an direct or
indirect role in their remarkable careers.

Rise of the Academies

Mathematics and science in Europe lost its provincialism very quickly with the
onset of the industrial revolution. By the early 17th century, mathematicians
began to work in small groups, communicating their work through books or
letters. Networks were created that coordinated and stimulated research. Marin
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Mersenne in Paris collected and distributed new results to a number of cor-
respondents, including Fermat, Descartes, Blaise Pascal, and Galileo, keeping
them informed of the latest events. John Collins, the librarian of the Royal So-
ciety of London, founded in 1660, played this role among British mathemati-
cians. The universities at the time provided relatively little support for research.
Instead, state-supported academies, which tended to emphasize science and
mathematics, usually with military applications in mind, carried out the most
advanced research. At the urging of Jean Colbert, his chief minister, Louis
XIV founded the French Academie Royale des Sciences in 1666. The Berlin
Academy was founded in 1700, and the St. Petersburg Academy in 1724. After
1700, the movement to found learned societies spread throughout Europe and
to the American colonies. At the same time, new journals were created, making
possible prompt and, for the first time, wide dissemination of research results.
The academy provided a forum for rigorous evaluation by peers, and it afforded
scientists protection from political and religious persecution for their ideas. The
separation of research from teaching distinguished the academy from the model
of university-based science, which developed in the 19th century.

The preeminent mathematicians of the time, among them Leonhard Euler,
Jean le Rond d’Alembert, and Joseph-Louis Lagrange, all followed careers in
the academies in London, Paris, and St. Petersburg. The academies held meet-
ings on a regular basis, published memoirs, organized scientific expeditions,
and administered prize competitions on important scientific questions. One of
the most famous of these is the subject of the beautifully written 1995 book
Longitude by Dava Sobel. This was a £20,000 prize offered by Parliament in
1714 to anyone who could develop an accurate, practical method for determin-
ing longitude at sea. The board founded to oversee the prize included the presi-
dent of the Royal Society as well as professors of mathematics from Oxford and
Cambridge. This board was the predecessor of the modern government research
and development agency. Over the one hundred years of its existence, the effort
to measure longitude spun off other discoveries, including the determination of
the mass of the Earth, the distance to the stars, and the speed of light.

During the period from 1700 to 1800, there was free movement of scholars
across state boundaries, and the generally apolitical attitude they adopted toward
their science contributed to an academic culture almost free of the national
chauvinism that was rampant in state politics. Perhaps no one typifies this
better than the great Italian–French mathematician Joseph-Louis Lagrange,
born in 1736 at Turin, in what was then Sardinia-Piedmont. Lagrange was born
into a well-to-do family of French origin on his father’s side. His father was
treasurer to the king of Sardinia. At 19, Lagrange was teaching mathematics
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at the artillery school of Turin, where he would later be one of the founders of
the Turin academy. By 1761, he was recognized as one of the greatest living
mathematicians and was awarded a prize by the Paris Academy of Sciences for
a paper on the libration of the moon. In 1766, on the recommendation of the
Swiss Leonhard Euler and the French Jean d’Alembert, he was invited by King
Frederick II (the Great) of Prussia to become mathematical director of the Berlin
Academy. During the next two decades, Lagrange wrote important papers on
the three-body problem in celestial mechanics, differential equations, prime-
number theory, probability, mechanics, and the stability of the solar system.
In his 1770 paper, “Reflections on the Algebraic Resolution of Equations,” he
ushered in a new period in the theory of equations that would inspire Evariste
Galois in his theory of groups four decades later. When Frederick died in 1787,
Lagrange moved to Paris at the invitation of Louis XVI and took up residence in
the Louvre, where, in 1788 on the eve of the French Revolution, he published his
famous Mécanique Analytique. Napoleon honored him by making him a senator
and a count of the empire. The quiet, unobtrusive mathematician whose career
spanned the European continent was revered until his death in Paris in 1813,
just as the post-Revolution Napoleonic era was approaching its end.

The French Revolution in 1789 was followed a decade later by the Napoleonic
era and the final collapse, after the battle of Austerlitz in 1805, of the Holy
Roman Empire, which in the words of Voltaire was “neither holy, nor Roman,
nor an empire.” This brought an end to the age of Enlightenment and the benev-
olent despotism of the royalist period, presaging a new era in scientific research
and education. The new political order stimulated a rapid spread in scientific
interest among all classes of society. Anyone with ability who wished to fol-
low intellectual pursuits was encouraged to do so. There was a great increase
in the number of students learning science and mathematics, and this drove an
increased demand for teachers. These events forged a new relationship between
teaching and research.

New centers of learning were established, and old ones revitalized. The
French Revolution provoked a complete rethinking of education in France,
and mathematics was given a prominent role. The Ecole Polytechnique was
established in 1794 by Gaspard Monge (1746–1818) with Lagrange as its lead-
ing mathematician. It prepared students for the civil and military engineering
schools of the Republic. Monge believed strongly that mathematics should
serve the scientific and technical need of the state. To that end, he devised a
syllabus that promoted descriptive geometry, which was useful in the design of
forts, gun emplacements, and machines. The Ecole Polytechnique soon began
to attract the best scientific minds in France. A similar center of learning was
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On the left is a lithograph of Neils Henrik Abel, and on the right a sketch of Evariste
Galois by his brother Alfred.

established by Carl Jacobi in Königsberg, Germany, in 1827. The University of
Göttingen, founded in 1737 by George II of England in his role as the Elector
of the Kingdom of Hanover, was beginning to attract students from all over
Europe with a strong faculty in physics and mathematics. There was a fresh at-
mosphere of scientific excitement and curiosity. The creation of new knowledge
flourished.

Abel and Galois

One of the central problems of mathematics research in the 19th century con-
cerned the theory of equations. Ever since researchers in the 16th century had
found rules giving the solutions of cubic and quartic equations in terms of
the coefficients of the equations, formulas had unsuccessfully been sought for
equations of the fifth and higher degrees. At the center of interest was the search
for a formula that could express the roots of a quintic equation in terms of its
coefficients using only the operations of addition, subtraction, multiplication,
and division, together with the taking of radicals, as had been required for the
solution of quadratic, cubic, and quartic equations. By 1770, Lagrange had an-
alyzed all the methods for solving equations of degrees 2, 3, and 4, but he was
not able to progress to higher order.

The first proof that the general quintic polynomial is not solvable by radicals
was eventually offered in an 1824 paper by the Norwegian mathematician Niels
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Henrik Abel (1802–1829). In Abel’s time Norway was very provincial, and he
was awarded a scholarship from the Norwegian government that enabled him to
visit other mathematicians in Germany and France. His talent was recognized
by the prominent German engineer and entrepreneur, August Leopold Crelle
(1780–1855). Crelle had become very wealthy from the railroad business, and
his belief in Abel and in his Swiss co-worker Jacob Steiner prompted Crelle to
found the first specialized mathematical journal in Germany. The first volumes
were filled with Abel’s and Steiner’s papers. Abel’s work published in Crelle’s
journal attracted the attention of the famous Carl Jacobi, and because of the
efforts of Jacobi and other German scientists, Abel was eventually appointed
professor at Berlin University in 1828. Unfortunately, the official notice did not
reach Kristiania (now Oslo) until several days after Abel’s death from tubercu-
losis at the age of twenty-seven. Crelle’s journal went on to play a major role
in the development of German science.

Abel’s proof was very limited in that it only asserted the absence of a gen-
eral formula for the solution of every quintic equation in radicals. It did not
indicate the special cases where the equation could be solved. This was taken
up by Evariste Galois, who was a great admirer of Abel and who had studied
Lagrange’s work on the theory of equations and analytic functions while a stu-
dent at the Lycée Louis-le-Grand in Paris. This well-known school included
Robespierre and Victor Hugo among its graduates. Later, it would include the
mathematician Charles Hermite (1822–1901), who in 1858 would publish the
solution of the quintic equation in terms of elliptic functions.

Galois was born in the town of Bourg-la-Reine near Paris in 1811 and died
in a duel over a broken affair with a woman in Paris in 1832. Although his
childhood seems to have been quite happy, his late adolescence was marked by
the suicide of his father and crushing disappointment at being twice rejected for
entry by the Ecole Polytechnique. Like his father, he was a republican in an era
when the monarchy was being restored in France. Galois spent much of the last
few months of his life in and out of French prisons because of his fiery republican
sentiments and for making death threats against the King. By 1830, the new
bourgeois king, Louis-Philippe, had been forced to use repressive measures
to counter numerous rebellions and attempts on his life. Rumors at the time
suggested that Galois had been trapped into the duel. The exact circumstances
of his death and whether there was any sort of conspiracy against him will
probably never be known. In spite of his difficulties, Galois was able to create his
theory of the solution of equations. The mixture of youth, mystery, tragedy, and
his towering intellectual achievements make Galois one of the most romantic
figures in the history of mathematics.
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Galois created the first thorough classification of algebraic equations of the
form

a0xn + a1xn−1 + · · · + an = 0.

Galois, like Lagrange, Abel, and Gauss before him, asked: Is it possible to find
the general solution of this equation by constructing resolvents (lower-order
equations whose roots are rational functions of the roots of the original equa-
tion), i.e., can the equation be solved by means of radicals? Galois theory, as it
is called today, provides a general criterion for the solvability of equations by
resolvents, as well as a way to find the solutions. Galois also did extensive work
on the integrals of algebraic functions of one variable (Abelian integrals). In
addition, he left behind certain results that suggest he may have been a fore-
runner of Riemann. According to Klein in his Development of Mathematics in
the 19th Century, Galois, in his farewell letter to his friend Chevalier, spoke of
investigations into the “ambiguity of functions”; possibly foreshadowing the
idea of Riemann surfaces and multiple connectivity.

Chevalier and Galois’ younger brother, Alfred, copied Galois’s mathematical
papers and sent them to Carl Friedrich Gauss (1777–1855), who was by then
the foremost mathematician in Europe, and to Jacobi, but received no response
from either. The first to study them carefully was Joseph Liouville (1809–1882),
who was professor at the Ecole Polytechnique. He became convinced of their
importance and arranged to have them published in 1846, fourteen years af-
ter Galois’s death. Today, virtually every mathematics department in the world
offers a course in Galois theory. Galois introduced the concept of a group and
defined many of the basic elements of group theory. Camille Jordan (1838–
1922) recognized the many and varied applications of Galois’s work and was
inspired to write the first textbook on Galois theory, published in 1870. He
introduced many of the main group-theoretic terms and ideas. In that same
year, when he was preoccupied by his book and fascinated by group theory,
two young postgraduate students from Berlin came to study with Jordan in
Paris. They were Sophus Lie and Felix Klein.

Lie and Klein

Marius Sophus Lie was born in the vicarage at Eid in Nordfjord, Norway, on
December 17, 1842. His father was rector of the parish at Eid, and his church still
stands today, a few yards from the sea, next to a memorial to Norway’s greatest
mathematician. In 1851, the family moved to Moss on the Oslofjord, and he
completed his secondary education in Kristiana (Oslo). During his youth, Lie
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Sophus Lie on the left and Felix Klein on the right. The photos depict the two men at
mid-career.

was strongly encouraged to study for the ministry, and it was not until he was
well into his twenties that he began to take a serious interest in mathematics. He
published his first paper in Kristiana in 1869, when his talent was beginning to
be recognized. On the basis of his paper, he was given a grant by the university
to travel to Germany and France, where he was expected to study with eminent
mathematicians of the time, develop his talent, and broaden his horizons. Based
on the accounts of his friends, Yaglom describes Lie as

. . . quite tall and physically very strong, with an open face and loud laugh; people
who knew Lie often said he was their idea of a Viking, distinguished by rare candor
and directness, always convivial with anyone who approached him, Lie produced an
impression that did not correspond to his inner nature: actually he was very refined and
easily hurt.

In 1869, he traveled to Berlin, which then was the center of the mathematical
world, dominated by Kummer, Kronecker, and the head of the Berlin school of
mathematics and a great proponent of strict mathematical rigor Karl Theodor
Wilhelm Weierstrass (1815–1897). There he met the twenty-year-old Felix
Klein, and their lifelong friendship began.

Christian Felix Klein was born in Dusseldorf in 1849 into the Prussian fam-
ily of an official in the government finance department. Following his father’s
wishes, Klein studied at a classical gymnasium, where the emphasis was on
ancient languages with very little attention to mathematics and science. Klein
developed an intense dislike for the gymnasium, and this antipathy played an
important role in his future views about teaching. After graduating from the
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gymnasium, Klein entered the university in Bonn, where he met Julius Plücker
(1801–1868), who headed the departments of physics and mathematics. In
1866, at the age of seventeen, Klein became Plücker’s assistant in the physics
department. Two years later, Plücker died and to Klein fell the burden of pub-
lishing Plücker’s unfinished works. Although this was an arduous and difficult
task for someone so young, it contributed significantly to Klein’s development
as a mathematician. After Plücker’s death, Klein lost his post as an assistant,
left Bonn, and went to Göttingen, where he became acquainted with Rudolf
Friedrich Alfred Clebsch (1833–1872), and then to Berlin, where he met the
physicist Wilhelm Weber (1804–1891) and the mathematician Weierstrass.

Klein was known for a very physical way of thinking about mathematics,
and his teaching was also characterized by a physical and graphical approach,
and therefore a certain lack of rigor. Some of this can be traced back to Klein’s
rejection of the educational approach of the gymnasium, but much of it was
the legacy left behind by Georg Friedrich Bernhard Riemann (1826–1866),
whose ideas had profoundly influenced geometry. Riemann had succeeded
Peter Gustav Lejuene Dirichlet (1805–1859) in 1859 as professor of mathe-
matics at Göttingen, just as Dirichlet had succeeded the great Gauss four
years earlier. Klein revered Riemann’s work, but it did not appeal at all to the
rigorous Weierstrass, and their relationship was not a warm one. Weierstrass
had criticized Riemann and his friend Dirichlet and considered many of their
results unproven or incorrect. Eventually, Klein would return to Göttingen to
take Riemann’s old position in 1886. In any case, Klein’s arrival in Berlin in
1869 must have felt to Weierstrass a bit like the second coming of Riemann.
Klein made up for the lack of intellectual contact with Weierstrass through his
close collaboration with Lie. Although Klein was seven years younger than Lie,
his experience publishing Plücker’s work had matured him beyond his years. He
was gregarious, with many powerful contacts, and he was a superb organizer.
Thus, it was Klein who in later years would often provide the help Lie needed
to advance his academic career.

1870

In February 1870, Lie traveled to Paris, and Klein arrived a few months later.
There the students made contact with Camille Jordan and Gaston Darboux
(1842–1917), who were then teaching at the Lycée Louis-le-Grande, where
Galois had studied nearly half a century earlier. Under the influence of Jordan
and Darboux, Klein and Lie continued their research, begun in Berlin, on the
so-called W-curves, which are homogeneous curves that remain invariant under
a certain group. Homogeneous curves are curves on which no point differs from
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any other. In plane Euclidean geometry, they are either straight lines or circles.
The homogeneity of curves is related to the existence of a set of isometries that
transform a curve into itself and each of its points into other points on the curve.
In the case of a straight line, this self-isometry group is the group of translations
along the direction of the line. For a circle, it is the group of rotations about
the center of the circle. Another plane curve that has almost the same degree of
homogeneity is the logarithmic spiral, whose equation in polar coordinates (r, ϕ)
is R = aφ . The spiral allows self-similar transformations along itself. These
transformations can be written in polar coordinates as R̃ = ac R and φ̃ = φ + c.
They transform the point (R, φ) to the point (R̃, φ̃), and the spiral onto itself.
Lie and Klein posed the problem of finding each curve in the plane that has a
group of projective transformations that map the curve into itself. They called
such curves W-curves.

The search for W-curves was important for Lie’s further research in that it
led him to study one-parameter subgroups of the group of projective transfor-
mations, which would later play an important role in the construction of Lie
algebras. In addition, he established the idea of an infinitesimal transformation.
Their work together also laid the foundation for Klein’s later research on the
connection between projective geometry and its group of symmetries, which
would eventually be the basis for his Erlangen program.

During his stay in Paris, Lie also discovered the concept of a contact transfor-
mation. Contact transformations are generalized surface mappings in a space
that includes points and their tangents. The equations for tangency called contact
conditions are preserved under the mapping. Lie’s theory of contact transfor-
mations turns out to be intimately related to the identification of invariants of
the motion in Hamiltonian mechanics.

Lie and Klein’s collaboration in Berlin and Paris was motivated by their deep
interest in the theory of groups and in the notion of symmetry. Afterward, their
areas of scientific interest drifted apart.

Lie’s Arrest

Their stay in Paris was abruptly ended by the outbreak of the Franco-Prussian
War on July 18, 1870. Klein left Paris almost immediately for Germany, antic-
ipating possible military service, and Lie left a month later. Lie was in no great
hurry, and so he decided to walk to Milan and then hike home across Germany.
While walking in a park in the town of Fontainebleau, his nordic looks attracted
the attention of the police, and he was arrested as a German spy. The evidence
against him included his letters from Klein and papers full of mathematical
formulae. He spent a month in prison before Darboux arrived from Paris
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with his release order. Later, while traveling in Switzerland, he wrote of the
experience:

I have taken things truly philosophically. I think that a mathematician is well suited to
be in prison. That doesn’t mean that I accepted freedom philosophically. In truth, the
sun has never seemed to shine so brightly, the trees have never seemed so green as they
did yesterday when, as a free man, I walked to the railway station in Fontainebleau.

Lie had used his time in prison to work on his doctoral thesis, which was finally
submitted to the University of Kristiana in June of 1871. In 1874, at the age
of 32, Lie married Anna Sophie Birch. The younger Felix Klein had married a
short time earlier. Both seem to have enjoyed happy marriages.

Gauss, Riemann, and the New Geometry

Klein became more interested in discrete groups, their relationship to geometry
and the use of groups for the categorization of mathematical objects. Discrete
groups of symmetries are also known as crystallographic groups, and the im-
portance of such groups in the study of crystals was well recognized by the end
of the 19th century. After returning from France and recovering from typhus,
which kept him from military duty, Klein settled in Göttingen, close to Clebsch
and Weber. It was there he made his most important scientific achievements.

To understand the context of these achievements, it is necessary to review
another of the important threads in 19th-century mathematics. This was the
intense interest in fundamental questions in classical geometry. Attention cen-
tered on the fifth postulate of Book I of the Elements, which Euclid had used to
prove the existence of a unique parallel through a point to a given line. There are
a number of equivalent ways of stating this postulate. Perhaps the simplest is as
follows:

For each straight line L and point P outside of L there is only one straight line
passing through P that does not intersect L.

This seemingly self-evident statement had troubled Greek, Islamic, and
European geometers since antiquity. In contrast to the other of Euclid’s pos-
tulates, the parallel axiom invokes a global concept of the geometry of space
at infinity. Even Euclid avoided using the postulate and managed to prove his
first twenty-eight propositions without it. The Italian Jesuit Girolamo Saccheri
(1667–1733) attempted to prove the parallel axiom by showing that all possible
alternatives produce absurd results. By the end of his efforts, he had, in effect,
discovered several of the theorems of a new geometry. However, he refused to
accept this and remained devoutly convinced that Euclid’s geometry was the
only true way to describe space.
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One of the implications of the parallel axiom in a Euclidean space is that the
sum of the interior angles of a triangle is π . Independently, Johann Heinrich
Lambert (1728–1777) of the Berlin Academy, one of the leading German math-
ematicians of the time, pursued the same lines followed fifty years earlier by
Saccheri. He discovered that axioms used to deny the parallel axiom did not
create any inconsistency, but led to the conclusion that a triangle in such a
space has an area proportional to the angle deficit – the difference between the
sum of the interior angles and π . Ultimately, however, Lambert too remained
convinced that Euclidean geometry was the only true geometry. Such was the
godlike authority of Euclid in the late 18th century.

Ferdinand Karl Schweikart (1780–1859), who was a professor of law at
Kharkov University in the Ukraine and who took a hobbyist’s interest in math-
ematics, wrote a letter to Gauss in 1818 in which he proposed an “astral”
geometry in which the sum of the included angles of a triangle is less than π .
He proved that this was true of all such triangles in this geometry and that as the
size of the triangle was increased, the vertex angles became smaller and smaller.
He further proposed that this geometry could actually exist on some distant stars.
Gauss, although he had never published on the subject, was well aware of the
possibility of such a geometry and had already planned experimental measure-
ments intended to prove whether or not space was curved. Schweikart’s letter to
Gauss is generally accepted to be the first written statement that an alternative
to Euclidean geometry is possible.

The Hungarian mathematician Janos Bolyai accepted from the outset that
geometry branches naturally in two directions depending on whether the fifth
postulate is accepted or rejected. He recognized that each branch defines a
fully self-consistent system, although an actual proof of consistency came
only much later in the work of the Italian mathematician Eugenio Beltrami
in 1868. Bolyai published his results in an appendix to a textbook written
by his father, Farkas Bolyai, who in 1832 (the year of Galois’s death) pre-
sented a copy to his lifelong friend, Gauss. Gauss, who had been a student
with the elder Bolyai at Göttingen, sent a rather cold reply to his friend that
his son had merely reproduced much that Gauss already knew. This had a
devastating effect on the younger Bolyai, who eventually became discouraged
and never published again. Gauss never published his results, and in his re-
sponse to Farkas concerning the work of his son, Gauss indicated that he had
intended to allow publication of his ideas only after his death. Today, this
seems strange to us, but it can be partially understood in the context of Gauss’s
time.

For many years, Gauss attempted to prove the fifth postulate, but by 1810, he
had fully accepted that there were two self-consistent, equally valid geometric
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systems. In a letter to the astronomer Wilhelm Olbers (1758–1840) in 1817
Gauss stated his views:

The necessity of our geometry cannot be proved . . . Perhaps in another life we will have
different views on the nature of space which are inaccessible to us here. So far geometry
has to be regarded as being on a par, not with arithmetic, which exists a priori, but rather
with mechanics.

Gauss assigned the geometry of space not to the abstract realm of mathematics
or logic, but to physics. This not only contradicted the centuries-old belief in
Euclid, but also the teachings of the leading German philosopher and icon, Im-
manuel Kant (1724–1804). In the Critique of Pure Reason, Kant, who greatly
admired the work of Isaac Newton, argued that space and time are both a priori
forms of human awareness, and since geometry is used to describe space, it
too must be unique. Gauss, who was of Nether-Saxon peasant origin, always
worried that he could be returned to the poverty of his youth at any time. He
feared that if he published such shocking results, no one would understand
them and he would be subjected to a storm of criticism by the philosophers
and disciples of Kant, whom he held in contempt. Still, Gauss’ fear of a back-
lash can only be a partial explanation for his behavior. He often selfishly held
back his best results from publication, including many that would not have
caused any stir. So let’s salute the brash Janos for having not only the genius to
embrace the validity of this new geometry but also the courage to publish his
results.

Gauss clearly recognized that the new, non-Euclidean geometry was every
bit as legitimate and just as likely to apply to real physical space in the large as
was Euclidean geometry. Further, he recognized that the mechanics of Fermat,
Newton, and Descartes could be reformulated in a completely self-consistent
way in this new geometry. For Gauss, the theorems and postulates of the new
geometry had real physical implications for the nature of space, which could
only be resolved by experiment, and he expended great effort in an endeavor
to measure the curvature of space. In 1816, the government of the Kingdom of
Hanover asked Gauss to develop exact geographic maps that could be used in
tax administration. In the course of this work, he measured the largest triangle
ever before attempted. He set up the vertices on the peaks of Hoher Hagen,
Inselsberg, and Brocken in the Harz mountains (the fabled gathering place
for witches on Walpurgis night, the eve of May 1). His instrument was the
heliotrope, which used concentrated, reflected sunlight to produce bright points
of light for sighting. Despite prodigious efforts between 1818 and 1825, he was
never able to measure any deviation from π of the sum of the angles that was
not within experimental error.



Historical Preface xxxiii

The conflict between Gauss and Kant has symbolized the divide between
physics and philosophy ever since. The spectacular success of Einstein’s theories
of special and general relativity, which had a direct lineage to the ideas of
Riemann and Gauss, only widened the chasm. The philosophers were arro-
gantly wrong, and the physicists have never forgiven them for it.

In his 1921 monograph on The Meaning of Relativity Albert Einstein wrote:

I am convinced that the philosophers have had a harmful effect upon the progress of
scientific thinking in removing certain fundamental concepts from the domain of em-
piricism, where they are under our control, to the intangible heights of the a priori. For
even if it should appear that the universe of ideas cannot be deduced from experience by
logical means, but is, in a sense, a creation of the human mind, without which no science
is possible, nevertheless this universe of ideas is just as little independent of the nature
of our experiences as clothes are of the form of the human body. This is particularly true
of our concepts of time and space, which physicists have been obliged by the facts to
bring down from the Olympus of the a priori in order to adjust them and put them in a
serviceable condition.

These sentiments would echo four decades later, when in Volume I of his
Lectures on Physics Richard Feynman would write:

Whether or not a thing is measurable is not something to be decided a priori by thought
alone, but something that can be decided only by experiment. Given the fact that the
velocity of light is 186,000 miles/sec, one will find few philosophers who will calmly
state that it is self-evident that if light goes 186,000 miles/sec inside a car and the car is
going 100,000 miles/sec, that the light also goes 186,000 miles/sec past an observer on
the ground. That is a shocking fact to them; the very ones who claim it is obvious find,
when you give them a specific fact, that it is not obvious.

. . . if we have a set of “strange” ideas, such as that time goes slower when one moves,
and so forth, whether we like them or do not like them is an irrelevant question. The only
relevant question is whether the ideas are consistent with what is found experimentally.
In other words, the “strange ideas” need only agree with experiment, and the only
reason that we have to discuss the behavior of clocks and so forth is to demonstrate
that although the notion of the time dilation is strange, it is consistent with the way we
measure time.

In Riemann’s famous 1854 inaugural lecture at Göttingen, with the aging Gauss
in the audience, he clarified the whole field by including hyperbolic, Euclidean,
and elliptic geometry in a unified theory of curved manifolds. Riemann was
inspired by Gauss’s discovery that the curvature of a surface is intrinsic to the
surface. In his theory, Euclidean geometry was just one of many geometries,
none of which had a preferred status. Riemann elevated the importance of
intrinsic concepts in geometry and opened the way to the study of spaces of
many dimensions. His work guaranteed that any investigation into the geometric
nature of physical space would have to be partly empirical. The belief that
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fundamental questions about the nature of the world could be answered by
a priori reasoning was swept away forever.

The Erlangen Program

At the end of the 1860s, when Lie and Klein were still together in Berlin,
Riemann’s famous lecture, delivered in 1854, was finally published. It stimu-
lated an explosion of research in geometry and an expanding list of mathematical
topics under its purview. The question of finding a general description of all
the geometric systems considered by mathematicians became one of the central
questions of the day. Felix Klein, who had actively participated in the revolution,
understood the importance of this question better than anyone. Klein, under the
influence of Jordan, who taught the importance of the concept of a group and
the role of symmetry, decided to find a group-theoretic way of looking at the
notion of geometry itself.

In 1872, there was an opening for a professor at the newly organized mathe-
matics department at Erlangen University, and Klein’s good friend, the influ-
ential Clebsch, recommended him for the post. In Germany at that time, a
prospective professor was required to deliver a public lecture to the Academic
Board of the university on a subject chosen by the candidate. The decision
whether to offer the post to the candidate was then made after the lecture
was discussed. The twenty-three-year-old Klein chose a comparative review
of recent research in geometry (just as, in a similar situation, eighteen years
before in Göttingen, Riemann had spoken On the hypotheses that lie at the
foundations of geometry). Klein’s lecture soon became known as the Erlangen
program, and it laid out his clear vision for the next era of progress in geometry.
Klein defined geometry as the science that studies the properties of figures,
which are invariant under transformation by a group. According to Klein, the
main difference between Euclidean and hyperbolic geometry is not the cor-
rectness or incorrectness of Euclid’s fifth postulate, but the difference in the
structure of the respective groups of symmetries of Euclidean and hyperbolic
space.

Klein’s Erlangen years (1872–1875) were extremely productive. In 1872,
Clebsch, then thirty-nine years old, suddenly died of diphtheria, and Klein took
over Mathematische Annalen, the journal founded and headed by Clebsch.
Klein became the journal’s de facto editor, and in 1876, its formal editor. Un-
der Klein’s leadership, Mathematische Annalen soon gained a reputation as
the world’s leading journal of mathematics, greatly enhancing Klein’s reputa-
tion. As a result, he received an invitation to join the well-known Technische
Hochschule in Munich, where he worked for five more years. In 1880, he
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moved to the geometry department of Leipzig University. During this period, he
enjoyed the height of his scientific productivity with substantial contributions
to geometry, mechanics, and the theory of functions of a complex variable
(theory of automorphic functions). One of the many visitors to Erlangen was the
twenty-nine-year-old Swedish mathematician Albert Victor Bäcklund (1845–
1922). In 1874, Bäcklund was awarded a six-month travel grant from the
Swedish government to pursue studies on the continent. He spent part of the time
at Erlangen with Klein. Although there seems to be no written record of their
relationship, it is reasonable to assume that his studies with Klein may have
helped inspire Bäcklund’s later work on geometry. In several papers published
between 1875 and 1882, while on the faculty of the University of Lund, he made
important contributions to the theory of tangent transformations. He introduced
the class of transformations that today bear his name and that have played a key
role in modern advances in the theory of nonlinear waves.

Klein worked furiously during 1880 to 1882, developing his theory designed
to combine Riemann’s geometric approaches with group-theoretic ideas derived
from Galois. In 1886, he left Leipzig and moved to Göttingen, where he would
remain until the end of his life. Klein’s regard for Sophus Lie had only grown
since their parting sixteen years earlier, and so he asked Lie to replace him at
Leipzig, and Lie readily accepted.

During this intense period working on automorphic functions, Klein became
aware of work in the same field published by the young French mathematician
Henri Poincaré (1854–1912). Klein developed a strong sense of rivalry toward
the brilliant French mathematician, who was developing research along similar
lines. To Klein’s bitter disappointment, it was Poincaré who discovered the
connection between the theory of automorphic functions and non-Euclidean
geometry. The stress of this rivalry eventually caused Klein to suffer a nervous
breakdown.

From then on, Klein turned more and more to teaching and to academic,
organizational, and administrative activities. In 1898, he headed the immense
project of publishing Gauss’s collected works, which was eventually completed
in 1918. If Lie fit the 19th-century myth of the lone scientist creating his work
entirely by the force of his own genius, Klein was very much a 20th-century man
who recognized the power of collaborative work. He realized that the rapid ex-
pansion of knowledge led to a natural human tendency to focus more narrowly
in the face of overwhelming information flow and that this was fundamentally
changing the nature of mathematics research in the direction of overspecializa-
tion. To counter this, he directed work on the Enzyklopädie der Mathematischen
Wissenschaften. The idea behind this project was to collect in one place all the
results and methods obtained up to the early 20th century in pure and applied
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mathematics and present them from one viewpoint. Unfortunately, this project
was hopelessly outpaced by the rapid growth of mathematical results and was
never completed.

Klein was the first scientist who fully realized the need for a fundamental
reform of the whole system of mathematical education. In 1898, he organized
an International Commission on Mathematics Education, which he headed for
a number of years. He called for the elimination of the “China wall” separating
different mathematical subjects and for decreasing the gap between mathemat-
ical education and modern science.

Lie’s Career at Leipzig

The research Lie carried out in the early 1870s brought him wide recognition.
Klein had the highest regard for Lie and had extensive contacts in the mathe-
matical world. He used them to help Lie gain a professorship at Norway’s only
university, in Kristiana. Lie worked in Norway for fourteen years, but he lacked
intellectual peers there. So he readily accepted Klein’s suggestion, made in
1886, that he replace Klein as professor of geometry at Leipzig University. Lie
worked in Leipzig for twelve years, where he published several of his books.
These years were very productive scientifically, but not completely satisfying
personally. Lie was always reliant on friends to support him, especially to-
ward the end of his Leipzig years, when his most outstanding students, such as
Friedrich Engel (1861–1941), Georg Scheffers (1866–1945), Friedrich Schur
(1856–1932), Eduard Study (1862–1930), and Felix Hausdorff (1868–1949)
moved to different German universities. In Norway, the nature he loved was
a source of strength for Lie; in Germany he felt alienated, although his wife
and three children were quite happy and had become completely Germanized.
Eventually, Lie suffered clinical depression, for which he had to take a cure at
a psychiatric clinic in Hanover.

A Falling Out

During the early 1890s, when both Lie and Klein were suffering from a cer-
tain degree of distress in their careers, there occurred an incident that briefly
marred their otherwise close friendship. In 1892, Klein decided to republish his
Erlangen program and expand on its history, reaching back to the time when they
worked together in Paris and Berlin, so he sent the manuscript to Lie for com-
ment. Lie was upset when he perceived Klein to be taking credit for ideas that he
felt were solely his own. Then, in Volume 3 of his book published in 1893 with
Engel on the Theory of Transformation Groups, Lie included a stinging criticism
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of Klein, ending with “I am no pupil of Klein’s nor is the opposite the case, al-
though this might be nearer to the truth.” That offensive remark, stated in print,
hurt Klein deeply. There is no doubt that both profoundly influenced the field
and each had a strong scientific influence on the other even though, objectively,
Lie may have had the greater influence on Klein. Klein chose not to respond, but
many of his colleagues were enraged, and the brunt of their anger fell on poor
Engel, who failed to gain a position at Erlangen as a result. Within a short time,
Lie and Klein renewed their friendship and never returned to the incident again.

Lie’s Final Return to Norway

Lie devoted his entire life to the theory of continuous groups, now known
as Lie groups, and their relationship to differential equations. The adjective
“continuous” in the name of Lie groups underscores that the transformations can
be changed continuously by slight alterations of the parameters determining a
particular element of the group. One of the crucial points of Lie’s theory was that
one could assign to each continuous group a much simpler algebraic object, its
Lie algebra. Lie analyzed in detail the relationship between Lie groups and Lie
algebras. He defined solvable Lie algebras corresponding to so-called solvable
Lie groups by analogy to the discrete solvable substitution groups of Galois,
and he went on to assign such groups to differential equations. In his equivalent
of Galois theory for differential equations, it turns out that only those equations
that admit solvable continuous groups are completely integrable. Finally, Lie
posed the problem of classifying all simple Lie algebras and Lie groups.

The complete solution of the classification problem for simple Lie groups
is now attributed to Eliè-Joseph Cartan (1869–1951), who, while a lecturer at
the University of Montpelier, substantially advanced the theory of Lie groups
and Lie algebras. Cartan, along with several other young French mathemati-
cians, formed a group that began to publish mathematics under the pseudonym
Nicolas Bourbaki, taken from an obscure general of the Franco-Prussian War.
The Bourbaki group has since played a major role in the creation of the field of
algebraic topology up until the present day.

In 1892 to 1893, the Kazan physicomathematical society created the interna-
tional Lobachevsky prize on the occasion of N.I. Lobachevsky’s centenary. The
first prize was awarded in 1898 to Sophus Lie. A review of his work, requested
by the society, was written by Felix Klein. The Lobachevsky prize immediately
became quite prestigious. The second, third, and fourth recipients were Killing,
Hilbert, and Klein. Later recipients include Poincaré, Weyl, Cartan, and, more
recently, de Rham, Hopf, and Buseman. In 1898, Lie left Leipzig and returned
to his alma mater at Kristiana. He died a short time later, on February 18, 1899.
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Sophus Lie with his wife Anna and three children Marie, Dagny, and Herman.

A committee for the publication of Lie’s collected mathematical works was
created in 1900. The overall editing was done by Friedrich Engel and by the
leading Norwegian mathematician of the time, Poul Heegard (1871–1948). The
publication of Lie’s colossal work took fifteen years to produce and many thou-
sands of pages in fifteen large volumes, excluding some of his work published
jointly with Engel.

After 1900

Klein led the mathematics group at Göttingen with his rare 20th-century vision
of collaborative work. From 1886 until his death in 1925, he dedicated himself
to turning Göttingen into a world-class center of physics and mathematics. He
attracted to Göttingen talented students and teachers from all over the world.
Outstanding among these was David Hilbert (1862–1943), regarded by many
as the greatest mathematician of the 20th century. From the late 1890s to the
1930s, this outstanding scientific center at Göttingen was dominated by the
personalities of Klein and Hilbert.

In 1915, Klein and Hilbert were joined by Amalie Emmy Noether (1882–
1935), who had grown up in Erlangen, where Felix Klein a decade before her
birth had established his famous program. Noether made major contributions
to the theory of groups related to a variational integral and eventually gained
recognition as one of the foremost algebraic theorists of her time. Soon, Klein’s
good friend Hermann Minkowski (1864–1909) came to Göttingen. There fol-
lowed the arrival of several students and teachers from Breslau University,
including the mathematicians Richard Courant and Otto Toplitz (1881–1940)
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and the future Nobel Prize winner and director of the Göttingen physics insti-
tute, Max Born (1882–1970). Born headed the Göttingen school of theoretical
physics, which produced such outstanding scientists as the Nobel Prize winner
and founder of quantum mechanics Werner Heisenberg (1901–1976) and the
American physicist J. Robert Oppenheimer (1904–1967), who would later find
themselves on opposite sides working to develop the atomic bomb.

Klein’s style of leadership is typified by the following episode. At the In-
ternational Mathematics Congress in Heidelberg in 1904, Klein listened to a
presentation on hydrodynamics by the then relatively unknown German engi-
neer Ludwig Prandtl (1875–1953). Greatly impressed, he immediately invited
Prandtl to Göttingen and appointed the twenty-nine-year-old engineer to direct
an applied mathematics institute especially founded for him. This was the origin
of the world-famous Göttingen school of mechanics.

Klein ascended to very high administrative positions in German science.
In 1913, he was elected a corresponding member of the German Academy of
Sciences in Berlin and a representative of Göttingen University in the upper
chamber of the Prussian parliament. Klein’s collected works in three volumes
were published by his pupils in the period 1918 to 1924. In addition, a large
number of papers dedicated to Klein were published in scientific journals on the
occasion of his seventy-fifth birthday. Shortly therafter, Felix Klein died on July
22, 1925. Following his death, Hilbert’s student, Richard Courant (1888–1972)
became director of the mathematical institute. Fortunately, Klein did not have to
witness the rise of the Third Reich and the subsequent destruction of his beloved
institute at Göttingen in 1933. Courant and many of the best minds of the in-
stitute fled Germany, eventually ending up in the United States in places such
as New York University (NYU), Princeton, and Bryn Mawr (Pennsylvania).
In 1958, Courant, Stoker, and Friedrichs founded the mathematics institute at
NYU, which was later named after Courant on the occasion of his retirement,
although it never lost the nickname “Göttingen West.”

The Ariadne Thread

The central importance of Lie groups and Lie algebras has never diminished
over the century since Lie’s death, but the interest in Lie’s methods for solving
differential equations has waxed and waned. By the 1930s, through the influence
of Hilbert and others, the focus had shifted to functional analysis and transform
methods. Questions of solvability and techniques for integration in quadra-
tures receded in importance, and Lie’s constructions seemed old-fashioned and
cumbersome. Nevertheless, throughout this period, such fields as fluid dynam-
ics continued to progress almost exclusively on the basis of similarity theory and



xl Historical Preface

dimensional analysis, but with practically no reference to Lie’s work. By the
1940s, digital computers began to appear, and the whole question of solving
differential equations had to be completely reexamined in light of the result-
ing prospect of finding solutions of nonlinear systems for very general and
geometrically complex boundary conditions. Lie’s ideas fell into obscurity and
remained so until the period shortly after World War II.

By the early 1960s, there was a healthy resurgence of interest in Lie’s meth-
ods, and the field has grown rapidly ever since. Two lines of thought converged
to resurrect Lie’s methods. Researchers, stimulated by the scientific advances
of the postwar years, began to address nonlinear problems more and more
often, and it was realized that Lie theory was the only systematic method for
analyzing nonlinear equations. At about the same time, workers in physics,
fluid dynamics, and other fields began to appreciate the central importance
of the symmetries themselves. As Yaglom notes, it was recognized that the
symmetries of a differential equation not only determine whether the equation
is solvable or not but also describe the symmetries inherent in the physical
phenomena modeled by the equation.

In his 1963 Lectures on Physics Feynman wrote:

. . . there is a third suggestion which is a little more technical but which has turned out
to be of enormous utility in our study of other physical laws, and that is to look at the
symmetry of the laws or, more specifically, to look for the ways in which the laws can
be transformed and leave the form the same. When we discussed the theory of vectors,
we noted that the fundamental laws of motion are not changed when we rotate the
coordinate system, and now we learn that they are not changed when we change the
space and time variables in a particular way, given by the Lorentz transformation. So
this idea of studying the patterns or operations under which the fundamental laws are
not changed has proved to be a very useful one.

In Greek mythology, Ariadne, the daughter of Pasiphaë and Minos, the king of
Crete, gives the hero Theseus a thread whereby he is able to mark the way of his
escape from the labyrinth. In physics, symmetries provide the Ariadne thread
that enables us to navigate our way through the infinitely varied and complex
labyrinth of natural phenomena.

SUGGESTED READING

Einstein, A. 1921. The Meaning of Relativity Including the Relativistic Theory of the
Non-Symmetric Field. Princeton University Press. Fifth edition.

Encyclopedia Brittanica, The History of Mathematics, Volume 23, pp. 561–597.
University of Chicago Press, 1992.

Feynman, R. P., R. B. Leighton, and M. Sands. 1963. The Feynman Lectures on
Physics: Volume I. Addison-Wesley.



Historical Preface xli

Hawkins, T. 1992. The birth of Lie’s theory of groups. In The Sophus Lie Memorial
Conference. Oslo: Scandinavian University Press, pp. 23–52.

Helgason, S. 1992. Sophus Lie, the mathematician. In The Sophus Lie Memorial
Conference. Oslo: Scandinavian University Press, pp. 3–22.

Kant, I. 1781. Critique of Pure Reason. London: Longmans, Green.
Klein, F. 1928. Development of Mathematics in the 19th Century: Volume IX, Lie

Groups, History, Frontiers and Applications. Springer-Verlag. English translation,
1979, by M. Ackerman. Brookline, MA: Math Sci Press.

Lie, S. 1922–1960. Gesammelte Abhandlungen, 7 volumes. Leipzig: Teubner.
Lie, S. and F. Engel. 1888–1893. Theorie de Transformationsgruppen, 3 volumes.

Leipzig: Teubner.
Sobel, D. 1995 Longitude. New York: Walker.
Stillwell, J. 1989. Mathematics and Its History. Springer-Verlag.
Yaglom, I. M. 1988. Felix Klein and Sophus Lie: Evolution of the Idea of Symmetry in

the Nineteenth Century. Birkhäuser.





1
Introduction to Symmetry

1.1 Symmetry in Nature

Symmetry is universal, fascinating, and of immense practical importance. As
human beings we have evolved a perception of symmetry that lies at the core
of our conscious life. Symmetries provide cues that help us relate to our envi-
ronment and guide our movements through the world. Everyone has a taste for
things that are in some way symmetrical or possess a pleasing deviation from
perfect symmetry. A highly paid supermodel will often have rather symmetrical
facial features. But a perfectly symmetrical face has an unnatural, androgynous
look, and rarely is this associated with great beauty or a memorable persona.
Perhaps the most perfect object we can imagine is a circle, yet dividing the
circumference by the diameter produces the irrational number π that we can
only symbolize. Perfect, unequivocal, symmetry, like perfect theory, eludes us
always.

Objects of the natural world universally exhibit some form of symmetry.
Despite an astonishing variety of shapes, all members of the animal kingdom
possess body architectures that can be sorted into only about 37 basic types. Al-
most all animals possess bilateral symmetry; they must eat, and to eat efficiently
two hands, grasping symmetrically, are better than one. Animals must move,
and to move efficiently it is essential to be balanced about the center of mass.
When asymmetric development does occur, it is invaribly associated with some
unusual, very specific adaptation, as in the case of the bottom-dwelling flounder
with both eyes on the same side of its head. The whorls and spirals of plant
organs produced by the response of an expanding growth surface to surrounding
mechanical constraints [1.1] have been the subject of scientific inquiry for cen-
turies. The nearly perfect spheres that fill the universe – stars, planets, moons,
and the like – are shaped primarily by gravitational forces, which act in a three-
dimensional universe where no one direction or position is distinguished from
another. Free space is homogeneous and isotropic. We marvel at the incredible
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variety of delicate geometrical forms associated with the six-sided symmetry of
snowflakes or the regular crystalline structure of gems formed over millennia
by heat, pressure, and water, their shape a consequence of the forces that act on
an atomic scale according to the symmetries of the electronic outer shells that
participate in bonding. Anyone who studies fluid mechanics is struck by the aes-
thetic symmetry of shock wave patterns or bubbly flows or any of the myriad spi-
ral patterns that mark the vortical world that flows over, around, and through us.

There have been many attempts to quantify the relationship between sym-
metry and beauty. A fine example of this can be found in the fascinating work
of George David Birkhoff (1884–1944) [1.2], who was one of the preeminent
American mathematicians of the early 20th century and is generally credited
with developing the ergodic theorem in the kinetic theory of gases. Birkhoff
was originally motivated by the desire to identify what it was that made one
musical piece beautiful and another not. He felt that beauty had a universal
character and therefore it should be possible to quantify it mathematically, and
so he developed what he called the “aesthetic measure.” Ultimately he applied
this measure to a wide variety of objects – everything from musical pieces to
vases to floor tilings. Today such an attempt to categorize music seems
naive in view of the vast range of musical technique – everything from guitar
“resonant buzz” invented accidentally by country singer Marty Robbins (but
claimed by “Spirit in the Sky” Norman Greenbaum) to the patriotic screechings
of Jimi Hendrix to the asynchronous beat of Dave Brubeck. No simple measure
can cover it all.

Although the use of symmetries to categorize objects is interesting in its own
right, that is not the purpose of this text. Our main interest is in the symmetries
inherent in the physical laws that govern the natural world. Knowledge of these
symmetries will be used to enhance our understanding of complex physical
phenomena, to simplify and solve problems, and, ultimately, to deepen our
understanding of nature. The primary goal of this text is to develop the methods
of symmetry analysis based on Lie groups for the uninitiated reader and to
use these methods to find and express the symmetry properties of ordinary
differential equations, partial differential equations, integrals, and the solution
functions that they govern. The text is directed primarily at first- and second-
year graduate students in science and engineering, but it may also be useful to
advanced researchers who would like to gain some familiarity with symmetry
methods. The student is expected to be familiar with classical approaches to
the solution of differential equations, although the early chapters provide much
of the required background in terms that should be understandable to an upper-
level undergraduate.
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1.2 Some Background

My first encounter with Lie groups came while browsing in the GALCIT aero-
nautics library at Caltech in 1975. I ran across the book by Abraham Cohen
[1.3], first published in 1911. The first few chapters of this book give a very
lucid description of the concept of a Lie group and the idea of invariance under
a group. Cohen’s book makes interesting reading when one realizes that at the
time it was written, Sophus Lie’s ideas were still a brand-new development, yet
they were seen as important enough to warrant a full-blown textbook treatment.
In his 1906 treatise on The Theory of Differential Equations Andrew Forsyth
devotes several chapters to Lie groups and Bäcklund transformations. It is a fact,
however, that shortly thereafter, Lie’s ideas fell into obscurity and remained so
until soon after World War II. As researchers began to turn more and more
often to nonlinear problems and as the inherent importance of symmetries began
to be recognized, Lie’s ideas gained renewed interest.

The Lie algorithm used to analyze the symmetry of mathematical expres-
sions was developed to an advanced state through the pioneering efforts of
Ovsiannikov [1.5] and his students in the Soviet Union. In the United States,
Garrett Birkhoff [1.6] at Harvard the son of George Birkhoff played a key role
in bringing attention to Lie’s ideas by clarifying the relationship between group
invariance and dimensional analysis as applied to problems in fluid mechanics.
Fluid mechanics, governed as it is by nonlinear equations from which a rich
variety of simplified nonlinear and linear approximations can be derived, is an
especially fertile source of examples and applications of group theory.

During the same period, new ideas about the role of similarity solutions as
approximations to realistic complex physical problems were being developed
by Barenblatt and Zel’dovich [1.7] in the Soviet Union. By the late 1960s and
early 1970s the whole field was active again, and new applications of group
theory were being developed by a number of researchers, including Ibragimov
in the Soviet Union [1.8], Bluman and Cole at Caltech [1.9], Anderson, Kumei,
and Wulfman at the University of the Pacific [1.10], Chester at Bristol [1.11],
Harrison and Estabrook at the Jet Propulsion Laboratory [1.12], and many
others. Today group analysis, in one form or another, is the central topic of a
number of excellent textbooks, including Hansen [1.13], Ames [1.14], Olver
[1.15], Bluman and Kumei [1.16], Rogers and Ames [1.17], Stephani [1.18],
and most recently Ibragimov [1.19], Andreev et al. [1.20], Hydon [1.21] and
Baumann [1.22]. The valuable collection of results by workers around the world
contained in the CRC series edited by Ibragimov [1.23] gives testimony to the
achievements of the last half century or so. Today, symmetry analysis constitutes
the most important (indeed one might say the only) widely applicable method
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for finding analytical solutions of nonlinear problems. The Lie algorithm can
be applied to virtually any system of ODEs and PDEs. Moreover the procedure
is highly systematic and amenable to programming with symbol manipulation
software. As a result, sophisticated software tools are now available for ana-
lyzing the symmetries of differential equations (References [1.24], [1.25],
[1.26]; see also the review of symbolic software for group analysis by Hydon
[1.21] and Hereman [1.27]).

1.3 The Discrete Symmetries of Objects

For more background on the importance of symmetry, particularly in the early
development of modern physics, I would recommend the works of the German–
American mathematical physicist Hermann Weyl (1885–1955), who formulated
the group-theoretic basis of quantum mechanics. In his monograph [1.28] Weyl
writes of the role of symmetry in science and art. Weyl was a student of David
Hilbert and a member of the famous group of German mathematicians at the
University of Göttingen, which broke up during the Nazi era prior to the start
of World War II and later re-formed as the nucleus of the Courant Institute
in New York. Finally, one of my favorite readings is Feynman’s discussion of
the role of symmetry in modern physics, which can be found in Chapter 52 of
Volume I of the Feynman Lectures on Physics [1.29].

Let’s begin with a widely accepted general definition of symmetry usually
attributed to Weyl.

Definition 1.1. An object is symmetrical if one can subject it to a certain
operation and it appears exactly the same after the operation. The object is
then said to be invariant with respect to the given operation.

The symmetry properties of an object can usually be expressed in terms of a set
of matrices each of which, when used to transform the various points composing
the object, leave it unchanged in appearance. To clarify the notion of symmetry
and its mathematical description, let’s examine the rotational and reflectional
symmetry of a snowflake.

1.3.1 The Twelvefold Discrete Symmetry Group of a Snowflake

Transparent ice crystals form around dust particles in the atmosphere when
water vapor condenses at temperatures below the freezing point. The water
molecule is an isosceles triangle composed of two hydrogen atoms bonded to
an oxygen atom at its apex with an angle of 104.5◦ between the bonds. The
attraction between the hydrogen atoms of each molecule and the oxygen atoms
of other molecules overcomes thermal motions, leading to the formation of
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Fig. 1.1. Hexagonal structure of ice crystals and snowflakes.

hydrogen bonds, which link molecules together. The symmetry properties of
the water molecule are such that if the formation temperature is below −14◦C,
each molecule bonds to four neighboring molecules in a repeating tetrahedral
arrangement with the oxygen atoms at the corners of the tetrahedron. The
tetrahedral structure gives rise to hexagonal rings of water molecules as shown
in Figure 1.1. These hexagons on the molecular scale are responsible for the
hexagonal symmetry of the ice crystal at macroscopic scales.

The exact structure of the ice crystal depends on its temperature history during
formation. Thus, because of the infinite variability of atmospheric conditions,
the shape of each snowflake is unique.

One final point before we begin: A snowflake is a three-dimensional object
with a front and back. Here we wish to study only the planar symmetry of a
face-on view, and so we consider the snowflake to be flat, existing entirely in a
two-dimensional world. By the way, the tendency for snowflakes to be nearly
flat is also explained by the crystal structure at the molecular level, which tends
to be composed of relatively weakly bound planar sheets.

Figure 1.1 is my best attempt to sketch a typical snowflake. Overall it looks
like a fairly symmetrical six-sided object. However, close inspection reveals a lot
of detailed imperfections in my drawing. In order to have a useful discussion of
the symmetry properties of the snowflake, we simply must accept the fact that we
can’t look at it too closely. We have to be willing to gloss over the imperfections
and agree that the six corners of the snowflake are indistinguishable. The labels
A, B, C, D, E, F are applied to the corners for reference purposes, but with
the convention that the labels do not compromise the property that the corners
themselves are indistinguishable.

This seemingly minor point is actually crucial and all-encompassing. It is
central to the methods used to test for symmetry. In principle, any real object in
all of its detail is completely devoid of symmetry. Therefore it is important to
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recognize that the symmetries that accrue to an object apply, not to the object
itself, but to its abstract representation. The moon is a sphere only when viewed
from a perspective that flattens all mountain ranges, mare, rocks, pebbles, etc.
Often it is the degree and manner in which a symmetry is broken that is of
paramount importance. Galileo’s great discovery in the seventeenth century
was that the moon is not a smooth sphere but is covered with craters whose
dimensions rival the largest geological features found on earth.

So it is the case today that the most important scientific questions are often
associated with peeling away symmetries or searching for new symmetries of
complex systems in order to reach a deeper understanding of the underlying
physics. One often asks: Which parameters in a physical problem are impor-
tant? Which ones are not? Occasionally, new physics is discovered when the
means is found to “fix” a broken symmetry. In the modern era, the most spectac-
ular example of this is the failure of Maxwell’s equations to preserve Galilean
invariance while preserving invariance under the puzzling Lorentz transforma-
tion. This led directly to Einstein’s theory of special relativity, the recognition
that time and space are connected, and the discovery that the speed of light is
a universal invariant for all observers. A more recent example that shook the
foundations of particle physics is the famous 1956 discovery by Lee and Yang
[1.30], [1.31] that parity is not conserved in beta decay.

1.3.1.1 Symmetry Operations

Now, let’s begin our study of the symmetries of a snowflake.
Suppose we rotate the snowflake by 30◦ (Figure 1.2). If we close our eyes

before the rotation, then open them afterwards, we can see that an operation has
been applied to the snowflake. The object is not left invariant, and the 30◦ rota-
tion does not qualify as a symmetry operation. There are in fact just six rotation
angles that leave the snowflake invariant: 60◦, 120◦, 180◦, 240◦, 300◦, and 360◦.
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Fig. 1.2. Counterclockwise rotation by 30◦.
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Fig. 1.3. Counterclockwise rotation by 120◦.

Now apply a rotation of 120◦ (Figure 1.3). In this case, there is no way we
can tell that the operation has taken place (remember that the labels are not
part of the object and tiny details are ignored). The snowflake is invariant, and
the rotation by 120◦ is a symmetry operation. We can express the rotational
symmetry of the snowflake mathematically as a transformation

x̃ = x cos θ − y sin θ,

ỹ = x sin θ + y cos θ .
(1.1)

where the (x, y) coordinates are oriented as shown in Figure 1.1 and the
parameter of the transformation, θ , can only take on the six discrete values
given above. It is convenient (though not necessary) to think of (1.1) as a map-
ping of points in a given space whose coordinate axes remain fixed, rather than
the usual interpretation as a rotation of the coordinate axes themselves. The
object moves under the action of the transformation while the reference axes
stay fixed. The six rotations are as follows:

C1
6 =

⎡

⎢

⎢

⎣

1
2

−
√

3
2√

3
2

1
2

⎤

⎥

⎥

⎦

, C2
6 =

⎡

⎢

⎢

⎣

−1
2

−
√

3
2√

3
2

−1
2

⎤

⎥

⎥

⎦

, C3
6 =

[

−1 0
0 −1

]

,

C4
6 =

⎡

⎢

⎢

⎣

−1
2

√
3

2

−
√

3
2

−1
2

⎤

⎥

⎥

⎦

, C5
6 =

⎡

⎢

⎢

⎣

1
2

√
3

2

−
√

3
2

1
2

⎤

⎥

⎥

⎦

, E =
[

1 0
0 1

]

.

(1.2)

The matrices C1
6 , C2

6 , C3
6 , C4

6 , C5
6 , E express the rotational symmetry of any

hexagonal object with indistinguishable sides and corners.
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A

B

C

D

E

F

A

B

C

D

E

F

Fig. 1.4. Reflection through a vertical axis.

What about reflections? Reflection through an axis passing through A–D
leaves the snowflake invariant (Figure 1.4). Recall that we are considering a flat
snowflake and so all operations are in the plane of the paper. If we wanted to
consider the three-dimensional symmetries of a finite-thickness snowflake, then
we would have to include transformations in the z-direction, either reflecting
points between the front and back or rotating the object out of the plane of the
paper.

The reflection through A–D can be expressed as

[

x

y

]

=
[

−1 0

0 1

] [

x̃

ỹ

]

. (1.3)

Another reflectional symmetry is through axis a–d , which splits the angle
between A–D and B–E as shown in Figure 1.5. Four other symmetry oper-
ations are: reflection through axis B–E , reflection through C–F and reflections

A

B

C

D

E

F

B

C

D

E

F

A

a

d

be

c

f a

d

c f

b

e

Fig. 1.5. Reflection axes of a snowflake.
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through b–e and c– f . The six reflections are

σAD
ν =

[

−1 0

0 1

]

, σBE
ν =

⎡

⎢

⎢

⎣

1
2

√
3

2√
3

2
−1

2

⎤

⎥

⎥

⎦

, σCF
ν =

⎡

⎢

⎢

⎣

1
2

−
√

3
2

−
√

3
2

−1
2

⎤

⎥

⎥

⎦

,

σ be
ν =

[

1 0

0 −1

]

, σ ad
ν =

⎡

⎢

⎢

⎣

−1
2

√
3

2√
3

2
1
2

⎤

⎥

⎥

⎦

, σ
c f
ν =

⎡

⎢

⎢

⎣

−1
2

−
√

3
2

−
√

3
2

1
2

⎤

⎥

⎥

⎦

.

(1.4)

So the complete rotational and reflectional symmetry of a two-dimensional
object with hexagonal symmetry is expressed by the twelve matrices in (1.2)
and (1.4). The rotations have determinant +1 while the reflections have deter-
minant −1. One can think of these matrices as the mathematical expression of
“hexagonalness.” In the above, the choice of symbols and sub- and superscript
notation are traditional usages from crystallography.

1.3.1.2 Group Properties

This set of twelve matrices has some very interesting properties. If we combine
operations via matrix multiplication, the result is always equal to one of the
twelve members of the set. For example:

C2
6σ

CF
ν =

⎡

⎢

⎢

⎣

−1
2

−
√

3
2√

3
2

−1
2

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

1
2

−
√

3
2

−
√

3
2

−1
2

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

1
2

√
3

2√
3

2
−1

2

⎤

⎥

⎥

⎦

= σBE
ν .

(1.5)

Note that commutation of C2
6 and σCF

ν leads to a different result:

σ C F
ν C2

6 =

⎡

⎢

⎢

⎣

1
2

−
√

3
2

−
√

3
2

−1
2

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

−1
2

−
√

3
2√

3
2

−1
2

⎤

⎥

⎥

⎦

=
[

−1 0

0 1

]

= σ AD
ν . (1.6)

These matrices form a group, and the examples (1.5) and (1.6) illustrate the
group property of closure. The relational operator of the group (matrix multi-
plication) is not commutative, and so the group is said to be non-Abelian. For the
most part we will be dealing with continuous transformations called Lie groups
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for which the group relational operator is commutative. Commutative groups
are called Abelian after the early 19th-century Norwegian mathematician Niels
Henrik Abel (1802–1829).

The twelve matrices C1
6 , C2

6 , C3
6 , C4

6 , C5
6 , E, σAD

ν , σBE
ν , σCF

ν , σ ad
ν , σ be

ν , σ
c f
ν

are said to form a discrete group with respect to the operation of multiplication.
The word discrete refers to the fact that the group operators (1.2) and (1.4)
involve discontinuous mappings of the snowflake.

Every member of the group has an inverse. For example,

C2
6C4

6 =

⎡

⎢

⎢

⎣

−1
2

−
√

3
2√

3
2

−1
2

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

−1
2

√
3

2

−
√

3
2

−1
2

⎤

⎥

⎥

⎦

=
[

1 0

0 1

]

= E . (1.7)

The group is associative. For example,
(

σAD
ν C2

6

)

σCF
ν = σAD

ν

(

C2
6σ

CF
ν

)

. (1.8)

Finally, there is an identity element, E , which is a member of the group.
In general a set of objects constitutes a group with respect to a certain

operation if it has the property of closure, if it is associative, if each element of
it has an inverse, and if there is an identity element. Note that merely referring
to a set of objects as a group is not sufficient. The operation used to relate the
objects (in this case matrix multiplication) must also be specified.

Groups may contain subgroups. In the example of the snowflake discussed
here, the subset C1

6 , C2
6 , C3

6 , C4
6 , C5

6 , E constitutes a group, whereas the subset
E, σ AD

ν , σBE
ν , σCF

ν does not, since σ AD
ν σBE

ν = C2
6 is not a member of the

subset.
In general, the symmetry properties of faceted objects are described mathe-

matically by discrete groups with finite numbers of matrices. Further consider-
ations of groups of this type would lead us into a study of projection operators,
normal modes of vibration, quantum mechanics, molecular spectra, crystall-
ography, solid-state physics, and the like. The book by Nussbaum [1.32] pro-
vides a very readable and comprehensive introduction to this topic. Such groups
also come up when one considers the discrete symmetries of differential equa-
tions and their relationship to continuous Lie symmetries and numerical anal-
ysis. See References [1.21], [1.33] and [1.34].

1.4 The Principle of Covariance

The equations that describe the laws of physics are formulated according to the
self-evident fact that physical phenomena exist outside of their mathematical
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description. A conservation equation is usually regarded as the most funda-
mental expression of a physical law. But the form of a conservation equation
is a consequence of the symmetry properties of the phenomena that the law
governs and of the space where the phenomena reside. Therefore, symmetries
are as fundamental as the laws themselves. Often knowledge of a symmetry
can be used to construct a conservation law and from that the functional form
of the solution to a physical problem. Occasionally a symmetry can be used to
construct a complete solution.

As Feynman points out [1.29] the search for symmetries in physical laws
is closely connected to the recognition of patterns in the equations that express
those laws. This involves the identification of ways in which mathematical
expressions can be transformed without a change in their appearance. That
the equations should be invariant under certain transformations of variables is
one of the cornerstones of modern physics. Central to the whole subject are
Lie groups, whose properties make them especially well suited for testing the
transformational invariance of mathematical expressions.

Definition 1.2 (The principle of covariance). The equations that govern a phys-
ical law must retain the same appearance under certain group transformations
of the variables that appear in the equations. This principle incorporates two
somewhat distinct ideas.

(i) Coordinate independence – Physical phenomena must be governed by
laws that do not depend on the coordinate system used to describe the
phenomena.

(ii) Dimensional homogeneity – Physical phenomena must be described by
laws that do not depend on the unit of measure applied to the dimensions
of the variables that describe the phenomena.

These two notions of phenomenological invariance and dimensional consis-
tency in the equations apply universally across all fields of physics.

Coordinate independence is manifested in the fact that virtually all of the
fundamental equations of physics are invariant under simple rotation and trans-
lation of the frame of reference. This invariance is a direct consequence of the
homogeneity and isotropy of free space. Furthermore, when referred to a uni-
formly moving observer, a physical law must not explicitly depend on the speed
of the observer. In classical mechanics, where the speed of light is infinite and
time is absolute, the equations are invariant under a Galilean transformation,
whereas in electrodynamics, where the speed of light is finite and the same for
all observers, the relativistic transformations of time and space are connected
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through the Lorentz group. In either case, no particular coordinate system is
distinguished as being in any way special in the mathematical formulation of
the equations.

The requirement of dimensional homogeneity implies that any physical rela-
tionship must be expressible in dimensionless form. The ideas of dimensional
homogeneity are expressed in the Buckingham Pi theorem and form the basis
of the method of dimensional analysis which is the main subject of Chapter 2.
The purpose of the present chapter is to introduce the notion of symmetry and
to motivate the subject through a series of examples.

1.5 Continuous Symmetries of Functions and Differential Equations

In Chapter 5 one-parameter Lie groups will be formally defined and the main
ideas and goals of group theory will be described. The purpose of this chapter
is to introduce the subject to the reader for the first time; to present, in general
terms, the main ideas underlying Lie group analysis; and to motivate further
study. In this context it is useful to introduce a working definition of a Lie group.
This will facilitate a general introductory discussion of how one investigates
the symmetry of mathematical expressions. The larger question of why such
an investigation is useful is addressed through several examples later in the
chapter. For now we simply note that when a symmetry property is identified,
it can be exploited to achieve a simplification. If the expression is an ordinary
differential equation (ODE), then usually the order of the equation can be re-
duced. If it is a partial differential equation (PDE), then usually the dependent
and independent variables can be combined to accomplish a reduction of di-
mension. Occasionally a known symmetry can be used to directly construct a
solution of a nonlinear equation. In some instances whole classes of solutions
can be constructed.

It would be a serious underestimation to regard symmetry analysis as merely a
procedure for finding solutions. It is far more. Symmetries provide a systematic
means for obtaining an enriched understanding of physical phenomena and the
associated equations. Knowledge of the symmetries of a problem often leads
to a completely new way of looking at the problem. A good example of this
is contained in the paper by Wulfman and Wybourne [1.35], who analyzed the
symmetries of a simple undamped harmonic oscillator. The solutions of this
system are contained in any elementary textbook on mechanics, yet the result
of their analysis led to a completely new understanding of the group origin of
periodic time in oscillating systems.

Group theory is especially well suited for analyzing nonlinear systems. Any
time a new problem is encountered, the first step should always be to analyze



1.5 Continuous Symmetries of Functions and Differential Equations 13

the symmetries of the governing equations. Once the symmetries of the system
are known, all the other techniques for attacking the problem such as numerical
analysis can be applied more effectively and with a better basic understanding
of the problem.

1.5.1 One-Parameter Lie Groups in the Plane

A one-parameter Lie group in two variables is a transformation of the form

x̃ = F[x, y, s],

ỹ = G[x, y, s]
(1.9)

where s is a scalar parameter whose value defines a one-to-one invertible
map from a source space S : (x, y) to a target space S̃ : (x̃, ỹ) as illustrated in
Figure 1.6. The functions F and G are smooth analytic functions of the group
parameter s and therefore expandable in a Taylor series about any value on the
open interval that contains s. At s = 0 the transformation reduces to an identity:

x = F[x, y, 0],

y = G[x, y, 0].
(1.10)

The use of the word group in this context may seem odd, in that we tend to
think of a group as a collection of objects such as the matrices of the hexagonal
group described in the previous section. In fact the transformation (1.9) is ex-
actly that. Each object in the group corresponds to a specific value of the group
parameter. The Lie group (1.9) has an infinite number of members correspond-
ing to the infinity of possible values of s. Indeed, the key feature of a Lie group,
which makes it useful, is the parametric representation of smooth functions on
a continuous open interval in s. This ensures that the mapping is differentiable
and invertible and that the mapping functions can be expanded in a Taylor series
about any value of s. A differentiable mapping that has a differentiable inverse
is called a diffeomorphism.

ψ Ψ x̃ ỹ,( )=φ Φ x y s, ,( )=

x y,( )
x̃ ỹ,( )

x̃

ỹ

x

y

s

Fig. 1.6. Mapping of a point and a curve from S to S̃ by the group (1.9).
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ψ Ψ x̃ ỹ,[ ]=
φ Φ x y s, ,[ ]=

x y,( )

x̃ ỹ,( )

x

y

x y,( )

x̃ ỹ,( )

x y,( )

x̃ ỹ,( )

1

2

3

1

2

3

Fig. 1.7. Mapping of source to target points by the group (1.9).

Actually it is somewhat awkward to separate the source and target points into
two distinct coordinate systems. The methods of group analysis are based almost
entirely on an analytic theory expressed in terms of smooth transformation
functions. These functions are expanded about the source point for small values
of the group parameter, and the target point is an infinitesimal distance away.
Therefore it is more appropriate to think of source and target points as the
initial and final points of a transformation within a single coordinate system,
as illustrated in Figure 1.7. The theory of infinitesimal transformations will
be covered in later chapters. In this introduction we will focus exclusively on
examples involving finite transformations.

1.5.2 Invariance of Functions, ODEs, and PDEs under Lie Groups

In Figure 1.7, the curve ψ is transformed to φ by using the group to change
variables in the function ':

ψ = '[x̃, ỹ] = '(F[x, y, s], G[x, y, s]) = ([x, y, s] = φ. (1.11)

Different values of the parameter s lead to different curves as the outcome of the
transformation. A particularly important case occurs when the resulting func-
tion, (, reads exactly the same as ', with the group parameter s disappearing
from the result:

'[x̃, ỹ] = ([x, y, s] = '[x, y]. (1.12)

In this case the transformation maps points on the curve ψ to other points on
the same curve. The curve as a whole is mapped to itself, and the function ' is
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said to be invariant under the group (1.9). Invariance under a group constitutes
a symmetry property of the function.

The symmetry of a first-order ODE is analyzed by transforming it in the
tangent space (x, y, dy/dx). In order to transform a first-order ODE, we need
to know how the derivative transforms under (1.9). This is simply a matter of
taking differentials and using the definition of the derivative:

d ỹ
d x̃

= ỹx̃ = dG
d F

=
∂G
∂x dx + ∂G

∂y dy
∂ F
∂x dx + ∂ F

∂y dy
=

Gx + G y
dy
dx

Fx + Fy
dy
dx

= G{1}[x, y, yx , s].

(1.13)

All the partial derivatives on the right-hand side of (1.13) are known functions
of [x, y] and the group parameter s. Together (1.9) and (1.13) constitute a
once-extended Lie group.

Note: Subscripts will be used throughout the text to denote differentiation. In
addition, the conventional quotient form of the derivative will be used. Sub-
scripts in braces, as in (1.13), will be used to identify a function that transforms
a derivative, with the index inside the braces indicating the order of the deriva-
tive being transformed. The Einstein convention defined in Reference [1.36] on
repeated indices to denote a sum will be adopted. Square brackets [ ] will be
used to enclose independent variables and to indicate functional dependence.
Some further discussion of notational issues follows in Section 1.6 and again
in Chapter 7.

Consider a first-order ODE

ψ = '

[

x̃, ỹ,
d ỹ
d x̃

]

. (1.14)

Generally, we will use capital Greek letters to denote generic function names,
aside from the F and G used to name the transformations. Obviously the letter
' in (1.14) denotes a different function name than the ' in (1.11) and (1.12).
If we allow ourselves this slight ambiguity, we can avoid the proliferation of
function symbols that would occur every time we wished to prevent a name
conflict when introducing a new topic. It will usually be obvious from the
context which function name applies to a given configuration of variables. In
any case, what is important is the concept, not the symbols used to explain the
concept.

The ODE (1.14) is transformed using (1.9) and (1.13) by simply chang-
ing variables using the once-extended group in the same spirit as when we
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transformed a function in (1.11). The result is a new first order ODE,

ψ = '

[

x̃, ỹ,
d ỹ
d x̃

]

= '

[

F[x, y, s], G[x, y, s], G{1}

[

x, y,
dy
dx

, s
]]

= (

[

x, y,
dy
dx

, s
]

= φ. (1.15)

If, after the transformation, the equation reads the same in new variables,

'

[

x̃, ỹ,
d ỹ
d x̃

]

= (

[

x, y,
dy
dx

, s
]

= '

[

x, y,
dy
dx

]

, (1.16)

then the equation is invariant under the group. As in the case of a function,
invariance under the extended group constitutes a symmetry property of the
differential equation.

Example 1.1 (Invariance of a first-order ODE under a Lie group). The three-
dimensional surface of a first-order ODE in the tangent space (x, y, dy/dx)
can be visualized, and an example is shown in Figure 1.8. The simple extended

-1

0

1 -1

0

1

0

2

-1

0

1

4

x

y

dy
dx
------ e

x y–( )
– 0=

dy
dx
------

Fig. 1.8. The surface defined by a first-order ODE.
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translation group

x̃ = x + s,

ỹ = y + s,

d ỹ
d x̃

= dy
dx

(1.17)

leaves the equation depicted in Figure 1.8 invariant:

'

[

x̃, ỹ,
d ỹ
d x̃

]

= d ỹ
d x̃

− ex̃−ỹ = dy
dx

− e(x+s)−(y+s)

= dy
dx

− ex−y = '

[

x, y,
dy
dx

]

. (1.18)

The key ingredient here is that the parameter s vanishes from the transformed
equation and the result reads exactly the same in the new variables. The equation
is transformed to itself. More specifically, a point on the surface shown in
Figure 1.8 is transformed to a new point on the same surface.

In this example, the equation can be easily integrated to produce the general
solution,

ψ = '[x, y] = ey − ex , (1.19)

where ψ is a constant of integration. The action of the group on a given solution
curve is to transform it to a new solution curve. This can be seen as follows:

ψ̃ = '[x̃, ỹ] = eỹ − ex̃ = ey+s − ex+s = es(ey − ex ). (1.20)

The solution curve ψ̃ in (1.20) is transformed to

ψ̃

es
= ey − ex . (1.21)

While the equation (1.18) is invariant under the group (1.17), a given solution
curve is not in that the constant is changed under the transformation. Never-
theless the family of solution curves as a whole is invariant under the group. A
subtle point, but crucial to our later use of groups to solve differential equations.

This is a relatively simple example of an equation where the symmetry can be
easily identified and the solution can be found by inspection. As more complex
cases are explored in later chapters, the elegant and useful role that such sym-
metries play in the solution of nonlinear differential equations will be described.
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t1 t2
t3

u

u

x x

1

/(κt)
1/2

(a) (b)
0

u
0u

Fig. 1.9. Diffusion of temperature in a semiinfinite solid: (a) physical coordinates,
(b) similarity coordinates.

There we shall see exactly how knowledge of a symmetry can be exploited to
reduce or solve an ODE. Next we use symmetry analysis to solve a problem
governed by a linear second-order PDE.

Example 1.2 (Invariance of a PDE – Diffusion of heat in a conducting solid).
Consider the problem of heat conduction in a semiinfinite solid instantaneously
heated by holding the temperature on the boundary fixed. The temperature
distribution at three successive times is shown in Figure 1.9(a).

The problem is governed by the linear diffusion equation (or heat equation)

∂u
∂t

= κ
∂2u
∂x2

(1.22)

with boundary conditions

t < 0: u(0, t) = 0, u(∞, t) = 0,

t ≥ 0: u(0, t) = u0, u(∞, t) = 0.
(1.23)

As an ansatz, let’s test the invariance of the equations and boundary conditions
under a three-parameter dilation (or stretching) group commonly encountered
in these types of problems. Let

x̃ = ea x, t̃ = ebt, ũ = ecu. (1.24)

Because the transformations of variables are completely uncoupled, the trans-
formation of partial derivatives under the dilation group is especially simple.
The exponential simply factors out of the derivative:

∂ ũ
∂ x̃

= ec−a ∂u
∂x

,
∂ ũ
∂ t̃

= ec−b ∂u
∂t

∂2ũ
∂ t̃2

= ec−2b ∂2u
∂t2

,
∂2ũ
∂ x̃2

= ec−2a ∂2u
∂x2

,
∂2ũ

∂ x̃ ∂ t̃
= ec−a−b ∂2u

∂x ∂t
.

(1.25)
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The equation transforms as

∂ ũ
∂ t̃

− κ
∂2ũ
∂ x̃2

= ec−b ∂u
∂t

− κec−2a ∂2u
∂x2

. (1.26)

The diffusion coefficient, κ , is a constant and is left untransformed. Equation
(1.22) is invariant under (1.24) if and only if b = 2a. This is clear from the
following:

∂ ũ
∂ t̃

− κ
∂2ũ
∂ x̃2

= 0,

∂ ũ
∂ t̃

− κ
∂2ũ
∂ x̃2

= ec−2a
(

∂u
∂t

− κ
∂2u
∂x2

)

⇒ ∂u
∂t

− κ
∂2u
∂x2

= 0.

(1.27)

The equation reads exactly the same in new variables. The boundaries at t = 0,
x = 0, and x = ∞ are clearly invariant under the group, i.e., the points at 0 and
∞ in x and t do not move under the transformation. Now consider the value of
u at x = 0:

ũ(0, t̃) = u0 ⇒ ecu(0, e2at) = u0. (1.28)

This boundary condition is invariant only if c = 0. Note that the range of t
and e2at are the same, 0 to ∞. We conclude, therefore that the problem as a
whole is invariant under the one-parameter group

x̃ = ea x, t̃ = e2at, ũ = u. (1.29)

If the far boundary in x were to be placed at a finite distance, the symmetry
of the problem would be broken and, in principle, the group could not be used
to simplify the problem. In practice, the group might still be useful to define
a solution valid at early time, when the far boundary can still be regarded as
effectively infinitely far away. This point is of great importance and resonates
with our earlier discussion of the idea that symmetries grow out of approxima-
tions. Perfect symmetry is rarely, if ever, achieved in a real physical problem. It
is primarily in the abstract representation of that problem that symmetries come
forth and that group methods become useful in the solution of the problem. We
will come back to this point again and again throughout the text.

The key idea here is that when the governing PDE(s) and boundary conditions
of a problem are invariant under a group, the solution is also invariant under the
same group. In this case, the solution can be expressed in terms of a reduced
set of combinations of the basic variables. These are called similarity variables



20 1 Introduction to Symmetry

and are themselves invariant under the group. Proof of invariance under a group
is essentially a proof of the existence of a similarity solution to the problem.

In Chapter 9 we will see how to systematically construct similarity variables
from the knowledge of a group. For the present, it is fairly easy to construct, by
inspection, similarity variables that are invariant under (1.29) are

ũ
u0

= u
u0

,
x̃

t̃1/2
= ea

ea

x
t1/2

= x
t1/2

. (1.30)

Using the diffusivity to nondimensionalize the similarity variable involving x
and t , we expect a solution of the form

φ = (

[

u
u0

,
x√
κt

]

(1.31)

or, without loss of generality,

u
u0

= U
[

x√
κt

]

. (1.32)

By exploiting the invariance of the problem under the dilation group (1.29),
the solution in two independent variables is expressed as a single curve in one
similarity variable as shown in Figure 1.9(b).

It may be apparent to the reader at this point that the units of the diffusivity
have a great deal to do with the structure of the group (1.24), which leaves the
equation invariant. The fact that the solution has the form (1.31) and not, say,

θ = +

[

u
u0

,
x√
t
, κ

]

(1.33)

is not an accident, but a direct consequence of the principle of covariance. In
its simplest form this is just a statement of the obvious fact that we can’t add
physical quantities that don’t have the same dimensions. When we address
the particular equation that may govern a physical phenomenon, invariably the
equation will contain dimensioned constants such as the thermal conductivity,
viscosity, speed of light, vacuum permittivity, etc., that characterize the physical
entities involved. It only takes a little practice with such problems before one
quickly recognizes that the dilational invariance of an equation containing a
physical constant, is largely determined by the dimensions of that constant and
the requirement of covariance.

Continuing with the example we substitute (1.32) into (1.22) and (1.23)
leading to

Uζ ζ + ζ

2
Uζ = 0, U (0) = 1, U (∞) = 0, (1.34)
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where ζ = x/
√

κt . The symmetry of the problem enables us to reduce the
governing PDE to an ODE. The solution of (1.34) is expressed in terms of the
complementary error function

U = erfc[ζ ] = 1 − 1
π

∫ ζ

0
e−ζ 2/4 dζ. (1.35)

Substitution of (1.35) into the equation and checking boundary conditions con-
firms the solution.

Let’s spend a moment to examine the key assumptions that enabled this
problem to be simplified:

(i) The heat is assumed to be added uniformly in an infinitely thin region at
the left boundary of the domain.

(ii) The domain is infinite in extent to the right.
(iii) The turning on of the temperature at the boundary is assumed to take place

in zero time.

Each of these assumptions removes a length scale or a time scale that, if it
were included, would break the dilational invariance of the problem. In effect
the near-symmetry of a real problem is idealized to bring into play the exact
symmetry of a simplified model of the problem.

Underlying all this is the assumption that, if the ignored scales are sufficiently
small or sufficiently large, then their effect on the solution of the problem is
small. Barenblatt [1.37] describes a large class of problems where such an
assumption either is incorrect or needs to be interpreted very carefully. Such
problems often arise in relatively simple geometries where the physics of the
problem involves the propagation of some sort of front, the motion of which
cannot be predicted by dimensional analysis alone. A fully worked example of
this class of problems will be described in considerable detail in Chapter 9.

As we can see from the foregoing examples, Lie theory is all about trans-
formations that leave differential equations invariant. We can often exploit that
invariance to generate solutions of nonlinear equations by construction. Sup-
pose a Lie group of the form

x̃ = F[x, t, u, s],

t̃ = T [x, t, u, s],

ũ = G[x, t, u, s]

(1.36)
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transforms some partial differential equation,

([x, t, u, ux , ut , uxx , uxt , utt , . . .] = 0 (1.37)

to itself, i.e., the variables with tildes satisfy

([x̃, t̃, ũ, ũ x̃ , ũ x̃ x̃ , ũ x̃ t̃ , ũ t̃ t̃ , . . .] = 0. (1.38)

The implication is that if u[x, t] is a solution of (1.37), then ũ[x̃, t̃] constructed
from the group (1.36) is a solution of (1.38). This is so whether the equation is
linear or nonlinear. The following example illustrates this procedure.

Example 1.3 (Solutions generated directly from symmetries). The nonlinear
PDE

ut + 1
2 (ux )2 − uxx = 0 (1.39)

is shown in Chapter 16 to be invariant under the transformation

x̃ = x,

t̃ = t,

ũ = u − 2 ln
(

1 − f [x, t]eu/2
)

,

(1.40)

where f is any solution of the heat equation ft − fxx = 0. The transformation
(1.40) immediately raises a whole series of questions: where does it come from,
can it be derived systematically, is it a group, where is the group parameter, can
it be used to match reasonable boundary conditions, etc.? The complete answer
to these questions will have to wait until Chapter 16. For now suffice it to say that
it is a group, it can be used to match reasonable boundary conditions, and, most
importantly, it can be derived through a systematic process. As a simple example
of the application of (1.40), let u be the vacuum solution of (1.39), namely, u = 0.
If we choose the elementary heat-equation solution f = −t − x2/2, then (1.40)
generates

ũ = ln
(

1
1 + t + x2/2

)2

, (1.41)

which is an exact solution of (1.39). This is a particularly simple illustration of
the use of (1.40). A vast variety of important exact solutions can be generated
using (1.40), and further discussion of this facet of symmetry analysis will be
given in Chapter 16.
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In summary, the transformation group (1.9) together with its extension to
derivatives such as (1.13) is a diffeomorphism in the space of dependent vari-
ables and independent variables. For a system of differential equations invariant
under (1.9), the transformation maps solutions to solutions. The message from
these three examples is that symmetry analysis is a very useful technique for
generating solutions of both linear and nonlinear differential equations. Indeed,
the method can be applied in varying degrees of effectiveness to virtually any
problem in mathematical physics.

1.6 Some Notation Conventions

One of the biggest headaches in learning group theory is getting used to the
notation. Equally important, a consistent, easy-to-understand notation is a must
for an introductory text. The problem of notation arises because the object
of study is usually a differential equation where the derivatives are treated as
independent quantities that must be transformed. In this context it is easy to
confuse the label of a transforming function with a subscript that is intended to
denote differentiation. Actually, we are getting a little ahead of ourselves here,
but it is worthwhile discussing the problem now in order to make the later going
a little easier.

The theory of Lie groups makes use of smooth parametric transformations
of the form

x̃ j = F j [x, y, s], j = 1, . . . , n

ỹi = Gi [x, y, s], i = 1, . . . , m

ỹi
j = Gi

{ j}[x, y, y1, s],

ỹi
j1 j2 = Gi

{ j1 j2}[x, y, y1, y2, s]
...

(1.42)

where the partial derivatives are

ỹi
j = ∂ ỹi

∂ x̃ j
, ỹi

j1 j2 = ∂2 ỹi

∂ x̃ j1 ∂ x̃ j2
, . . . , (1.43)

and the dots indicate continuation to higher derivatives up to some unspecified
order. The second to last relation in (1.42) is parsed as shown in Figure 1.10.
In later chapters we shall see precisely how to work out the functions that
transform partial derivatives; the procedure is exactly analogous to that used to
derive (1.13). The use of superscripts to label vector components and subscripts
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Vector of first partial derivatives, y1 y1
1

y2
1 … yn

1 … y1
m

y2
m … yn

m, , , , , , , ,(=

Vector of dependent variables, y y
1

y
2 … y

m, , ,( )=

Vector of independent variables, x x
1

x
2 … x

n, , ,( )=

Differentiation with respect to the jth independent variable

The ith dependent variable

ỹ j
i

G j{ }
i

x y y1 s, , ,[ ]=

Function that transforms the partial derivative of y
i
with respect to x

j

Group parameter

)

Fig. 1.10. Notation for variables, derivatives, and transformations of derivatives.

to denote differentiation is standard notation and consistent with that used in
tensor calculus. In rare circumstances confusion can occur when an expression
involves exponents. If and when such a situation arises, parentheses will be
used for clarity.

I was tempted to use the comma notation for derivatives introduced by
Einstein [1.36]. In this case, derivatives are denoted as follows:

yi
, j = ∂yi

∂x j
, yi

, j1 j2 = ∂2 yi

∂x j1 ∂x j2
(1.44)

This is the notation adopted by Stephani [1.18] and has the large advantage
of being totally unambiguous, enabling uncommaed subscripts to be used as
labels. This is especially useful in the context of a theory like general relativity
where the dependent variable is a tensor. There are superficial reasons for not
adopting this notation: the commas tend to get lost, particularly when viewed on
a computer screen, and the differential equations tend to have a busy appearance.
But there is a more compelling reason, which has to do with the nature of
the group-theoretical point of view. In group theory differential equations are
viewed as surfaces in a higher-dimensional (jet) space whose coordinates are the
independent variables, the dependent variables, and all the possible derivatives
of one with respect to the other (cf. Figure 1.8). In this context derivatives are
objects to be manipulated just like common variables. In the end I chose to
leave out the commas to promote this point of view.

In one respect I have adopted Einstein’s notation: when it comes to summa-
tion over repeated indices. For example, the incompressible continuity equation
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from fluid mechanics is written as follows:

∂u1

∂x1
+ ∂u2

∂x2
+ ∂u3

∂x3
= 0 ⇒ ∂ui

∂xi
= ui

i = 0. (1.45)

The use of a subscript in braces to label the function that transforms the
derivative may, at first, seem to be a bit overcomplicated, but there is a good
reason for it. Much of the theory relies on the infinitesimal form of the trans-
formation where the functions in (1.42) are expanded for small values of the
group parameter s:

x̃ j = x j + sξ j [x, y],

ỹi = yi + sηi [x, y],

ỹi
j = yi

j + sηi
{ j}[x, y, y1],

...

(1.46)

The linearized form of the group in (1.46) contains the functions ηi
{ j}, which

infinitesimally transform the first partial derivatives of yi . These functions are
expressed in terms of the ξ j , η j , and their derivatives. The detailed expressions
will be given later, but their form is

ηi
{ j} = ηi

j + various other terms. (1.47)

Without the braces to distinguish the function name on the left and the derivative
ofηi with respect to x j on the right, this relation and its higher-order forms would
cause endless confusion. An alternative would be to adopt all new function
names for the derivative transformations, but this would add a whole set of
new symbols to the theory, and, as we shall see later, there are symbols enough
already.

There is a price to pay for using subscripts only to denote derivatives. If this
convention were applied slavishly everywhere, subscripts would be unavailable
for labeling variables and certain expressions would become quite awkward.
So, with apologies, subscripts will be used in a few places to label variables
where there is no chance of confusion with a derivative.

1.7 Concluding Remarks

This chapter provides an introduction to the concept of a group and to the
meaning of invariance under a group. The brief sampler of examples presented
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above is intended to illustrate some of the kinds of problems that are the object
of symmetry analysis. In Chapter 2 we will explore the role of groups in di-
mensional analysis through several applications. Together these two chapters
provide the motivation for the rest of the book, and several of the examples are
revisited in later chapters.

Following Chapter 2, the theory will be developed fully. In fact, the theory
is not all that extensive and can be adequately covered in a few chapters. There
are certain concepts from the theory of differential equations that lie at the
heart of Lie theory, and so we shall spend Chapter 3 reviewing several topics
concerning ODEs, including the method of characteristics, integrating factors,
and state-space analysis of linear and nonlinear autonomous systems. Especially
important is the relationship between a system of first-order ODEs and its
associated first-order PDE, and in Chapter 3 several methods for solving linear
and nonlinear first-order PDEs are described. In Chapter 4 the Lagrangian
and Hamiltonian formulations of classical dynamics are developed, leading
eventually to the derivation of the Hamilton–Jacobi equation. Examples using
the methods of Chapter 3 are described in Chapter 4.

Lie groups are formally defined in Chapter 5 along with the infinitesimal
form of a group. This leads to the definition of the group operator and the
expansion of an analytic function in a Lie series. The fundamental condition
for invariance of a function under a group is stated, along with a discussion of
the characteristic equations of a group. Finally, the concept of a multiparameter
group and its associated Lie algebra is discussed. This comprises almost all
the theory needed for application to differential equations. In Chapter 6, group
theory is applied to the solution of first-order ODEs. In essence, knowledge of
an invariant group can be used to generate an integrating factor, leading to the
general solution of the ODE. Here both the power and the limitations of group
theory are well illustrated.

The only missing element needed to treat higher-order ODEs and PDEs is
the procedure for extending a Lie group to include transformations of deriva-
tives. The formulas are expressed in terms of the total differentiation operator
D defined in Appendix 1. This operator is needed to remove some of the nota-
tional ambiguities connected with partial differentiation of implicit functions.
Extended groups applied to ODEs and PDEs are the main topics of Chapters 8
and 9 respectively. In Chapter 7 a notation is adopted for derivatives and for
their transforming functions. At the center of this discussion is the definition of
a differential function (Ibragimov [1.38]), which is locally analytic function of
independent variables, dependent variables, and derivatives of dependent vari-
ables. This is an extremely useful concept, which allows all of the theory of
groups applied to functions developed in Chapter 5 to be carried forward intact
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to the application of extended groups to differential equations in Chapters 8
and 9. For example, the expansion of a PDE in a Lie series leads immediately
to the invariance condition of the PDE under an extended group.

The latter part of Chapter 9, along with Chapters 10, 11, and 12, is devoted
to the application of point groups to the simplification and solution of PDEs.
The examples are drawn mainly from heat conduction and fluid mechanics and
are intended to illustrate several of the many facets of the symmetry analysis
approach. For this reason a number of the examples are worked out in substantial
detail to provide the reader with a complete look at how one searches for the
symmetries of a given physical problem with all of its governing equations,
boundary conditions, and possibly integral constraints. Once the symmetries are
identified, the procedure for generating the reduced problem is carried through
to whatever level is feasible. Extensive use is made of the state-space analysis
techniques from Chapter 3 to analyze the structure of the reduced problem and
its solution.

In Chapter 13 groups are used to develop similarity rules for the growth and
decay of turbulent shear flows in simple geometries. The problem here is that
the governing equations are unclosed. In this case the goal is not to reach the
solution of any one particular problem, but rather to say as much as one can
say in the absence of a complete model of turbulent stresses. The result is a
general set of relations that bring together and unify a wide range of results
normally obtained from dimensional analysis. The method is used to define
the parameters for an experiment to measure fine-scale motions in a turbulent
vortex ring.

Lie–Bäcklund groups are described in Chapter 14. A Lie–Bäcklund group
is a generalization of the concept of a point transformation to that of a higher-
order tangent transformation where the mapping of a point can depend on
derivatives evaluated at the point. In a few cases Lie–Bäcklund groups lead
directly to exact solutions of nonlinear problems. Some of the more complex
topics establishing the infinite-order properties of Lie–Bäcklund groups are
included in Appendices 2 and 3. Recursion operators for generating higher-order
symmetries of a differential function are described through several examples.

The treatment of Lie–Bäcklund groups in Chapter 14 leads naturally to the
derivation of the conditions for invariance of an integral of a differential function
in Chapter 15. Variational symmetries are discussed, along with the famous
theorem due to Emmy Noether that relates the symmetries of an Euler–Lagrange
system to conservation laws governing its evolution.

Finally, Chapter 16 is devoted to a discussion of several nonlinear wave
equations in the context of what are commonly called Bäcklund transforma-
tions. Ordinarily these are viewed as many-valued transformations tied to a
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particular differential equation or pair of differential equations through an inte-
grability condition. Therefore they are usually viewed as quite distinct from Lie
groups and Lie–Bäcklund groups. However, in the several examples described
in Chapter 16, well-known Bäcklund transformations are seen to be special-
izations of nonlocal Lie groups (Lie groups that depend on an integral of the
transformed variable) connected to a potential function.

It should be apparent from the examples discussed above that the theory of Lie
groups is central to a wide variety of problems encountered in engineering and
physics. Yet it is a fact that the subject rarely appears in the core curriculum of
the average graduate student, nor is it a topic widely embraced by researchers or
faculty. Why is this? There are several reasons. First, many of the most important
results that can be derived through the formalism of group analysis were first
discovered without it. Sorted by topic and not by method, similarity solutions
and results of dimensional analysis abound, scattered throughout the vast body
of engineering and science literature. The same goes for the many applications
of Lie groups to mechanics, quantum mechanics, and relativity theory. The
problem with this is that, without an extraordinary act of lateral thinking, the
student usually never gets the whole story and never gains an appreciation of
the overarching role of symmetry in the solution of physical problems.

There is a second reason. Lie group theory is essentially a procedure for
investigating the structure of differential equations. Thus, one often needs to
work out transformations of derivatives, and for derivatives of second order
and higher the expressions become extremely long – hugely long if there are
many variables. Thus, to analyze any but the simplest differential equations,
a discouragingly large amount of effort is required. As far as hand calcula-
tions are concerned, the subject is essentially inaccessible to all but the most
undaunted workers – those with a strong, direct interest in the subject. An
uninitiated student trying to learn group theory for the first time is easily over-
whelmed. Homework gets to be an onerous series of repetitive calculations,
often just to reach very elementary results. No wonder there is a tendency to
shy away!

Fortunately, we now live in an era when powerful symbol manipulation soft-
ware packages are widely available. This not only allows the vast bulk of the
effort in group analysis to be automated, bringing the whole subject completely
within the reach of an interested student, but it also opens up new vistas for
research. For example, although we have very complete knowledge of the Lie
point groups that leave the classical equations of mathematical physics invari-
ant, we know practically nothing of the higher-order Lie–Bäcklund structure
of these equations except in a few cases where symmetries can be gener-
ated through the use of recursion operators. These are problems that simply
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could not be attacked by hand because of the sheer bulk of the calculations
required.

Appendix 4 describes a software package called IntroToSymmetry.m,
which is provided with the text. The package was developed by the author
using Mathematica® and requires that the user have this application available.
Although this is an appendix, don’t treat it as merely a minor addition to the
text. The software package is a key tool, which the reader will need in order to
work a number of the homework problems. A fair amount of time should be
set aside to familiarize oneself with the various functions in the package and
the numerous sample runs included on the CD-ROM. The great value of this
software package and others like it lies in the fact that one can fairly quickly
gain experience in searching for and recognizing symmetries by working out
a large number of sample problems that would take ages to work out by hand.
Nevertheless it is essential to work out a few problems by hand to gain a basic
understanding of Lie’s algorithm.

1.8 Exercises

1.1 Work out the 6-member discrete symmetry group of an equilateral tri-
angle. Show that the set of matrices is closed with respect to matrix
multiplication, that each member of the set has an inverse, that the ma-
trices are associative, and that the set has an identity element.

1.2 Work out the 24-member discrete rotation group of the cube shown in
Figure 1.11. Show with sample calculations that the set of matrices is
closed with respect to matrix multiplication, that each member of the
set has an inverse, that the matrices are associative, and that the set
has an identity element. How many matrices do you get if you include

Fig. 1.11.
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reflections? Which of these symmetries is shared by a tetrahedron formed
by connecting four of the corners of the cube as shown? Show that the
tetrahedral group is a subgroup of the cubic group. See Chapter 1 of
the reference by Nussbaum [1.32] for a discussion of this and related
problems.

1.3 Show that the first-order ODE

x
(

dy
dx

)2

+ y
(

dy
dx

)

+ x = 0 (1.48)

is invariant under a dilation group. Is it invariant under translation? Plot
the surface defined by the equation in (x, y, yx ) coordinates.

1.4 Consider the nonlinear heat equation

∂T
∂t

− λ
∂

∂x

(

T β ∂T
∂x

)

= 0, (1.49)

where T is the temperature. What are the units of λ? Find a two-
parameter dilation group that leaves the equation invariant. How is the
group connected to β?

1.5 Transform each of the following equations using the following four-
parameter dilation group:

x̃ j = ea x j , t̃ = ebt, ũi = ecui , p̃ = ed p, ρ̃ = ρ .

(1.50)

(i) The incompressible Navier–Stokes equations

∂ui

∂t
+ ∂

∂xk

(

ui uk + p
ρ

δi
k

)

− ν
∂ui

∂xk ∂xk
= 0,

∂uk

∂xk
= 0.

(1.51)

(ii) The Stokes equations for slow flow,

∂ui

∂t
+ ∂

∂xi

(

p
ρ

)

− ν
∂ui

∂xk ∂xk
= 0,

∂uk

∂xk
= 0. (1.52)

(iii) The Euler equations for inviscid flow,

∂ui

∂t
+ ∂

∂xk

(

ui uk + p
ρ

δi
k

)

= 0,
∂uk

∂xk
= 0. (1.53)

How do the group parameters a, b, c, d have to be related to one another
in order for the given equations to be invariant?
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1.6 Use the solution (1.41) in (1.40) to initiate a succession of solutions to
(1.39). What do these solutions have in common?
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2
Dimensional Analysis

Any physical relationship must be expressible in dimensionless form. The im-
plication of this statement is that all of the fundamental equations of physics,
all approximations to these equations, and, for that matter, all functional re-
lationships between physical variables must be invariant under a dilation (or
stretching) of the dimensions of the variables. This is because the variables are
subject to measurement by an observer in terms of units that are selected at
the arbitrary discretion of the observer. It is clear that a physical event cannot
depend on the choice of the unit of measure used to describe the event. It cannot
depend on the particular ruler used to measure space, the clock used for time,
the scale used to measure mass, or any other standard of measure that might
be required, depending on the dimensions that appear in the problem. This
principle is the basis for a powerful method of reduction called dimensional
analysis.

2.1 Introduction

A general mathematical relationship between variables is completely devoid of
symmetry. However, if the variables describe the properties of a measureable
physical system, then the dimensions of the system add a symmetry property
to the relationship where none existed before. In effect, assigning dimensions
to the variables brings into play the principle of covariance. We can define the
notion of dimension as follows.

Definition 2.1. A dimension is a measurable property of a physical system
that can be varied by a dilational transformation of the units of measurement.
The value of each variable of the system is proportional to a power monomial
function of the fundamental dimensions.

33
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Often dimensional analysis is carried out without any explicit consideration of
the actual equations that may govern a physical phenomenon. Only the variables
that affect the problem are considered. Actually, this is a little deceiving. In-
evitably, the choice of variables is intimately connected to the phenomenon
itself and therefore is always is connected to, and has implications for, the gov-
erning equations. In fact the most complex problems in dimensional analysis
tend to be filled with ambiguity as regards the choice of variables that govern
the phenomenon in question.

2.2 The Two-Body Problem in a Gravitational Field

First let’s look at a fairly straightforward example that nicely illustrates both
the power and the limitations of dimensional analysis. This is the problem
of determining the relationship between the mean distance from the sun and
the orbital period of the planets. The solution of this problem was published
by Johannes Kepler in 1619 and has since been known as Kepler’s third law.
Kepler, who succeeded Tycho Brahe as the imperial mathematician of the Holy
Roman Empire in 1601, was one of the truly outstanding scientists of the Age of
Enlightenment. His position gave him access to Brahe’s incomparable collection
of astronomical data, particularly data for the movement of Mars, collected by
a team of astronomers over decades of painstaking work. By 1609 he had
published his first two laws (although he did not refer to them as such): that the
planets follow elliptical orbits and that the movement of a planet along its orbit
traces out equal areas in equal times. A decade later he published his findings
that the cube of the distance from the sun divided by the square of the period is
a constant. Kepler’s accomplishments at the time are all the more remarkable
in that they occurred at about the same time that he had to rush to the defense of
his mother, who had been indicted as a witch. Only his timely defense in 1620
prevented her from being tortured and burned at the stake. Kepler remained the
imperial mathematician for several more years but, through the events leading
up to the Thirty Years’ War, was eventually forced to find a new patron. He fell
ill and died on November 15, 1630. Kepler was the first to provide a dynamical
explanation of the movements of the heavens, and his results continued to
have an impact long after his death. Newton relied heavily on Kepler’s work
in developing his theory of gravitation in the 1680s. Today we recognize that
the law of equal areas applies to any pair of masses with a radially directed
force between them, while the first and third laws apply only to particles that
obey an inverse square law, including the motion of satellites and the electrical
interactions of charged particles. A fourth law can also be identified that arises
from the invariance of the governing equations of the Kepler system under a
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2a

2b

M

m
u

r

Fig. 2.1. Elliptical orbit of a planet about the sun.

Lie–Bäcklund group. This will be discussed in Chapter 15, where the problem
is revisited.

Here we consider the movement of one of the planets about the sun. The
orbit is elliptical with major axis a, minor axis b, and area A = πab. The sun
lies very close to one of the foci of the ellipse, as shown in Figure 2.1.

The force between the two masses follows the Newtonian law of gravitation,

F = −G
Mm
r2

, (2.1)

where G is the gravitational constant G = 6.670 × 10−11 N-m2/kg2 and the
minus sign indicates that the force is attractive. The perturbation of the orbit
by all the other planets is ignored. We wish to use dimensional analysis to
rediscover Kepler’s third law relating the period of the orbit to its size. Data for
the solar system are shown in Table 2.1. The mass of the Earth is 5.975 × 1024 kg,
and the mean diameter is 12742.46 km.

The eccentricity of a planet’s orbit is

e =

√

1 −
(

b
a

)2

. (2.2)

The only parameters that can enter the problem are the lengths of the two axes,
the two masses, the period, and the gravitational constant, and we have

â = L , b̂ = L , M̂ = M, m̂ = M, T̂ = T, Ĝ = L3

MT 2
.

(2.3)

The hat over a parameter such as â in (2.3) is used to mean “dimensions of.”
In this problem M = mass, L = length, and T = time are the fundamental
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dimensions. There are six parameters and three fundamental dimensions, and
so we can expect the solution to depend on three dimensionless numbers. Two
of these are obviously a mass ratio and a length ratio,

"1 = m
M

, "2 = b
a

. (2.4)

In view of the dimensions of G, it is clear that the third number must involve
one of the masses, one of the lengths, and the period. Thus, we can expect a
dimensionless variable of the form

"3 = G MT 2

a3
, (2.5)

where we have arbitrarily chosen M and a to form "3 rather than m and b.
According to the principle of covariance one can expect all these variables to
be related by a dimensionless function of the form

ψ = $("1, "2, "3). (2.6)

Without loss of generality we can solve (2.6) explicitly for "3:

G MT 2

(rmean)3
= F

(

m
M

, e
)

, (2.7)

where we have used the eccentricity in place of b/a and a mean radius defined
as rmean =

√
ab. Using the data in Table 2.1, we can plot the values of (2.7) for

the various planets in the solar system, as shown in Figure 2.2.
Figure 2.2 provides stunning confirmation of our dimensional analysis result

and indicates that the function on the right-hand side of (2.7) is very nearly
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Fig. 2.2. Kepler’s third law for the solar system.
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constant for all the planets in the solar system. In fact, Kepler’s theory tells us
that the right-hand side of (2.7) is

F
(

m
M

, e
)

= 4π2
(

1
(1 + m/M)(1 − e2)3/4

)

. (2.8)

For all the planets m/M ≪ 1, and for all but Mercury and Pluto e2 is very small.
In the limits m/M → 0 and e → 0 the right-hand side of (2.8) approaches the
finite limit 4π2 = 39.4784.

In fact we have made a lucky choice. On purely dimensional grounds, in
the absence of Kepler’s theory, there is absolutely no reason to select M in the
definition of "3; m would have been just as appropriate a choice, but would
have produced a highly scattered plot. Dimensional analysis alone provides no
information in this matter. The full theory is required. We will return to the
Kepler problem three more times in this text. In Chapter 4 we will develop the
full theory of the two-body problem, and in Chapters 14 and 15 we will study
Lie–Bäcklund symmetries and their connection with conservation laws for the
Kepler problem.

2.3 The Drag on a Sphere

Next, we will work a problem that also illustrates the power as well as some of
the pitfalls of dimensional analysis. This is the problem of viscous flow past a
sphere. The previous example involved a rather simple set of basic dimensioned
variables, and so it could be worked out by inspection. In the present case that is
not quite so easy, and so we will resort to a systematic method of constructing
appropriate dimensionless variables. Initially we will make the assumption that
the flow is incompressible, and then compressibility effects will be added later.
The results will then be compared with experimental data. Uniform flow of a
viscous fluid past a sphere is shown in Figure 2.3.

To get started let’s assume that the relevant variables of the problem are the
drag force D, the fluid density ρ, the viscosity µ, the freestream flow velocity
U, and the radius of the sphere, r . These variables can be thought of as related
to one another through a function of the form

ψ0 = $0[D, µ, ρ, U, r ], (2.9)

where ψ0 is a pure number (i.e., dimensionless), which may be zero.

Uµ, ρ
D

r

Fig. 2.3. Viscous flow past a sphere.
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Considered solely as a mathematical statement, (2.9) has no symmetry. But
it is not just an abstraction! It is a physical statement in two respects. First, it
states that the drag on the sphere depends only on the selected variables. This is
totally at our discretion, and it would be easy to argue that other quantities, for
example the speed of sound in the fluid, ought to also play a role. Second, the
variables in (2.9) are all measurable properties of a physical system; they have
dimensions, and those dimensions are measured in arbitrarily chosen units:

D̂ = M L
T 2

, µ̂ = M
LT

, ρ̂ = M
L3

, Û = L
T

, r̂ = L . (2.10)

Because the variables in (2.9) have dimensions, the function $0 cannot be
arbitrary. If it were, the constant ψ0 would change whenever the choice of units
was changed. In effect, the drag force on the sphere would appear to depend
on the choice of the units of measurement, which is impossible. To see this
let’s suspend the law of covariance for a moment and imagine that the drag
relationship (2.9) is

0 = D − (µ + ρ + U + r ), (2.11a)

or in terms of dimensions

0 = M L
T 2

−
(

M
LT

+ M
L3

+ L
T

+ L
)

. (2.11b)

If we were to change the units of mass from kilograms to grams, then µ and ρ

would both be larger by a factor of 103 while U and r stayed the same. This would
increase the term in parentheses in (2.11), but not by this factor. But D also
increases by a factor of a thousand; thus the equality (2.11) cannot be maintained
when the units are changed. The various terms of the drag relationship (2.11)
do not vary together (they do not covary) as the units of mass are changed and
(2.11) cannot possibly describe the drag on a sphere.

The only way to avoid this problem is to require that the general drag rela-
tionship (2.9) satisfies the principle of covariance. Accordingly, (2.9) must be
invariant under a three-parameter dilation group

M̃ = em M, L̃ = el L , T̃ = et T, (2.12)

where the group parameters m, l, and t are arbitrary real numbers. This invari-
ance requirement severely restricts the function $0 and suggests that one can
learn something important by searching for a proper invariant form of the drag
relationship. We will proceed in steps. Begin by scaling the units of mass using
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the following one-parameter group:

M̃ = em M, L̃ = L , T̃ = T . (2.13)

The effect of this scaling on the variables of the problem is to transform them
as follows:

D̃ = em D, µ̃ = emµ, ρ̃ = emρ, Ũ = U, r̃ = r. (2.14)

The drag relation (2.9) is required to be independent of the group parameter m
and therefore must be of the form

ψ0 = $1

[

D
ρ

,
ρ

µ
, U, r

]

(2.15)

or something equivalent. That is, (2.15) is not unique. For example, we could
have picked D/µ, ρ/µ, U, r as the new independent variables. Either choice is
invariant under (2.13). We shall return to this point in a moment. The dimensions
of the variables remaining in (2.15) are

D̂
ρ̂

= L4

T 2
,

ρ̂

µ̂
= T

L2
, Û = L

T
, r̂ = L . (2.16)

Now let the units of length be scaled according to

L̃ = el L , T̃ = T . (2.17)

The effect of this group on the variables in (2.15) is

D̃
ρ̃

= e4l D
ρ

,
ρ̃

µ̃
= e−2l ρ

µ
, Ũ = elU, r̃ = elr. (2.18)

By the principle of covariance, the drag relation (2.15) must be independent of
l, and a functional form that accomplishes this is

ψ0 = $3

[

D
ρU 2r2

,
ρU 2

µ
,

r
U

]

. (2.19)

The dimensions of the variables in (2.19) are

D̂

ρ̂Û 2r̂2
= 1,

ρ̂Û 2

µ̂
= 1

T
,

r̂

Û
= T . (2.20)

Finally, scale the units of time:

T̃ = et T . (2.21)
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The effect of this group on the variables in (2.19) is as follows:

D̃

ρ̃Ũ 2r̃2
= D

ρU 2r2
,

ρ̃Ũ 2

µ̃
= e−t ρU 2

µ
,

r̃

Ũ
= et r

U
. (2.22)

The drag relation (2.19) must be independent of t , and this leads finally to the
dimensionless form

ψ0 = $[CD, Re] (2.23)

where

CD = D
1
2ρU 2(πr2)

, Re = ρU (2r )
µ

. (2.24)

The first dimensionless variable has the usual interpretation of a drag coefficient.
The constants 1

2 and π have been inserted to bring the definition into line
with accepted usage where the drag is normalized by the free-stream dynamic
pressure and the frontal area of the body. The second dimensionless variable
is the Reynolds number, commonly defined in terms of the sphere diameter.
The final result (2.23) is invariant under the three-parameter group (2.12), and
covariance is satisfied. The experimentally determined relationship (2.23) will
be discussed in the next section.

In a way, (2.23) is a remarkable achievement. The drag has been found to
depend on only one quantity, not four – a tremendous reduction. Furthermore
we were able to reach this simple relationship without ever having to consider
the equations of motion for the flow over a sphere. This does not mean we did not
do any physics – there is a significant amount of physics in the identification
of the relevant variables. In this respect dimensional analysis is deceptively
simple. In fact it requires a deep physical understanding of the problem being
addressed, and this necessitates an understanding of the governing equations.

It is interesting to seek a further simplification of the problem by considering
possible limiting behavior of (2.23). To illustrate this idea we will make use
of the well-known exact solution for the drag on a sphere in the limit of small
Reynolds number,

CD = 24
Re

. (2.25)

If we restore the dimensioned variables in (2.25) and solve for the drag, the
result is

D
µUr

= 6π. (2.26)



42 2 Dimensional Analysis

At very low Reynolds number the drag on a sphere is independent of the density
of the surrounding fluid – a completely unexpected result and one that could
not be determined without knowing the solution (2.25). This amazing result
explains a variety of phenomena. It tells us why the atmosphere of Mars, with
a surface pressure less than one percent of that of Earth, can support planet-
wide dust storms that may take several months to settle out. The density of the
atmosphere hardly matters at all; the settling speed of small dust particles is
determined almost entirely by the viscosity of the Mars atmosphere, which is
96% cold carbon dioxide at about 200◦ K. Mariner 9 encountered such a storm
when it arrived at the red planet in 1972. At first this was thought to be a major
dissapointment, since the surface of the planet was totally obscured, but the
optical scattering data obtained over the weeks and months as the dust settled
continue to be analyzed today and will remain for a long while as one of the
most important sources of data on the composition of Mars [2.2], [2.3].

It is perfectly reasonable to try to extend this result to flow over a circular
cylinder, where the drag per unit length has the dimensions

D̂cylinder = M
T 2

(2.27)

and the drag coefficient is

CDcylinder =
Dcylinder

1
2ρU 2(2r )

. (2.28)

The circle in Figure 2.3 is now interpreted as a cylinder extending to infinity.
Dimensional analysis leads to a result identical to (2.23), and logic would
suggest that, perhaps, in the limit of very small Reynolds number the flow over
a cylinder is governed by an equation similar in form to (2.25). Let

CDcylinder = ψ

Re
. (2.29)

If we restore the dimensioned variables in this relation, the result is

Dcylinder

µU
= ψ, (2.30)

which says that the drag on a cylinder is independent of its radius. In this case
dimensional reasoning plus a little bit of experience has led us down a garden
path to a nonsensical and completely incorrect result. In fact the drag coefficient
of a circular cylinder at low Reynolds number depends on Re log[C/Re]. See
Reference [2.13].
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Fig. 2.4. Experimental measurements of the drag on a circular cylinder from [2.1].

2.3.1 Some Further Physical Considerations

Even when dimensional analysis succeeds in producing a physically reasonable
result, that result is usually limited in very important ways. Figure 2.4, from
Reference [2.1], shows measurements of drag on a circular cylinder versus
Reynolds number taken by a variety of investigators. According to (2.23) there
should be a single curve of CD versus Re. But one can’t help but be struck by
the wide variation from one experiment to another depicted in Figure 2.4. Is
our analysis wrong?

No, not really, within the confines of the physical variables identified in (2.9).
However, it is pretty obvious that important variables have been ignored. The
drag on a circular cylinder or a sphere is sensitive to many things. The main
dependence is on the Reynolds number, which is successfully identified using
dimensional analysis. But in addition, the drag depends on a whole variety of
velocity scales and length scales, including surface roughness (measured in
terms of a roughness height), the level of freestream turbulent velocity fluctua-
tions, the length scale of turbulent eddies in the freestream, the size of the wind
tunnel, the speed of sound (if U is not small enough), etc. A more complete
dimensionless description of the problem would be of the form

ψ = $

[

D
ρU 2r2

,
ρUr
µ

,
υ1

U
,
υ2

U
, . . . ,

λ1

r
,
λ2

r
, . . .

]

, (2.31)

where υ1, υ2, . . . , λ1, λ2, . . . are the neglected velocity and length scales of the
problem.

The point of all this is that when we formulated the original problem an im-
plicit assumption was made that these quantities are either infinitesimally small
or infinitely large and a finite limit of (2.31) exists as any one of υ1, υ1, . . . ,
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λ1, λ2 . . . goes to zero or infinity. That is, we assumed that when these variables
are asymptotically small or large they have a small effect and that the remaining
variables provide an adequate description of the physical system. The experi-
ence we gained from the Kepler problem, where the limit of (2.8) as m/M and
e went to zero was 4π2, would suggest that such an assumption is justified.

But the lesson of Figure 2.4 is that not all problems are as clean as the Kepler
problem. In fact, fluid dynamics presents a wide variety of problems where such
an assumption is a close call at best and has to be examined through experiment
in each case. The drag law at low Reynolds number, (2.25), is another case
in point. Obviously, a finite limit at zero Reynolds number in this relationship
does not exist. Only by renormalizing the drag in the form of (2.26) can a finite
limit be realized. For an extensive treatment of this issue the reader is referred
to the text by Barenblatt [2.4].

This example resonates again with a key point made several times previously.
A real physical system in all of its detail is devoid of perfect symmetries.
We live in a universe of broken symmetries. In a sense, our mathematical
physics, constructed around equations with perfect symmetry and methods that
can incorporate only relatively idealized boundary conditions, simply isn’t up
to the task of fully describing real phenomena in all detail. Nevertheless, by
incorporating as exact symmetries those approximate symmetries that play a
key role in the phenomena being described, remarkably accurate models of the
physical world can be developed. The identification of such symmetries is one
of the main objectives of scientific inquiry.

As a final example we consider what happens to the sphere drag problem when
the speed of the flow is large and the effects of compressibility are incorporated.

2.4 The Drag on a Sphere in High-Speed Gas Flow

Figure 2.5 shows the flow when the speed of the sphere exceeds the speed
of sound in the surrounding medium. In this case the pressure disturbance

U
D

r

Shock wave

T ∞ Cv C p, ,

µ∞ ρ∞,

Fig. 2.5. High-speed flow past a sphere.
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produced by the sphere is unable to propagate upstream to infinity. In effect,
the sphere continually overtakes its own sound field, and the result is a shock
wave standing in front of the sphere. Figure 2.5 is intended to illustrate the
flow at supersonic speeds. However it is well to recognize that compressibility
effects due to the acceleration of the flow about the sphere begin to come into
play at subsonic speeds, somewhat below the speed at which shock formation
occurs. Moreover, shock waves form on the sphere at freestream speeds well
below the speed of sound. We have the same relevant variables that we had
before, including the drag force D, the fluid density ρ∞, the viscosity µ∞, the
freestream flow velocity U, and the radius of the sphere, r .

At low speed, where the flow is nearly incompressible, the effect of the sphere
motion on the internal energy of the fluid is extremely small and mainly confined
to slight heating by viscous friction. At high speed, the motion of the sphere can
substantially change the internal energy of the gas owing to its compressibility.
The kinetic energy of the sphere ratioed to the thermal energy of the surrounding
gas becomes an important measure of the degree to which the internal energy
of the gas can be changed by the motion of the sphere. Moreover, this ratio
is correlated with the strength, shape, and position of the shock and therefore
the drag on the sphere. This brings into play the gas temperature and the heat
capacities at constant pressure and volume, indicated in Figure 2.5 as additional
dimensioned variables governing the drag. Note that the temperature and density
of the gas vary throughout the flow, necessitating the use of subscripts to denote
freestream values. The dimensions of the relevant variables are

T̂∞ = (, Ĉ p = M2

L2(
, Ĉv = M2

L2(
. (2.32)

Now we have one additional fundamental dimension, temperature, and three
additional parameters, two of which have the same units. Note that the dimen-
sions of the heat capacities, speed2/temperature, reflect the argument just made
comparing the kinetic energy of the motion with the thermal energy of the gas.
When we carry through the systematic procedure used in the incompressible
case, the result is two additional dimensionless variables:

"1 = U 2

CvT∞
, "2 = C p

Cv

. (2.33)

Note that CvT∞ is the internal energy per unit mass of the freestream gas.
Finally our drag relation is

ψ = $[CD, Re, M∞, γ ] (2.34)
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where γ = C p/Cv and "1 is replaced by the usual form of the Mach number,

M∞ = U
a∞

, (2.35)

where the speed of sound is given by

a2
∞ = γ RT∞. (2.36)

The quantity R is the universal gas constant divided by the molecular weight
of the gas (R = Ru/Mw), which obeys the ideal gas law p = ρRT . Note that
R is related to the heat capacities by R = C p − Cv . Without loss of generality
we can write

CD = F[Re, M∞, γ ]. (2.37)

Miller and Bailey [2.5] studied the available experimental data for the drag
on spheres over a wide range of Reynolds and Mach numbers in air. Inter-
estingly, the most accurate high-Reynolds-number data for Mach numbers be-
tween 0.6 and 2.0 turned out to be the 19th-century cannonball measurements
by Francis Bashforth [2.6], who was professor of applied mathematics at the
Royal Military Academy at Woolwich (near Greenwich), England. In 1947 the
Academy was consolidated with the Royal Military Academy at Sandhurst.
The Royal Artillery Barracks on Woolwich Common, where many famous
British military figures were trained, is now the home of the Royal Artillery
Museum.

Bashforth’s technique was to measure the successive times when the pro-
jectile passed through a series of ten wire screens spaced 150 feet apart and
electrically connected to a chronograph consisting of a pair of pens writing on a
paper-covered, rotating drum. As the projectile passed through each screen, the
current to the chronograph was interrupted, providing a position–time history
from which Bashforth could infer the velocity and deceleration of the can-
nonball. This information could then be used to compile an extensive set of
data for the drag coefficient, Mach number, and Reynolds number of spheres.
Figure 2.6 (Figure 2 in Miller and Bailey) presents the data of Bashforth, which
show the rapid rise in the drag coefficient of a 7.4-cm-diameter sphere through
the transonic Mach-number regime.

Figure 2.7 shows their complete compilation of data at various Reynolds num-
bers and Mach numbers. The most interesting feature of the data in Figure 2.7
is the tendency for the drag coefficient to become essentially independent of
Reynolds number for M∞ > 1.5. In this regime, wave drag dominates viscous
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Fig. 2.6. Bashforth’s drag data for a 7.4-cm-diameter cannonball from [2.5].

drag. In fact the data suggest that as the Mach number is increased, the drag
coefficient approaches

CD ≈ 1, (2.38)

although there is a slight but systematic decrease above M∞ = 2.0. At low Mach
number the drag coefficient shows no sign of reaching an asymptotic value up
to the highest Reynolds number measured.

The sphere drag problem beautifully illustrates many of the features of di-
mensional analysis applied to different parameter regimes. At extremely low
Mach number the drag is independent of the fluid density and speed of sound.
At high subsonic Mach numbers the drag becomes almost independent of fluid
viscosity and at supersonic Mach numbers the drag appears to be almost inde-
pendent of both the viscosity and speed of sound.

2.5 Buckingham’s Pi Theorem – The Dimensional-Analysis Algorithm

Finally, let’s take a moment to formally state the systematic procedure for
generating dimensionless variables. This is one way of stating the well-known
Buckingham Pi theorem (Bridgman [2.17]).
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Fig. 2.7. Compilation of sphere drag as a function of Mach number and Reynolds
number from Miller and Bailey [2.5].

Dimensional analysis makes use of a simple, purely algorithmic procedure
that is extremely general and can be applied to practically any physical problem.
The various steps are as follows.

(1) Identify the physical variables relevant to the problem (a1, a2, . . . , aα).
(2) Determine the fundamental dimensions of each physical variable. The

total number of dimensions is (d1, d2, . . . , dβ) (β ≤ α). Each variable is a
power monomial function of its dimensions,

âi = dk1
1 dk2

2 · · · dkβ

β . (2.39)

where k1, k2, . . . , kβ are usually but not always integers.
(3) Buckingham’s Pi Theorem – A relationship between physical variables

ψ = f [a1, a2, . . . , aα] must be expressible in a form that is invariant under
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a β-parameter dilation group applied to the fundamental dimensions:

d̃1 = eδ1 d1, d̃2 = eδ2 d2, . . . , d̃β = eδβ dβ . (2.40)

(4) The algorithm for accomplishing step 3 is to apply a one-parameter dilation
group to each dimension in succession. New variables are created at each
step, which are independent of the dimension being varied. This process
is continued until all the dimensions are exhausted. In the final result, the
physical problem can only depend on dimensionless variables via a func-
tion of the form ψ = $["1, "2, . . . , "γ ]. Usually γ = α − β. Occasionally
the dimensions of the variables are such that two or more dimensions may
be eliminated in a single step. In this case the number of dimensionless
variables is larger than α −β. See Exercise 2.9 for an example. This notion
can be quantified by forming the β × α matrix of exponents of the dimen-
sions of the physical variables. The actual count of dimensionless variables
is α minus the rank of this matrix. If the rank is less than β then two or
more dimensions can be combined.

Step 4 is a purely algorithmic process that always leads to a set of dimen-
sionless combinations of the physical variables. The only problem is that any
product of these dimensionless variables is also dimensionless, and so the re-
duced set is not unique and therefore not always recognizable in traditional
terms. Changing the order in which various dimensions are subjected to dila-
tion will change the form of the final variables. For example, in the case of
sphere drag described above we could have wound up with

φ = .[CD Re, Re] = .

[

D
µUr

,
ρUr
µ

]

(2.41)

as an equivalent dimensionless form of the drag equation. Note that in this
renormalized form the drag law has a finite limit as the Reynolds number goes
to zero:

lim
Re→0

.

[

D
µUr

,
ρUr
µ

]

= 6π. (2.42)

The success or failure of dimensional analysis depends entirely on step 1,
the choice of the dimensioned physical variables relevant to the problem. This
constitutes the art of dimensional analysis. Applied intelligently with a deep
knowledge of the problem, very important and profound results can be obtained.
Applied blindly, dimensional analysis can easily lead to nonsense.
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2.6 Concluding Remarks

Although I have tended to emphasize the limitations of dimensional analysis,
this should be balanced by the recognition of the great simplification achieved
in converting from dimensioned to dimensionless variables. Sphere drag is a
great example because, in spite of the fact that the equations governing the flow
are perfectly well known and have been for over a century, we are still very far
from having an adequate theory for the viscous flow past a sphere. For example,
we have no idea of the asymptotic value of CD as Re approaches infinity at
fixed Mach number or as M∞ approaches infinity at fixed Reynolds number.
Nevertheless, dimensional analysis is able to reduce the number of variables in
the problem from eight to four – a tremendous accomplishment. Without this
all-important tool to organize the experimental data and our thinking, rational
scientific inquiry into this problem and many others would be utterly impossible.

2.7 Exercises

2.1 Under the influence of surface tension, a liquid rises to a height H in
a glass tube of diameter D (Figure 2.8). How does H depend on the
parameters of the problem?

H

D

Fig. 2.8.

2.2 Estimate the time of oscillation of a small drop of liquid under its own
surface tension.

2.3 When a drop of water strikes a surface at sufficiently low speed, surface
tension keeps it round, so it makes a circular spot. As the impact speed
is increased, dynamic forces overcome the smoothing effect of surface
tension, and the drop becomes unstable and forms a spiky shape as shown
in Figure 2.9. (Thanks to Milton Van Dyke for this problem [2.8].) How
does the speed at which the impact becomes unstable depend on the
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properties of the drop? Retain only the essential properties, so that your
result involves only a single unknown constant that could be determined
from an experiment. Thus you may wish to assume that viscosity is
negligible, the properties of the surrounding air are unimportant, etc.
See if your result makes sense. For example, does the critical speed
depend on the surface tension in the way you would expect?

Fig. 2.9.

2.4 Estimate the velocity of fall of a small heavy sphere in a viscous fluid
of lower density than the sphere under the influence of gravity. Compare
your result with the exact solution. How long does it take the sphere to
reach its terminal velocity when dropped from rest?

2.5 Liquid in an open container flows through a long horizontal pipe into
a second container as shown in Figure 2.10. How does the time for
the liquid level to reach equilibrium depend on the parameters of the
problem?

Fig. 2.10.

2.6 Use dimensional analysis to find how the rowing speed depends on
the number of oarsmen for racing shells. This problem is discussed by
McMahon [2.9] and Barenblatt [2.4]. Use the following asssumptions.
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Table 2.2. Rowing times for 1-, 2-, 4-, and 8-man shells
from three previous Olympics. The distance traveled

in each case is 2000 m.

Time (s)

Olympics 1 oarsman 2 oarsmen 4 oarsmen 8 oarsmen

Atlanta 404.85 376.98 356.93 342.74
Barcelona 411.40 377.32 355.04 329.53
Seoul 409.86 381.13 363.11 —

(i) The boats are geometrically similar.
(ii) The boat weight W per oarsman is constant.

(iii) Each oarsman contributes the same power, P .
(iv) The only hindering force is skin friction, and the friction coefficient

is constant over the wetted area. The friction coefficient is defined
as cf = τwall/( 1

2ρU 2), where τwall is the wall shear stress.

Hint. Find how the volume of the displaced water varies with the num-
ber of oarsman and the length of the boat. Equate the expenditure of
energy on skin friction to the power supplied by the oarsman. Data for
men’s rowing over a 2-km course from three recent Olympic summer
games are presented in Table 2.2. Plot the data in logarithmic coordi-
nates and compare with your prediction. Notice that in the context of
this problem the number of oarsmen is a fundamental dimension.

2.7 Critique the assumptions in Exercise 2.6 – particularly (i), which seems
to suggest that the shells get wider as they get longer to accommodate
more rowers.

(i) How does the problem work out if the width of the shell is assumed
to be constant?

(ii) Suppose the drag is primarily due to the generation of waves and
skin friction can be neglected. How will the speed depend on the
number of oarsman? Do these results shake your confidence in the
solution developed in Exercise 2.6?

(iii) Work the case where the race is carried out by fleas on a lake of
honey.

2.8 What is the speed of the wave in a row of falling dominos on a table?
Add whatever simplifying assumptions you feel are reasonable, such
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as perfectly rigid dominos, constant coefficient of friction between the
dominos and the table, etc. This problem is the subject of a pair of journal
papers by Stronge [2.10] and Stronge and Shu [2.11] as well as a note in
the SIAM Review Problems and Solutions. The problem was proposed
by Daykin [2.12] and solved by McLachlan et al. [2.13].

2.9 Show that if two equal-size elastic spheres are pressed together, the radius
of the circle of contact varies as the one-third power of the force between
them. How does it vary with the radius of the spheres?

2.10 One of the well-known observations in blood flow is that the viscous
shear stress at the wall of an artery is approximately independent of
the diameter of the artery. Consider a bifurcation where the flow in one
large artery splits into two smaller adjoining arteries of equal size. How
are the diameters of the smaller arteries related to the diameter of the large
artery?

2.11 Use dimensional analysis to deduce how the weight a man can lift de-
pends on his own weight. Assume that the strength of a muscle varies
as its cross-sectional area. See if your result correlates the data in
Table 2.3, taken from the 1969 World Almanac for the 1968 Senior
National AAU weightlifting championships. How much did the heavy-
weight lifter weigh?

2.12 There is continuing interest in pushing measurements of circular cylinder
drag to the highest possible Reynolds numbers. One scheme that has been
proposed is to tow a submerged, high-aspect-ratio cylinder behind two
nuclear-powered aircraft carriers pulling lines attached to each end of the
cylinder. The kinematic viscosity of water is small, the cylinder diameter
can be made quite large, and thus high Reynolds numbers ought to be
achievable. Assuming only cylinders of a given aspect ratio, say L/r =
60, are used, how does the required towing force vary with the Reynolds

Table 2.3. Total weight lifted for
different classes.

Body weight Lifted weight
Class (pounds) (pounds)

Bantam 123.5 740
Featherweight 132.25 795
Lightweight 148.75 820
Light-heavy 181.75 1025
Middle-heavy 198.25 1055
Heavyweight ? 1280
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number based on cylinder diameter? What force would be required to
reach a Reynolds number that exceeds the highest available data (Re =
108, Cd = 0.6)? The maximum towing force available is about 108 N.
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3
Systems of ODEs and First-Order PDEs –

State-Space Analysis

Before we move on to the main discussion of Lie groups, it is useful to review
some basic concepts from the theory of differential equations. A Lie group is
always associated with an autonomous set of characteristic ODEs, the integrals
of which become new variables in the simplification of physical problems. The
purpose of this chapter is to provide the basic analytical tools needed to solve
such systems and to review several of the fields where they arise. State-space
analysis is introduced in this chapter and used extensively throughout the text
to provide a geometrical interpretation of the solutions that we study.

3.1 Autonomous Systems of ODEs in the Plane

Let’s examine the following autonomous system of ordinary differential equa-
tions in two dimensions:

dx
ds

= ξ [x, y],
dy
ds

= η[x, y]. (3.1)

Solution trajectories of this system are determined by integrating the coupled
nonlinear right-hand sides:

x = x̃ +
∫ s

s0

ξ [x[ŝ], y[ŝ]] dŝ, y = ỹ +
∫ s

s0

η[x[ŝ], y[ŝ]] dŝ. (3.2)

The result is two parametric functions for x and y in terms of the parameter s
along a solution trajectory

x = F[x̃, ỹ, s], y = G[x̃, ỹ, s], (3.3)

where the initial conditions coincide with the initial value of s:

x̃ = F[x̃, ỹ, s0], ỹ = G[x̃, ỹ, s0]. (3.4)

55
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In general s0 can be taken to be 0. The term autonomous (time independent)
used in reference to (3.1) refers to the fact that the functions ξ [x, y] and η[x, y]
do not depend on the independent variable s. The implication of this is that the
pattern defined by the vector field (ξ, η) is frozen whereas the coordinates of a
particle move under the action of this vector field when increasing values of s
are inserted into (3.3).

Recalling the discussion in Chapter 1, the parametric functions (3.3) are
recognized as being of the same form as a Lie point transformation group.

3.2 Characteristics

The solution of (3.1) can also be expressed as a family of curves in (x, y) called
characteristics. This is accomplished by eliminating s between the functions
F and G in (3.3), with the result

ψ = $[x, y]. (3.5)

The value of a particular characteristic is determined by the initial values (x̃, ỹ):

ψ̃ = $[x̃, ỹ]. (3.6)

This situation is depicted schematically in Figure 3.1.
Much more complicated patterns than that depicted in Figure 3.1 are possible,

even common, but for now we will take this figure as illustrative of a typical
situation. If we take the total differential of $[x, y],

dψ = ∂$

∂x
dx + ∂$

∂y
dy, (3.7)

x

y

•
x̃ ỹ,( )

•s
x F x̃ ỹ s, ,[ ]=
y G x̃ ỹ s, ,[ ]=

ψ̃ Ψ x̃ ỹ,[ ] Ψ x y,[ [==
s0

Fig. 3.1. A typical family of characteristic curves.
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and then use (3.1) to replace the differentials dx and dy in (3.7), the result is

d$ =
(

ξ [x, y]
∂$

∂x
+ η[x, y]

∂$

∂y

)

ds. (3.8)

On a line of constant ψ = ψ̃ the differential is zero, dψ̃ = 0. For nonzero ds,
(3.8) can only be zero if the expression in parentheses is zero. This condition
must be satisfied by $[x, y] if it is to correspond to the family of characteristic
curves of F and G. In summary, the family of characteristics, $[x, y], can be
determined in two ways: either as the solution of a linear first-order PDE

ξ [x, y]
∂$

∂x
+ η[x, y]

∂$

∂y
= 0, (3.9)

or by elimination of the parameter s between the parametric functions (3.3) that
define the solution trajectories of (3.1).

3.3 First-Order Ordinary Differential Equations

The family ψ = $[x, y] is also the set of solution curves of the first order ODE

dy
dx

= η[x, y]
ξ [x, y]

(3.10)

gotten by dividing dy/ds by dx/ds in (3.1). Equation (3.10) is called the
characteristic equation of (3.9) and is often written in the form

dx
ξ [x, y]

= dy
η[x, y]

. (3.11)

The reason for arranging (3.10) in the form (3.11) will become apparent later
when we discuss higher-dimensional problems. The correspondence between
solutions of the PDE (3.9) and the characteristic ODE (3.11) will play a very
important role in our later development of Lie theory.

3.3.1 Perfect Differentials

If we write (3.10) in the suggestive form

η[x, y] dx − ξ [x, y] dy = 0, (3.12)

there is a temptation to regard (3.12) as a perfect differential (i.e., equal to a
total differential dψ) and to try to determine $[x, y] by quadrature: integration
of the first term in (3.12) with y held fixed or integration of the second term
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with x held fixed. This is usually incorrect, since in general the integrability
condition

∂η

∂y
= −∂ξ

∂x
(3.13)

is not satisfied. In other words,

η[x, y] ̸= ∂$

∂x
, ξ [x, y] ̸= −∂$

∂y
. (3.14)

The linear differential form

f = η[x, y] dx − ξ [x, y] dy (3.15)

(linear in the differentials) is called a Pfaffian form after the German mathe-
matician Johann Friedrich Pfaff (1765–1825), who proposed the first method
of integrating first-order partial differential equations along the general lines
described above. In the language of differential geometry (3.12) is also called a
differential 1-form. A 1-form defined on an n-dimensional differentiable man-
ifold is

f = α j dx j , j = 1, . . . , n, (3.16)

where the α j are the components of a covariant vector field. The exterior deriva-
tive of (3.16) is a 2-form,

d f = ∂α j

∂xi
(dxi ∧ dx j ) (3.17)

where the wedge product follows the simple rules

dxi ∧ dx j = −dx j ∧ dxi (i ̸= j),

dxi ∧ dx j = 0 (i = j).
(3.18)

Using these rules, the 2-form (3.17) can also be written

d f = − ∂αi

∂x j
(dxi ∧ dx j ) (3.19)

Combine (3.17) and (3.19) to form

d f = 1
2

(

∂α j

∂xi
− ∂αi

∂x j

)

(dxi ∧ dx j ), (3.20)

which shows that the coefficients are the components of the n-dimensional curl
of the vector α j .
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For a coordinate transformation in three dimensions, x̃ j=F j [x], j = 1, . . . , 3,
the wedge product provides the correct formula for the transformation of a dif-
ferential volume under the coordinate change. Let the x̃ j be Cartesian
coordinates. The differential volume is a parallelepiped of sides dx̃1, dx̃2, and
dx̃3:

dV = dx̃1(dx̃2 ∧ dx̃3) = εi jk
∂ Fi

∂x1
dx1 ∂ F j

∂x2
dx2 ∂ Fk

∂x3
dx3

= J (dx1 ∧ dx2 ∧ dx3), (3.21)

where εi jk is the alternating unit tensor (zero if any two indices are equal, one
if i, j, k are 1, 2, 3, 3, 1, 2, or 2, 3, 1, minus one if i, j, k are 1, 3, 2, 2, 1, 3, or
3, 2, 1). The factor J is the Jacobian of the transformation,

J = ∂(F1, F2, F3)
∂(x1, x2, x3)

. (3.22)

Although we will not use the language of exterior differential forms in our later
development of the theory of Lie groups, one can do so, and the connection is
well described by Stephani in [3.1].

3.3.2 The Integrating Factor – Pfaff’s Theorem

Although (3.12) is usually not a perfect differential, the solution of the system
of ODEs (3.1) does exist, and this implies that the vector field defined by the
slopes

dy
dx

= η[x, y]
ξ [x, y]

(3.23)

and that defined by

dy
dx

= −∂$/∂x
∂$/∂y

(3.24)

are identical up to a scalar multiplying factor in the magnitude of the dis-
placement vector along the characteristics. The magnitude of the displacement
vector is

∇$ · ∇$ = M2(ξ 2 + η2) (3.25)

where M is some function of position. In other words, the flow patterns gener-
ated by (3.23) and (3.24) are the same, although the local flow speeds are not.
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This implies that the partial derivatives in (3.24) and the functions in (3.23)
must have a common multiplying factor:

−∂$/∂x = M[x, y]η[x, y],

∂$/∂y = M[x, y]ξ [x, y].
(3.26)

This result is called Pfaff’s theorem.

Theorem 3.1. An integrating factor M[x, y] always exists that can be used to
convert the differential 1-form in two variables, −η[x, y] dx + ξ [x, y] dy, to a
perfect differential,

dψ = ∂$

∂x
dx + ∂$

∂y
dy = −Mη dx + Mξ dy, (3.27)

where (Mξ, Mη) = (∂$/∂y, −∂$/∂x).

In fluid mechanics ψ is called the stream function. Note that the existence
of the integrating factor is only guaranteed in two dimensions. In three or
higher dimensions, auxiliary conditions must be satisfied by the appropriate
differential 1-form (see section 3.6.2). If the vector field (Mξ, Mη) happens to
be irrotational [∂(Mη)/∂x − ∂(Mξ )/∂y = 0], then the field can alternatively
be described by a scalar potential,

dφ = ∂)

∂x
dx + ∂)

∂y
dy = Mξ dx + Mη dy, (3.28)

where (Mξ, Mη) = (∂)/∂x, ∂)/∂y) with the same integrating factor. In fluid
mechanics φ is called the velocity potential.The stream function and velocity
potential satisfy the Cauchy–Riemann conditions

∂)

∂x
= ∂$

∂y
,

∂)

∂y
= −∂$

∂x
, (3.29)

enabling the powerful tools of complex variables to be brought to bear on the
analysis of 2-D irrotational fields.

3.3.3 Nonsolvability of the Integrating Factor

The integrating factor required to turn (3.12) into a perfect differential is usually
not known, and, unfortunately, there is no systematic way to determine it short
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of solving for a particular solution of the original equation. It is instructive to
see why this is so. Suppose

dψ = −Mη dx + Mξ dy (3.30)

is the total differential of a function $[x, y]. The function M[x, y] must satisfy
the integrability condition,

∂

∂y
(Mη) = − ∂

∂x
(Mξ ). (3.31)

This can be expanded and rearranged to produce a first-order PDE for M[x, y]:
(

ξ

ξx + ηy

)

∂ M
∂x

+
(

η

ξx + ηy

)

∂ M
∂y

= −M. (3.32)

Without loss of generality, let M[x, y] = exp(−*[x, y]). Then (3.32) becomes
the following equation for *[x, y]:

(

ξ

ξx + ηy

)

∂*

∂x
+

(

η

ξx + ηy

)

∂*

∂y
= 1. (3.33)

The family of solution characteristics of this PDE is a function of three variables,

φ = )[x, y, ω] = ω − *[x, y], (3.34)

with total differential

dφ = ∂)

∂x
dx + ∂)

∂y
dy + ∂)

∂ω
dω (3.35)

and corresponding autonomous system of characteristic equations

dx
ds

= ξ

ξx + ηy
,

dy
ds

= η

ξx + ηy
,

dω

ds
= 1. (3.36)

To check, substitute (3.34) into (3.35) and replace differentials using (3.36).
This will reproduce equation (3.33). In summary, the solution of (3.33) can be
determined by solving the characteristic equations

ξx + ηy

ξ
dx = ξx + ηy

η
dy = dω

1
. (3.37)

In order to solve the first equality in (3.37) we have to find a particular solution
of the equation dy/dx = η/ξ . But this is the equation, (3.10), that we set out
to solve in the first place!
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Thus the integrating factor is almost as far out of reach as the solution of
the original equation. Actually things aren’t quite that bad. Normally, when
one is presented with an equation of the form (3.10), it is the general solution
of the equation that is being sought, whereas the integrating factor requires
only a particular solution of (3.10) plus a solution of one of the remaining
equalities in (3.37) involving ω. Nevertheless, this is still an unsolved problem
in general. Perhaps it’s just as well. If the integrating factor could always be
determined systematically, then, in principle, all nonlinear first-order ODEs
would be solvable, this branch of mathematics would be regarded as a closed
subject, and we would be forced to go find another line of work. Later we
shall see that, while group theory doesn’t solve this problem, it does provide
a useful strategy for searching for the integrating factor. Often, for the reasons
just discussed, the integrating factor is a simpler function than the solution of
(3.10), and so a trial-and-error search procedure makes some sense.

3.3.4 Examples of Integrating Factors

Example 3.1 (Integrating factor for a linear first-order ODE). Almost anyone
reading this text will have seen this example before. Consider the equation

dy
dx

= −g[x]y + f [x], (3.38)

which can be written as

(g[x]y − f [x]) dx + dy = 0. (3.39)

If we multiply (3.39) by

e
∫

gdx , (3.40)

the result is a perfect differential

d F = e
∫

gdx (g[x]y − f [x]) dx + e
∫

gdx dy, (3.41)

which can be easily checked by the cross-derivative test. The solution, deter-
mined by quadrature, is

F[x, y] = ye
∫ x g(x̂) dx̂ −

∫ x

f [x̂]
(

e
∫ x g[x ′] dx ′)

dx̂ = C. (3.42)

Note that (3.38) is also satisfied by any function *[F]. The obvious question at
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x̃ ỹ,( )
s̃

y s

x

x x̃ s s̃–[ ]exp=

y ỹ 2 s s̃–( )[              ]exp=

ψ̃ ỹ x̃
2⁄ y x

2⁄= =

Fig. 3.2. A family of parabolas.

this point is, where does the integrating factor (3.40) come from? The answer
will be the main topic of Chapter 6.

Example 3.2 (A family of parabolas). Let $[x, y] be the family of parabolas
passing through the origin given by

ψ = $[x, y] = y/x2 (3.43)

and illustrated in Figure 3.2. This example will be carried through rather
laboriously in order to illustrate as clearly and completely as possible the princi-
ples described in the previous section – principles that will come up repeatedly
throughout this text.

The partial derivatives of (3.43) are

∂$

∂x
= −2y

x3
,

∂$

∂y
= 1

x2
, (3.44)

and the differential of $ is

dψ = −2y
x3

dx + 1
x2

dy. (3.45)

Comparing cross derivatives of the coefficients in (3.45) confirms, by the usual
test, that (3.45) is a perfect differential.

Method 1 (Quadrature) We can recover the original family (3.43) from
equation (3.45) by quadrature. Integrate the first term in (3.45) with y held
fixed:

ψ = $[x, y] = −
∫

2y
x3

dx + g[y] = y
x2

+ g[y]. (3.46)
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Taking the partial derivative of (3.46) with respect to y and comparing
the result with the coefficient of the second term in (3.45), we see that
dg/dy = 0. Thus the family (3.43) is recovered up to a constant of inte-
gration. Since the constant can be incorporated as a shift in the value of
ψ , we have recovered the original family of parabolas (3.43).

Method 2 (Elimination of the parameter along characteristics) Let’s see if
we can recover (3.43) in a different way. Along a particular curve ψ̃ = y/x2

defined by initial values (x̃, ỹ), the relationship between the differentials
of x and y is

0 = −2y
x3

dx + 1
x2

dy. (3.47)

Multiply (3.47) by x3:

0 = −2y dx + x dy. (3.48)

The result (3.48) can be written as a single first-order ODE:

dy
dx

= 2y
x

. (3.49)

Equation (3.49) can be separated into two first-order ODEs by introducing
a dummy parameter s along solution curves. So a system equivalent to
(3.49), in the sense that it governs the same family of curves, is

dy
ds

= 2y,
dx
ds

= x . (3.50)

This system is separable, and we can integrate each equation directly:

x = F[x̃, ỹ, s] = x̃ exp(s − s0),

y = G[x̃, ỹ, s] = ỹ exp[2(s − s0)].
(3.51)

If we eliminate s between the two parametric equations for x and y in
(3.51), the original family of parabolas ψ̃ = y/x2 is recovered as the exact
solution of (3.49).

Erroneous assumption of a perfect differential O.K., now let’s try a third
way. Return to equation (3.48) and, for the moment, suspend disbelief and
imagine it to be a perfect differential. Let dθ = −2y dx + x dy. If we
attempt to integrate by quadrature as we did equation (3.45), the result,
integrating the first term with y held fixed, is θ = -[x, y] = −2yx +h[y].
Differentiating this expression with respect to y and equating the result
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to the second coefficient in the differential (3.48) leads to the conclusion
that h[y] must depend on x , which is impossible. Our erroneous assump-
tion has led to an inconsistency. Integration by quadrature became impos-
sible when we multiplied (3.47) by x3, removing the integrating factor
needed to ensure a perfect differential.

As pointed out above, when one is presented with a first-order ODE such
as (3.10), the integrating factor is usually not known. Furthermore there is no
systematic method for finding one. However, it turns out that if a symmetry
property of equation (3.10) can be identified, then this can be exploited to
construct an integrating factor, which can then be used to convert (3.12) to a
perfect differential, leading directly to the general solution of the equation in
the form of a quadrature. This point is the main topic of Chapter 6. For now we
continue our review of ODEs.

3.4 Thermodynamics – The Legendre Transformation

Consider the piston–cylinder combination shown in Figure 3.3. The cylinder
contains some undetermined material substance. An infinitesimal amount of
heat, δQ, is added to the system, causing an infinitesimal amount of work,
P dV , to be done by the system on the surroundings and an infinitesimal
change in internal energy, d E . This balance of energy is stated in the form of
the first law of thermodynamics,

δQ = d E + P dV . (3.52)

The differential work done by the system is the conventional mechanical work
done by a force acting over a distance,

P dV = F
A

d(Ax) = F dx, (3.53)

where A is the cross-sectional area and F is the total force on the piston.

δQ

P dV

dE

Fig. 3.3. Piston–cylinder combination used to model a thermodynamic system.
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It is often convenient to work in terms of intensive variables by dividing
through by the mass contained in the cylinder. The first law is then

δq = de + Pdv, (3.54)

where e is internal energy per unit mass and v = 1/ρ is the volume per unit
mass.

Thermodynamics is only useful if we can determine an equation of state for
the substance contained in the cylinder. The equation of state is a functional
relationship between the internal energy, specific volume, and pressure P[e, v].
Assuming an equation of state can be defined, the first law becomes

δq = de + P[e, v] dv (3.55)

According to Pfaff’s theorem, such a system must have an integrating factor
M[e, v] such that the first law becomes an exact differential:

M[e, v]δq = M[e, v] de + M[e, v] P[e, v] dv = ds[e, v]. (3.56)

In effect, once one accepts the first law and the existence of the function P[e, v],
then two new variables of state are implied: an integrating factor and an associ-
ated integral called the entropy (per unit mass), s[e, v]. Note that the integrating
factor is not unique; in particular, there can be an arbitrary constant scale fac-
tor, since a constant times ds is still a perfect differential. This enables the
integrating factor to be identified with the sensible temperature of the system,
M[e, v] = 1/T [e, v]. Thus the first law becomes

δq
T [e, v]

= de
T [e, v]

+ P[e, v]
T [e, v]

dv = ds[e, v]. (3.57)

This is the famous Gibbs equation, usually written

T ds = de + P dv. (3.58)

This fundamental equation, which Pfaff’s theorem tells us is a perfect differen-
tial, is the starting point for virtually all applications of thermodynamics. The
Gibbs equation describes states that are in local thermodynamic equilibrium,
i.e., states that can be reached through a sequence of reversible steps.

It is often useful to rearrange the Gibbs equation so as to exchange depen-
dent and independent variables. This can be accomplished using the so-called
Legendre transformation. In this approach, a new variable of state is defined,
called the enthalpy,

h = e + Pv. (3.59)
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In terms of it, the Gibbs equation becomes

ds = dh
T

− v

T
d P. (3.60)

Using this simple trick, the pressure has been converted from a dependent
variable to an independent variable:

ds[h, P] = dh
T [h, P]

− v[h, P]
T [h, P]

d P. (3.61)

It is relatively easy to reexpress the Gibbs equation with any two variables
selected to be independent. This enables any variable of state to be to be deter-
mined as a function of any two others. For example,

e = φ[T, P], s = ζ [T, v],

s = ξ [e, P], h = ϕ[T, p],
(3.62)

and so forth.
The Legendre transformation is an example of a contact transformation. It

will come up again in Chapter 4, Section 4.3, when we discuss the conversion
from a Lagrangian to a Hamiltonian formulation in classical dynamics, and
then again in Chapter 14, Section 14.1.1, where Lie contact transformations are
discussed.

Thermodynamics goes beyond mere conservation of energy and quantifies
the distinction between reversible and irreversible processes that the system
may undergo. This is expressed by the second law. For any change of a system,
not just a reversible change

δq ≤ T ds, (3.63)

where ds is the change in entropy per unit mass. For a reversible change,

δq = T ds. (3.64)

For a general substance, an accurate equation of state is not a particularly
easy thing to come by, and so most applications tend to focus on approximations
based on some sort of idealization. One of the simplest cases is the equation of
state for an ideal gas,

PV = n Ru T, (3.65)

where n is the number of moles contained in the cylinder and Ru is the universal
gas constant, Ru = 8314.510 J/(kmole-K). A consequence of (3.65) is that the
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enthalpy and internal energy of an ideal gas depend only on the temperature:

dh = C p dT, de = Cv dT, (3.66)

where C p and Cv are the heat capacities at constant pressure and volume,
respectively, and are relatively weak functions of temperature. This equation of
state is derived from a model that assumes that the material in the cylinder is
composed of a large number of randomly moving mass points that can exchange
momentum during a collision but otherwise do not interact. It is an excellent
approximation for real gases over a wide range of conditions.

3.5 Incompressible Flow in Two Dimensions

The flow of an incompressible fluid is constrained by the continuity equation

∂U
∂x

+ ∂V
∂y

= 0, (3.67)

where U and V are the velocity components in the x and y directions respec-
tively. Continuity is satisfied identically by the introduction of a stream function
ψ = $[x, y]:

U = ∂$

∂y
, V = −∂$

∂x
. (3.68)

The equations for the coordinates (x[t], y[t]) of a fluid particle in a steady flow
are

dx
dt

= U [x, y],
dy
dt

= V [x, y]. (3.69)

If we use (3.68) to replace U and V in (3.69), the result is a Hamiltonian system

dx
dt

= ∂$

∂y
,

dy
dt

= −∂$

∂x
, (3.70)

where the stream function $ is the Hamiltonian. It is getting ahead of ourselves
to mention the Hamiltonian at this point, since it won’t be introduced until the
next chapter. However, we can suffer the bit of confusion that may be caused, so
as to reinforce a point made later that the Hamiltonian formulation of mechanics
is particularly well suited to the description of fields.

Note that the associated PDE U ∂ψ/∂x + V ∂ψ/∂y = 0 is identically sat-
isfied. If we compare this system with (3.1), (3.10), and (3.12), then it is clear
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that the stream function introduced in (3.68) satisfies

∂$

∂x
dx + ∂$

∂y
dy = 0. (3.71)

In this case the form of (3.70) guarantees that (3.12) with ξ = U and η = V is
a perfect differential, and for incompressible flow one can write

dψ = −V dx + U dy. (3.72)

If U and V are known functions, the stream function is determined by quad-
rature.

3.6 Fluid Flow in Three Dimensions – The Dual Stream Function

The trajectory of a fluid particle in a three-dimensional, unsteady flow is gov-
erned by the nonautonomous system

dx
dt

= u[x, t],
dy
dt

= v[x, t],
dz
dt

= w[x, t]. (3.73)

At a given instant in time t = tfixed the velocity field is frozen and instantaneous
streamlines are determined by integrating the autonomous system

dx
ds

= u[x, tfixed],
dy
ds

= v[x, tfixed],
dz
ds

= w[x, tfixed], (3.74)

where s is a pseudotime along an instantaneous streamline. The solution tra-
jectories of (3.74) are

x = f [x̃, s; tfixed], y = g[x̃, s; tfixed], z = h[x̃, s; tfixed], (3.75)

where x̃ is the initial coordinate of a particle at s = 0, t = tfixed. Elimination of
s among these three relations leads to two infinite families of integral surfaces,
the so-called dual stream-function surfaces (see Reference [3.2] by Lagerstrom)

ψ1 = $1[x; tfixed], ψ2 = $2[x; tfixed]. (3.76)

These functions are integrals of the first-order PDE

u · ∇$ i = u
∂$ i

∂x
+ v

∂$ i

∂y
+ w

∂$ i

∂z
= 0, i = 1, 2, (3.77)

with characteristic equations

dx
u[x, tfixed]

= dy
v[x, tfixed]

= dz
w[x, tfixed]

. (3.78)
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u

x̃ ỹ z̃, ,( )

ψ1

ψ2

Fig. 3.4. Intersection of dual stream-function surfaces.

Equation (3.77) is derived in the same way as (3.9). Take the total differential
of either function in (3.76), and use (3.74) to replace the differentials dx, dy,
and dz. A given initial point, x̃, defines two stream surfaces, and the velocity
vector through the point lies along the intersection of the surfaces, as shown
schematically in Figure 3.4.

Given the dual stream functions, the velocity field can be reconstructed from

u = ∇$1 × ∇$2. (3.79)

3.6.1 The Method of Lagrange

The general first-order PDE in three variables of the form

U [x, y, z]
∂z
∂x

+ V [x, y, z]
∂z
∂y

= W [x, y, z], (3.80)

where z = f [x, y], was solved by the great Italian–French mathematician
Joseph-Louis Lagrange (1736–1813). One can regard the solution as a surface
of constant $[x, y, z]. On this surface,

D$

Dx
= ∂$

∂x
+ ∂$

∂z
∂z
∂x

= 0,

D$

Dy
= ∂$

∂y
+ ∂$

∂z
∂z
∂y

= 0.

(3.81)

The relations in (3.81) are used to replace ∂z/∂x and ∂z/∂y in (3.80) and after
some rearrangement,

U [x, y, z]
∂$

∂x
+ V [x, y, z]

∂$

∂y
+ W [x, y, z]

∂$

∂x
= 0, (3.82)
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which we know from the development in the previous section is solved by
solving the characteristic equations,

dx
U [x, y, z]

= dy
V [x, y, z]

= dz
W [x, y, z]

. (3.83)

Thus any solution of (3.82) is a solution of (3.80), and any solution of (3.80)
is a solution of (3.82). The solution trajectories of either equation follow the
characteristic equations (3.83). We have already encountered a special case of
(3.80) in section 3.3.3, namely, equation (3.32), where U and V depend only
on [x, y] and W = − z.

Furthermore, we know that there are two independent integrals of (3.83).
Let these be ψ = $[x, y, z] and φ = )[x, y, z]. Then the general solution of
(3.80) or (3.82) is

F[$, )] = constant. (3.84)

An equally general form of the solution of (3.80) is

)[x, y, z] = G[$[x, y, z]]. (3.85)

Note that if ) is a solution of (3.82), then so is any differentiable function *[)].
This follows from the fact that

U [x, y, z]
∂*

∂x
+ V [x, y, z]

∂*

∂y
+ W [x, y, z]

∂*

∂x

=
(

U [x, y, z]
∂)

∂x
+ V [x, y, z]

∂)

∂y
+ W [x, y, z]

∂)

∂z

)

d*

d)
= 0. (3.86)

Example 3.3 (Solve (y+ z)∂z/∂x+ (x + z)∂z/∂y = x + y). The characteris-
tic equations corresponding to this PDE are

dx
y + z

= dy
x + z

= dz
x + y

. (3.87)

We need to determine the two integrals of (3.87). These equations can be rewrit-
ten in the form

dx + dy + dz
2x + 2y + 2z

= dx − dy
−(x − y)

= dx − dz
−(x − z)

, (3.88)

and the two integrals are

ψ = ln[x + y + z] + 2 ln[x − y],

φ = ln[x − y] − ln[x − z].
(3.89)
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Taking note of (3.86), an equally valid expression of the two integrals is simply

ψ = (x + y + z)(x − y)2,

φ =
(

x − y
x − z

)

,
(3.90)

and so the general solution of the given PDE is

x − y
x − z

= G[(x + y + z)(x − y)2]. (3.91)

where G is arbitrary.

3.6.2 The Integrating Factor in Three and Higher Dimensions

Consider the Pfaffian 1-form

f = u[x, y, z] dx + v[x, y, z] dy + w[x, y, z] dz. (3.92)

Recalling the earlier discussion of integrating factors in two dimensions, we
ask: under what circumstances can we say that an integrating factor M[x, y, z]
exists such that a perfect differential is defined by

dφ = ∂φ

∂x
dx + ∂φ

∂y
dy + ∂φ

∂z
dz = Mu dx + Mv dy + Mw dz (3.93)

From (3.93) we can see that in order for the integrating factor M to exist, the
vector (Mu, Mv, Mw) must be the gradient of a scalar,

g = ∇φ = (Mu, Mv, Mw) = Mu, (3.94)

i.e., φ must be a scalar potential function, and the vector field g is irrotational:

∇ × g = 0, (3.95)

or

∂(Mw)
∂y

− ∂(Mv)
∂z

= 0,

∂(Mu)
∂z

− ∂(Mw)
∂x

= 0,

∂(Mv)
∂x

− ∂(Mu)
∂y

= 0.

(3.96)
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If we expand the derivatives, we have

w
∂ M
∂y

− v
∂ M
∂z

+ M
(

∂w

∂y
− ∂v

∂z

)

= 0,

u
∂ M
∂z

− w
∂ M
∂x

+ M
(

∂u
∂z

− ∂w

∂x

)

= 0,

v
∂ M
∂x

− u
∂ M
∂y

+ M
(

∂v

∂x
− ∂u

∂y

)

= 0.

(3.97)

Now multiply the first equation by u, the second by v, and the third by w, and
add the products. The result is

u
(

∂w

∂y
− ∂v

∂z

)

+ v

(

∂u
∂z

− ∂w

∂x

)

+ w

(

∂v

∂x
− ∂u

∂y

)

= 0, (3.98)

which is independent of M . In vector form, (3.98) and the irrotationality of g
produce the result

g · (∇ × g) = Mu · (∇ × (Mu)) = M2(u · (∇ × u)) = 0. (3.99)

In order for an integrating factor to exist for a three-dimensional vector field u,
it must satisfy the auxiliary condition

u · (∇ × u) = 0. (3.100)

Such a field is called complex lamellar (a lamellar field is simply an irrotational
field). In fluid mechanics terms, either the velocity field is orthogonal to the
vorticity field, or the velocity field is irrotational, in which case ∇ ×u = 0. The
extension of this result to higher-dimensional spaces is straightforward, and
at each level, additional auxiliary conditions are encountered. In general there
will be (n − 1)(n − 2)/2 auxiliary conditions for the existence of an integrating
factor, where n is the number of dimensions (Kestin [3.4]). Pfaff’s theorem
guaranteeing the existence of an integrating factor for any two-dimensional
field (rotational or irrotational) is a consequence of the fact that for n = 2 the
number of auxiliary conditions is zero (the vorticity is always orthogonal to the
velocity).

3.6.3 Incompressible Flow in Three Dimensions

The velocity field of an incompressible flow can be represented as the curl of a
vector potential A:

u = ∇ × A. (3.101)
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The representation (3.101) guarantees that the incompressibility condition
∇ · u = 0 is satisfied. In two-dimensional flow, only the out-of-plane com-
ponent of A is nonzero, and it corresponds to the stream function introduced
in (3.68) and discussed earlier. If we take the curl of (3.101), use the vector
identity

∇ × ∇ × A = ∇(∇ · A) = ∇2A, (3.102)

and assume, without loss of generality, a Coulomb gauge, ∇ · A = 0, then the
vector potential is related to the vorticity through a Poisson equation

∇2A = −ω, (3.103)

where ω = ∇ × u. The vector potential is easily related to the dual stream
functions discussed in the previous section:

A = $1∇$2 = −$2∇$1. (3.104)

3.7 Nonlinear First-Order PDEs – The Method
of Lagrange and Charpit

Lagrange and Charpit developed a method for solving the general, nonlinear,
first-order PDE,

A[x, y, z, p, q] = 0. (3.105)

where, in standard notation,

p = ∂z
∂x

, q = ∂z
∂y

. (3.106)

A lucid explanation of the method can be found in the book of Kells [3.3]. The
procedure for solving (3.105) is to seek a second equation,

B[x, y, z, p, q] = 0 (3.107)

which is consistent with (3.105). If such an equation can be found, then it can
be used to solve (3.105) and (3.107) for the partial derivatives p and q . These
may be substituted into

dz = p dx + q dy, (3.108)
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allowing z[x, y] to be determined by quadrature. Consistency requires that the
p[x, y, z] and q[x, y, z] found using this procedure must satisfy the integrability
condition

∂p
∂y

= ∂q
∂x

. (3.109)

Here is how it works. Differentiate A and B partially with respect to x and y
to obtain

D A
Dx

= ∂ A
∂x

+ ∂ A
∂z

p + ∂ A
∂p

∂p
∂x

+ ∂ A
∂q

∂q
∂x

= 0,

D A
Dy

= ∂ A
∂y

+ ∂ A
∂z

q + ∂ A
∂p

∂p
∂y

+ ∂ A
∂q

∂q
∂y

= 0,

DB
Dx

= ∂ B
∂x

+ ∂ B
∂z

p + ∂ B
∂p

∂p
∂x

+ ∂ B
∂q

∂q
∂x

= 0,

DB
Dy

= ∂ B
∂y

+ ∂ B
∂z

q + ∂ B
∂p

∂p
∂y

+ ∂ B
∂q

∂q
∂y

= 0.

(3.110)

Eliminate the three quantities ∂p/∂x, ∂q/∂y, and ∂p/∂y (or alternatively,
∂q/∂x) from (3.110). Multiply the first equation by −∂ B/∂p, the second by
−∂ B/∂q, the third by ∂ A/∂p, and the fourth by ∂ A/∂q. Add the four and
rearrange to obtain

(

∂ A
∂p

)

∂ B
∂x

+
(

∂ A
∂q

)

∂ B
∂y

+
(

p
∂ A
∂p

+ q
∂ A
∂q

)

∂ B
∂z

−
(

∂ A
∂x

+ ∂ A
∂z

p
)

∂ B
∂p

−
(

∂ A
∂y

+ ∂ A
∂z

q
)

∂ B
∂q

= 0. (3.111)

This is a first-order PDE for the function B, which can be found by solving the
corresponding characteristic ODEs,

dx
∂ A/∂p

= dy
∂ A/∂q

= dz

p ∂ A
∂p + q ∂ A

∂q

= dp

−
(

∂ A
∂x + ∂ A

∂z p
) = dq

−
(

∂ A
∂y + ∂ A

∂z q
) .

(3.112)

There are four integrals of (3.112), and any one (say the simplest one) involving
p and/or q will suffice for the second equation for B. The method may not
always be successful, since it involves solving at least one first-order ODE for
which an integrating factor may not be known.

In general, the solution trajectories of the original PDE, (3.105), follow the
characteristic trajectories defined by (3.112). This is particularly easy to see if
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A is in the quasilinear form studied in Section 3.6.1. Let

A[x, y, z, p, q] = U [x, y, z]p + V [x, y, z]q − W [x, y, z] = 0. (3.113)

The system (3.112) becomes

dx
U

= dy
V

= dp

−
(

∂ A
∂x + ∂ A

∂z p
) = dq

−
(

∂ A
∂y + ∂ A

∂z q
) = dz

W
. (3.114)

The first two and last expressions in (3.114) do not depend on p or q; they
are in fact identical to (3.83). In this case, the method of Lagrange and Charpit
reduces to the usual system of characteristic ODEs.

Example 3.4 (Solve A = z − (∂z/∂x)(∂z/∂y) = z − pq = 0). The character-
istic equations (3.112) are

dx
q

= dy
p

= dp
p

= dq
q

= dz
2pq

. (3.115)

The four integrals of this system are

ψ1 = x − q,

ψ2 = y − p,

ψ3 = p/q,

ψ4 = z + 2(x − q)x − (p/q)x2.

(3.116)

If we use ψ1 – that is, we let

B(x, y, z, p, q) = x − q = ψ1, (3.117)

and solve for p and q – the result is

p = z
x − ψ1

, q = x − ψ1, (3.118)

and the total differential of z is

dz =
( z

x − ψ1

)

dx + (x − ψ1) dy. (3.119)

The integral of (3.119) is

ψ5 = y − z
x − ψ1

, (3.120)
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which can be written in the form

z − (x − ψ1)(y − ψ5) = 0, (3.121)

where ψ1 and ψ5 are arbitrary constants. The solution (3.121) is a family of
hyperbolae centered at (x, y) = (ψ1, ψ5).

The solution of (3.105) expressed in the form

F[x, y, z, ψ1, ψ2] = 0, (3.122)

where ψ1 and ψ2 are constants of integration, is called the complete solution of
the PDE.

3.7.1 The General and Singular Solutions

It is possible to obtain another solution of (3.105) by considering ψ1 and ψ2 to
be functions of x and y. This leads to a condition by which one of the constants
is eliminated. If ψ1 and ψ2 are truly constant, then on F ,

DF
Dx

= ∂ F
∂x

+ ∂ F
∂z

p = 0,

DF
Dy

= ∂ F
∂y

+ ∂ F
∂z

q = 0,

(3.123)

whereas if ψ1 and ψ2 are treated as functions of x and y, then on F ,

DF
Dx

= ∂ F
∂x

+ ∂ F
∂z

p + ∂ F
∂ψ1

∂ψ1

∂x
+ ∂ F

∂ψ2

∂ψ2

∂x
= 0,

DF
Dy

= ∂ F
∂y

+ ∂ F
∂z

q + ∂ F
∂ψ1

∂ψ1

∂y
+ ∂ F

∂ψ2

∂ψ2

∂y
= 0.

(3.124)

Now, (3.124) reduces to (3.123) if and only if

∂ F
∂ψ1

∂ψ1

∂x
+ ∂ F

∂ψ2

∂ψ2

∂x
= 0,

∂ F
∂ψ1

∂ψ1

∂y
+ ∂ F

∂ψ2

∂ψ2

∂y
= 0.

(3.125)
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The condition for (3.125) to be consistent is

∣

∣

∣

∣

∣

∣

∣

∣

∂ψ1

∂x
∂ψ2

∂x

∂ψ1

∂y
∂ψ2

∂y

∣

∣

∣

∣

∣

∣

∣

∣

= 0. (3.126)

This is identically satisfied if ψ2 is a function of ψ1:

ψ2 = f [ψ1], (3.127)

where f is an arbitrary once-differentiable function. If (3.127) holds, then
(3.125) becomes

∂ F
∂ψ1

+ ∂ F
∂ψ2

d f
dψ1

= 0. (3.128)

If we eliminate ψ2 from (3.122) using (3.127), the result is the general solution,

F1[x, y, z, ψ1] = 0, (3.129)

where ψ1 is permitted to be a function of (x, y) defined by (3.128). This solution
is called general because it involves an arbitrary function f [ψ1]. Note that the
general solution is independent of the complete solution.

Example 3.5 (Find the general solution of z − pq = 0). The complete solution
was worked out in Example 3.4:

F[x, y, z, ψ1, ψ2] = z − (x − ψ1)(y − ψ2) = 0, (3.130)

where ψ1 and ψ2 are arbitrary constants. The general solution is

F1[x, y, z, ψ1, ψ2] = z − (x − ψ1)(y − f [ψ1]) = 0, (3.131)

where ψ1[x, y] is defined by

(y − f [ψ1]) + (x − ψ1)
d f

dψ1
= 0. (3.132)

A function that satisfies (3.132) is

f = ψ1 =
(

x + y
2

)

, (3.133)
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which leads to the exact solution,

z = −
(

x − y
2

)2

, (3.134)

quite different from the complete solution. Another function that satisfies (3.132)
is

f = 1
ψ1

, ψ1 =
√

x
y
, (3.135)

which produces the solution

z = (
√

xy − 1)2. (3.136)

Equation (3.125) is also satisfied if

∂ F
∂ψ1

= 0,
∂ F
∂ψ2

= 0. (3.137)

If ψ1 and ψ2 can be eliminated between (3.122) and (3.137), the resulting
function is the envelope of the family of surfaces represented by (3.122). The
equation of this envelope is called the singular solution.

Example 3.6 (Find the singular solution of z − pq = 0). The complete solution
was worked out in Example 3.4:

F[x, y, z, ψ1, ψ2] = z − (x − ψ1)(y − ψ2) = 0, (3.138)

where ψ1 and ψ2 are arbitrary constants. The singular solution is found from

x − ψ1 = 0,

y − ψ2 = 0,

z − (x − ψ1)(y − ψ2) = 0.

(3.139)

The plane z = 0 is the singular solution.

3.8 Characteristics in n Dimensions

The extension to n dimensions of the theory of characteristics is very straight-
forward. We are concerned with solving autonomous systems of ordinary dif-
ferential equations of the form

dx j

ds
= ξ j [x[s]], j = 1, . . . , n. (3.140)
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As before, the solution of (3.140) is written as an integral of the coupled,
nonlinear right-hand side,

x j = x̃ j +
∫ s

s0

ξ j [x[s]] ds. (3.141)

Ultimately the result is expressed as a set of parametric functions of s and the
initial condition x̃:

x j = F j [x̃, s], j = 1, . . . , n. (3.142)

The system (3.140) generates a vector field in the space x, and the solution
(3.142) is the trajectory of a particle moving under the action of that field. Note
that we can easily map out the family of solution trajectories of (3.140) graph-
ically by simply plotting the vector field (cf. Figure 3.1), although visualizing
the field becomes impossible once the number of dimensions exceeds three.

The vector field generated by (3.140) can be expressed in terms of character-
istic surfaces in x. This is accomplished by combining the parametric functions
(3.142) so as to eliminate the parameter s. The result is n − 1 solution surfaces,

ψ i = $ i [x], i = 1, . . . , n − 1. (3.143)

The characteristic surfaces (3.143) are expressed in a form that is intended to
distinguish between $ i , which is the name of a function (a particular arrange-
ment of variables), and the specific value ψ i that defines a solution surface.
In fact, each function $ i defines an infinite family corresponding to the range
of ψ i . Known initial conditions, x̃, determine the values of the n − 1 surfaces,
ψ̃ i = $ i [x̃].

It is fair to ask, in what sense does (3.143) represent the solution of the
original system (3.140)? Clearly, in moving from (3.142) to (3.143) a certain
amount of information is lost, since (3.143) tells us nothing about the value of
the parameter s at any point on a solution trajectory.

The differential of (3.143) is

dψ i = ∂$ i

∂x j
dx j , i = 1, . . . , n − 1 (sum over j = 1, . . . , n). (3.144)

As was explained in Chapter 1, throughout the text it will be understood
that, unless otherwise noted, the usual Einstein convention on the summa-
tion over repeated indices is used and the extra notation to this effect will be
dropped.
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Using (3.140) to replace the differentials on the right-hand side of (3.144)
yields

dψ i =
(

ξ j [x]
∂$ i

∂x j

)

ds, i = 1, . . . , n − 1. (3.145)

In order for the function $ i to represent a characteristic solution surface of
(3.140), it must satisfy the first-order PDE

ξ j [x]
∂$ i

∂x j
= 0, i = 1, . . . , n − 1. (3.146)

If (3.146) is satisfied, then, during a small interval ds, as a particle moves along
a solution trajectory under the action of the vector field (3.140), the particle will
remain confined to a set of n − 1 surfaces of fixed $ j . In fact, the trajectory
(3.142) of the particle coincides with the curve of intersection of the n − 1
surfaces, whose gradients are all orthogonal to the vector field (3.140), as is
clearly seen from the form of (3.146) (ξ ·∇$ i = 0). This is the basis of equation
(3.79).

The upshot of all this is that, for any system of n ODEs (3.140), there is an
associated n-dimensional, first-order, linear PDE (3.146) with n − 1 integral
surfaces whose intersections are the solution trajectories of the original system
of ODEs. Conversely, the integral surfaces of any n-dimensional, first-order
PDE can be expressed in terms of the solution trajectories of an associated
system of n − 1 characteristic ODEs:

dx1

ξ 1[x]
= dx2

ξ 2[x]
= dx3

ξ 3[x]
= · · · = dxn

ξ n[x]
. (3.147)

This correspondence is of crucial importance to our later study of Lie groups.
There is one additional very important point, which was noted in Section 3.6.1

but should be stated again in a general way.

Theorem 3.2. If $ is a solution of ξ j ∂$/∂x j = 0, then any bounded, dif-
ferentiable function *[$] is also a solution. This is easily shown by direct
substitution:

ξ j [x]
∂

∂x j
(*[$]) = ξ j [x]

∂$

∂x j

(

d*

d$

)

= 0. (3.148)

More generally, if $1, . . . , $n−1 are the n − 1 integral surfaces of (3.146),
then any bounded differentiable function

ω = *[$1, . . . , $n−1] (3.149)
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is also a solution. This follows from the linearity of the operator ξ j ∂/∂x j ,
which breaks up into a sum of sums:

ξ j [x]
∂$1

∂x j

(

d*

d$1

)

+ ξ j [x]
∂$2

∂x j

(

d*

d$2

)

+ · · · + ξ j [x]
∂$n−1

∂x j

(

d*

d$n−1

)

= 0,

(3.150)

each of which is zero. In this respect there is always a certain degree of ar-
bitrariness in the expression of the solution(s) of (3.146) and the system of
characteristic equations (3.147).

One final point: the same procedure developed by Lagrange and described
in Section 3.6.1 can be used to show that ω = *[$1, . . . , $n−1] is the general
solution of

ξ 1[x1, . . . , xn−1, z]
∂z
∂x1

+ ξ 2[x1, . . . , xn−1, z]
∂z
∂x2

+ · · ·

+ ξ n−1[x1, . . . , xn−1, z]
∂z

∂xn−1
= ξ n[x1, . . . , xn−1, z], (3.151)

where ($1, . . . , $n−1) are the independent integrals of

dx1

ξ 1[x1, . . . , xn−1, z]
= dx2

ξ 2[x1, . . . , xn−1, z]
= · · ·

= dxn−1

ξ n−1[x1, . . . , xn−1, z]
= dz

ξ n[x1, . . . , xn−1, z]
. (3.152)

3.8.1 Nonlinear First-Order PDEs in n Dimensions

The method of Lagrange and Charpit described in Section 3.7 can be generalized
to n-dimensional first-order PDEs in one dependent variable,

A[x1, . . . , xn, z, p1, . . . , pn] = 0, (3.153)

where

pi = ∂z
∂xi

. (3.154)

It should be clear by now that what sets first-order nonlinear PDEs of the form
(3.153) apart from higher-order equations and from systems of equations is
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that the solution is equivalent to the solution of a system of ODEs. The perfect
differential of the solution is

dz = pi dxi . (3.155)

We seek a set of equations

Bk[x1, . . . , xn, z, p1, . . . , pn] = 0, k = 1, . . . , n − 1, (3.156)

that is consistent with (3.153). If such can be found, then (3.153) and (3.156) can
be solved for the partial derivatives pi . These may be substituted into (3.155),
allowing z[x] to be determined by quadrature. Differentiate A and B partially
with respect to xi to obtain

D A
Dxi

= ∂ A
∂xi

+ ∂ A
∂z

pi + ∂ A
∂pi

∂pi

∂xi
= 0,

DB
Dxi

= ∂ B
∂xi

+ ∂ B
∂z

pi + ∂ B
∂pi

∂pi

∂xi
= 0.

(3.157)

The elimination and multiplication procedure described for two variables in
Section 3.7 is used to obtain a first-order PDE for the sought-after equation B,

(

∂ A
∂pi

)

∂ B
∂xi

−
(

∂ A
∂xi

+ ∂ A
∂z

pi

)

∂ B
∂pi

+
(

pi
∂ A
∂pi

)

∂ B
∂z

= 0, (3.158)

with the corresponding characteristic ODEs,

dx1

∂ A/∂p1
= · · · = dxn

∂ A/∂pn
= dz

pi (∂ A/∂pi )
=

dp1

−
(

∂ A
∂x1 + ∂ A

∂z p1
) = · · · = dpn

−
(

∂ A
∂xn + ∂ A

∂z pn
) .

(3.159)

There are 2n integrals of (3.159), and n − 1 are used together with (3.153) to
solve for the partial derivatives of z[x1, . . . , xn]. These results will be used
in Chapter 4, Section 4.4 [cf. Equation (4.64)] when we consider classical
dynamics and the Hamilton–Jacobi equation.

3.9 State-Space Analysis in Two and Three Dimensions

In an earlier section it was noted that a great deal about the family of solution
paths of a system of the form of (3.140) can be learned by plotting the vector field
defined by the functions ξ i [x]. The resulting diagram is called the phase portrait
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of the system. This terminology originates in the application of the technique
to a second-order ODE describing a two-degree-of-freedom dynamical system.
In canonical form the ODE is equivalent to a pair of first-order ODEs where
one dependent variable is the time derivative of the other. In fluid mechanics,
the phase portrait is the velocity vector field, and in the following discussion it
will occasionally be convenient to call the phase portrait a flow. We shall come
to some examples shortly.

Graphically solving (3.140) in this way has many applications, especially
in the context of two-point boundary value problems, where the solution can
often be identified as a particular trajectory in the phase portrait. Quite often,
the topography of the phase portrait will suggest an appropriate strategy for
integrating the equations. The techniques introduced in this section will be
used throughout the text.

3.9.1 Critical Points

A key feature of the state-space method is that the qualitative features of the
phase portrait, and hence the solution of (3.140), can be almost completely
described once the critical points of (3.140) have been identified and classified.
Critical points occur where

ξ j [xc] = 0. (3.160)

3.9.2 Matrix Invariants

If the ξ j [x] are analytic functions of x, the system (3.140) can be expanded in a
Taylor series about the critical point, and the result can be used to gain valuable
information about the geometry of the solution. Retaining just the lowest-order
term in the expansion of ξ j [x], the result is

dx j

ds
= A j

k

(

xk − xk
c

)

+ O
((

xk − xk
c

)2) + · · ·, (3.161)

where A j
k is the gradient tensor of the vector field ξ j [x], evaluated at the critical

point, and xc is the position vector of the critical point:

A j
k =

(

∂ξ j

∂xk

)

x=xc

. (3.162)

The linear, local solution is expressed in terms of exponential functions, and
only a relatively small number of solution patterns are possible. These are
determined by the invariants of A j

k .
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The invariants arise naturally as traces of various powers of A j
k . They are all

derived as follows: Transform A j
k by

B j
k = M j

n An
m M̄m

k , (3.163)

where M is a nonsingular matrix and M̄ is its inverse. Take the trace of (3.163):

B j
j = M j

n An
m M̄m

j = M̄m
j M j

n An
m = δm

n An
m = Am

m . (3.164)

The trace is invariant under the affine transformation M j
k . One can think of the

vector field ξ j as if it were imbedded in an n-dimensional block of rubber. An
affine transformation is one that stretches or distorts the rubber block without
ripping it apart or reflecting it through itself. For traces of higher powers the
proof of invariance is similar to (3.164):

tr(Bα) = M j
n1

An1
m1

M̄m1
j1 M j1

n2
An2

m2
M̄m2

j2 · · · M jα−1
nα

Anα
mα

M̄mα

j

= tr(Aα). (3.165)

The traces of all powers of the gradient tensor remain invariant under an affine
transformation. Likewise any combination of the traces is invariant.

3.9.3 Linear Flows in Two Dimensions

In two dimensions the eigenvalues of A j
k satisfy the quadratic

λ2 + Pλ + Q = 0, (3.166)

where P and Q are the matrix invariants

P = −A j
j , Q = Det

(

A j
k

)

. (3.167)

The eigenvalues are

λ = − P
2

± 1
2

√

P2 − 4Q, (3.168)

and the character of the local flow is determined by the quadratic discriminant

D = Q − P2

4
. (3.169)

If D > 0, the eigenvalues are complex and a spiraling motion can be expected.
Depending on the sign of P , the spiral may be stable or unstable. If D < 0, the
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Q

P

Stable
node

Unstable focus

Unstable
node

Saddle

Stable focus

Fig. 3.5. Classification of linear solution trajectories in two dimensions.

eigenvalues are real and a predominantly straining flow can be expected. In this
case the directionality of the local flow is defined by the two eigenvectors of
A j

k . The various possible flow patterns can be summarized on a crossplot of the
invariants shown in Figure 3.5. Categorizing flow patterns using the invariants
has a long history of applications in fluid mechanics [3.5], [3.6], [3.7].

Example 3.7 (Phase portrait of a pair of ODEs). Let’s look at a particular
case. Consider the system

dx
ds

= 2x2 − xy,
dy
ds

= xy + y + y2. (3.170)

The phase portrait, shown in Figure 3.6, is constructed by evaluating the right-
hand sides of (3.170) at each point on a 40 × 40 grid and plotting a line of
unit length with the slope determined by the differentials dx and dy. The un-
normalized line length actually varies considerably over the range covered by
the figure and approaches zero in the neighborhood of the critical points. The
critical points are clearly identifiable as points where the local slope becomes
indeterminate. Solving for the roots of

0 = 2x2 − xy, 0 = xy + y + y2, (3.171)

we find critical points at (xc, yc) = (0, 0), (0, −1) and (− 1
3 , − 2

3 ). The critical
points located at (xc, yc) = (0, −1) and (− 1

3 , − 2
3 ) fit the catagorization of linear

flows shown in Figure 3.5. The eigenvectors at the saddle located at (0, −1)
give the precise orientation of the trajectories that pass through the saddle.
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-2/3

-1

-1/3

x

y

Fig. 3.6. Vector field generated by the system (3.170).

3.9.3.1 Nonlinear Critical Points

The critical point at the origin in Example 3.7 is shown in an expanded view
in Figure 3.7. Note that this point does not fit the simple linear classification
summarized in Figure 3.5. The functions on the right-hand side of (3.170) cannot
be linearized near the origin, and the quadratic terms dominate the behavior.
In general, when the local linearization (3.161) fails, the phase portrait near
a critical point will be determined by nonlinear balances, which can produce
quite a complicated picture requiring a much more complicated classification
scheme. The critical point in Figure 3.7 is saddle-like to the left of the origin
and nodal-like to the right.

x

y

Fig. 3.7. The critical point of (3.170) near the origin.
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3.9.4 Linear Flows in Three Dimensions

In three dimensions the eigenvalues of A j
k satisfy the cubic

λ3 + Pλ2 + Qλ + R = 0, (3.172)

where the invariants are

P = −tr[A] = −A j
j ,

Q = 1
2 (P2 − tr[A2]) = 1

2

(

P2 − A j
k Ak

j

)

,

R = 1
3 (−P3 + 3P Q − tr[A3]) = 1

3

(

−P3 + 3P Q − A j
k Ak

m Am
j

)

.

(3.173)

Any cubic can be simplified as follows. Let

λ = α − P
3

. (3.174)

Then α satisfies

α3 + Q̂α + R̂ = 0, (3.175)

where

Q̂ = Q − 1
3 P2, R̂ = R − 1

3 PQ + 2
27 P3. (3.176)

The cubic (3.175) was first solved by Scipione del Ferro (1465–1526), who
was a professor of arithmetic and geometry at Bologna beginning in 1496.
He passed the solution on to a relative, Anton Fior, who challenged the first
mathematician of Italy, Niccolo Tartaglia (1500–1557) to a competition – a not
uncommon happening in that era. Tartaglia soon solved the problem on his own.
On learning of Tartaglia’s discovery, another well-known mathematician of the
time, Girolamo Cardano, was anxious to include the formula in his book, The
Great Art or the Rules of Algebra. During a visit to Cardano’s house in 1539,
Tartaglia revealed the formula on the condition that it not be published. To his
suprise and dismay, the formula was included when Cardano finally published
the book in 1545. Despite the subterfuge, The Great Art is considered a landmark
in the history of algebra, and Cardano is credited with the first publication of
the solution to the cubic. For more on this fascinating story see the expositions
in Stillwell [3.8] and Yaglom [3.9].

Let

a1 =
(

− R̂
2

+ 1

3
√

3

(

Q̂3 + 27
4 R̂2

)1/2
)1/3

,

a2 =
(

− R̂
2

− 1

3
√

3

(

Q̂3 + 27
4 R̂2

)1/2
)1/3

(3.177)
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The real solution of (3.175) is expressed as

α1 = a1 + a2, (3.178)

and the complex (or remaining real) solutions are

α2 = − 1
2 (a1 + a2) + i

√
3

2
(a1 − a2),

α3 = − 1
2 (a1 + a2) − i

√
3

2
(a1 − a2).

(3.179)

Equation (3.178) is still called the Cardano formula, although Cardano himself
attributed the formula appropriately to Tartaglia. Up until this period in history
complex numbers for solving quadratics had been rejected as absurd. But here
they are seen to be necessary to express the real solution of the cubic. In spite of
this, the general acceptance of complex numbers would not occur for another
three hundred years until the work of Cauchy, Bolyai, Gauss, and Hamilton in
the first half of the ninteenth century.

Solving (3.172) for the eigenvalues leads to the cubic discriminant

D = 27
4 R2 +

(

P3 − 9
2 P Q

)

R + Q2
(

Q − 1
4 P2

)

. (3.180)

The Cardano surface D = 0 is depicted in Figure 3.8. To help visualize the
surface it is split down the middle on the plane P = 0 and the two parts are

Fig. 3.8. The Cardano surface dividing real and complex eigenvalues in three dimen-
sions (from Reference [3.10]).
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rotated away to provide a better view. Note that (3.180) can be regarded as a
quadratic in R, and so the surface D = 0 is really composed of two roots for R
that meet in a cusp. A complete road map to the various solutions of the cubic
and their associated local vector fields is presented in Reference [3.10].

If D > 0, the point (P, Q, R) lies above the surface and there is one real
eigenvalue and two complex conjugate eigenvalues. If D < 0, all three eigen-
values are real. The invariants can be expressed in terms of the eigenvalues as
follows. If the eigenvalues are real,

P = −(λ1 + λ2 + λ3),

Q = λ1λ2 + λ1λ3 + λ2λ3,

R = −λ1λ2λ3,

(3.181)

and if the eigenvalues are complex,

P = −(2σ + b),

Q = σ 2 + ω2 + 2σb,

R = −b(σ 2 + ω2),

(3.182)

where b is the real eigenvalue and σ and ω are the real and imaginary parts of
the complex conjugate eigenvalues.

A particularly interesting case occurs when P = 0. In this case the discrim-
inant is

D = Q3 + 27
4 R2, (3.183)

and the invariants are

Q = − 1
2 A j

k Ak
j , R = − 1

3 A j
k Ak

m Am
j . (3.184)

The various possible critical points in this case can be categorized on a plot of
Q versus R. Figure 3.9 and Figure 3.5 are cuts through the Cardano surface
(3.180) at P = 0 and R = 0 respectively.

3.10 Concluding Remarks

In the following chapters we will approach the problem of solving differential
equations using the methods and terminology of Lie groups. Although the
terminology may at times seem new and unusual, the mathematical objects
of study will quickly be recognized as the same as those reviewed in this
chapter. The analytical tools developed here, particularly the solution of first-
order PDEs, will be used over and over again as we search for group invariants.
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Fig. 3.9. Three-dimensional flow patterns in the plane P = 0 (from Reference [3.11]).

Phase space methods will be used throughout the text when we seek to physically
understand the solutions that arise from the various applications of symmetry
analysis presented.

3.11 Exercises

3.1 Consider the two functions

x2 + y3 + z4 + u5 = 1, x + y2 + z3 = 1 (3.185)

Let u be defined as a function of x, y, and z by the first equation, and
z be defined as a function of x and y by the second equation. As a
consequence, u is a function of x and y. Find the first partial derivatives
of u with respect to x and y.

3.2 Determine whether each of the following expressions is an exact differ-
ential:

(ex cos y) dx + (ex sin y) dy = 0,

(cos x cosh y − sin x sinh y) dx + (sin x sinh y + cos x cosh y) dy = 0.

(3.186)
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3.3 Prove that the stream function and velocity potential in two-dimensional
irrotational flow satisfy the Cauchy-Riemann conditions (3.29).

3.4 Show by the cross-derivative test that (3.41) is an exact differential. Show
by substitution that (3.42) is the general solution of (3.38).

3.5 Show that the internal energy and enthalpy of an ideal gas depend only
on temperature. First show that the Gibbs equation can be written in the
form

ds[T, P] = 1
T

de[T, P] + R
T

dT − v

T
d P. (3.187)

Work out the partial derivatives of the entropy, and show by the cross-
derivative test that ∂e[T, P]/∂ P = 0.

3.6 Determine the explicit relations (3.62) for the case of an ideal gas. As-
sume the heat capacities are constant.

3.7 Derive equation (3.79) relating the velocity vector field to the dual stream
functions in a three-dimensional flow. Derive (3.104) for the case of
incompressible flow.

3.8 Show that f [x2 − z2, x3 − y3] = 0 is a solution of

y2z
∂z
∂x

+ x2z
∂z
∂y

= xy2. (3.188)

where f is arbitrary.
3.9 Find a first-order PDE whose integral is

z = αx + (α2 + 1)y + β. (3.189)

3.10 Solve

∂z
∂x

= x
(

∂z
∂y

)2

. (3.190)

3.11 Show that a solution of F(∂z/∂x, ∂z/∂y) = 0 is z = αx +βy +γ where
F(α, β) = 0, and use this result to solve

3
(

∂z
∂x

)2

− 2
(

∂z
∂y

)2

= ∂z
∂x

∂z
∂y

. (3.191)

3.12 Show that the relation ∂z/∂x = α ∂z/∂y can be used as a second equation
in the solution of F[z, ∂z/∂x, ∂z/∂y] = 0. Use this to solve

z2n−2
((

∂z
∂x

)2

zn + ∂z
∂x

∂z
∂y

)

= γ 2. (3.192)
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3.13 Show that for an integrating factor to exist for a set of first-order ODEs
in n dimensions, (n − 1)(n − 2)/2 auxiliary conditions must be satisfied
by the associated vector field. See Kestin ([3.4], p. 469) for a verbal
description of the proof.

3.14 Find by inspection an integrating factor for each of the following ODEs,
and work out the general solution:

x
dy
dx

+ y − x2 = 0, (3.193)

(3x2 + 2xy − y2) dx + (x2 − 2xy − 3y2) dy = 0, (3.194)

dy
dx

= yey

y3 + 2xey
. (3.195)

3.15 Consider the simple pendulum shown in Figure 3.10.

(i) Use dimensional analysis to determine an expression for the natural
frequency of the pendulum.

(ii) Work out the unforced nonlinear equation of motion, assuming that
the motion of the mass is damped due to air resistance and that the
damping is proportional to the speed of the mass. Show that the
equation is invariant under translation in time.

(iii) Convert the second-order equation of motion to an autonomous pair
of first-order equations, and sketch the phase portrait of the system.
Find and identify all critical points. Consider the mass released from
some initial angle. Depending on the amount of damping, the mass
may oscillate about the bottom dead-center equilibrium point or it
may slowly come to rest without oscillation. Determine the critical
damping factor that distinguishes these two cases.

m

g

θ
L

Fig. 3.10.
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3.16 Show that the plane λ3 + Pλ2 + Qλ+ R = 0 in (P, Q, R) space generates
the surface

27
4 R2 +

(

P3 − 9
2 PQ

)

R + Q2
(

Q − 1
4 P2

)

= 0 (3.196)

when λ is allowed to take on all values between minus infinity and
plus infinity. Start by showing the result for R = 0 and P = 0 where the
generator is a straight line.

3.17 Rewrite the van der Pol equation

ytt + κ(y2 − 1)yt + y = 0 (3.197)

as an autonomous pair, and characterize any critical points.
3.18 Fully characterize the phase portrait of the autonomous system

dx
dt

= 3x4 − 12x2 y2 + y4

(x2 + y2)3/2
,

dy
dt

= 6x3 y − 10xy3

(x2 + y2)3/2
.

(3.198)

Consider changing variables to polar coordinates.
3.19 Consider the second-order equation

ytt + ay + by3 = 0. (3.199)

Work out the solution of (3.199) in the phase plane (y, yt ), and com-
pletely characterize the critical points for various ranges of the parame-
ters a and b.

3.20 Show that solutions of the pth-order ODE

ypx = f (x, yx , yxx , yxxx , . . . , y(p−1)x ) (3.200)

satisfy the p-dimensional first-order PDE

∂$

∂x
+ yx

∂$

∂y
+ yxx

∂$

∂yx
+ yxxx

∂$

∂yxx
+ · · · + f

∂$

∂y(p−1)x
= 0. (3.201)

Write down the system of characteristic equations for (3.201), and dis-
cuss the closedness of the system.
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4
Classical Dynamics

4.1 Introduction

The equation for the acceleration of a particle of mass m is described by
Newton’s law,

m ẍ = F. (4.1)

This equation can be generalized to a system of equations describing an array
of mass points moving under the action of internal forces between particles and
external forces applied by outside agents. The mass points might represent any
number of different physical situations: a number of celestial bodies interacting
though their mutual gravitational attraction, a cloud of charged particles sub-
jected to attractive and repulsive electrostatic forces, the infinity of mass points
composing a rigid body or a set of linked rigid bodies held together by internal
forces, the field of mass points of a fluid moving under the action of pressure
and viscous stress forces and so on.

The solution of (4.1) can be simplified by replacing Newton’s laws for the
vector acceleration by an equivalent scalar energy relation. This relation is based
on the idea that virtual displacements of the mass points under the given system
of forces do no net work when the system is displaced from a state of equilib-
rium. It is called d’Alembert’s principle, after the 18th-century mathematician
Jean le Rond d’Alembert. For a system of n forces in static equilibrium, where
ẍi = 0, this principle is stated as

Fi · δxi = 0, Sum over i = 1, . . . , n. (4.2)

where the δxi are arbitrary vector displacements from equilibrium. This ap-
proach can be carried over directly to a dynamical system by replacing Fi with
m ẍi − Fi . d’Alembert’s principle applied to the motion of n particles is

(m ẍi − Fi ) · δxi = 0. Sum over i = 1, . . . , n. (4.3)

96
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The displacements are independent except for the constraint imposed by (4.3).
This enables a set of independent equations to be written that are sufficient
to solve for the unknowns in the problem. As the complexity of the problem
increases, perhaps involving a mechanism with many individual parts with
internal forces of reaction within each part, the problem of determining the
equations relating the accelerations to the forces from the geometry of the
system becomes more and more unwieldy. Moreover these forces are often not
the main object of interest. It is usually the overall motion of a body that matters
most, not the motion of every individual element.

d’Alembert’s principle can be used to derive a universal system of generat-
ing equations called the Euler–Lagrange equations. In this approach the main
quantities of interest are the scalar kinetic and potential energies of the system
expressed in generalized coordinates. The concept of generalized coordinates
makes this approach much more powerful for handling complex systems than
the basic form of d’Alembert’s principle, (4.3). In essence, the position and
velocity of the system can be expressed in any system of coordinates that fully
specifies the energy of the system. The equations of motion are then derived
directly from the Euler–Lagrange equations. The formulation of the generalized
equations of mechanics is presented in many textbooks; my favorite references
are Goldstein [4.1] and Landau and Lifshitz [4.2].

To begin, let’s illustrate some of the basic ideas with an example.

Example 4.1 (A spring–mass system – the undamped harmonic oscillator).
Consider the undamped (frictionless) spring–mass system shown in Figure 4.1.
The equation of motion balancing the acceleration of the mass and the force
applied by the spring is

m
d2x
dt2

+ kx = 0. (4.4)

This second-order ordinary differential equation (ODE) can be broken into an
autonomous pair of first-order ODEs in which we define a new variable p:

dx
dt

= p
m

,
dp
dt

= −kx . (4.5)

Fig. 4.1. Spring–mass system.
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The quantity p is the momentum of the mass at any given instant. Recalling the
methods developed in Chapter 3, the characteristics of this pair of ODEs are
the integral curves of the first-order partial differential equation (PDE),

p
m

∂ H
∂x

− kx
∂ H
∂p

= 0. (4.6)

The function H (x, p) is determined as the constant of integration of the first-
order ODE

m
dx
p

= dp
−kx

. (4.7)

Noting that this is a perfect differential (the cross derivatives are both zero),

d H = p
m

dp + kx dx . (4.8)

The function

H [x, p] = 1
2

p2

m
+ 1

2
kx2 (4.9)

is called the Hamiltonian and corresponds to the total energy (kinetic plus
potential) of the system. The Hamiltonian is a constant of the motion whose
value is set by the initial values of the position and velocity. We shall return to
this problem shortly, using a slightly different, more general approach.

4.2 Hamilton’s Principle

In the most general formulation of mechanics, the equations of motion of
a mechanical system are derived using Hamilton’s principle, also called the
principle of least action. In this formulation every mechanical system is charac-
terized by a single scalar function of 2n + 1 independent variables, L[q1, . . . , qn,

q̇1, . . . , q̇n, t], called the Lagrangian. The variables q1[t], . . . , qn[t] are called
generalized coordinates and can be any set of quantities that completely deter-
mine the configuration of the system. The velocities of the system are q̇ i [t] =
dqi/dt . At an instant, the state of the system is completely characterized by
its position in the space of coordinates and velocities. Earlier we called this
the phase space or state space of the system. The study of such systems often
makes use of the methods of critical-point analysis described in Chapter 3.

From Newton’s laws of motion it is recognized that, if the position and
velocity of every point of a mechanical system are specified, then the accelera-
tion of the system at every point is known. The equations for the accelerations,
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i.e., the equations of motion, constitute conditions for which the integral

S =
∫ t2

t1
L[q1, . . . , qn, q̇1, . . . , q̇n, t] dt (4.10)

is an extremum for any choice of the initial and final times of the motion (t1, t2).
The quantity S is called the action. The action can be either a maximum or a
minimum, depending on the nature of the problem, but in mechanical systems
involving particles moving in a gravitational field, it is most often a minimum,
and the phrase principle of least action is used. What is important is that, to
first order, the integral is invariant under a small perturbation in the path of the
system in phase space. Let

(q1[t], . . . , qn[t]) (4.11)

be the set of functions that correspond to an extremum of the action. Consider
the effect of adding a small deviation to this solution. Let

S̃ =
∫ t2

t1
L[q̃1, . . . , q̃n, ˙̃q1

, . . . , ˙̃qn
, t] dt, (4.12)

where

q̃ i [t] = qi [t] + εηi [t] (4.13)

and

S̃ = S + δS. (4.14)

The deviation functions are assumed to be zero at the endpoints of the integra-
tion:

ηi [t2] = ηi [t1] = 0 (4.15)

Substitute this transformation into (4.12):

S + δS =
∫ t2

t1
L[q1[t] + εη1[t], . . . , qn[t] + εηn[t],

q̇1[t] + εη̇1[t], . . . , q̇n[t] + εη̇n[t], t] dt, (4.16)

and expand the integrand in a Taylor series for small ε:

S + δS =
∫ t2

t1
L[q1, . . . , qn, q̇1, . . . , q̇n, t] dt

+ ε

∫ t2

t1

(

∂L
∂qi

ηi + ∂L
∂ q̇ i

η̇i
)

dt + O(ε2). (4.17)
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Since the functions qi [t] correspond to an extremum in the action, the first-order
term in the Taylor series, termed the first variation, must be zero:

∫ t2

t1

(

∂L
∂qi

ηi + ∂L
∂ q̇ i

η̇i
)

dt = 0. (4.18)

Now integrate the second term in (4.18) by parts, using

D
Dt

(

∂L
∂ q̇ i

ηi
)

= ∂L
∂ q̇ i

η̇i + D
Dt

(

∂L
∂ q̇ i

)

ηi . (4.19)

The integral
∫ t2

t1

(

∂L
∂qi

− D
Dt

(

∂L
∂ q̇ i

))

ηi dt +
∫ t2

t1

D
Dt

(

∂L
∂ q̇ i

ηi
)

dt = 0 (4.20)

becomes
∫ t2

t1

(

∂L
∂qi

− D
Dt

(

∂L
∂ q̇ i

))

ηi dt +
(

∂L
∂ q̇ i

ηi
)t2

t1

= 0. (4.21)

Since the time interval is arbitrary and the deviation functions are zero at the
endpoints, the functions qi [t] must satisfy

∂L
∂qi

− D
Dt

(

∂L
∂ q̇ i

)

= 0. (4.22)

These are the famous Euler–Lagrange equations. In the spring–mass problem
described above, the Lagrangian is

L = 1
2

mẋ2 − 1
2

kx2. (4.23)

Using (4.22) to produce the equation for the acceleration,

mẍ + kx = 0, (4.24)

generates the simple force balance corresponding to Newton’s law, F = ma.
In general, for mechanical systems the Lagrangian and the Hamiltonian are
related to one another by

L = T − V

H = T + V

where T is the kinetic energy of the system and V is the potential energy.
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4.3 Hamilton’s Equations

Lagrangian dynamics is an extremely general method of analyzing, not just
mechanical systems, but much more general problems involving fields (such
as the 2-D flow fields discussed in Chapter 3, Section 3.5). In this context it is
convenient to reformulate the problem in terms of, not the velocities, but the
momenta of the various particles in the system, and in terms of the Hamiltonian
instead of the Lagrangian. The generalized momenta are defined as

pi = ∂L
∂ q̇ i

, (4.25)

and the Euler–Lagrange equations are

Dpi

Dt
= ∂L

∂qi
= ṗi . (4.26)

The use of subscript notation for the components pi of the generalized mo-
menta deserves some explanation. The generalized momentum p is a covariant
vector and so the notation is consistent with common vector–tensor notation,
but at first sight it would seem to be in violation of the notation we adopted
in Chapter 1, in that pi is not a derivative of p. However, in a later section
we will develop the Hamilton–Jacobi equation for the action S, and there we
shall see that pi is a partial derivative of the action. Thus we will continue to
use the subscript notation pi as a reminder of its derivative origin in (4.25) and
in anticipation of its use in the Hamilton–Jacobi equation, where pi = ∂S/

∂qi = Si .
In order to express the Euler–Lagrange equations in terms of the generalized

momenta instead of the velocities, we make use of the Legendre transformation
introduced in the discussion of thermodynamics in Chapter 3, Section 3.4. The
total differential of the Lagrangian is

d L = ∂L
∂t

dt + ∂L
∂qi

dqi + ∂L
∂ q̇ i

dq̇i , (4.27)

which, using the definition of generalized momenta, we can write as

d L = ∂L
∂t

dt + ṗi dqi + pi dq̇i . (4.28)

Noting that d(pi q̇i ) = pi dq̇i + q̇ i dpi , the differential (4.28) can be written as

d(L − pi q̇i ) = ∂L
∂t

dt + ṗi dqi − q̇ i dpi . (4.29)

Now we use the Legendre transformation to define a new dependent variable
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that depends on the coordinates and the momenta (q1, . . . , qn, p1, . . . , pn, t)
rather than the coordinates and the velocities.

Define the Hamiltonian

H [q1, . . . , qn, p1, . . . , pn, t] = pi q̇i − L . (4.30)

The total differential of the Hamiltonian is

d H = ∂ H
∂t

dt − ṗi dqi + q̇ i dpi . (4.31)

The partial derivatives of the Hamiltonian are related to the generalized coor-
dinates and momenta as follows:

dqi

dt
= ∂ H

∂pi
,

dpi

dt
= − ∂ H

∂qi
. (4.32)

With the Hamiltonian function known, (4.32) comprises the equations of motion
of the system in the state space (q1, . . . , qn, p1, . . . , pn). For the spring–mass
system described earlier,

H [x, p] = 1
2

p2

m
+ 1

2
kx2, (4.33)

and the equations of motion according to (4.32) are

dx
dt

= p
m

,
dp
dt

= −kx . (4.34)

The system (4.34) is identical to Equation (4.5) that was generated directly from
the equation of motion, (4.4).

The total time derivative of the Hamiltonian is

DH
Dt

= ∂ H
∂t

+ ∂ H
∂qi

(

dqi

dt

)

+ ∂ H
∂pi

(

dpi

dt

)

. (4.35)

If we substitute the equations of motion, we get

DH
Dt

= ∂ H
∂t

+ ∂ H
∂qi

∂ H
∂pi

− ∂ H
∂pi

∂ H
∂qi

= ∂ H
∂t

. (4.36)

If the Hamiltonian does not depend explicitly on time, then DH/Dt = 0 and
the total energy of the system is conserved.
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4.3.1 Poisson Brackets

Suppose %[q1, . . . , qn, p1, . . . , pn, t] is any function of the generalized coor-
dinates and momenta. The total derivative of % with respect to time is

D%

Dt
= ∂%

∂t
+ ∂%

∂qi

(

dqi

dt

)

+ ∂%

∂pi

(

dpi

dt

)

. (4.37)

Substitute the equations of motion (4.32) into (4.37):

D%

Dt
= ∂%

∂t
+ ∂%

∂qi

(

∂ H
∂pi

)

− ∂%

∂pi

(

∂ H
∂qi

)

. (4.38)

The expression

{H, %} = ∂%

∂qi

(

∂ H
∂pi

)

− ∂%

∂pi

(

∂ H
∂qi

)

(4.39)

is called the Poisson bracket of H with %. If % is an integral of the motion, i.e.,
a conserved quantity, so that D%/Dt = 0, then the equation governing % is

∂%

∂t
+ {H, %} = 0. (4.40)

If the integral of the motion does not depend explicitly on time, then it satisfies

{H, %} = 0. (4.41)

The Poisson bracket of the integral and the Hamiltonian is zero.

Definition 4.1. The Poisson bracket of any two functions, say, %[q1, . . . , qn,

p1, . . . , pn, t] and &[q1, . . . , qn, p1, . . . , pn, t], is written

{&, %} = ∂%

∂qi

(

∂&

∂pi

)

− ∂%

∂pi

(

∂&

∂qi

)

(4.42)

and satisfies the following rules (c is a constant):

(1) The Poisson bracket is skew-symmetric:

{&, %} = −{%, &}. (4.43)

(2) Rules of association:

{&, c} = 0,

{&1 + &2, %} = {&1, %} + {&2, %},
{&1&2, %} = &1{&2, %} + &2{&1, %}.

(4.44)
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(3) The partial derivative of the Poisson bracket with respect to time is

∂

∂t
{&, %} =

{

∂&

∂t
, %

}

+
{

&,
∂%

∂t

}

. (4.45)

If one of the functions is a coordinate or a momentum, then the Poisson
bracket reduces to a simple partial derivative:

{&, qi } = ∂&

∂pi
, {&, pi } = − ∂&

∂qi
. (4.46)

(4) Any three functions %[q1, . . . , qn, p1, . . . , pn, t], &[q1, . . . , qn, p1, . . . ,

pn, t], and '[q1, . . . , qn, p1, . . . , pn, t] satisfy the Jacobi identity

{%, {&, '}} + {&, {', %}} + {', {%, &}} = 0. (4.47)

Theorem 4.1. Poisson’s theorem states that if % and & are any two integrals
of the motion, then the Poisson bracket

{%, &} = ( (4.48)

and ( is also an integral of the motion. This can be seen from the Jacobi identity
as follows. Let ' = H in (4.47):

{%, {&, H}} + {&, {H, %}} + {H, {%, &}} = 0. (4.49)

Since {&, H} = 0 and {H, %} = 0, then from (4.49),

{H, {%, &}} = {H, (} = 0. (4.50)

Thus ( is a constant of the motion.

The conserved elements of a Hamiltonian system, %, &, ', (, . . . , define a
vector space. The rules of algebra in this space are given by the skew-symmetry
of the composition operator (Poisson bracket) (4.43), the additive properties
in (4.44), and the Jacobi identity (4.47). A vector space with these special
properties is called a symplectic space, and the solution of the Hamiltonian
system is said to lie on a symplectic manifold. This odd word comes from the
greek symplektikos meaning “twining together,” from syn (together) and plekein
(to twine). It is an apt description of the solution trajectories of a periodically
forced Hamiltonian system, which can be visualized as a family of spiraling
curves on a torus in a three-dimensional phase space where the third dimension
is the phase angle of the forcing function.
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4.4 The Hamilton–Jacobi Equation

One can develop an equation for the action itself. If the limits of integration in
(4.10) are left indefinite, the action

S =
∫

L dt + constant (4.51)

is a function of the coordinates and time, S[q1, . . . , qn, t], that characterizes
the motion along some segment of the solution path. We consider the action
for paths with a common beginning point at time t1, qi [t1], but with variable
ending point at time t2. From (4.17) the equation for the change in the action is

δS = ε

∫ t2

t1

(

∂L
∂qi

ηi + ∂L
∂ q̇ i

η̇i
)

dt + O(ε2). (4.52)

The change in the action between two neighboring paths is

δS = ε

(

∫ t2

t1

(

∂L
∂qi

− D
Dt

(

∂L
∂ q̇ i

))

ηi dt +
(

∂L
∂ q̇ i

ηi
)t2

t1

)

. (4.53)

Since the paths of the system satisy the Euler–Lagrange equations, the integral
term in (4.53) is zero. Hence,

δS = ε

(

∂L
∂ q̇ i

ηi
)t2

t1

. (4.54)

In (4.54) the deviation at the initial point is zero (ηi [t1] = 0), and the deviation
at the final point is a function of time. So we can write

δS = ∂L
∂ q̇ i

δqi , (4.55)

where the small parameter ε has been incorporated in the definition δqi = εηi .
Now replace ∂L/∂q̇ i = pi , so that

δS = pi δqi . (4.56)

Thus the partial derivatives of the action are the generalized momenta

∂S
∂qi

= pi . (4.57)

What about the time derivative of the action? From its definition,

DS
Dt

= L . (4.58)
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The total time derivative of the action is

DS
Dt

= ∂S
∂t

+ ∂S
∂qi

dqi

dt
= ∂S

∂t
+ pi q̇i = L . (4.59)

Comparing with (4.30), we have

∂S
∂t

= −H. (4.60)

Finally, the total differential of the action as a function of the coordinates and
the time is

d S = −H dt + pi dqi . (4.61)

Equation (4.60) is

∂S
∂t

+ H [q1, . . . , qn, p1, . . . , pn, t] = 0. (4.62)

Recalling that S is a function only of coordinates and time, S[q1, . . . , qn, t], and
recognizing that (4.61) determines the partial derivatives of S, Equation (4.62)
becomes the Hamilton–Jacobi equation,

∂S
∂t

+ H
[

q1, . . . , qn,
∂S
∂q1

, . . . ,
∂S
∂qn

, t
]

= 0. (4.63)

Equation (4.63) is a (usually nonlinear) first-order PDE in n + 1 independent
variables (q1, . . . , qn, t) governing the action S.

The Hamilton–Jacobi equation is an example of a nonlinear first-order PDE
of the form A[t, q1, . . . , qn, S, St , p1, . . . , pn] = 0 that is amenable to the
n-dimensional method of Lagrange and Charpit described in Chapter 3, Section
3.8.1 [except that (4.63) is simpler in that there is no explicit dependence on S].
Using the formula (3.159) in Chapter 3, the characteristic equations of (4.63)
are

dt
1

= dq1

∂ H/∂p1
= · · · = dqn

∂ H/∂pn

= d St

− ∂ H
∂t

= dp1

− ∂ H
∂q1

= · · · = dpn

− ∂ H
∂qn

= d S
∂S
∂t + pi

∂ H
∂pi

. (4.64)
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In summary, the complete Hamilton–Jacobi system generated from (4.63)
and (4.64) is

dqi

dt
= ∂ H

∂pi
,

dpi

dt
= −∂ H

∂qi
,

d S
dt

= ∂S
∂t

+ pi q̇i ,

d St

dt
= −d H

dt
.

(4.65)

The last relation in (4.65) implies

∂S
∂t

+ H = constant, (4.66)

which is consistent with (4.60). The first two equations in (4.65) are Hamilton’s
equations for the characteristics describing the evolution of the system in phase
space.

This is not the first time we have seen an equation of Hamilton–Jacobi type.
The first-order PDE governing characteristics in n dimensions is

ξ j [x]
∂%

∂x j
= 0. (4.67)

For definiteness assume ξ 1[x] ̸= 0. In the current notation, with the correspon-
dence

% → S,

x1 → t,

x2, . . . , xn → q1, . . . , qn−1,
(4.68)

∂%

∂x2
, . . . ,

∂%

∂xn
→ ∂S

∂q1
, . . . ,

∂S
∂qn−1

,

ξ 2[x]
ξ 1[x]

, . . . ,
ξ n[x]
ξ 1[x]

→ f 1[t, q], . . . , f n−1[t, q],

the equation (4.67) takes the form

∂S
∂t

+
n−1
∑

j=1

f j [t, q]
∂S
∂q j

= 0 (4.69)
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with Hamiltonian

H [t, q, p] =
n−1
∑

j=1

f j [t, q]p j , (4.70)

where p j = ∂S/∂q j . These ideas will be illustrated in the next section through
some examples.

4.5 Examples

Example 4.2 (The harmonic oscillator revisited). First let’s look at an example
of the application of the Hamilton–Jacobi approach. The Hamiltonian for the
harmonic oscillator is

H [x, p] = 1
2

p2

m
+ 1

2
kx2. (4.71)

The corresponding Hamilton–Jacobi equation is

∂S
∂t

+ 1
2m

(

∂S
∂x

)2

+ 1
2

kx2 = 0 (4.72)

with characteristic equations

dt
1

= dx
p/m

= d St

0
= dp

−kx
= d S

∂S
∂t + p2

m

(4.73)

Two integrals of (4.73) are

ψ1 = St , ψ2 = 1
2

p2

m
+ 1

2
kx2. (4.74)

The second integral H [x, p] = ψ2 is the constant total energy of the system,
and from (4.60) we know that ∂S/∂t = ψ1 = −H . We can therefore assume
that S[x, t] = F[x] − Ht . Now (4.72) can be written as

1
2m

(

∂ F
∂x

)2

+ 1
2

kx2 = H, (4.75)

which can be integrated to give

F =
√

km
∫

√

2H
k

− x2 dx . (4.76)
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p

x

Fig. 4.2. Phase portrait of the undamped harmonic oscillator.

Finally, the action is

S[x, t] =
√

km
(

x
2

)

√

2H
k

− x2 +
√

km
(

H
k

)

tan−1

⎡

⎣

x
√

2H
k − x2

⎤

⎦ − Ht,

(4.77)

a somewhat more complicated function than the Hamiltonian itself. The system
moves along the characteristics of

dx
dt

= p
m

,
dp
dt

= −kx, (4.78)

which are a set of closed orbits in phase space as shown Figure 4.2. The
arrows indicate the direction of increasing time. The period of the motion is
T = 2π

√
m/k, and the radius of the orbit is proportional to the energy H .

Example 4.3 (The two-body problem). Consider the motion of two particles
moving under the action of a force field that acts between them (Figure 4.3).

x

y

z

r1

r2

r

m1

m2

x

y

z

r

m

Fig. 4.3. Mapping of the two-body problem to an equivalent one-body problem in
center-of-mass coordinates.
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The Lagrangian is

L = 1
2

m1ṙ2
1 + 1

2
m2ṙ2

2 − V [|r1 − r2|], (4.79)

where r1 = (x1, y1, z1) and r2 = (x2, y2, z2) are the radius vectors to the mass
particles, r = r1 − r2 is the vector joining the particles, and |r1 − r2| is the dis-
tance between them. To simplify the problem let’s set the origin of coordinates
at the center of mass of the two points, so that m1r1 + m2r2 = 0. In this system,
the two position vectors can be expressed in terms of r :

r1 = m2r
m1 + m2

, r2 = m1r
m1 + m2

. (4.80)

If we insert these expressions into (4.79), the result is

L = 1
2

mṙ2 − V [r ], (4.81)

or, in terms of the coordinates,

L = 1
2

m(ẋ2 + ẏ2 + ż2) − V [
√

x2 + y2 + z2], (4.82)

where m is the reduced mass

m = m1m2

m1 + m2
, (4.83)

and the scalar distance r is measured from the center-of-mass origin. By using
the reduced mass, the two-body problem is reduced to the motion of a single
particle in a spherically symmetric force field. Once the path r [t] has been
determined, the motions of the individual particles are obtained by means of
(4.80). The equations of motion generated by the Euler–Lagrange equations are

mẍ + x
r

(

∂V
∂r

)

= 0,

mÿ + y
r

(

∂V
∂r

)

= 0,

mz̈ + z
r

(

∂V
∂r

)

= 0.

(4.84)

The Hamiltonian with p = mṙ is

H = 1
2

p2

m
+ V [r ]. (4.85)
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x
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r

m

θ
x

y
r

θd

(a) (b)

Fig. 4.4. Motion of the reduced-mass particle in cylindrical coordinates.

The motion of the particle actually takes place in a plane, and it is convenient
to express the position of the particle in terms of the distance from the center of
mass and the angle with respect to some reference axis, as shown in Figure 4.4.
In these coordinates the Lagrangian is

L = 1
2

m(ṙ2 + r2θ̇2) − V [r ], (4.86)

and the Hamiltonian is the total energy

H = 1
2

m(ṙ2 + r2θ̇2) + V [r ], (4.87)

which is conserved. The equations of motion in cylindrical coordinates sim-
plify to

mr̈ − mr θ̇2 + ∂V
∂r

= 0,

d
dt

(mr2θ̇ ) = 0.

(4.88)

The second of the equations of motion expresses conservation of angular
momentum in the center-of-mass system:

- = mr2θ̇ = constant. (4.89)

Equation (4.89) can be interpreted using the sketch in Figure 4.4(b), which
shows the sector swept out by the particle in a small period of time. The area of
the sector is d A = r ·r dθ/2, and d A/dt = r2θ̇/2 = -/2m. This result is known
as Kepler’s second law: the particle sweeps out equal areas in equal times. Note
that Kepler’s second law applies for any central force field and does not assume
anything about the radial dependence of the field.
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The easiest way to reach the complete solution of the motion of the parti-
cle is to use the two conserved quantities. Use (4.89) to eliminate θ̇ from the
Hamiltonian (4.87) and solve for the radial velocity

dr
dt

=
(

2
m

(H − V [r ]) − -2

m2r2

)1/2

. (4.90)

The solution for the radius is expressed implicitly in terms of the time,

t =
∫ r

r0

dr
( 2

m (H − V [r ]) − -2

m2r2

)1/2 , (4.91)

and the angle is determined from conservation of angular momentum,

θ − θ0 =
∫ r

r0

- dr

r2
(

2m(H − V [r ]) − -2

r2

)1/2 . (4.92)

As the particle moves under the influence of the central field, it is constrained to
move in an annular disk between two radii, rmin and rmax. The condition for the
orbit to be closed is that the angle defined by (4.92) must be an integer multiple
of 2π when the radius, starting at say rmin, returns to rmin. This only occurs for
the case when the potential energy varies as r2 or 1/r . We shall return to this
issue in Chapter 15 in the context of Problem 15.3.

This completes the general two-body problem. In the next example we will
look at the important case of an inverse-square-law force field between the
particles – the law that governs the heavens.

Example 4.4 (Kepler’s problem – the motion of celestial bodies). A very
important class of two-body problems is defined by a potential field of the form

V = −γ

r
, (4.93)

for which the Lagrangian is

L = 1
2

m(ṙ2 + r2θ̇2) + γ

r
(4.94)

and the generalized momenta are

p1 = mṙ ,

p2 = mr2θ̇ = -.
(4.95)
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We are considering the interaction between two gravitating bodies, where the
constant γ is

γ = Gm1m2 (4.96)

and the force of attraction varies inversely as the square of the radius. This is
the same problem we analyzed in Chapter 2 using dimensional analysis, except
that there the final result was reached under an assumption, appropriate to the
solar system, that one mass was much larger than the other. The equations of
motion in Cartesian coordinates are

mẍ + γ
x
r3

= 0,

mÿ + γ
y
r3

= 0,

mz̈ + γ
z
r3

= 0.

(4.97)

These equations can be cast in terms of cylindrical coordinates in the plane of
the motion:

mr̈ − mr θ̇2 + γ

r2
= 0,

d
dt

(mr2θ̇ ) = 0.

(4.98)

The two-body solution is

t − t0 =
∫ r

r0

dr
( 2

m

(

H + γ
r

)

− -2

m2r2

)1/2 ,

θ − θ0 =
∫ r

r0

- dr

r2
(

2m
(

H + γ
r

)

− -2

r2

)1/2 .

(4.99)

The integral relating the angle to the radius can be carried out, leading to

−
(

2Hm
-2

r2 + 2γ m
-2

r − 1
)1/2

=
((

γ m
-2

)

r − 1
)

tan[θ − θ0] (4.100)

Note that the initial radius r0 does not appear in (4.100). The usual convention
that is adopted is that r0 corresponds to θ = θ0. That is, r0 satisfies 2Hm

-2 r2
0 +

2γ m
-2 r0 − 1 = 0 where the positive root is selected. This aligns the major axis

of the orbit along the horizontal axis of coordinates. After some manipulation,
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the trajectory of the particle can be written as

(

2H-2

mγ 2
+ 1

)1/2

r cos[θ − θ0] − r + -2

γ m
= 0. (4.101)

This is the equation of a conic section with one focus at the origin and eccen-
tricity

e =
(

2H-2

mγ 2
+ 1

)1/2

. (4.102)

The quantity

h = -2

γ m
(4.103)

is one-half the so-called latus rectum of the trajectory of the particle. The equa-
tion for the path of the particle in cylindrical coordinates, (4.101), can be cast
into Cartesian coordinates, and the result is as follows:

(

x − eh
1−e2

)2

( h
1−e2

)2 + y2

( h2

1−e2

)

= 1. (4.104)

If the energy H < 0, so that e < 1, then the trajectory is an elliptical orbit as
shown in Figure 4.5a. The semimajor and semiminor axes of the ellipse are

a = h
1 − e2

= γ

−2H
,

b = h
(1 − e2)1/2

= -

(−2Hm)1/2
,

(4.105)

while the apogee and perigee of the orbit are

rmin = h
1 + e

, rmax = h
1 − e

. (4.106)

The elliptical nature of the orbit is the first of Kepler’s laws. Note that r0 = rmax.
The minimum-energy case H = −mγ 2

2-2 corresponds to e = 0, for which the
orbit is a circle. If the total energy is positive (H > 0), then e > 1, the sign of
the second term in (4.104) becomes negative, and the trajectory is a hyperbola
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(a) (b)

y

x x

y

r

θ − θ0

r

θ − θ0

Fig. 4.5. Solutions of the Kepler problem for (a) negative total energy and (b) positive
total energy.

as shown in Figure 4.5b. The radius of closest approach (the perihelion) is
rmin = h/(1 + e). Finally, if H = 0, the trajectory is a parabola.

We can use the results of our analysis to develop the complete theory for the
relationship between the radius of the orbit and the orbital period, which was
treated using dimensional analysis in Chapter 2. For H < 0 the period T of the
orbit can be derived from the second of Kepler’s laws,

d A/dt = r2θ̇ = constant. (4.107)

The area of the orbit is

A = r2θ̇T = -

2m
T . (4.108)

The area of an ellipse is A = πab, and so the area of the orbit is

A = πγ-

m1/2(−2H )3/2
. (4.109)

Equating (4.108) and (4.109) the orbital period is

T = 2πγ m1/2

(−2H )3/2
. (4.110)

Using −2H = γ /a, this result can be cast in terms of rmean =
√

ab and the
gravitational constant G = 6.670 × 10−11 m3/(kg-s2). The result is Kepler’s
third law,

G(m1 + m2)T 2

(rmean)3
= 4π2

(1 − e2)3/4
. (4.111)
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Eventually, in Chapter 15, we will return to this problem again and add a fourth
law to the three discussed so far. Moreover, all four will be seen to be intimately
connected to the symmetries of the Keplerian system (4.97). The simplest of
these can be described now, and it involves the interpretation of (4.111) in terms
of the group invariance of the Kepler system. The equations (4.97) are invariant
under the dilation group,

x̃ = e2a x, ỹ = e2a y, z̃ = e2az, t̃ = e3at, m̃ = m, (4.112)

as is (4.111). The group (4.112) shows how to scale time and length to relate any
two orbits t̃2/r̃3 = t2/r3, as we deduced in (4.111). This invariance is a direct
consequence of the units of G, the same dimensioned constant that underlies the
dimensional-analysis derivation of (4.111) described in Chapter 2, Section 2.2,
Equation (2.7).

Example 4.5 (Damped, linear second-order system). Hamiltonian dynamics
is generally associated with energy-conserving systems. However it is not dif-
ficult to find examples of systems that dissipate energy for which the govern-
ing equations have a Hamiltonian analog. As an example, let’s reexamine the
spring–mass system depicted in Figure 4.1 and add friction proportional to the
speed of the mass. The unforced equation of motion with damping is

m
d2x
dx2

+ α
dx
dt

+ kx = 0, (4.113)

where the damping coefficient is α > 0. This second-order ODE can be broken
into a linear autonomous pair

dx
dt

= p
m

,
dp
dt

= −kx − α

m
p, (4.114)

where p = m dx/dt is the same generalized momentum used previously. As it
stands, the system (4.114) is not Hamiltonian, that is, it is not in the form

dx
dt

= ∂ H
∂p

,

(4.115)
dp
dt

= −∂ H
∂x

where H [x, p] is some scalar function of the generalized coordinate and
momentum. Equation (4.113) can be easily solved in terms of exponentials:

x(t) = C1eλ1t + C2eλ2t , (4.116)
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where the eigenvalues are

λ1 = α

2m

(

−1 +
√

1 − 4km
α2

)

,

λ2 = α

2m

(

−1 −
√

1 − 4km
α2

)

,

(4.117)

and C1 and C2 are arbitrary. The solution is a simple decaying exponential, as
shown in the several phase portraits of (4.114) sketched in Figure 4.6. Depend-
ing on the value of the quadratic discriminant α2 − 4km, the system may be
underdamped as in case (a), overdamped as in case (b), or critically damped as
in case (c).

It is possible to put this system in Hamiltonian form, in essence by solving
for the function that relates p and x in the phase portrait. We first eliminate dt
in the system (4.114) to generate the nonlinear first-order ODE that governs the

xx

p

α2
4km– 0< α2

4km– 0>

x

p

α2
4km– 0=

(a) (b)

(c)

p

Fig. 4.6. Phase portrait of a damped oscillator.
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trajectories in Figure 4.6:

pdp + (kmx + αp) dx = 0. (4.118)

Equation (4.118) is invariant under the dilation group,

x̃ = ea x, p̃ = ea p. (4.119)

In Chapter 6 we shall learn how to utilize (4.119) to construct an integrating
factor for (4.118). For the present, we simply state that as a consequence of
this invariance (4.118) has the integrating factor

M = 1
kmx2 + αxp + p2

. (4.120)

This enables (4.118) to be converted to the integrable form

d H = kmx + αp
kmx2 + αxp + p2

dx + p
kmx2 + αxp + p2

dp (4.121)

The integral of (4.121) is

H = α√
α2 − 4km

tanh−1
[

αx + 2p

x
√

α2 − 4km

]

+ ln [kmx2 + αxp + p2]1/2.

(4.122)

This is the sought-after Hamiltonian – a rather more complicated function than
(4.9). Note that when α2 − 4km is negative, the identity tanh−1[i x] = i tan−1[x]
ensures that the first term in (4.122) is always real. Furthermore one can show
that the argument of the logarithm is always positive for positive k, m, and α.
The Hamiltonian analog of the system (4.114) is

dx
dt

= p
kmx2 + αxp + p2

,

dp
dt

= −
(

kmx + αp
kmx2 + αxp + p2

)

.

(4.123)

It must be emphasized that although (4.123) and (4.114) have identical solu-
tion trajectories in (x, p) space, the times in the two systems are not at all the
same. The system (4.114) describes the motion of the actual physical system
in true time, whereas (4.123) describes the same motion (the same x , p chart)
but in a transformed time [not the same (x, t) or (p, t) chart]. The motion
implied by (4.123) is quite unphysical. For example, in the physical system, as
(x, p) → (0, 0), (dx/dt, dp/dt) → 0; the motion comes smoothly to rest. But
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in the analog system (dx/dt, dp/dt) → ∞, i.e., the analog mass would appear
to move faster and faster as the motion decays. This limits the usefullness of
Hamiltonian methods for treating this class of problems.

4.6 Concluding Remarks

Dynamics problems and the Hamilton–Jacobi equation will come up in a variety
of contexts in the following chapters. The discussion of Lie–Bäcklund trans-
formations in Chapter 14 leads naturally to Chapter 15, where a generalization
of the variational approach used to derive the Euler–Lagrange system (4.22) is
presented. The central point of Chapter 15 is Noether’s theorem, showing how
to use the symmetries of a generalized Euler–Lagrange system to construct
conservation laws for the system. There the Kepler problem will be used again
to provide a useful illustration of basic principles.

4.7 Exercises

4.1 Show that the Legendre transformation (4.30) can be thought of as a
transformation where the locus of points in, say, (x, y) coordinates is
replaced by an equation in which the tangent dy/dx at a point and the
intercept of the tangent on the x-axis are used as independent variables.
Show how the curve is constructed as the envelope of a family of straight
lines.

4.2 A Foucault pendulum consisting of a heavy mass hanging from a flex-
ible cable is an example of a spherical pendulum where the mass is
constrained to move on the surface of a sphere of radius R. With the
attachment of the cable at the center of the sphere and the polar axis
downward, the Lagrangian of the system is

L = 1
2

m R2
((

dθ2

dt

)

+
(

dφ2

dt

)

sin2 θ

)

+ mgR cos θ (4.124)

(i) Work out the equations of motion and identify any conserved quan-
tities.

(ii) Integrate the equations and sketch the 3-D phase portrait. A treat-
ment of perturbations about the motion on a sphere is presented in
Reference [4.3].

4.3 Fully integrate the equations of motion for the two-body problem with
V = −γ /r2. Determine rmin and rmax. See Chapter 15, Exercise 15.3.
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4.4 Consider the linearly damped oscillator with periodic forcing,

d2x
dx2

+ α

m
dx
dt

+ k
m

x = A cos [&t] (4.125)

Let the Lagrangian be of the form

L = e(α/m)t

2

(

dx
dt

+ C1& sin [&t] − C2& cos [&t]
)2

− e(α/m)t

2
k
m

(x − C1 cos [&t] − C2 sin [&t])2. (4.126)

Choose C1 and C2 so that Lagrange’s equation produces the correct
equation of motion, (4.125). Find the Hamiltonian, and construct the
appropriate Hamilton–Jacobi equation. Find a complete solution of the
Hamilton–Jacobi equation in the form

S = e(α/m)t

2
f [t](x − C1 cos [&t] − C2 sin [&t])2 (4.127)

where f [t] is an unknown function. Show that f satisfies the Ricatti
equation,

d f
dt

+ α f + f 2 + k
m

= 0. (4.128)

Integrate this equation, and write down the complete solution for the
action. Draw the phase portrait of the system at several times in the
cycle. See Reference [4.4] for a discussion of this and other similar
problems involving dissipative systems. See Chapter 8 Section 8.11.2 to
determine what linear second-order ODE corresponds to (4.128).
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5
Introduction to One-Parameter Lie Groups

In Chapter 1 the notion of symmetry and invariance of physical and mathe-
matical objects was developed. A preliminary definition of a one-parameter Lie
group was presented and used to illustrate several of the applications that are the
main subject matter of this book. In Chapter 2 the role of groups in dimensional
analysis was described along with several applications. Chapter 3 presents most
of the tools of analysis needed to understand and use group theory. Especially
important is the material on linear first-order PDEs and the associated system
of characteristic ODEs, that are encountered constantly in group analysis. With
all this introductory material out of the way, it is now time to present a formal
definition of a one-parameter Lie group and to show how groups are used to
identify the symmetry properties of differential equations and the continuous
functions that they govern.

5.1 The Symmetry of Functions

We begin by considering the symmetry properties of functions. As in the case of
the snowflake in Chapter 1, we look at how an object can be transformed without
a change in its form or appearance except that now the object is a mathematical
expression. As in the case of the snowflake, one maps source points to target
points in a given coordinate space. Let’s begin with a general definition of the
symmetry of mathematical objects.

Definition 5.1. A mathematical relationship between variables is said to pos-
sess a symmetry property if one can subject the variables to a group of trans-
formations and the resulting expression reads the same in the new variables
as the original expression. The relationship is said to be invariant under the
transformation group.
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x

y

x̃ x

s
• •

Fig. 5.1. Mapping of points by a translation group.

5.2 An Example and a Counterexample

Before we consider a formal definition of Lie groups, it is instructive to look at
two simple examples.

5.2.1 Translation along Horizontal Lines

Consider the transformation

x = x̃ + s,

y = ỹ
(5.1)

(see Figure 5.1). By varying the transformation parameter s, we can move
continuously and invertibly to any point (x, y) on a horizontal line. For every s
there is an inverse −s that restores the point to its original position. The identity
element s = 0 transforms any point on the line to itself. A small change δs
produces a small change in x , x ⇒ x + δx . The line itself is called a pathline
of the group (5.1).

Now write the transformation for a second value of s, and substitute one into
the other to produce a third:

(5.2)

The operation indicated in (5.2) shows that when the transformation (5.1) is
repeated and the two members of the group corresponding to s1 and s2 are
composed, the result is a transformation that reads exactly the same as the
original transformation with the new group parameter related to the first two by
a function that is commutative in s1 and s2. The transformation (5.1) is said to



5.3 One-Parameter Lie Groups 123
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Fig. 5.2. A transformation that is not a group.

be invariant with respect to the binary operation of composition. The symmetry
of s3 under the exchange of s2 and s1 makes the transformation Abelian; i.e., it
doesn’t matter in which order the two initial transformations are applied. The
transformation (5.1) is a Lie group.

5.2.2 A Reflection and a Translation

Now consider the transformation

x = −x̃ + s,

y = ỹ
(5.3)

shown in Figure 5.2. Here a small change δs does not lead to a small change in x .
There is no identity element: no value of s such that the transformation reduces
to x = x̃ , y = ỹ. The transformation is not invariant under composition:

(5.4)

Note the change in sign when the transformations are composed. The transfor-
mation (5.4) is not a Lie group.

5.3 One-Parameter Lie Groups

Definition 5.2. Let the vector x = (x1, x2, . . . , xn) lie in some continuous open
set D on the n-dimensional Euclidean manifold R

n. Define the transformation

T s : {x j = F j [x̃, s], j = 1, . . . , n}. (5.5)
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The functions F j are infinitely differentiable with respect to the real variables
x and are analytic functions of the real continuous parameter s, which lies in
an open interval, S.

The transformation T s is a one-parameter Lie group with respect to the
binary operation of composition if and only if:

(i) There is an identity element s → s0 such that x̃ is mapped to itself:

T s0 : {x̃ j = F j [x̃, s0], j = 1, . . . , n}. (5.6)

Note that the identity element can always be arranged to be zero.
(ii) For every value of s there is an inverse s → sinv such that x is returned

to x̃:

T sinv : {x̃ j = F j [x, sinv], j = 1, . . . , n}. (5.7)

(iii) The binary operation of composition produces a transformation that is a
member of the group T s1 · T s2 = T s3 i.e., the group is closed. Consider
two members of the group,

T s1 : {x j = F j [x̃, s1], j = 1, . . . , n} (5.8)

and

T s2 : {x̃ j = F j [ ˜̃x, s2], j = 1, . . . , n}. (5.9)

If we compose T s1 and T s2 , the result is

T s3 : {x j = F j [F[ ˜̃x, s2], s1] = F j [ ˜̃x, s3], j, . . . , n}, (5.10)

where s3 = φ[s1, s2] ∈ S. The function φ defining the law of composition
of T s is an analytic function of s1 ∈ S and s2 ∈ S and is commutative
(s3 =φ[s1, s2] = φ[s2, s1]); thus Lie groups are Abelian.

(iv) The group is associative: (T s1 ·T s2 ) · T s3 = T s1 · (T s2 · T s3 ). Consider three
elements of the group,

x j = F j [x̃, s1], x̃ j = F j [ ˜̃x, s2], ˜̃x j = F j [ ˜̃̃x, s3]. (5.11)
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Composing the first two and then the third leads to

(5.12)

Composing the second and third and then the first leads to the same result

(5.13)

The Abelian nature of the group implies that the composition function s4 =
ϕ[s1, s2, s3] is invariant under any permutation of s1, s2, and s3. Note that here,
where there is no possibility of confusion with a derivative, we have used
subscripts as labels for the various values of the group parameter.

The four attributes identity, inverse, closure, and associativity are the same
ones that we encountered in discussing the discrete symmetry group of a
snowflake in Chapter 1. The main difference is that the group considered in
Chapter 1 had a finite number of members and the relational operator of the
group (matrix multiplication) was not commutative.

The operation of composition consists in substituting the transformation
into itself. The transformation is a group if one can rearrange terms so that
the new expression reads the same as the old expression, but in new variables.
The parameter of the final transformation must be expressible as a function
of the parameters of the two composed functions. At first sight this may seem
to be a highly restrictive condition, which only a handful of transformations
could possibly satisfy. In fact, while relatively simple transformations are nor-
mally used to illustrate most concepts, Lie groups are extremely general and
commonly arise as the continuous functions that solve systems of autonomous
ODEs such as those discussed in Chapters 1 and 3. The exact correspondence
in notation between this chapter and Chapter 3 is intentional.

5.4 Invariant Functions

Central to all of the development of symmetry theory is the concept of an
invariant function. The example below illustrates the basic idea.
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Example 5.1 (Invariance of a parabola under dilation). Transform

$[x, y] = y/x2 (5.14)

using the dilation (or stretching) group

T dil : {x = sx̃, y = sn ỹ, s > 0}. (5.15)

The restriction on s in (5.15) arises because s = 0 has no inverse. Once a point
has been mapped to (x, y) = (0, 0), there is no way to return to the original
point by some choice of s.

The important property of a group that makes it so useful is that it is always
possible to transform points smoothly and invertibly along the pathlines traced
out by the group.

Note that the identity element of (5.15) is s = 1. A more natural way of express-
ing the dilation group is to write it in the form

T dil : {x = es x̃, y = ens ỹ}. (5.16)

Now the parameter s can take on the full range of values from −∞ to +∞,
and the identity element is s = 0. This is the form of the dilation group that was
used in the discussion of dimensional analysis in Chapter 2. Use (5.16) to
transform (5.14):

$[x, y] = y/x2 = es(n−2)(ỹ/x̃2). (5.17)

For general n the function is not invariant under the group; however, if we set
n = 2, then

$[x, y] = y/x2 = ỹ/x̃2 = $[x̃, ỹ]. (5.18)

The parameter s does not appear in (5.18), and the function is said to be invariant
under (5.16) for n = 2.

Invariance holds only if the function reads the same, exactly the same, when
expressed in new variables. The tildes over the variables play the same role
that the labels A, B, C, D, E, F did in the case of the snowflake described in
Chapter 1. Such labels are needed as place markers for the mapping from the
source point to the target point of the transformation and do not compromise the
invariance of the mathematical object being considered (in this case a functional
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relationship between x and y). We can express this notion of invariance in the
following definition.

Definition 5.3. A function $[x] is said to be invariant under the Lie group
T s : {x j = F j [x̃, s], j = 1, . . . , n} if and only if

$[x] = $[F[x̃, s]] = $[x̃]. (5.19)

For invariance, the parameter s must vanish from the transformation so that
the function reads the same in the new variables.

5.5 Infinitesimal Form of a Lie Group

In the last section we defined one-parameter Lie groups of the form

x̃ j = F j [x, s], (5.20)

where s is the group parameter, which, for present purposes, will be assumed
to be defined in such a way that the identity element is s0 = 0. Thus

x j = F j [x, 0]. (5.21)

One may notice that, up to this point, we have used the tilde to denote the
source point of the transformation, and in (5.20) we have suddenly switched
the role of the tilde to denote the target point of the transformation. Of course
it is immaterial which value of x is assigned the tilde, which is merely a dis-
tinguishing mark. We are about to develop the infinitesimal theory of groups,
which involves expanding the transformation (5.20) about the source point,
and for convenience it is simpler to assign the tilde to the target value of the
transformation. This avoids having to carry tildes along in all our formulas.

Now expand (5.20) in a Taylor series about s = 0:

x̃ j = x j + s
[

∂ F j

∂s

]

s=0
+ O(s2) + · · · , j = 1, . . . , n. (5.22)

The derivatives of the various F j with respect to the group parameter s evaluated
at s = 0 are called the infinitesimals of the group and are traditionally denoted
by ξ j :

ξ j [x] =
[

∂

∂s
F j [x, s]

]

s=0
, j = 1, . . . , n. (5.23)
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The vector ξ j is also called the vector field of the group (5.20). The notation of
(5.23) is intentionally chosen as a reminder of the vector fields of autonomous
ODEs discussed in Chapter 3.

5.6 Lie Series, the Group Operator, and the Infinitesimal Invariance
Condition for Functions

The condition for invariance of a function given in (5.19) is difficult to apply
in practice because of the usually nonlinear dependence of F j on the group
parameter s. The condition (5.19) requires that the transformation be substituted
into F j and then rearranged to read like the original function. This can be an
extremely tedious procedure for testing the invariance of complicated functions
and becomes hopelessly complex when it comes to the testing of differential
equations. We need something that is equivalent to (5.19) but much simpler to
apply. To this end, substitute (5.20) into the analytic function $[x̃]:

$[x̃] = $[F[x, s]]. (5.24)

Now expand (5.24) in a Taylor series about the identity element s = 0:

$[x̃] = $[x] + s
[

∂$

∂s

]

s=0
+ s2

2!

[

∂2$

∂s2

]

s=0
+ s3

3!

[

∂3$

∂s3

]

s=0
+ · · · . (5.25)

Using the chain rule

[

∂$

∂s

]

s=0
= ∂$

∂ F j

[

∂ F j

∂s

]

s=0
= ξ j ∂$

∂ F j
(5.26)

the expansion (5.25) becomes the Lie series representation of the function $:

$[x̃] = $[x] + s
(

ξ j ∂$

∂x j

)

+ s2

2!
ξ j ∂

∂x j

(

ξ j1 ∂$

∂x j1

)

+ s3

3!
ξ j ∂

∂x j

(

ξ j1 ∂

∂x j1

(

ξ j2 ∂$

∂x j2

))

+ · · · . (5.27)

where j1, j2 . . . are dummy indices that are summed from 1 to 4.
The condition $[x̃] = $[x] is satisfied if and only if ξ j∂$/∂x j = 0. We

can now state the infinitesimal condition for invariance of a function.

Theorem 5.1. The analytic function $[x] is invariant under the Lie group
T s : {x̃ j = F j [x, s], j, . . . , n} or, equivalently, the infinitesimal group ξ j [x],
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j, . . . , n, if and only if $[x] satisfies the condition

ξ j [x]
∂$

∂x j
= 0. (5.28)

Equation (5.28) is one we encountered in Chapter 3 when we discussed the
first-order PDE that governs the n −1 characteristic functions $ i [x] that satisfy
an autonomous system of n first-order ODEs. In the parlance of group theory
the functions $ i [x] are the invariants of the group T s . The operator

X ≡ ξ j [x]
∂

∂x j
(5.29)

is called the group operator and X$ is called the Lie derivative of $.
The Lie series (5.27) can be written concisely using the group operator. Any

analytic function can be expanded as

$[x̃] = $[x] + s(X$) + s2

2!
X (X$) + s3

3!
X (X (X$)) + · · · . (5.30)

The Lie series (5.30) can be formally written as the exponential map,

$[x̃] = es X$[x]. (5.31)

Sophus Lie’s great advance was to replace the complicated, nonlinear
finite invariance condition (5.19) by the vastly more useful linear infinitesimal
condition (5.28) and to recognize that if a function satisfies the infinitesimal
condition then it also satisfies the finite condition. This is the key point that en-
ables Lie theory to be applied usefully to nonlinear problems – one is virtually
always working with a linear invariance condition.

Although the theory of Lie groups is a vast discipline with many facets, the
development beginning with (5.20) and ending with (5.31) is really the core of
the theory required to understand and use groups in applications. This becomes
especially evident when we introduce the concept of a differential function in
Chapter 7, where ODEs and PDEs are viewed as locally analytic functions in
a jet space whose coordinates are independent variables, dependent variables,
and the various derivatives of one with respect to the other. In a broad sense, the
invariance condition for an ODE or a PDE is no different from the condition
defined in Theorem 5.1 for functions; it is just that it is applied in the extended
tangent space of differential functions.
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x̃̃ ỹ̃,( )

ψ Ψ x y,[ ] Ψ x̃ ỹ,[ ] Ψ x̃̃ ỹ̃,= = =

Fig. 5.3. Mapping of points along a single characteristic curve.

5.6.1 Group Operators and Vector Fields

The reader should be aware that there is a tendency in the literature to use the
term “group” interchangeably to refer to F, ξ j , and the operator X . Inasmuch as
X is the generator of F via the Lie series (5.30), X is also appropriately termed
the vector field of the group T s . Note the similarity between the representation
of a group in terms of (5.5), (5.23), and (5.29) and the solution of a system
of ODEs discussed in Chapter 3. As was explained in Chapter 3, the solution
trajectories of an autonomous system of ODEs can be regarded as the finite
form of a Lie group, and the functions on the right-hand side of that system can
be regarded as the infinitesimals of a group operator.

To see this, consider several points on one characteristic curve shown in
Figure 5.3. Each point on the trajectory can be reached from any other point
by a suitable choice of the parameter s. Therefore every point has an inverse.
Every point can be mapped to itself by a suitable choice of s: the group has an
identity element. The path by which a point is moved, say up and back along
the trajectory, has no effect on the value of s at the final point: the group is
associative.

5.7 Solving the Characteristic Equation XΨ[x] == 0

As discussed in Chapter 2, the linear first-order PDE ξ j [x](∂$/∂x j ) = 0 has
an associated system of n − 1 characteristic first-order ODEs of the form

dx1

ξ 1[x]
= dx2

ξ 2[x]
= dx3

ξ 3[x]
= · · · = dxn

ξ n[x]
(5.32)

with integrals

ψ i = $ i [x], i = 1, . . . , n − 1, (5.33)
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which are the invariants of the group. There is an important point here that, in
a sense, is so obvious that it needs to be highlighted. Each of the functions $ i

represents an infinite family of curves (or surfaces), one for each possible value
of ψ i . The family as a whole is invariant under the group F j with infinitesimals
ξ . Also, every curve ψ i = constant is individually invariant under the group,
i.e., an initial point on a given solution curve is mapped by F to a new point on
the same curve, as depicted in Figure 5.3. This must be so, since the solution
trajectories of the autonomous system

dx j

ds
= ξ j [x], j = 1, . . . , n, (5.34)

obviously must lie on the invariant surfaces.
It is fruitful to consider transformations that do not leave individual curves

invariant but do leave the family as a whole invariant. This point was men-
tioned in connection with the ODE example 1.1 in Chapter 1 and will come up
again in Chapter 6 when we discuss integrating factors for ordinary differential
equations.

Example 5.2 (The rotation group in two dimensions). Consider the rotation
group

T rot :

{

x̃ = x cos[s] − y sin[s]

ỹ = x sin[s] + y cos[s]

}

. (5.35)

The infinitesimals of the group are (ξ, η) = (−y, x), and the invariance condi-
tion is

−y
∂$

∂x
+ x

∂$

∂y
= 0 (5.36)

with corresponding characteristic equation

dy
x

= −dx
y

. (5.37)

Equation (5.37) is particularly simple in that the two terms are uncoupled. The
integral invariant [the integral of (5.36), invariant under (5.35)] is the family of
circles

ψ = $(x, y) = x2 + y2. (5.38)
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On a given circle ψ , we can solve for y as a function of x to obtain y =
±(ψ − x2)1/2. Differentiating this result gives dy/dx = −x/(±(ψ − x2)1/2) =
−x/y, which checks with (5.37).

5.7.1 Invariant Points

There may be isolated points in x which are invariant under the group F (or ξ j

or X ). These points correspond to the roots of

ξ j [x] = 0. (5.39)

Invariant points of the group are the critical points of (5.34). See the discussion
of critical points in two and three dimensions in Chapter 3.

5.8 Reconstruction of a Group from Its Infinitesimals

In Section 5.6 we saw that any analytic function G[x] can be expanded in a Lie
series in terms of the group operator X :

G[x̃] = G[x] + s(XG) + s2

2!
X (XG) + s3

3!
X (X (XG)) + · · · . (5.40)

Let G[x] = x j for each x j in turn. Then the Lie series becomes

x̃ j = x j + s(X x j ) + s2

2!
X (X x j ) + s3

3!
X (X (X x j )) + · · · , j = 1, . . . , n.

(5.41)

For simple ξ j [x] the series (5.41) can be summed explicitly. Formally (5.41)
can be represented as an exponential map, (see 5.31)

x̃ j = es X x j . (5.42)

The process by which a source point x is transformed to a target point x̃ is
sometimes called dragging. In fact the Lie-series form of the finite group given
in (5.41) can be used as the basis of a numerical algorithm for solving the charac-
teristic equations (5.34). The procedure is to generate an expansion to whatever
order is desired for each of the x j , j = 1, . . . , n. These n equations, relating
source and target points for a small value of s, are then used to approximate the
solution at successive points in phase space beginning at a given initial point.
It is interesting to compare the accuracy of this procedure with more conven-
tional numerical schemes, such as a fourth-order Runge–Kutta method (see
Exercise 5.6).
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Example 5.3 (The rotation group). The infinitesimals of the rotation group are
(ξ, η) = (−y, x), and operating on x we have

X x = −y, X (X x) = −x, X3x = y, X4x = x, . . . . (5.43)

The x-series (5.41) separates into two terms:

x̃ = x
(

1 − s2

2!
+ s4

4!
− · · ·

)

− y
(

s − s3

3!
+ s5

5!
− · · ·

)

= x cos[s] − y sin[s].

(5.44)

The terms for the y-series are

X y = x, X (X y) = −y, X3 y = −x, X4 y = y, . . . , (5.45)

and the series for y is

ỹ = x
(

s − s3

3!
+ s5

5!
− · · ·

)

+ y
(

1 − s2

2!
+ s4

4!
− · · ·

)

= x sin[s] + y cos[s].

(5.46)

Summing the Lie series produces the finite form of the rotation group.

Example 5.4 (A dilation group). Let (ξ, η) = (x, y). Then

X x = x, X (X x) = x, X3x = x, X4x = x, . . . . (5.47)

In this case the series has only one term

x̃ = x
(

1 + s2

2!
+ s3

3!
+ s4

4!
+ s5

5!
+ · · ·

)

= es x . (5.48)

Note that the exponential form of the dilation group is recovered by this
process:

X y = y, X (X y) = y, X3 y = y, X4 y = y, . . . , (5.49)

and the series for y is

ỹ = y
(

1 + s2

2!
+ s3

3!
+ s4

4!
+ s5

5!
+ · · ·

)

= es y. (5.50)

As discussed in Chapter 2, dilation groups play the central role in dimensional
analysis.
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Example 5.5 (A translation group). Let (ξ, η) = (0, 1); then

X x = 0, Xn x = 0 for all n

X y = 1, Xn y = 0 for all n > 1
(5.51)

In this case the series truncates:

x̃ = x, ỹ = y + s. (5.52)

A reminder of the law of covariance may be worthwhile here. The funda-
mental equations of physics are invariant under translation and rotation of the
dependent and independent variables due to the basic homogeneity and isotropy
of free space. In addition the equations are invariant under dilation reflecting
the dimensional consistency of the equations.

5.9 Multiparameter Groups

Multiparameter groups arise when we consider higher-order ODEs and espe-
cially when we consider PDEs. The finite form of a multiparameter group may
be extremely complex and is rarely required in applications. On the other hand,
the infinitesimal generator of a multiparameter group is a simple linear sum of
the independent generators of its parameters.

To illustrate the analysis of a multiparameter group, let’s look in some detail
at the projective group in n dimensions:

T projn :
{

x̃ j = x j + a j + b jk xk

1 + ck xk
, j = 1, 2, . . . , n

}

, (5.53)

where the sum on the index k is from 1 to n. The projective group has the property
that it maps straight lines to straight lines in n dimensions. The group has
r = n2 + 2n independent group parameters. Rather than take a series of partial
derivatives, which could get rather tedious, let’s determine the infinitesimal form
of the transformation (5.53) in another way. Let each parameter be replaced by
a scale factor proportional to the parameter itself. Let

a j ⇒ a j s, b jk ⇒ b jks, ck ⇒ cks. (5.54)

Substitute (5.54) into (5.53),

x̃ j = x j + (a j + b jk xk)s
1 + (ck xk)s

, j = 1, 2, . . . , n. (5.55)
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Now assume s is infinitesimally small, and approximate the denominator by
the first two terms of a binomial series:

x̃ j = (x j + (a j + b jk xk)s)(1 − (ck xk)s), j = 1, 2, . . . , n. (5.56)

Expand (5.56) and retain only the lowest-order term in s:

x̃ j = x j + (a j + b jk xk − ck xk x j )s, j = 1, 2, . . . , n. (5.57)

The infinitesimals of the projective group are

ξ j (x) = a j + b jk xk − ck xk x j , j = 1, 2, . . . , n. (5.58)

Note that when we deal with multiparameter groups, the scale factors for the
parameters appear in the expressions for the infinitesimals. It is essential that
they do so in order to keep track of the contribution of each one-parameter group
to the generator of the multiparameter group. Each constant in the infinitesimal is
a marker for a corresponding finite one-parameter group and group operator. The
transformation (5.53) defines r = n2 + 2n independent one-parameter groups
with group operators

Xa j = ∂

∂x j
, Xb jk = xk ∂

∂x j
, Xck = xk x j ∂

∂x j
. (5.59)

5.9.1 The Commutator

The operators of the group considered above have the interesting and useful
property that they form a closed set with respect to commutation. The commu-
tator of two group operators Xa and Xb is the operator generated as follows:

{Xa, Xb} = Xa(Xb) − Xb(Xa). (5.60)

Let

Xa = α j [x]
∂

∂x j
, Xb = β j [x]

∂

∂x j
. (5.61)

The commutator is

{Xa, Xb} = α j [x]
∂

∂x j

(

βk[x]
∂

∂xk

)

− βk[x]
∂

∂xk

(

α j [x]
∂

∂x j

)

=
(

α j ∂β
k

∂x j

)

∂

∂xk
−

(

βk ∂α j

∂xk

)

∂

∂x j
. (5.62)
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Note that the second derivatives in the commutator always drop out, so the
result is still a first-derivative Lie operator. For example, the first two operators
in (5.59) give

{Xa j , Xb j1k } = Xa j (Xb j1k ) − Xb j1k (Xa j ) = ∂

∂x j

(

xk ∂

∂x j1

)

− xk ∂

∂x j1

(

∂

∂x j

)

,

(5.63)

which reduces to

{Xa j , Xb j1k } = δ
j
k

∂

∂xk
=

{

Xa j for j = k,
0 otherwise,

(5.64)

which is again one of the operators in (5.59). The operators (5.59) form a vector
space called a Lie algebra. The implication of this is that one can analyze the
nature of a group without having to consider the full nonlinear multiparameter
transformation, which may be extremely complicated. Rather, it is sufficient to
study its Lie algebra, which is a much simpler object.

5.10 Lie Algebras

Definition 5.2. The infinitesimal generators Xk, k = 1, . . . , r , of the r ,
parameter Lie group T a1,...,ar : {x̃ j = F j [x1, . . . , xn; a1, . . . , ar ], j = 1, . . . , n}
form an r-dimensional Lie algebra +r with the following properties. Let
Xa, Xb, Xc ∈ +r , and let α, β be real constants. The null algebra is +0.

(i) The Lie algebra +r is an r-dimensional vector space spanned by the basis
set of infinitesimal generators Xk, k = 1, . . . , r . Thus

αXa + β Xb = Y, where Y ∈ +r ; Xa + Xb = Xb + Xa . (5.65)

(ii) The commutator is antisymmetric:

{Xa, Xb} = −{Xb, Xa}. (5.66)

(iii) The commutator of any two infinitesimal generators of an r-parameter
Lie group is also an infinitesimal generator that belongs to +r:

{Xa, Xb} = βab
k Xk (sum over k = 1, . . . , r ). (5.67)
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The coefficients βab
k are the structure constants of the Lie algebra +r . Note

that

βab
k = −βba

k . (5.68)

(iv) The group operators satisfy the associative rule with respect to addition:

Xa + (Xb + Xc) = (Xa + Xb) + Xc. (5.69)

(v) The group operators satisfy the Jacobi identity,

{{Xa, Xb}, Xc} + {{Xc, Xa}, Xb} + {{Xb, Xc}, Xa} = 0. (5.70)

(vi) It follows from the Jacobi identity that the structure constants defined by
the commutation relations (5.67) satisfy

βab
j β

jc
k + βca

j β
jb

k + βbc
j β

ja
k = 0 (sum over j = 1, . . . , r ). (5.71)

(vii) The commutator may be expanded as

{αXa + β Xb, Xc} = α{Xa, Xc} + β{Xb, Xc}. (5.72)

Lie algebras play a central role in modern mathematics. In our applications,
we will find that they play a key role in the reduction of higher-order ODEs as
well as in the reduction of PDEs where multiparameter groups are the norm.
The commutator is used to test the closedness of a given set of group operators,
and in the process, additional symmetries belonging to the full Lie algebra are
often identified.

5.10.1 The Commutator Table

A convenient way to summarize a Lie algebra is to set up a commutator table
whose entry at position (a, b) is {Xa, Xb}. From the definition of the commutator
one can see that the table will be antisymmetric with zeros on the main diagonal.
For n = 2 the group (5.53) becomes

T proj2 :
{

x̃ = x + a3x + a4 y + a5

1 + a1x + a2 y
, ỹ = y + a6x + a7 y + a8

1 + a1x + a2 y

}

. (5.73)
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Table 5.1. Commutator table of the two-dimensional projective group.

X1 X2 X3 X4 X5 X6 X7 X8

X1 0 0 −X1 −X2 −2X3 − X7 0 0 −X6

X2 0 0 0 0 −X4 −X1 −X2 −X3 − 2X7

X3 X1 0 0 −X4 −X5 X6 0 0
X4 X2 0 X4 0 0 X7 − X3 −X4 −X5

X5 2X3 + X7 X4 X5 0 0 X8 0 0
X6 0 X1 −X6 X3 − X7 −X8 0 X6 0
X7 0 X2 0 X4 0 −X6 0 −X8

X8 X6 X3 + 2X7 0 X5 0 0 X8 0

The infinitesimal form of this eight-parameter group is

x̃ = x + (−a1x2 − a2xy + a3x + a4 y + a5)s,

ỹ = y + (−a1xy − a2 y2 + a6x + a7 y + a8)s
(5.74)

with corresponding one-parameter group operators:

X1 = x2 ∂

∂x
+ xy

∂

∂y
, X2 = xy

∂

∂x
+ y2 ∂

∂y
, X3 = x

∂

∂x
,

X4 = y
∂

∂x
, X5 = ∂

∂x
,

X6 = x
∂

∂y
, X7 = y

∂

∂y
, X8 = ∂

∂y
.

(5.75)

The commutator table for the group (5.75) is shown in Table 5.1. The structure
constants are easily determined from the commutator table. The commutator
can be especially useful for finding additional symmetries. For example, if a
problem is found to admit the symmetry operators X1, X3, and X5, then, by
forming the commutator table of these operators, one finds that it must also
admit the operator X7, as can be seen in Table 5.1.

5.10.2 Lie Subalgebras

The Lie algebra +8 depicted in Table 5.1 contains a number of subalgebras.
For example, the operators X1, X2, X3, X4 have the commutator table given
in Table 5.2. Several other subalgebras can be identified in Table 5.1, such as
X1, X3, X5, X7.

5.10.3 Abelian Lie Algebras

The operators X6, X8 have the commutator table shown in Table 5.3. In this case
the commutator is zero in each position. From the definition of the commutator, a
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Table 5.2. Four-parameter
subalgebra of +8.

X1 X2 X3 X4

X1 0 0 −X1 −X2

X2 0 0 0 0
X3 X1 0 0 −X4

X4 X2 0 X4 0

Lie algebra such that {Xa, Xb} = 0 for all a and b is Abelian, since the operators
must commute. The operators X1, X2 form an Abelian Lie algebra, as do X2, X3

and X4, X5.

5.10.4 Ideal Lie Subalgebras

A subalgebra +q ⊂ +r where q < r is called an ideal subalgebra of +r if, for
any X ∈ +q and Y ∈ +r , the commutator {X, Y } ∈ +q . For example, consider
the operators X5, X6, X7, X8 with the commutator table shown in Table 5.4.
Notice that only X6 and X8 appear among the entries. The operators X6 and
X8 form an ideal of the Lie algebra X5, X6, X7, X8. Formally, the null algebra
+0 is an ideal of the Lie algebra X6, X8. Similarly, X6 and X8 form an ideal
subalgebra of X6, X7, and X8.

5.11 Solvable Lie Algebras

Consider the Lie algebra corresponding to X6, X7, X8 shown in Table 5.5. The
sequence of subalgebras (+0, +1 = X8, +2 = X6, X8, +3 = X6, X7, X8) has
the property that each item in the sequence is an ideal of the next item. This is an
example of a solvable Lie algebra. The operators X3, X4, X5 provide another
example (Table 5.6). In this case the sequence is (+0, +1 = X4 or +1 = X5,
+2 = X4, X5, +3 = X3, X4, X5). These examples satisfy the following defini-
tion of a solvable Lie algebra.

Table 5.3. Abelian
subalgebra.

X 6 X 8

X 6 0 0
X 8 0 0
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Table 5.4. Example of an
ideal subalgebra.

X 5 X 6 X 7 X 8

X 5 0 X 8 0 0
X 6 −X 8 0 X 6 0
X 7 0 −X 6 0 −X 8

X 8 0 0 X 8 0

Definition 5.5. The Lie algebra +q is a q-dimensional solvable Lie algebra if
there exists a chain of subalgebras

+0 ⊂ +1 ⊂ +2 ⊂ · · · ⊂ +q−1 ⊂ +q (5.76)

such that +k is a k-dimensional Lie algebra and +k−1 is an ideal subalgebra
of +k for k = 1, 2, . . . , q. Here +0 is the null ideal with no operators.

The condition for solvability is equivalent to the condition that the operators
of +q can be ordered to form a basis X1, . . . , Xq such that

{Xa, Xb} = βab
k Xk (sum over k = 1, . . . , b − 1) for a < b. (5.77)

Note that every two-dimensional Lie algebra is solvable by construction. Con-
sider two operators, Xa and Xb. Suppose

{Xa, Xb} = βa Xa + βb Xb. (5.78)

Define two new operators in the Lie algebra +2. Let

Y = βa Xa + βb Xb,

Z = αa Xa + αb Xb.

(5.79)

Table 5.5. Example of
a solvable Lie algebra.

X 6 X 7 X 8

X 6 0 X 6 0
X 7 −X 6 0 −X 8

X 8 0 X 8 0
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Table 5.6. Another
solvable Lie algebra.

X 3 X 4 X 5

X 3 0 −X 4 −X 5

X 4 X 4 0 0
X 5 X 5 0 0

If we form the commutator of Y and Z , the result is

{Y, Z} = (βa Xa + βb Xb)(αa Xa + αb Xb) − (αa Xa + αb Xb)(βa Xa + βb Xb)

= (βaαb Xa Xb + βbαa Xb Xa) − (βaαb Xb Xa + βbαa Xa Xb)

= (βaαb − βbαa)(Xa Xb − Xb Xa). (5.80)

Thus from (5.78),

{Y, Z} = (βaαb − βbαa)Y. (5.81)

The group operators Y and Z form a solvable Lie algebra with the commutator
table shown in Table 5.7.

Finally, an example of a three-dimensional Lie algebra that is not solvable is

X1 = ∂

∂x
, X2 = x

∂

∂x
, X3 = (x)2 ∂

∂x
(5.82)

with the commutator table shown in Table 5.8. In this case, all three operators
appear in entries in the table, and there is no way to construct a solvable Lie
algebra from the given operators.

Table 5.7. Commutator table
of Y and Z.

Y Z

Y 0 (βaαb − βbαa)Y
Z −(βaαb − βbαa)Y 0
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Table 5.8. Not a solvable Lie algebra.

X 1 X 2 X 3

X 1 0 X 1 2X 2

X 2 −X 1 0 X 3

X 3 −2X 2 −X 3 0

We will make use of solvable Lie algebras in Chapter 8 when we consider
the reduction of second- and higher-order ODEs. However, it is worthwhile
saying a few words in anticipation here. The use of symmetries to reduce the
order of an ODE depends critically on the solvability of the Lie algebra of
the corresponding multiparameter group that leaves the ODE invariant. The
underlying principle is that at each level of reduction of the order of the equa-
tion accomplished using one of its symmetries the transformed equation must
inherit the remaining symmetries of the original equation. This can be real-
ized only if the group symmetries are used in the correct order as dictated by
the solvability chain (5.76). This point will be discussed in greater detail in
Chapter 8. For a general discussion of solvable Lie algebras see Bluman and
Kumei [5.1].

5.12 Some Remarks on Lie Algebras and Vector Spaces

Here we follow the development in Yaglom [5.2]. A linear algebra is a finite-
dimensional vector space with a set of basis vectors (b1, b2, . . . , bn). Elements
of the vector space are of the form

x = xi bi ,

y = yi bi ,
(5.83)

where the numbers (x1, x2, . . . , xn) and (y1, y2, . . . , yn) may be real or complex.
Products of the basis vectors are themselves expressed in terms of the basis
vectors:

bi b j = ci j
1 b1 + ci j

2 b2 + · · · + ci j
n bn = ci j

k bk . (5.84)

The ci j
k , i, j, k = 1, 2, . . . , n, are called the structure constants of the algebra.
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For any two elements of the algebra, multiplication is commutative (x · y =
y · x) if and only if any two basis vectors commute, i.e., if the structure constants
are symmetric in the upper indices:

ci j
k = c ji

k for all i, j, k. (5.85)

Multiplication is anticommutative (x · y = −y · x) if and only if any two basis
vectors anticommute and the structure constants are antisymmetric in the upper
indices:

ci j
k = −c ji

k for all i, j, k. (5.86)

See for example (5.68). Finally, multiplication is associative if and only if
for any three elements x, y, z the basis vectors are associative (bi · b j ) · bk =
bi · (b j · bk), or, in terms of the structure constants,

ci j
k ckl

m = cik
m c jl

k for all i, j, l, m. (5.87)

If b1 is the multiplicative identity of the algebra, then

c1i
j =

{

0 if i ̸= j,

1 if i = j,
(5.88)

or, in terms of the Kronecker unit tensor, c1i
j = δi

j .
A null element n is defined as one such that

nr = 0. (5.89)

An idempotent element e is defined as an element whose square coincides with
the element itself:

e2 = e. (5.90)

Now suppose A= (x, y, z, . . . n, e) is an arbitrary associative algebra, in
which the multiplication, denoted by “∗” is not assumed to be commutative or
anticommutative. We can use this generic multiplication operator to construct
two new multiplications for the algebra, namely, the symmetric multiplication

x · y = x ∗ y + y ∗ x, (5.91)
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which is commutative (x · y = y · x), and the skew-symmetric multiplication,

x × y = y ∗ x − x ∗ y, (5.92)

which is anticommutative (x × y = −y × x). It is important to recognize
that these two procedures for multiplying elements of the algebra are not asso-
ciative. The structural constants ci j

k |· and ci j
k |× of these new multiplications are

connected to the structural constants ci j
k of the (original) multiplication by the

formulas

ci j
k

∣

∣

∗ = ci j
k + c ji

k ,

ci j
k

∣

∣

× = ci j
k − c ji

k .
(5.93)

However, the definitions (5.94) and (5.95) do not exclude associativity
altogether: in algebras with these multiplication operations there are certain
identities that can be viewed as replacements for a true law of associativity.

Algebras with the commutative multiplication · admit the Jordan identity,

(x2 · y) · z = x2 · (y · z), (5.94)

where

x2 = x · x. (5.95)

These are called Jordan algebras after the great French group theorist, Marie-
Ennemond Camille Jordan (1838–1922), whose work brought attention to the
significance of the theories of Evariste Galois and who later greatly influenced
both Sophus Lie and Felix Klein.

On the other hand, algebras with the anticommutative multiplication x × y
admit the Jacobi identity,

(u × v) × w + (w × u) × v + (v × w) × u = 0, (5.96)

named after one of the leading German mathematicians of the nineteenth cen-
tury, Carl Gustav Jacob Jacobi (1804–1851). Algebras with satisfying the Jacobi
condition are called Lie algebras. See Equation (5.70), where the elements of
the algebra are the group operators. See also the rules of algebra governing
Poisson brackets in Chapter 4, Section 4.3.1, where the elements of the algebra
are the integrals of the motion of a Hamiltonian system.
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To quote Yaglom [5.2]:

We have already mentioned the interest and attention which Jordan algebras attract
today. But at present they are not nearly as important as Lie algebras and Lie groups,
which constitute two of the central notions of mathematical science. A concept whose
importance for science in general is comparable to that of a Lie algebra is not that of a
Jordan algebra but that of a Euclidean space.

5.13 Concluding Remarks

This completes our formal introduction to Lie groups. From the standpoint of
later applications the most important concepts are that of an infinitesimal group,
the expansion of a function in a Lie series using the group operator, and the
solution of the characteristic equations described in Sections 5.5, 5.6, and 5.7.
We will often encounter multiparameter groups in the context of differential
equations, and here the most important concept is that of the Lie algebra, the
structure of which determines how useful the several groups may be in the
reduction and simplification of the associated equation. In the next chapter we
will begin to apply groups to the solution of ODEs.

5.14 Exercises

5.1 (1) Show by composition that each of the following transformations is a
Lie group:

(i) A projective group

x̃ = x
1 − sy

, ỹ = y
1 − sy

. (5.97)

(ii) A hyperbolic group

x̃ = x + s, ỹ = xy
x + s

. (5.98)

(iii) An arbitrary translation

x̃ = x, ỹ = y + s f [x], f [x] arbitrary. (5.99)

(iv) A helical transformation

x̃ = x cos[s] − y sin[s], ỹ = x sin[s] + y cos[s],

z̃ = z + ms. (5.100)
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(2) Determine the infinitesimal transformation for each case, and then
reconstruct the global transformation by series summation.

(3) Set up the characteristic equations and determine the integral invari-
ants of the group for each case. Find these invariants by elimination
of the group parameter.

5.2 Is the transformation

x̃ = x − sy, ỹ = y + sx (5.101)

a Lie group?
5.3 The Lorentz transformation of the position and time of a particle moving

at speed u is

x̃ = x − ut
√

1 − u2

c2

, t̃ =
t − ux

c2
√

1 − u2

c2

, (5.102)

where c is the speed of light. Show that the transformation is a group
with respect to the parameter u. Is it also a group with respect to c? Let
u = − tanh[a]. Show that the transformation becomes

x̃ = x cosh[a] + t sinh[a], ỹ = x sinh[a] + t cosh[a]. (5.103)

The Lorentz transformation is a kind of “hyperbolic rotation.” Determine
the infinitesimal transformation, and compare with an ordinary rotation.

5.4 Carefully work out the steps leading from (5.25) to (5.27) for a Lie group
in two variables.

5.5 Consider the transformation

ỹ = a + (1 + b)y
1 + c + dy

. (5.104)

Work out the infinitesimal form of the group, and characterize the Lie
algebra. Identify the group parameters.

5.6 The following autonomous system of ODEs comes up in the context of
a problem involving laminar flame propagation:

dx
dt

= y,

dy
dt

= y − 1
4

x + 1
4

x2.

(5.105)



5.14 Exercises 147

Draw the phase portrait of the system (5.108). Use the Lie series expan-
sion to develop a fourth-order accurate method for solving the equations
numerically. Compare your scheme to a standard fourth-order Runge–
Kutta method. Solve numerically for y[x] subject to the boundary con-
ditions y[0] = 0, y[1] = 0. Use the phase portrait to suggest how to carry
out the integration.

5.7 Sum the Lie series to determine the finite transformation corresponding
to the group operator,

X = x2 ∂

∂x
+ xy

∂

∂y
−

(

y2

4
+ x

2

)

z
∂

∂z
. (5.106)

Solve the characteristic equations to determine the two invariants of the
group, and show that they are invariant under the finite transformation.

5.8 The equations governing inviscid compressible flow of a general fluid
(see Chapter 12) are invariant under an eleven-parameter group with
operators

X1 = ∂

∂t
, X2 = ∂

∂x
, X3 = ∂

∂y
, X4 = ∂

∂z
,

X5 = y
∂

∂x
− x

∂

∂y
+ v

∂

∂u
− u

∂

∂v
,

X6 = z
∂

∂y
− y

∂

∂z
+ w

∂

∂v
− v

∂

∂w
,

X7 = z
∂

∂x
− x

∂

∂z
+ w

∂

∂u
− u

∂

∂w
,

X8 = t
∂

∂x
+ ∂

∂u
, X9 = t

∂

∂y
+ ∂

∂u
, X10 = t

∂

∂z
+ ∂

∂u
,

X11 = t
∂

∂t
+ x

∂

∂x
+ y

∂

∂y
+ z

∂

∂z
,

(5.107)

where t, x, y, z are time and the spatial coordinates, and u, v, w are the
velocity components in the corresponding directions. First, see how many
finite groups you can work out by inspection. Identify the nature of each
group (translation, rotation, dilation, etc.). Sum the Lie series to work
out the finite rotation groups. Note that if you want to generate the full
form of the three-parameter 3-D rotation group, you will need to sum the
Lie series using a three-term group operator with three independent small
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parameters. Work out the 11 × 11 commutator table for this group, and
identify any subalgebras. Identify any solvable subalgebras.
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6
First-Order Ordinary Differential Equations

In the last chapter we showed that a function ψ = "[x] is invariant under a
group F j (or ξ j ) if and only if it is a solution of ξ j (∂"/∂x j ) = 0. It was also
pointed out that this invariance condition is rather strong, in the sense that it
implies that each surface of fixed ψ is individually invariant under the group.
An initial point on a given ψ is mapped by F to a new point on the same surface.

6.1 Invariant Families

To progress further, it is necessary to relax this condition a bit and consider
situations in which a family of surfaces is invariant under a group, but an
individual surface may be mapped to a new surface within the same family.

Example 6.1 (The group of rotations in the plane). Consider the rotation group

T rot :

{

x̃ = x cos[s] − y sin[s]

ỹ = x sin[s] + y cos[s]

}

. (6.1)

This is a particular case of the so-called special orthogonal group in two di-
mensions, in conventional notation SO(2). The term “special” refers to the fact
that this is a transformation of the form

x̃ = ax − by,

ỹ = cx + dy,
(6.2)

where the determinant ad − bc = 1, in contrast to the more general affine
transformations discussed in connection with critical points in Chapter 3. The
infinitesimal group operator corresponding to (6.1) is

X rot = −y
∂

∂x
+ x

∂

∂y
. (6.3)

149
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The family of circles

φ = &[x, y] = x2 + y2 (6.4)

is clearly invariant under this group. Moreover, since X rot& = 0, each individual
circle in the family is invariant.

On the other hand, if we apply the group (6.1) to the family of rays through
the origin,

ψ = "[x, y] = y
x
, (6.5)

the result is

ψ̃ = ỹ
x̃

=
sin[s] + y

x cos[s]

cos[s] − y
x sin[s]

= G
(

y
x
, s

)

= G(ψ, s). (6.6)

The transformation (6.1) maps a given ray ψ to a new ray ψ̃ in the same family.
So while a given ray is not invariant under the group (6.1), the family of rays
as a whole is invariant. This situation is shown schematically in Figure 6.1.

If we apply the group operator X rot to ", the result is

X rot " = −y
∂

∂x

(

y
x

)

+ x
∂

∂y

(

y
x

)

=
(

y
x

)2

+ 1 = ψ2 + 1. (6.7)

In this case the group operator produces a result that is a function of ψ . If we
were to operate with X rot on the right-hand side of (6.7), the result would again
be a function of ψ . The point here is to recognize that if ψ̃ were expanded
in a Lie series, each term would be a function of ψ multiplied by a power

x

y

x y,( )

x̃ ỹ,( )

ψ y
x
--=

ψ̃ ỹ
x̃
--=

Fig. 6.1. Action of the rotation group on the family of rays.
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of s. Summing the series would produce (6.6). We shall return to this point in
a moment.

Example 6.2 (The group of uniform dilations). Now consider

T dil :

{

x̃ = es x

ỹ = es y

}

(6.8)

with group operator

Xdil = x
∂

∂x
+ y

∂

∂y
. (6.9)

The family of rays

ψ = "[x, y] = y
x

(6.10)

is clearly invariant under this group, since Xdil" = 0. Moreover, each individual
ray is invariant. This is clear if we look at the action of the finite form of the
group on a ray:

ψ̃ = "[x̃, ỹ] = ỹ
x̃

= es y
es x

= y
x

= "(x, y) = ψ. (6.11)

The absence of the group parameter s from the last equality in (6.11) implies
that the mapping of one point to another takes place along the same ray. See
Figure 6.2.

What about the family of circles? In this case

φ̃ = &[x̃, ỹ] = x̃2 + ỹ2 = e2s(x2 + y2) = e2s&[x, y] = G(φ, s). (6.12)

x

y

x̃ ỹ, ))
x y,( )

φ
φ̃

Fig. 6.2. Action of the dilation group on the family of circles.
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The circle φ is mapped to the circle φ̃. In this case individual circles are not
invariant, but the family of circles as a whole is invariant under the dilation
group (6.8). If we apply the group operator Xdil to &, the result is

Xdil& = x
∂

∂x
(x2 + y2) + y

∂

∂y
(x2 + y2) = 2(x2 + y2) = 2φ. (6.13)

The group operator produces a result that is a function of φ. This situation is
shown schematically in Figure 6.2.

If we were to operate with Xdil on the right-hand side of (6.13), the result
would again be a function of φ. Similarly, each term in the Lie series would be
equal to a function of φ times a power of s, and the sum would be the function
G[φ, s], where now

φ̃ = x̃2 + ỹ2 = e2s(x2 + y2) = G(x2 + y2, s) = G[φ, s]. (6.14)

6.2 Invariance Condition for a Family

Evidently the finite condition for a family ψ = "[x] to be invariant under a
group F is

ψ̃ = "[x̃] = "(F[x, s]) = G["[x], s] = G[ψ, s], (6.15)

where G is some function. The corresponding infinitesimal condition for in-
variance is

X" = '["]. (6.16)

Actually we can interpret the invariance condition (6.16) applied to a family in
n dimensions as equivalent to X( = 0, where ( is a single surface in n + 1
dimensions.

To see this, let ( be a function of n + 1 variables of the form

([x1, x2, x3, . . . , xn, xn+1] = "[x1, x2, x3, . . . , xn] − xn+1. (6.17)

Consider the invariance of ( under the transformation

x̃ j = F j [x1, x2, x3, . . . , xn, s], j = 1, 2, . . . , n,

x̃ n+1 = xn+1 + s,
(6.18)

which can easily be verified to be a group, assuming F j is a group. The function
( is an invariant single surface under the group (6.18) if and only if it satisfies
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the invariance condition

ξ 1 ∂(

∂x1
+ ξ 2 ∂(

∂x2
+ · · · + ξ n ∂(

∂xn
+ (1)

∂(

∂xn+1
= 0, (6.19)

which becomes

X" = 1. (6.20)

Thus the family

"[x1, x2, x3, . . . , xn] = xn+1 (6.21)

is an invariant family in (x1, x2, x3, . . . , xn), or equivalently an invariant single
surface in (x1, x2, x3, . . . , xn, xn+1).

Theorem 6.1. The family ψ = "[x] is invariant under the group X = ξ j (∂/∂x j )
if and only if X" = '["] for some function '. Without loss of generality we
can always choose a once differentiable function )["] such that the family
φ = &[x] = )["[x]] satisfies X& = 1.

This simplification of the invariance condition can be shown as follows:

X&[x] = X)["[x]] = (X")
d)

d"
= '["]

d)

d"
= 1. (6.22)

Now choose )["] such that

) =
∫

d"

'["]
. (6.23)

The reason that X& = 1 is sufficiently general is that a family of curves in some
domain of x can be represented in an infinite variety of different, essentially
equivalent ways. The functions ψ = "[x] and φ = &[x] = )["[x]] represent
the same family, although with different values assigned to individual curves
of the family.

Example 6.3 (The rotation group revisited). Let’s consider the rotation group
again with operator (6.3) and invariant function (6.4). We search for an invariant
family, beginning with a 3-D surface of the form

((x, y, ψ) = "[x, y] − ψ, (6.24)
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which is required to satisfy the invariance condition

−y
∂(

∂x
+ x

∂(

∂y
+ ∂(

∂ψ
= 0, (6.25)

or

−y
∂"

∂x
+ x

∂"

∂y
= 1. (6.26)

Recalling the discussion of Lagrange’s method for solving first-order PDEs in
Chapter 3, Section 3.6.1, the characteristic equations associated with (6.25) are

−dx
y

= dy
x

= dψ

1
. (6.27)

The first equality in (6.27) is obviously solved by θ = x2 + y2. Now use this
result to replace, say, x in the second equality, and integrate the result

dψ = dy

±
√

θ − y2
(6.28)

to produce the invariant family,

ψ = sin−1
[

y√
θ

]

= sin−1

[

y/x
√

1 + (y/x)2

]

. (6.29)

If we had replaced y instead of x in (6.27), the invariant family would have
come out as

ψ = cos−1
[

x√
θ

]

= cos−1

[

x/y
√

1 + (x/y)2

]

, (6.30)

or we could simply take ψ = "(x, y) = y/x . In the latter case the rotation
group operator gives X rot" = ψ2 + 1. We can select ) such that

)["] =
∫

d"

"2 + 1
= tan−1["] = tan−1[y/x]. (6.31)

Thus

" = tan−1[y/x]. (6.32)

The rotation group operator applied to (6.32) gives X rot" = 1.
This example typifies the procedure used to find a family that is invariant

under a given group. Once again the main point to keep in mind is that a family
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of curves may be specified by an infinity of functions. Recall Chapter 3, where
it was pointed out that if a given function satisfies a first-order ODE, then any
function of that function will satisfy the same ODE.

6.3 First-Order ODEs – The Integrating Factor

We are now in a position to use group theory to integrate ODEs. Letψ = "[x, y]
be the characteristic curves of the first-order ODE

dy
dx

= B[x, y]
A[x, y]

, (6.33)

which we can write as the Pfaffian 1-form

−B[x, y] dx + A[x, y] dy = 0. (6.34)

The decomposition of the right-hand side of (6.33) into a numerator and
denominator is essentially a matter of convenience. The differential of
"[x, y] is

dψ = ∂"

∂x
dx + ∂"

∂y
dy. (6.35)

On a curve of fixed ψ the differential dψ= 0. Recalling our discussion of
integrating factors in Chapter 3, we must be careful not to assume a correspon-
dence between (6.34) and (6.35). What we do know is that "[x, y] satisfies the
first-order linear PDE

A[x, y]
∂"

∂x
+ B[x, y]

∂"

∂y
= 0. (6.36)

Now, suppose the family ψ = "[x, y] is invariant under a group X with in-
finitesimals (ξ, η). In this case "[x, y] also satisfies the invariance condition

ξ [x, y]
∂"

∂x
+ η[x, y]

∂"

∂y
= 1. (6.37)

Here we have a situation where the family of characteristics of the first-order
ODE (6.33) is invariant under two groups. The first is the trivial group defined
by the equation itself with A and B interpreted as infinitesimals with group
operator A(∂/∂x) + B(∂/∂y). The second, nontrivial group is the independent
group (ξ, η), which leaves the family of solutions "[x, y] invariant while map-
ping each member of the family to a new member. This situation is shown
schematically in Figure 6.3.
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x

y
ψ̃ Ψ x̃ ỹ,[ ] Ψ x y,[ [= =

(A,B)

(ξ,η)

ψ1

ψ2

Fig. 6.3. Transformation of points along characteristics by (A, B), and between char-
acteristics by (ξ, η).

The group (A, B) moves points that are initially on the characteristic ψ1 to
new points on the same characteristic, whereas the group (ξ, η) maps the entire
characteristic ψ1 to a new characteristic ψ2 for some particular value of the
group parameter, s. Voila! We have two simultaneous, independent equations
for the partial derivatives of ". Solving (6.36) and (6.37) produces

∂"

∂x
= −B

Aη − Bξ
,

∂"

∂y
= A

Aη − Bξ
. (6.38)

The function

M = 1
Aη − Bξ

(6.39)

is the sought-after integrating factor, and the total differential of ψ = "[x, y] is

dψ = −B
Aη − Bξ

dx + A
Aη − Bξ

dy. (6.40)

So invariance of the family of solutions of (6.33) under a Lie group leads directly
to the solution of the ODE in the form of a quadrature

ψ =
∫ −B

Aη − Bξ
dx

∣

∣

∣

∣

y=constant
+ f [y]. (6.41)

The function f [y] is determined from

∂"

∂y
= ∂

∂y

(
∫ −B

Aη − Bξ
dx

∣

∣

∣

∣

y=constant

)

+ d f
dy

= A
Aη − Bξ

, (6.42)

and the general solution of (6.33) is complete.
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The approach used in this method – i.e., find a second equation involv-
ing the partial derivatives, then solve for each and insert in the expression
for the perfect differential of the solution – is reminiscent of the method
of Lagrange and Charpit for solving nonlinear first-order PDEs described in
Chapter 3, Section 3.7. But the spirit is fundamentally different. For a lin-
ear equation of the form A(∂"/∂x) + B(∂"/∂y) = 0 the method of La-
grange and Charpit simply reduces to the characteristic equations, dx/A =
dy/B. No symmetry is involved, and no general principles can be stated. It
is a special method that works on particular classes of nonlinear first-order
PDEs.

In practice the group that leaves the family of solutions invariant is identified
by looking for a group that leaves the ODE itself invariant. This brings us to a
final point that is fundamental to what follows.

If an ODE is invariant under a Lie group, the family of solution curves of the
ODE is invariant under the group.

The method developed by Lie rests on the principle that symmetries lead to
solutions. When Lie’s method works, it can be quite spectacular, and several
examples will be described in the next few sections. Unfortunately there is no
systematic way to determine the invariant group for a given first-order ODE.
Nevertheless, according to Pfaff’s theorem, the group always exists, for the
simple reason that the solution exists. But, in general, its determination requires
the particular solution of a system of equations that is equivalent to the original
system (6.33).

In Chapter 8 we shall learn how to answer the opposite question; that is,
given a group, what is the general form of a first-order ODE that is invariant
under the group. This approach allows one to catalog whole classes of ODEs
that admit a given group. Table 6.1 contains a list of first-order ODEs and their
known groups.

6.4 Using Groups to Integrate First-Order ODEs

In Chapter 8 we shall see that in the case of second- and higher-order ODEs
the invariant group can usually be determined systematically and that the
group can be exploited to accomplish a reduction of order. Sometimes the
ODE may admit a multiparameter group enabling a reduction by more than
one order, depending on the solvability of the associated Lie algebra. In this
section we will illustrate the integration of first-order ODEs for which the
invariant group is known a priori from Table 6.1 or can be determined by
inspection.
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Table 6.1. Some first-order ODEs and their
invariant groups.

Equation ξ η

yx = F[y] 1 0

yx = F[x] 0 1

yx = F[ax + by] b −a

yx = y + x F[x2 + y2]
x − yF[x2 + y2]

y −x

yx = F
[

y
x

]

x y

yx = xk−1 F[y/xk] x ky

xyx = F[xe−y] x 1

yx = yF[ye−x ] 1 y

yx = (y/x) + x F[y/x] 1 y/x

xyx = y + F[y/x] x2 xy

yx = y
x + F[y/x]

xy y2

yx = y
x + F[y]

y 0

xyx = y + F[x] 0 x

xyx = y
ln[x] + F[y]

xy 0

xyx = y(ln[y] + F[x]) 0 xy

yx = yF[x] 0 y

Example 6.4 (Invariance with respect to a dilation group). Find the general
solution of

dy
dx

= y
x

H [xy], (6.43)

where H is an arbitrary function. Rearrange (6.43) as

−y H [xy] dx + x dy = 0. (6.44)
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In the notation adopted above, let

A[x, y] = −x, B[x, y] = −y H [xy]. (6.45)

As was just pointed out, we need to find a Lie group that leaves (6.43) invariant.
There is really no systematic way to determine such a group. We have to rely
on trial and error to transform (6.43). By inspection we can see that (6.43) is
invariant under the dilation group

x̃ = es x, ỹ = e−s y. (6.46)

Insert the transformation (6.46) into (6.43):

d ỹ
d x̃

= ỹ
x̃

H [x̃ ỹ] ⇒ e−2s dy
dx

= e−2s y
x

H [xy] ⇒ dy
dx

= y
x

H [xy].

(6.47)

The equation reads the same in the new variables – success: we have found a
group that leaves (6.43) invariant. The infinitesimals of (6.46) are

ξ = x, η = −y, (6.48)

and the integrating factor is

M = 1
Aη − Bξ

= 1
xy + xy H [xy]

. (6.49)

Therefore the total differential of the solution is

dψ = − y H [xy]
xy + xy H [xy]

dx + x
xy + xy H [xy]

dy. (6.50)

Finally, the general solution of (6.43) is the family

ψ = −
∫

xy

H (α)
α(1 + H (α))

dα + ln[y]. (6.51)

In essence, ψ is simply the constant of integration of (6.43). Let’s demonstrate
that (6.51) is in fact an invariant family of (6.48):
(

x
∂

∂x
− y

∂

∂y

)(

−
∫

xy

H (α)
α(1 + H (α))

dα + ln[y]
)

= x
(

− H
α(1 + H )

y
)

α=xy
− y

(

− H
α(1 + H )

x
)

α=xy
+ y

(

1
y

)

= 1. (6.52)
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The finite transformation (6.46) applied to (6.51) leads to

ψ = −
∫

x̃ ỹ

H (α)
α(1 + H (α))

dα + ln[ỹ] + s = ψ̃ + s. (6.53)

The group translates one solution path to another, as we would expect. Finally,
any function of (6.51) is also a solution of (6.43).

Example 6.5 (Integrating factor for a linear first-order ODE). Find the solu-
tion of

dy
dx

= −g[x]y + f [x], (6.54)

which we can rearrange as

−( f [x] − yg[x]) dx + dy = 0. (6.55)

In this case

A = 1, B = f − yg. (6.56)

Let’s try an arbitrary translation

x̃ = x,

ỹ = y + s θ [x].
(6.57)

Substitute (6.57) into (6.54). The equation

d ỹ
d x̃

= −g[x̃]ỹ + f [x̃] (6.58)

becomes

dy
dx

+ s
dθ

dx
= −g[x](y + sθ [x]) + f [x]. (6.59)

Equation (6.54) is invariant under the group (6.57) if we choose θ [x] such that

dθ

dx
= −g[x]θ[x]. (6.60)

Thus the appropriate group is the translation (6.57), where

θ[x] = exp
[

−
∫

x
g[α] dα

]

. (6.61)
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Note that (6.57) simply expresses the superposition principle for linear
equations that states that to any solution of (6.54) one can always add a so-
lution of the homogeneous equation multiplied by an arbitrary amplitude s.
The infinitesimals of (6.57) are

ξ = 0, η = θ [x]. (6.62)

The integrating factor for (6.54) is

M[x] = 1
θ[x]

, (6.63)

and the total differential of the solution is

dψ =
{

1
θ [x]

( f [x] − yg[x])
}

dx −
{

1
θ [x]

}

dy. (6.64)

Equation (6.64) yields the solution of (6.54) by quadrature:

ψ =
∫

x

{

f [α]
θ [α]

}

dα − y
θ [x]

. (6.65)

The function (6.65) defines the entire family of solution curves of (6.54) for
all possible initial conditions (all possible values of ψ). As in the last example,
the action of the group (6.57) on the family of solutions (6.65) is to effect a
translation ψ = ψ̃ + s.

Example 6.6 (A more complicated case). Find the general solution of

dy
dx

= y
x − f [y]g[y/x]

, (6.66)

which we rewrite as

y
x

dx −
(

1 − f [y]
x

g[y/x]
)

dy = 0. (6.67)

Let

A =
(

1 − f [y]
x

g[y/x]
)

, B = y
x
. (6.68)

Identifying an invariant group by inspection in this case is not so easy. However,
this equation is known to be invariant under the group with infinitesimals

ξ = xy
f [y]

, η = y2

f [y]
. (6.69)



162 6 First-Order Ordinary Differential Equations

The integrating factor is

M = − x
y2g[y/x]

, (6.70)

and the total differential is

dψ = − 1
yg[y/x]

dx +
(

x
y2g[y/x]

− f [y]
y2

)

dy. (6.71)

Integrating by quadrature produces the general solution of (6.66):

ψ = "[x, y] =
∫

y/x

1
α2g[α]

dα −
∫

y

f [α]
α2

dα. (6.72)

Let’s demonstrate that (6.72) is in fact an invariant family of (6.69):

(

xy
f [y]

∂

∂x
− y2

f [y]
∂

∂y

)

(

∫

y/x

1
α2g[α]

dα −
∫

y

f [α]
α2

dα

)

= xy
f [y]

(

− 1
αg[α]

1
x

)

α=y/x
− y2

f [y]

(

− 1
α2g[α]

1
x

)

α=y/x

+ y2

f [y]

(

f [α]
α2

)

α=y
= 1 (6.73)

As usual, any function of (6.72) will also be a solution.

6.5 Canonical Coordinates

Any Lie group can be written in terms of new variables, called canonical coor-
dinates, such that the transformation is converted to a simple translation in one
variable. The group

x̃ j = F j [x, s], j = 1, . . . , n, (6.74)

with operator

X = ξ j [x]
∂

∂x j
(6.75)

has the associated characteristic equations

dx1

ξ 1[x]
= dx2

ξ 2[x]
= dx3

ξ 3[x]
= · · · = dxn

ξ n[x]
(6.76)
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with n − 1 integrals

r i = Ri [x], i = 1, . . . , n − 1. (6.77)

These functions satisfy the invariance condition

ξ j ∂ Ri

∂x j
= 0, i = 1, . . . , n − 1. (6.78)

Let rn = Rn[x] be an invariant family chosen such that

ξ j ∂ Rn

∂x j
= 1. (6.79)

That is, take Rn[x] to be a family of curves invariant under the group (6.74). In
terms of these variables (6.74) is equivalent to the simple translation group

r̃ i = r i , i = 1, . . . , n − 1,

r̃ n = rn + s
(6.80)

with group operator

X = ∂

∂rn
. (6.81)

The integrals (r1, r2, . . . , rn) are the canonical coordinates. Any Lie group can
be expressed as a simple translation using canonical coordinates. Occasionally,
canonical coordinates can be used to reconstruct the finite form of a group from
a knowledge of the infinitesimals without having to sum the Lie series. Insert
into (6.80) the functional dependence on x :

Ri [x̃1, x̃2, . . . , x̃ n] = Ri [x1, x2, . . . , xn], i = 1, . . . , n − 1,

Rn[x̃1, x̃2, . . . , x̃ n] = Rn[x1, x2, . . . , xn] + s.
(6.82)

Solving for the x̃ j in (6.82) leads to the finite transformation (6.74). Many of
the results of group theory are expressed in their simplest, most elegant form
using canonical coordinates.

Example 6.7 (Use canonical coordinates to determine the finite form of a
group). Find the finite transformation corresponding to

ξ = 1
d f/dx

, η = 1
dg/dy

, (6.83)
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where f and g are arbitrary invertible functions with inverses f −1 and g−1.
The group operator is

X = 1
d f/dx

∂

∂x
+ 1

dg/dy
∂

∂y
(6.84)

with characteristic equations

d f
dx

dx = dg
dy

dy (6.85)

and first integral

r1 = R1[x, y] = f [x] − g[y]. (6.86)

The invariant family is found from

d f
dx

dx = dg
dy

dy = dr2

1
, (6.87)

which can be solved in several possible ways, e.g., r2 = f [x] or r2 = g[y]. A
choice that keeps x and y on an equal footing is

r2 = f [x] + g[y]
2

(6.88)

The transformation in canonical variables is

r̃1 = r1,

r̃2 = r2 + s,
(6.89)

or, in terms of original variables,

f [x̃] − g[ỹ] = f [x] − g[y],

f [x̃] + g[ỹ] = f [x] + g[y] + s.
(6.90)

Solving (6.90) for x̃ and ỹ, the transformation in noncanonical coordinates is

x̃ = f −1[ f [x] + s/2],

ỹ = g−1[g[y] + s/2].
(6.91)

Differentiating (6.91) with respect to the group parameter reproduces the in-
finitesimals given initially.
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Example 6.8 (A family of ellipses). Identify the finite group that leaves the
family

ψ =
( x

τ

)2
+

( y
σ

)2
− 1 (6.92)

invariant. Try an operator of the form discussed in the previous example:

X =
(

x − τ 2

2x

)

∂

∂x
+

(

y − σ 2

2y

)

∂

∂y
. (6.93)

Operating on (6.92), we have

X" =
(

x − τ 2

2x

)

2x
τ 2

+
(

y − σ 2

2y

)

2y
σ 2

= 2ψ, (6.94)

which confirms that (6.92) is an invariant family of (6.93). The characteristic
equations of the group are

dx

x − τ 2

2x

= dy

y − σ 2

2y

, (6.95)

which can be integrated to generate the first canonical coordinate

r1 = ln
[

2y2 − σ 2

2x2 − τ 2

]1/2

. (6.96)

The second canonical coordinate is the original invariant family

r2 =
( x

τ

)2
+

( y
σ

)2
− 1. (6.97)

Solving

r1[x̃, ỹ] = r1[x, y],

r2[x̃, ỹ] = r2[x, y] + s
(6.98)

for x̃ and ỹ using (6.96) and (6.97), the finite transformation group in non-
canonical coordinates is found to be

x̃ =
(

e2s
(

x2 − τ 2

2

)

+ τ 2

2

)1/2

,

(6.99)

ỹ =
(

e2s
(

y2 − σ 2

2

)

+ σ 2

2

)1/2

.

This transformation leaves the family of ellipses (6.92) invariant.
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6.6 Invariant Solutions

In the development of the integrating factor we made use of the invariance of a
first-order ODE under two groups: the trivial group defined by the ODE itself,
which leaves invariant individual solution curves, and the nontrivial group,
which leaves invariant the family of solution curves while mapping each curve
to another member of the family. It is often the case that certain solution curves
are left invariant by the nontrivial group. Such invariant curves often play an
important role in defining the asymptotic behavior of the solution. Let’s look at
a couple of examples.

Example 6.9 (The Clairault equation). An interesting example illustrating the
notion of invariant curves and envelopes is the Clairault equation

x
(

dy
dx

)2

− y
dy
dx

+ m = 0, (6.100)

which is invariant under a one-parameter dilation group

x̃ = e2s x, ỹ = es y,
(6.101)

ξ = 2x, η = y.

Solving the quadratic (6.100) for the first derivative, the equation can be written
in the following form:

−
(

y ± (y2 − 4mx)1/2) dx + 2x dy = 0. (6.102)

The invariant group (6.101) generates the integrating factor

M = 1
Aη − Bξ

= 1
∓2x(y2 − 4mx)1/2

(6.103)

and the general solution

ψ = y
2x

± 1
2

(

y2

x2
− 4m

x

)1/2

. (6.104)

The solution can be rearranged as follows:

(

ψ − y
2x

)2
=

(

y2

4x2
− m

x

)

. (6.105)
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Fig. 6.4. Solution family of the Clairault equation.

When (6.105) is expanded, the quadratic terms on both sides cancel, leaving
the family of straight lines

y = ψx + m/ψ (6.106)

as the general solution; (6.106) transforms under (6.101) as follows:

ỹ = ψ x̃ + m
ψ

⇒ es y = ψe2s x + m
ψ

⇒ y = (ψes)x + m
ψes

. (6.107)

As ψ is varied from −∞ to ∞, (6.106) generates the pattern shown in
Figure 6.4.

An invariant solution of (6.100) can be found as follows. Let ψinv be ex-
pressed as

ψinv = y − f (x) = 0 (6.108)

where f (x) is to be determined. The invariance condition on ψinv is

Xψinv = 2x
∂ψinv

∂x
+ y

∂ψinv

∂y
= −2x fx + y = 0 (6.109)

Combining (6.108) and (6.109) leads to f = cx1/2. The constant is evaluated
by substituting y = cx1/2 into (6.100). The result is the invariant solution

y = ±2(mx)1/2 (6.110)

Note that this is the equation of the envelope that bounds the solution family
(6.106).
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This idea of combining the equation with the invariance condition to find
an invariant solution is often very useful and will come up again at the end of
Chapter 9 where nonclassical symmetries are discussed.

Invariant solutions are common in nonlinear problems, and when they occur,
they are of great importance in that they often define a universal solution to
which the system evolves regardless of initial conditions. The identification of
such invariant manifolds is an important step in understanding the nature of
nonlinearity. The next example illustrates this type of behavior.

Example 6.10 (Evolution along the discriminant of a cubic equation). This
problem comes up in the context of a simple model for the evolution of fine-scale
motions in a turbulent flow [6.1]. Solve the autonomous pair

d Q
dt

+ 3R = 0,

d R
dt

− 2
3

Q2 = 0.

(6.111)

The unknowns Q and R are the second and third invariants of the velocity
gradient tensor in an incompressible flow, and the equations (6.111) represent a
model for the evolution of these quantities following a fluid particle. Eliminating
dt between the two equations leads to the Pfaffian 1-form

2
3

Q2 d Q + 3 R d R = 0, (6.112)

which is easily integrated to produce the solution

D = Q3 + 27
4

R2. (6.113)

Recalling the discusssion of 3-D linear flows in Chapter 3, Section 3.9, we
recognize (6.113) as the discriminant of a cubic polynomial λ3 + Qλ+ R = 0.

Lines of constant D are shown in Figure 6.5. Equation (6.112) is invariant
under a one-parameter dilation group

Q̃ = e2s Q, R̃ = e3s R. (6.114)

A given solution is transformed as follows:

D̃ = Q̃3 + 27
4

R̃2 = e6s
(

Q3 + 27
4

R2
)

= e6s D. (6.115)
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Fig. 6.5. Lines of constant cubic discriminant.

The D = 0 curve, shown as a bold line in Figure 6.5, is an invariant solution
of (6.111) and is mapped to itself by the group (6.114). To understand the role of
this invariant solution in the asymptotic behavior of the full D ̸= 0 solution, we
need to solve for the parametric functions, Q[t] and R[t]. With the integral of
the motion known, the time evolution of the two invariants will be determined
in terms of elliptic functions. The discriminant defines an appropriate time scale
for normalizing all the variables in the problem:

t0 = |D|1/6. (6.116)

Let

q = t2
0 Q, r = t3

0 R, τ = t
t0

. (6.117)

In the case where D = 0, the normalization is carried out using Qi , the initial
value of Q. In this case, t0 = (abs[Qi ])1/2 and the normalized discriminant is
q3 + 27

4 r2 = sgn[D], where

sgn[D] =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

+1, D > 0,

−1, D < 0,

0, D = 0.

(6.118)
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Using this normalization, the first equation in (6.111) becomes,

dq
dτ

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

2√
3

(sgn[D] − q3)1/2 (r < 0),

− 2√
3

(sgn[D] − q3)1/2, (r > 0),
(6.119)

which is solved in terms of elliptic integrals:

4
√

3
∫ q

−∞

dq̂

(1 − q̂3)1/2
= F[α, sin[5π/12]]

= 2
4
√

3
τ (D > 0, −∞ < q < 1),

4
√

3
∫ −1

q

dq̂

(−1 − q̂3)1/2
= F[γ , sin[π/12]]

= 2
4
√

3
τ (D < 0, −∞ < q < −1). (6.120)

The function F is the elliptic integral of the first kind,

F[φ, k] =
∫ φ

0

dφ̂

(1 − k2 sin2[φ̂])1/2
, (6.121)

and we have

cos[α] = 1 −
√

3 − q[τ ]

1 +
√

3 − q[τ ]
(−∞ < q < 1, 0 < α < π, D > 0),

cos[γ ] = 1 +
√

3 + q[τ ]

−1 +
√

3 − q[τ ]
(−∞ < q < −1, 0 < γ < π, D < 0).

(6.122)

The solution (6.120) accommodates the sign change indicated in (6.119) by
the fact that the function q[τ ] varies smoothly near r = 0 for D > 0 or D < 0.
The elliptic integral F[φ, k] is continued beyond φ = π/2 using the relation
F[φ, k] = K + F[φ − π/2, k]. When we consider the case D = 0, which has
a discontinuous first derivative at r = 0, we shall see that the sign change is
retained and it is necessary to explicitly distinguish between r > 0 and r < 0
cases. The relationship between α or γ and q[τ ] in (6.120) is inverted through
the use of Jacobi elliptic functions. We use the cosine amplitude function cn
defined by cos[φ] = cn[F] = cn[(2/

4
√

3)τ ]. Three cases are distinguished.
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Case 1. D > 0:

q+(τ ) = (1 −
√

3) − (1 +
√

3) cn[(2/
4
√

3)τ ]

1 − cn[(2/
4
√

3)τ ]
. (6.123)

The range of variables in (6.123) is

−∞ < q+ < 1, 0 < τ < τsingular, (6.124)

where τsingular = 7.28589. The third invariant is computed from

r = ±
(

4
27

− 4
27

q3
)1/2

. (6.125)

Case 2. D < 0:

q−(τ ) = −(1 +
√

3) + (1 −
√

3) cn[(2/
4
√

3)τ ]

1 − cn[(2/
4
√

3)τ ]
. (6.126)

The range of variables in (6.126) is

−∞ < q− < −1, 0 < τ < τsingular, (6.127)

where τsingular = 4.20654, and the third invariant is determined from

r = ±
(

− 4
27

− 4
27

q3
)1/2

. (6.128)

Case 3. D = 0:

q0
r<0[τ ] = −

(

1

1 + (1/
√

3)τ

)2

(0 < τ < ∞),

q0
r>0[τ ] = −

(

1

1 + (1/
√

3)τ

)2

(0 < τ < ∞).

(6.129)

The third invariant is computed from

r = ±
(

− 4
27

q3
)1/2

(6.130)

The invariants are parameterized by elliptic functions. Note the singularity
inQ[τ ] and R[τ ] that develops in finite time for both positive and negative
discriminant. When the invariants are plotted parametrically, the result is a
pair of curves for D = ±1 as shown in Figure 6.6.
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Fig. 6.6. Lines of constant normalized discriminant.

The arrows in Figure 6.6 indicate the direction of increasing time. As the
parameter t increases, r increases monitonically, and once r becomes positive,
q decreases monotonically. In Figure 6.6 the evolution of the solution is toward
the lower right quadrant. So both q and r become infinitely large at a fixed value
of D. The asymptotic behavior of (6.123) and (6.126) is identical to the second
relation in (6.129) with the appropriate value of the singular time inserted in
the radical. Thus as time proceeds, the asymptotic solution for any initial value
of q or r is

q[τ ] = −
(

1
1 − τ/τsingular

)2

, r [τ ] = 2

3
√

3

(

1
1 − τ/τsingular

)3

. (6.131)

In effect, any initial condition evolves asymptotically to the invariant solution
at large values of t . Note that the “trivial” group that solves (6.111) is fairly
complex, being expressed in terms of Jacobi elliptic functions.

6.7 Elliptic Curves

The expression for the discriminant (6.113) contains a mixture of quadratic and
cubic terms. For constant, nonzero discriminant, this function belongs to a
class of functions called elliptic curves. The complete classification of cubics,
of which elliptic curves are a subset, was described by Isaac Newton in 1695.
Elliptic curves have the property that there is a unique tangent everywhere on
the curve (hence D = 0 is excluded), and they are parameterized by elliptic
functions as in (6.123) and (6.126). The curve D = 0, which has a cusp at the
origin, is parameterized by rational functions as in (6.129). The most familiar
example of an elliptic function is the integral of the arc length along an ellipse,
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Fig. 6.7. Construction to find rational roots on a curve of constant D.

although the ellipse itself is not an elliptic curve, it being parameterized by
harmonic functions.

Elliptic curves come up, for example, in the study of the motions that can be
executed by mechanical linkages. Some examples can be found in the classic
text by Hunt [6.2]. They are also of intrinsic mathematical interest, and an
introductory discussion can be found in the article by Ribet and Hayes [6.3].
One of the interesting properties of these functions is that a straight line tangent
to a rational root intersects the function at another rational root (this works for
D = 0 too). This fact can be exploited to create the geometrical construction
shown in Figure 6.7, by which all rational roots lying on a curve of constant
discriminant can be determined once a single root is known. This is the famous
chord–tangent construction used by the Greek mathematician Diophantus of
Alexandria in the third century in his studies of number theory.

The cubic discriminant has the same value at both points of intersection in
Figure 6.7,

Q3
1 + 27

4
R2

1 = Q3
0 + 27

4
R2

0, (6.132)

and the straight line is of the form

R + aQ + b = 0. (6.133)

At (R0, Q0) the straight line and line of constant D have the same slope as well
as the same coordinates. This is used to evaluate a and b, and the equation of
the straight line is determined to be

R +
(

2
9

Q2
0

R0

)

Q +
(

−2
9

Q3
0

R0
− R0

)

= 0. (6.134)

Now evaluate (6.134) at (R1, Q1), and use it to replace R1 in (6.132). The result
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is a cubic equation for Q1, which can be factored as

(Q1 − Q0)2
(

Q1 + 1
3

Q4
0

R2
0

+ 2Q0

)

= 0. (6.135)

Two of the roots coincide with the tangent point. The third root, combined with
(6.134), leads to the parameterization

Q1 = −1
3

Q4
0

R2
0

− 2Q0,

R1 = 2
27

Q6
0

R3
0

+ 2
3

Q3
0

R0
+ R0.

(6.136)

It is clear that if Q0 and R0 are rational numbers, then so are Q1 and R1.
Repeating the chord–tangent construction at the new root leads to a third rational
root, and so on. We shall encounter elliptic curves again in Chapters 11, where
we study the geometry of the 3-D flow field of a laminar jet.

6.8 Criterion for a First-Order ODE to Admit a Given Group

The various examples in this chapter illustrate both the power and the limitations
of group theory. In each case the group had to be stated a priori. In later
chapters we shall see that for higher-order ODEs and for PDEs the group can
be determined through a procedure that is essentially algorithmic. But for first-
order ODEs the procedure for finding the group is essentially equivalent to
solving the original ODE, and so no systematic procedure exists. Nevertheless, it
would be extremely useful to have a test to determine whether a given differential
equation is invariant under a given group, which may be known only through its
infinitesimals. Such a test can be constructed with the help of the commutator.

We are considering the ODE (6.33)

−B dx + A dy = 0 (6.137)

with associated PDE (6.36)

A
∂"

∂x
+ B

∂"

∂y
= 0 (6.138)

and group operator

Y = A
∂

∂x
+ B

∂

∂y
. (6.139)

The commutator of some general group X = ξ ∂/∂x + η ∂/∂y and Y is

{X, Y } = X (Y ) − Y (X ). (6.140)
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When (6.140) is expanded, all second-derivative terms cancel to produce a new
operator, which is still of first-order:

{X, Y } =
(

ξ
∂ A
∂x

+ η
∂ A
∂y

− A
∂ξ

∂x
− B

∂ξ

∂y

)

∂

∂x

+
(

ξ
∂ B
∂x

+ η
∂ B
∂y

− A
∂η

∂x
− B

∂η

∂y

)

∂

∂y
, (6.141)

or

{X, Y } = (X A − Y ξ )
∂

∂x
+ (X B − Yη)

∂

∂y
. (6.142)

If ψ = "[x, y] is the integral of (6.137), then we know that Y" = 0. Assume
that " is an invariant family of the group X ; then X" = '["]. The commutator
acting on " gives

{X, Y }" = X (Y") − Y (X") = −Y ('["]) = − d'

d"
Y" = 0. (6.143)

So the partial derivatives of " satisfy both (6.138) and

(X A − Y ξ )
∂"

∂x
+ (X B − Yη)

∂"

∂y
= 0, (6.144)

which means that the two operators cannot be independent. Therefore there
must exist a function λ[x, y] such that

X A − Y ξ = λ[x, y]A, X B − Yη = λ[x, y]B. (6.145)

This is the operator condition for the invariance of a given differential equation
under a given group.

Theorem 6.3. The solution family "[x, y] of the ordinary differential equation
B dx − A dy = 0 is an invariant family of the one-parameter group (ξ, η) if
and only if a function λ[x, y] exists such that

X A − Y ξ

A
= λ[x, y] = X B − Yη

B
, (6.146)

where X = ξ ∂/∂x + η ∂/∂y and Y = A ∂/∂x + B ∂/∂y.

This result gives us a straightforward, systematic procedure for testing given
groups against a given equation in a search for one that leaves the equation
invariant. Simply form the expressions in (6.146) and see if the equality holds.
This can be useful because relatively simple groups often leave large classes of
equations invariant.
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6.9 Concluding Remarks

In this chapter we have applied group methods to the solution of first-order
ODEs and derived the invariance condition for an ODE. We will continue this
subject to higher-order ODEs in Chapter 8. But first it is necessary to intro-
duce the concept of a differential function in Chapter 7. This notion enables
us to use the theory for the invariance of a function defined in Chapter 5,
Section 5.6, to define a comparable invariance condition for a differential equa-
tion. The same mathematical machinery developed for functions can be carried
over, more or less intact, and applied to ODEs and PDEs treated as differential
functions.

6.10 Exercises

6.1 Reconsider the groups studied in Chapter 5, Problem 5.1:

(i) A projective group

x̃ = x
1 − sy

, y = y
1 − sy

. (6.147)

(ii) A hyperbolic group

x̃ = x + s, ỹ = xy
x + s

. (6.148)

(iii) An arbitrary translation

x̃ = x, ỹ = y + s f [x], f (x) arbitrary. (6.149)

(iv) A helical transformation

x̃ = x cos[s] − y sin[s], ỹ = x sin[s] + y cos[s], z̃ = z + ms.
(6.150)

Determine an invariant family for each group.
6.2 Find an integrating factor for each of the following ODEs, and work out

the general solution:

dy
dx

− y
x + sin[x/y]

= 0, (6.151)

(3x2 + 2xy − y2) dx + (x2 − 2xy − 3y2) dy = 0, (6.152)
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dy
dx

= yey

y3 + 2xey
, (6.153)

x
dy
dx

+ y = x2, (6.154)

dy
dx

= 4
y
x

+ x2 sin[y/x4]. (6.155)

6.3 Revisit Chapter 1, Exercise 1.3. Find an integrating factor, and solve the
first-order ODE

x
(

dy
dx

)2

+ y
(

dy
dx

)

+ x = 0. (6.156)

6.4 Show by direct substitution that (6.99) leaves the family of ellipses (6.92)
invariant.

6.5 Show that the first-order ODE

dy
dx

= y3 + x2 y − y − x
xy2 + x3 + y − x

(6.157)

is invariant under the rotation group (ξ, η) = (−y, x). Sketch the phase
portrait and identify critical points. Identify an invariant solution. Use
the group to find an integrating factor and work out the solution.

6.6 Beginning with (R, Q) = (2, −3) on Q3 + 27
4 R2 = 0, use the chord–

tangent construction to identify an infinite sequence of rational roots.
6.7 Can you find a rational root of the equation Q3 + 27

4 R2 = 1?
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7
Differential Functions and Notation

In Chapter 6 we concerned ourselves with finding integrating factors for first-
order ODEs. In Chapter 8 we will continue our discussion of ODEs and address
two fundamental problems. The first is the problem of finding the general
ODE ![x, y, yx , yxx , . . . ypx ] = 0 which is invariant under a known group. The
second is the practically much more important problem of determining the
groups that leave a given ODE invariant. The latter problem generally involves
the following basic steps:

(1) The point transformation T s is extended to include transformations of
derivatives up to whatever order p may appear in the equation. In practice
only the infinitesimal form of the transformation is required. The formulas
for these extended transformations become quite long as the order of the
derivative being transformed increases.

(2) The differential equation is transformed using the extended group. The
transformation of the equation is expressed as a Lie series expanded in
terms of the operator X{p} of the extended group.

(3) The equation is invariant if and only if X{p}! = 0 subject to the constraint
! = 0.

(4) The invariance condition is parsed into a set of linear PDEs for ξ and η

known as the determining equations of the group. For a first-order ODE
there is only one determining equation for ξ and η, which is insufficient to
solve for both unknowns. But for second- and higher-order ODEs there are
generally two or more determining equations, so that ξ and η can usually
be determined, enabling the fundamental symmetries of the equation to be
identified. While it is possible to write down a higher-order ODE for which
the determining equations have no solution (the ODE has no symmetry) this
is uncommon and rarely occurs when the ODE arises from an interesting
physical problem.

178
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The theoretical basis for the method lies in the fact that the algorithm used to
generate the transformation of derivatives is such that the extended transforma-
tion automatically inherits the properties of a Lie group. A proof of this will be
given in Chapter 8. In particular, the extended transformation is a one-to-one
invertible map dependent on a single scalar parameter defined on a continuous
open interval. This enables all the results from the group analysis of func-
tions developed in Chapter 5, Sections 5.5 and 5.6 to be carried over, more
or less intact, to the group analysis of ODEs and PDEs viewed as differential
functions. Stated simply, a differential function is a smooth, locally analytic
function of variables and derivatives. Examples include differential equations
and the functions that transform derivatives. The idea of a differential function
is an overarching concept, which provides a framework for the general theory
of symmetry analysis and greatly facilitates the treatment of extended point
groups as well as their generalization to Lie–Bäcklund groups.

Group theory repeatedly requires the use of the chain rule, and the reader is
referred to Appendix 1, where some basic results from calculus are reviewed
and the total differentiation operator D is defined. The motivation for using this
operator is the need to deal with notational ambiguities that arise when taking
partial derivatives of implicit functions.

A notation for derivative and function names was introduced in Chapter 1 and
is elaborated further here. I have tried to be as consistent as possible in using the
adopted notation throughout the text. It is absolutely essential to use a notation
that is precise, concise, and reasonably intuitive. If the notation doesn’t work,
then the meaning of expressions can be quickly lost in a blizzard of indices. This
is especially important when we deal with some of the rather complex formulas
that involve differentiation of differential equations with respect to derivatives.
This may seem like a strange concept at first, but it is a natural consequence of
the treatment of differential equations as analytic functions of derivatives.

7.1 Introduction

A differential equation is a locally analytic function of the variables and deriva-
tives that appear in the equation. For example the Blasius equation

d3 y
dx3

+ y
d2 y
dx2

= 0 (7.1)

is a function of the form

ψ = !

[

x, y,
dy
dx

,
d2 y
dx2

,
d3 y
dx3

]

(7.2)
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where each argument after the first in the brackets is a function of x . A partial
differential equation such as the Burgers equation

∂u
∂t

+ u
∂u
∂x

− ν
∂2u

∂x ∂x
= 0 (7.3)

is a function in a jet space whose coordinates include all possible first and
second derivatives,

'

[

t, x, u,
∂u
∂t

,
∂u
∂x

,
∂2u
∂t ∂t

,
∂2u

∂x ∂t
,

∂2u
∂x ∂x

]

= 0. (7.4)

A more complex system with several independent variables, such as the incom-
pressible Navier–Stokes equations

∂ui

∂t
+ uk ∂ui

∂xk
+ ∂p

∂xi
− ν

∂2ui

∂xk∂xk
= 0, i = 1, 2, 3, (7.5)

is a set of three functions of the form

(i
[

t, x1, . . . , x3, p, u1, . . . , u3,
∂p
∂t

,
∂u1

∂t
, . . . ,

∂u3

∂t
,

∂p
∂x1

,
∂u1

∂x1
, . . . ,

∂u3

∂x1
,

∂p
∂x2

,
∂u1

∂x2
, . . . ,

∂u3

∂x2
,

∂p
∂x3

,
∂u1

∂x3
, . . . ,

∂u3

∂x3
,

∂2 p
∂t ∂t

, . . . . . . . . . ,
∂2u3

∂x3 ∂x3

]

= 0,

i = 1, 2, 3, (7.6)

in a jet space that includes all the independent variables, dependent variables,
all possible first partial derivatives, and all possible second partial derivatives.

It will often be necessary to differentiate these functions with respect to
derivatives. For example, typical partial derivatives of the Blasius equation
(7.1) are

∂!

∂y
= d2 y

dx2
,

∂!

∂
( d2 y

dx2

)

= y. (7.7)

The derivative of the Burgers equation (7.3) with respect to the spatial first
derivative of u is

∂'

∂
(

∂u
∂x

) = u. (7.8)
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Differentiating the Navier–Stokes equations with respect to the second spatial
derivative of velocity with respect to the third coordinate leads to

∂(i

∂
(

∂2ui

∂x3 ∂x3

)
= ν, (7.9)

and so forth. The notation in (7.6), (7.7), (7.8), and (7.9) is as clumsy as the
wording in the last sentence and does not lend itself to generalization. We really
need something better.

7.1.1 Superscript Notation for Dependent and Independent Variables

Consider a transformation with m dependent variables

y = (yi ), i = 1, . . . , m, (7.10)

and n independent variables

x = (x j ), j = 1, . . . , n. (7.11)

The corresponding Lie point group has the form

x̃ j = F j [x, y, s], j = 1, . . . , n,

ỹi = Gi [x, y, s], i = 1, . . . , m.
(7.12)

In general, vector components will be denoted with a superscript, consistent with
commonly accepted notation for vectors and tensors. There is some possibility
here for confusion with an exponent, and where this might occur, parentheses
will be used to clarify the taking of a power.

7.1.2 Subscript Notation for Derivatives

Subscripts will be used to denote derivatives throughout the text. Otherwise
the conventional quotient form of the derivative will be used. In the case of a
pth-order ODE with one independent variable and one dependent variable we
use

yx ≡ dy
dx

, yxx ≡ d2 y
dx2

, . . . , y(p−1)x ≡ d p−1 y
dx p−1

, ypx ≡ d p y
dx p

.

(7.13)
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Derivatives expressed in terms of target variables are denoted with a tilde:

ỹx̃ ≡ d ỹ
d x̃

, ỹx̃ x̃ ≡ d2 ỹ
d x̃2

, . . . , ỹ(p−1)x̃ ≡ d p−1 ỹ
d x̃ p−1

, ỹpx̃ ≡ d p ỹ
d x̃ p

.

(7.14)

The partial derivatives of the transformation functions F and G are denoted

∂ F
∂x

= Fx ,
∂ F
∂y

= Fy,

∂G
∂x

= Gx ,
∂G
∂y

= G y

(7.15)

and

∂2 F
∂x2

=Fxx ,
∂2 F

∂x ∂y
= Fxy,

∂2 F
∂y2

= Fyy,

∂2G
∂x2

= Gxx ,
∂2G
∂x ∂y

= Gxy,
∂2G
∂y2

= G yy,

(7.16)

and so forth. Generally the variable symbol will be used for the subscript,
although it may occasionally be convenient to use the variable index instead.
In this case, when dealing with ODEs, the notation

y1 ≡ dy
dx

, y2 ≡ d2 y
dx2

, . . . , yp−1 ≡ d p−1 y
dx p−1

, yp ≡ d p y
dx p

(7.17)

may be used. If there is any possibility of confusion, the quotient form of the
derivative will be employed.

In the case of PDEs with several dependent and independent variables, the
partial-derivative notation is as follows:

yi
j ≡ ∂yi

∂x j
, yi

j1 j2 ≡ ∂2 yi

∂x j1 ∂x j2
, yi

j1 j2 j3 ≡ ∂3 yi

∂x j1 ∂x j2 ∂x j3
, . . . ,

yi
j1 j2 j3··· jp

≡ ∂ p yi

∂x j1 ∂x j2 ∂x j3 · · · ∂x jp
(7.18)

where the indices j1, j2, j3 · · · refer to any of the independent variables and the
subscripts on these indices are distinguishing labels.

Differential equations will be treated as functions of independent variables,
dependent variables, and derivatives of dependent variables. For conciseness
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define the boldface symbols

y1 ≡
(

yi
j

)

=
(

∂y1

∂x1
, . . . ,

∂y1

∂xn
,
∂y2

∂x1
, . . . ,

∂y2

∂xn
, . . . . . . ,

∂ym

∂x1
, . . . ,

∂ym

∂xn

)

(7.19)

as the vector of all possible first partial derivatives,

y2 ≡
(

yi
j1 j2

)

=
(

y1
11, y1

12, . . . , y1
nn, . . . , ym

11, ym
12, . . . , ym

nn

)

(7.20)

as the vector of all possible second partial derivatives,

y3 ≡
(

yi
j1 j2 j3

)

(7.21)

as the vector of all possible third partial derivatives, and so forth up to pth order:

y p ≡
(

yi
j1 j2 j3··· jp

)

. (7.22)

The subscripts in these expressions denote differentiation with respect to any
particular combination of independent variables. Where it is convenient, sym-
bolic subscripts may be used to replace numerical subscripts, for example
y12 ≡ yx1x2 .

7.1.3 Curly-Brace Subscript Notation for Functions
That Transform Derivatives

In Chapter 1 we worked out the once extended group in the plane,

x̃ = F[x, y, s],

ỹ = G[x, y, s],

ỹx̃ = G{1}[x, y, yx , s].

(7.23)

A subscript in braces was used to denote the function that transforms the first
derivative. This notation provides an efficient and clear association between a
derivative and its transforming function while being distinct from the unbrack-
eted subscript, which denotes differentiation.

Later we will work out the transformation for small values of the group
parameter. This will have the form

x̃ = x + sξ [x, y],

ỹ = y + sη[x, y],

ỹx̃ = yx + sη{1}[x, y, yx ].

(7.24)
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A transformation up to second derivatives is of the form

x̃ = x + sξ [x, y],

ỹ = y + sη[x, y],

ỹx̃ = yx + sη{1}[x, y, yx ],

ỹx̃ x̃ = yxx + sη{2}[x, y, yx , yxx ].

(7.25)

An equivalent notation is

x̃ = x + sξ [x, y],

ỹ = y + sη[x, y],

ỹx̃ = yx + sη{x}[x, y, yx ],

ỹx̃ x̃ = yxx + sη{xx}[x, y, yx , yxx ].

(7.26)

In the case of many variables, a transformation of a second partial derivative
would be written as

ỹi
j1 j2 = Gi

{ j1 j2}[x, y, y1, y2, s], (7.27)

and the infinitesimal form would be

ỹi
j1 j2 = yi

j1 j2 + sηi
{ j1 j2}[x, y, y1, y2], (7.28)

and so forth. The subscripts on the variable indices j1, j2, j3, . . . are labels that
indicate that each index is distinct and represents any one of the independent
variables.

7.1.4 The Total Differentiation Operator

In Appendix 1 the total differentiation operator is defined. This operator is
required to overcome certain notational difficulties that arise when taking partial
derivatives of functions that depend on functions.

Definition 7.1. The total differentiation operator with respect to the j th inde-
pendent variable is.

D
Dx j

= D j = ∂

∂x j
+ yi

j
∂

∂yi
+ yi

j1 j
∂

∂yi
j1

+ · · · + yi
j1 j2··· jp j

∂

∂yi
j1 j2··· jp

. (7.29)
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In the case of one dependent and one independent variable (7.29) becomes

D = D
Dx

= ∂

∂x
+ yx

∂

∂y
+ yxx

∂

∂yx
+ · · · + y(p+1)x

∂

∂ypx
. (7.30)

Throughout the literature on group theory, there is a tendency to shorten
the name and call it merely the total-derivative operator, thus causing some
confusion with the concept of a total differential. This is unfortunate in that, for
more than one independent variable, (7.29) defines a partial-derivative operator.
One could perhaps come up with a more appropriate name and call it, say, the
complete partial-derivative operator, but this sounds like an oxymoron. Since
current usage is so pervasive, there is probably no way to change it without
causing added confusion, and so we will adopt the traditional nomenclature.
The usual partial-derivative notation, ∂!/∂x j will imply differentiation with
respect to the explicit dependence of ! on x j . Note that in fluid mechanics,
D( )/Dt is called the substantial derivative and has the physical interpretation
of the change with time of some property of a fluid particle as it convects with
a flow.

7.1.5 Definition of a Differential Function

Extended Lie point transformations are closed in the space of variables and
derivatives up to order p. That is, the function that transforms the pth deriva-
tive contains derivatives no higher than p. In later chapters, Lie–Bäcklund
transformations are considered, where the transformation of a point can depend
on derivatives up to some arbitrary, preselected order. Such transformations are
not closed in any finite-dimensional space. To facilitate the development of the
theory, we utilize the concept of a space of differential functions (see Ibragimov
[7.1], [7.2]).

Definition 7.2. Let z denote the infinite sequence of variables and derivatives,

z = (x, y, y1, y2, . . .), (7.31)

and let ⟨z⟩ denote any finite subsequence of z. A differential function ![⟨z⟩] is
a locally analytic function of ⟨z⟩ (i.e., expandable in a Taylor series about some
point ⟨z0⟩). The space of differential functions is denoted by A.

Differential variables include independent variables x, dependent variables
y, and the vectors of all possible partial derivatives, y1, y2, y3, . . .. Typical
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examples of differential functions are ODEs, PDEs, and the functions that
transform derivatives under the action of Lie or Lie–Bäcklund groups.

The space A is the natural setting for the theory of symmetry analysis and
facilitates the extension of the theory for the invariance of functions to include
ODEs and PDEs. The concept of a differential function plays a central role in
the theory of Lie–Bäcklund transformations discussed in Chapter 14 (see also
Appendices 2 and 3).

7.1.6 Total Differentiation of Differential Functions

The total differentiation operator defined in (7.29) is straightforwardly extended
to infinite order.

Definition 7.3. The total differentiation operator acting in the space of differ-
ential functions is the infinite operator

D j = ∂

∂x j
+ yi

j
∂

∂yi
+ yi

j1 j
∂

∂yi
j1

+ yi
j1 j2 j

∂

∂yi
j1 j2

+ · · ·. (7.32)

The operator (7.32) obviously truncates appropriately when applied to a
differential function that depends on derivatives up to finite order.

The case of one independent variable and one dependent variable corresponds
to ODEs of the form

![⟨z⟩] = ![x, y, yx , yxx , yxxx , . . . , ypx ]. (7.33)

The total differentiation operator acting on ! truncates to (7.30):

D! = ∂!

∂x
+ yx

∂!

∂y
+ yxx

∂!

∂yx
+ yxxx

∂!

∂yxx
+ · · · + y(p+1)x

∂!

∂ypx
. (7.34)

The case of several variables corresponds to PDEs with m dependent variables
and n independent variables treated as differential functions of the form

![⟨z⟩] = ![x, y, y1, y2, y3, . . . , y p]. (7.35)

In this case the total differentiation operator acting on ! truncates to (7.29):

D j! = ∂!

∂x j
+ yi

j
∂!

∂yi
+ yi

j1 j
∂!

∂yi
j1

+ · · · + yi
j1··· jp j

∂!

∂yi
j1··· jp

. (7.36)

Total differentiation produces a function containing derivatives one order higher
than the original differential function.



7.2 Contact Conditions 187

The operator D j has the usual properties of a linear differential operator. Let
![⟨z⟩] and '[⟨z⟩] be differential functions, and let a and b be constants. Then

D j (a! + b') = aD j! + bD j',

D j (!') = ! D j' + 'D j!.
(7.37)

Differential variables differentiate as follows:

D j xα = δα
j ,

D j yα = yα
j ,

D j1 yα
j = yα

j1 j = D j1 D j yα,

D j2 yα
j1 j = yα

j1 j2 j = D j1 D j2 D j yα,
...

(7.38)

where δα
j is the Kronecker delta. The order of differentiation is immaterial:

D j1 (D j2 ( )) = D j2 (D j1 ( )). (7.39)

7.2 Contact Conditions

Extended transformation groups are generated using the contact conditions.

7.2.1 One Dependent and One Independent Variable

Transformations of first derivatives must satisfy the first-order contact condition

dy − yx dx = 0. (7.40)

Furthermore, this relationship holds in both the source space (x, y) and the
target space (x̃, ỹ), so that

d ỹ − ỹx̃ d x̃ = 0. (7.41)

See Appendix 2. In the parlance of group theory one would say that the trans-
formation (7.12) leaves the differential function

![dx̃, d ỹ, ỹx̃ ] = d ỹ − ỹx̃ d x̃ (7.42)

invariant (unchanged in form when expressed in variables without the tilde).
This invariance is illustrated in Figure 7.1. A Lie group in two variables acts
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φ Φ x y s, ,[ ]=

ỹx̃

ψ Ψ x̃ ỹ,[ ]=

x y,( ) x̃ ỹ,( )

C

C̃

x

y

P

P̃

yx

Fig. 7.1. Transformation of curves and tangent curves.

on curves C and φ, which are tangent to one another at a source point P .
As each point is transformed from P to P̃ , the two curves, tangent at the
source point (x, y), are mapped to curves C̃ and ψ tangent at the target point
(x̃, ỹ).

Lie groups preserve all tangency conditions in both the source and target
space. For transformations of all derivatives up to order p:

dy − yx dx = d ỹ − ỹx d x̃ = 0,

dyx − yxx dx = d ỹx̃ − ỹ x̃ x̃ d x̃ = 0,
...

dy(p−1)x − ypx dx = d ỹ(p−1)x̃ − ỹ px̃ d x̃ = 0.

(7.43)

So, for example, if two surfaces are in 5th-order contact at some point (x, y)
in the source space, then invariance of the contact condition ensures that the
mapped surfaces will be in 5th-order contact at the point (x̃, ỹ) in the target
space. The proof that the contact conditions are preserved to all orders under
a Lie group is given briefly in Chapter 8, where the transformations of deriva-
tives are worked out, and more fully in Appendix 2. In fact, Lie groups preserve
tangency up to infinite order. This property, together with the parametric rep-
resentation of the group, ensures that a Lie point group (7.12), extended to any
order of derivative, constitutes a one-to-one, invertible map in the corresponding
infinite-order tangent space.

7.2.2 Several Dependent and Independent Variables

The requirement that pth-order contact be preserved under the transformation
from source to target variables holds when considering higher-dimensional
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systems. The contact conditions in this case are

dyi − yi
j1 dx j1 = d ỹi − ỹi

j1 dx̃ j1 = 0,

dyi
j1 − yi

j1 j2 dx j2 = d ỹi
j1 − ỹi

j1 j2 dx̃ j2 = 0,
...

dyi
j1··· jp−1

− yi
j1··· jp

dx jp = d ỹi
j1··· jp−1

− ỹi
j1··· jp

d x̃ jp = 0.

(7.44)

Writing the contact condition in terms of variables with the tilde and then
replacing the differentials in terms of variables without the tilde leads directly
to the transformations of partial derivatives (see Chapter 9, Section 9.1). There
is no explicit requirement on derivatives beyond order p; however, as noted
above, the attributes of a Lie group ensure that the transformations preserve
tangency up to infinite order.

7.3 Concluding Remarks

The concept of a differential function is an invaluable tool that sets the stage for
the next few chapters. In Chapter 8, extended groups in the plane are described
and the methodology for generating transformations of derivatives is discussed.
Groups in two variables are used to transform ODEs. The result is the Lie-series
representation of an ODE, which leads directly to the invariance condition for
the ODE. Extended groups involving several dependent and independent vari-
ables are discussed in Chapter 9 along with the invariance condition for PDEs.
Chapters 10, 11, 12, and 13 are devoted to applications of point groups, mainly
to problems in fluid mechanics. In Chapter 14 the concept of a differential
function leads naturally to a generalization of Lie point groups to so-called
Lie contact and Lie–Bäcklund groups, where the transformation of a point can
depend on derivatives at the point. In certain cases such transformations can be
used to discover new Lie–Bäcklund symmetries of differential equations that
are not equivalent to Lie point symmetries. In the modern theory of symme-
try analysis, Lie point and Lie contact transformations are regarded as special
cases of Lie–Bäcklund transformations. In Chapter 15 Lie–Bäcklund transfor-
mations are used to transform integrals. This leads directly to Noether’s theorem
relating symmetries of an Euler–Lagrange system to conservation laws for the
system. Finally, in Chapter 16 Bäcklund transformations are discussed. These
remarkable transformations can be used to generate classes of exact solutions to
important problems in nonlinear wave propagation. Bäcklund transformations
are generally associated with an integrability condition for the equation in ques-
tion. For this reason, they are usually regarded as many-valued, and therefore
noninvertible, maps. But in the several cases described in Chapter 16, Bäcklund
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transformations are shown to arise from Lie groups. The complicating twist is
that these groups are usually nonlocal in nature.

7.4 Exercises

7.1 Confirm the properties of the operator D given in (7.38).
7.2 Carry out the indicated differentiation:

(i) Dxx (yxxx + yyxx )

(ii) Dx

(

∂u
∂t

+ u
∂u
∂x

− ν
∂2u

∂x ∂x

)

, Dt

(

∂u
∂t

+ u
∂u
∂x

− ν
∂2u

∂x ∂x

)

(iii) Dxx

(

∂u
∂t

+ u
∂u
∂x

− ν
∂2u

∂x ∂x

)

, Dxt

(

∂u
∂t

+ u
∂u
∂x

− ν
∂2u

∂x ∂x

)

,

Dtt

(

∂u
∂t

+ u
∂u
∂x

− ν
∂2u

∂x ∂x

)

(iv) Dx j

(

∂ui

∂t
+ uk ∂ui

∂xk
+ ∂p

∂xi
− ν

∂2ui

∂xk ∂xk

)

7.3 In Exercise 7.2(iv) take the trace of the result (i.e., set i = j and sum)
to generate the Poisson equation for the pressure ∇2 p = −uk

i ui
k (note

that ∂ui/∂xi = 0). Subtract this from the equation generated in (iv) to
form the transport equation for the velocity gradient tensor Dt (ui

j ), where
ui

j = ∂ui/∂x j .
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8
Ordinary Differential Equations

In Chapter 6 it was shown that knowledge of an invariant group leads immedi-
ately to the general solution of a first-order ODE. It was also pointed out that
there is no systematic way of finding the group, although the commutator does
provide a systematic procedure for carrying out a search. In this chapter the
question will be turned around to ask: what is the general form of the ordinary
differential equation that is invariant under a given group? But before this ques-
tion can be addressed, it is necessary to develop the machinery for extending the
infinitesimal group to include the transformation of derivatives. To accomplish
this, the contact conditions discussed in the last chapter will be used. Finally
we will consider the question of finding the groups that leave an ODE of second
order or higher invariant and demonstrate how knowledge of the associated Lie
algebra can be used to accomplish a reduction of order.

8.1 Extension of Lie Groups in the Plane

8.1.1 Finite Transformation of First Derivatives

First we consider the finite Lie point group in two dimensions,

T s :

{

x̃ = F[x, y, s]

ỹ = G[x, y, s]

}

. (8.1)

We previewed this discussion in Chapter 1, where the transformation (8.1) was
extended to include the first derivative dy/dx = yx . The main requirement that
must be satisfied by the extended transformation is that it inherit the properties of
a Lie group, thus ensuring that the transformation is an invertible map in the tan-
gent space (x, y, yx ). This is accomplished by requiring that the transformation

191
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of the first derivative satisfy the first-order contact condition

dy − yx dx = 0. (8.2)

This condition holds in both the source coordinates (x, y) and the target coor-
dinates (x̃, ỹ), so that

d ỹ − ỹ x̃ d x̃ = 0. (8.3)

In effect, the transformation of yx is required to satisfy the definition of the
derivative. This may seem like a trivially obvious requirement at this stage,
and it is. But later on, we will consider Lie–Bäcklund transformations where
the mapping of points can depend on derivatives. In this case, the requirement
that the tangent and higher derivatives at the source point be transformed to
the tangent and higher derivatives at the target point will restrict, in a nontrivial
way, the types of invertible transformations that are possible. More on this topic
is discussed in Appendices 2 and 3.

The contact condition (8.3) provides a formula for generating the transforma-
tion of the first derivative. First the underlying space is prolonged (the number
of variables is increased) from two variables, (x, y), to four, (x, y, dx, dy),
by supplementing (8.1) with the transformation of differentials. Once the pro-
longed transformation has been generated, the contact condition is used to
generate the transformation of yx . Once this has been accomplished, the re-
quirement that the contact condition be preserved under the extended group
(extended to include transformations of derivatives) will be checked using
the condition for invariance of a differential function of the form ![x, y, yx ,

dy, dx].
First, we generate the prolonged transformation. Take the differential of each

function in (8.1):

d ỹ = ∂G
∂x

dx + ∂G
∂y

dy,

(8.4)

dx̃ = ∂ F
∂x

dx + ∂ F
∂y

dy.

The combined transformation (8.1) and (8.4) depends on four independent
source variables (x, y, dx, dy) mapped to four independent target variables
(x̃, ỹ, dx̃, d ỹ). Only when the contact condition (8.3) is enforced is it assumed
that y is a function of x . Substitute (8.4) into (8.3), solve for ỹ x̃ , and factor
dx out of the numerator and denominator. The finite transformation of the first



8.1 Extension of Lie Groups in the Plane 193

derivative (cf. Chapter 1) is

ỹ x̃ = Gx + G y yx

Fx + Fy yx
= (DG)(DF)−1, (8.5)

where we have used the total differentiation operator defined in Appendix 1.
Since the transformation functions depend only on x and y, the operator trun-
cates to

D( ) = ∂

∂x
( ) + yx

∂

∂y
( ). (8.6)

Thus the once extended finite transformation group is

x̃ = F[x, y, s],

ỹ = G[x, y, s], (8.7)

ỹx̃ = G{1}[x, y, yx , s],

where

G{1}[x, y, yx , s] = (DG)(DF)−1. (8.8)

As discussed in Chapter 7, functions which transform derivatives will be labelled
by a subscript in curly braces. The braces indicate that the subscript is a function
label and not a derivative.

8.1.2 The Extended Transformation Is a Group

The extended transformation (8.7) is a Lie group. This is a very important point
in that it assures that the transformation including derivatives is invertible. We
can demonstrate the group property of (8.7) by composition. Consider the two
transformations

x̃ = F[x, y, s],

ỹ = G[x, y, s], (8.9)

ỹx̃ = Gx [x, y, s] + G y[x, y, s]yx

Fx [x, y, s] + Fy[x, y, s]yx

and

˜̃x = F[x̃, ỹ, s̃],

˜̃y = G[x̃, ỹ, s̃], (8.10)

˜̃y ˜̃x = Gx̃ [x̃, ỹ, s̃] + G ỹ[x̃, ỹ, s̃]ỹx̃

Fx̃ [x̃, ỹ, s̃] + Fỹ[x̃, ỹ, s̃]ỹx̃
.
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Composing the two transformations leads to

˜̃x = F[x̃, ỹ, s̃] = F[x, y, φ[s, s̃]],

˜̃y = G[x̃, ỹ, s̃] = G[x, y, φ[s, s̃]],

˜̃y ˜̃x = Gx̃ [x̃, ỹ, s̃] + G ỹ[x̃, ỹ, s̃]ỹx̃

Fx̃ [x̃, ỹ, s̃] + Fỹ[x̃, ỹ, s̃]ỹx̃

=
Gx̃ [x̃, ỹ, s̃] + G ỹ[x̃, ỹ, s̃]

(

Gx [x,y,s]+G y [x,y,s]yx

Fx [x,y,s]+Fy [x,y,s]yx

)

Fx̃ [x̃, ỹ, s̃] + Fỹ[x̃, ỹ, s̃]
(

Gx [x,y,s]+G y [x,y,s]yx

Fx [x,y,s]+Fy [x,y,s]yx

) .

(8.11)

The last relation in (8.11) is rearranged to read

˜̃y ˜̃x =

(Gx̃ [x̃, ỹ, s̃]Fx [x, y, s] + G ỹ[x̃, ỹ, s̃]Gx [x, y, s])

+ (Gx̃ [x̃, ỹ, s̃]Fy[x, y, s] + G ỹ[x̃, ỹ, s̃]G y[x, y, s])yx

(Fx̃ [x̃, ỹ, s̃]Fx [x, y, s] + Fỹ[x̃, ỹ, s̃]Gx [x, y, s])

+ (Fx̃ [x̃, ỹ, s̃]Fy[x, y, s] + Fỹ[x̃, ỹ, s̃]G y[x, y, s])yx

. (8.12)

Differentiating the first and second relations in (8.11) gives the following:

Gx [x, y, φ[s, s̃]] = Gx̃ [x̃, ỹ, s̃]Fx [x, y, s] + G ỹ[x̃, ỹ, s̃]Gx [x, y, s],

G y[x, y, φ[s, s̃]] = Gx̃ [x̃, ỹ, s̃]Fy[x, y, s] + G ỹ[x̃, ỹ, s̃]G y[x, y, s],

Fx [x, y, φ[s, s̃]] = Fx̃ [x̃, ỹ, s̃]Fx [x, y, s] + Fỹ[x̃, ỹ, s̃]Gx [x, y, s],

Fy[x, y, φ[s, s̃]] = Fx̃ [x̃, ỹ, s̃]Fy[x, y, s] + Fỹ[x̃, ỹ, s̃]G y[x, y, s].

(8.13)

Comparing (8.13) and the expressions in parentheses in (8.12) shows that the
composed transformation is

˜̃x = F[x, y, φ[s, s̃]],

˜̃y = G[x, y, φ[s, s̃]], (8.14)

˜̃y ˜̃x = Gx [x, y, φ[s, s̃]] + G y[x, y, φ[s, s̃]]yx

Fx [x, y, φ[s, s̃]] + Fy[x, y, φ[s, s̃]]ys
,

which is in exactly the same form as the original transformation (8.9). The
extended transformation (8.14) is a Lie group, and the function φ[s, s̃] defines
the rule of composition of the group.
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8.1.3 Finite Transformation of the Second Derivative

The once extended transformation (8.7) satisfies the second-order contact
condition

d ỹx̃ − ỹx̃ x̃ d x̃ = 0. (8.15)

The transformation of the second derivative is derived by taking the differentials
indicated in (8.15):

ỹx̃ x̃ = d ỹx̃

d x̃
= G{1}x dx + G{1}y dy + G{1}yx dyx

Fx dx + Fy dy
. (8.16)

Factoring dx out of the numerator and denominator of (8.16), the transformation
of the second derivative becomes

ỹx̃ x̃ = G{1}x + yx G{1}y + yxx G{1}yx

Fx + yx Fy
= DG{1}(DF)−1 (8.17)

The twice extended finite transformation is

x̃ = F[x, y, s],

ỹ = G[x, y, s],

ỹx̃ = G{1}[x, y, yx , s],

ỹx̃ x̃ = G{2}[x, y, yx , yxx , s],

(8.18)

where

G{2}[x, y, yx , yxx , s] = DG{1}(DF)−1. (8.19)

The same procedure used above to prove that the once extended transforma-
tion is a Lie group can be applied to (8.18). For higher derivatives, the procedure
for proving that the extended transformation is a Lie group is the same as the
one just demonstrated, and by induction, the Lie point group (8.1) extended to
any order is a group.

8.1.4 Finite Transformation of Higher Derivatives

The (p − 1)th-order extended group is of the form

x̃ = F[x, y, s],

ỹ = G[x, y, s],

ỹx̃ = G{1}[x, y, yx , s], (8.20)

ỹx̃ x̃ = G{2}[x, y, yx , yxx , s],
...

ỹ(p−1)x̃ = G{p−1}[x, y, yx , yxx , . . . , y(p−1)x , s].
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The transformation (8.20) is assumed to satisfy the pth-order contact condition
given by

d
(

ỹ(p−1)x̃
)

− ỹpx̃ d x̃ = 0. (8.21)

The transformation of the pth-order derivative is determined in the usual way
by taking differentials of the (p − 1)th-order extended transformation

d
(

ỹ(p−1)x̃
)

dx̃
=

∂G{p−1}
∂x dx + ∂G{p−1}

∂y dy + · · · + ∂G{p−1}
∂(y(p−1)x ) d

(

y(p−1)x

)

∂ F
∂x dx + ∂ F

∂y dy
. (8.22)

Factoring dx out of the numerator and denominator of (8.22) and using the
subscript notation for derivatives yields

ỹpx̃ =
G{p−1}x + yx G{p−1}y + · · · + ypx G{p−1}y(p−1)x

Fx + yx Fy
(8.23)

= DG{p−1}(DF)−1.

The pth extended group is

x̃ = F[x, y, s],

ỹ = G[x, y, s],

ỹx̃ = G{1}[x, y, yx , s], (8.24)

ỹx̃ x̃ = G{2}[x, y, yx , yxx , s],
...

ỹpx̃ = G{p}[x, y, yx , yxx , . . . , ypx , s],

where

G{p}[x, y, yx , yxx , . . . , ypx , s] = DG{p−1}(DF)−1. (8.25)

The procedure used to derive (8.14) can be repeated as the derivative order
increases and by induction, the following theorem can be stated.

Theorem 8.1. The pth-order extended transformation (8.24) generated using
the contact conditions (8.21) is a Lie group. The same holds in the case of groups
involving several dependent and independent variables where the extensions
involve several partial derivatives.
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This key statement is the theoretical justification for the entire range of
applications of extended groups to differential equations.

8.1.5 Infinitesimal Transformation of the First Derivative

The infinitesimal form of (8.1) is

x̃ = x + sξ [x, y],
(8.26)ỹ = y + sη[x, y],

where

ξ [x, y] = ∂ F
∂s

∣

∣

∣

∣

s=0
, η[x, y] = ∂G

∂s

∣

∣

∣

∣

s=0
, (8.27)

and s is assumed to be small. Substitute G = y + sη and F = x + sξ into (8.5),
and carry out the indicated differentiation. The result is

d ỹ
d x̃

=
dy
dx + s

(

ηx + ηy
dy
dx

)

1 + s
(

ξx + ξy
dy
dx

) =
dy
dx + s(Dη)

1 + s(Dξ )
. (8.28)

Expanding the denominator of the right-hand side of (8.28) in a binomial series
for small s and retaining only lowest-order terms in s produces the infinitesimal
transformation of the first derivative,

ỹx̃ = yx + s(Dη − yx Dξ ). (8.29)

The once extended infinitesimal group in the plane is

x̃ = x + sξ [x, y],

ỹ = y + sη[x, y], (8.30)

ỹx̃ = yx + sη{1}[x, y, yx ],

where

η{1}[x, y, yx ] = Dη − yx Dξ = ηx + (ηy − ξx )yx − ξy(yx )2. (8.31)

Note the quadratic dependence of the infinitesimal (8.31) on yx .
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8.1.6 Infinitesimal Transformation of the Second Derivative

The infinitesimal form of the twice extended group is derived using the same
approach. Substitute G{1} = yx + sη{1} and F = x + sξ into (8.19). The result is

ỹx̃ x̃ =
yxx + s

(

Dη{1}
)

1 + s(Dξ )
. (8.32)

Expanding the denominator of (8.32) in a binomial series and retaining lowest-
order terms in the group parameter s gives the infinitesimal transformation of
the second derivative,

ỹx̃ x̃ = yxx + s
(

Dη{1} − yxx Dξ
)

. (8.33)

The twice extended infinitesimal group is

x̃ = x + sξ [x, y],

ỹ = y + sη[x, y],
(8.34)ỹx̃ = yx + sη{1}[x, y, yx ],

ỹx̃ x̃ = yxx + sη{2}[x, y, yx , yxx ],

where

η{2}[x, y, yx , yxx ] = Dη{1} − yxx Dξ (8.35)

and

Dη{1} = ∂η{1}

∂x
+ yx

∂η{1}

∂y
+ yxx

∂η{1}

∂yx
, Dξ = ∂ξ

∂x
+ ∂ξ

∂y
yx . (8.36)

Written out, the infinitesimal transformation for the second derivative is

η{2} = ηxx + (2ηxy − ξxx )yx + (ηyy − 2ξxy)y2
x

− ξyy y3
x + (ηy − 2ξx )yxx − 3ξy yx yxx . (8.37)

Note that η{2} is linear in yxx . The formula for the infinitesimal transformation
of third derivatives is

η{3} = ηxxx + (3ηxxy − ξxxx )yx + (3ηxyy − 3ξxxy)y2
x

+ (ηyyy − 3ξxyy)y3
x − ξyyy y4

x + (3ηxy − 3ξxx )yxx

+ (3ηyy − 9ξxy)yx yxx − (6ξyy)y2
x yxx − (3ξy)y2

xx

+ (ηy − 3ξx )yxxx − (4ξy)yx yxxx . (8.38)
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Similarly, η{3} is linear in yxxx , and so on. The linearity of higher-order in-
finitesimals means that when it comes to solving for the invariants of an ex-
tended group, the third and higher invariants will merely involve the solution
of a linear first-order ODE at each stage. This point will be clarified shortly.

8.1.7 Infinitesimal Transformation of Higher-Order Derivatives

Extensions of the infinitesimal group (ξ, η) to higher order are generated by
the same expansion procedure. Substitute G{p−1} = y(p−1)x + sη{p−1} and F =
x + sξ into (8.25). The result is

ỹ p̃x̃ = ypx + s Dη{p−1}

1 + s Dξ
. (8.39)

Expand the denominator retaining only lowest-order terms in s. The pth-order
infinitesimal transformation is

ỹ p̃x̃ = ypx + s
(

Dη{p−1} − ypx Dξ
)

, (8.40)

and the pth-order extended infinitesimal group is

x̃ = x + sξ [x, y],

ỹ = y + sη[x, y],

ỹx̃ = yx + sη{1}[x, y, yx ],

ỹx̃ x̃ = yxx + sη{2}[x, y, yx , yxx ], (8.41)
...

ỹ(p−1)x̃ = y(p−1)x + sη{p−1}
[

x, y, yx , yxx , . . . , y(p−1)x
]

,

ỹpx̃ = ypx + sη{p}[x, y, yx , yxx , . . . , ypx ],

where

η{p}[x, y, yx , yxx , . . . , ypx ] = Dη{p−1} − ypx Dξ . (8.42)

The total differentiation operator acting on the first term is

Dη{p−1} = ∂η{p−1}

∂x
+ yx

∂η{p−1}

∂y
+ yxx

∂η{p−1}

∂yx
+ · · · + ypx

∂η{p−1}

∂y(p−1)x
. (8.43)
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8.1.8 Invariance of the Contact Conditions

The demonstration of invariance of the contact conditions is rather lengthy, and
so the main results are presented here, with full details left to Appendix 2. The
once extended group (8.7) or (8.30) leaves invariant the contact condition

d ỹ − ỹx̃ d x̃ = 0. (8.44)

To show this, we consider the prolongation of the infinitesimal form of the once
extended group:

x̃ = x + ξ [x, y]s,

ỹ = y + η[x, y]s,

ỹx̃ = yx + η{1}[x, y, yx ]s, (8.45)

dx̃ = dx + (ξx dx + ξy dy)s = dx + (dξ )s,

d ỹ = dy + (ηx dx + ηy dy)s = dy + (dη)s.

Note that the transformation of dyx is not required, since it does not appear in
the first-order contact condition (8.44). The group operator corresponding to
the prolonged group (8.45) is

X̂ {1} = ξ
∂

∂x
+ η

∂

∂y
+ η{1}

∂

∂yx
+ (dξ )

∂

∂(dx)
+ (dη)

∂

∂(dy)
. (8.46)

where the ˆ over the X is used to denote a group operator prolonged to include
the differentials dξ and dη.† We need to show that the contact condition (8.44)
is invariant under the group (8.45). Apply the operator (8.46) to (8.44). The
result is

X̂ {1}(dy − yx dx) = dη − η{1} dx − yx dξ . (8.47)

Writing out the differentials in (8.47) in full and gathering terms (see
Appendix 2) leads to

X̂ {1}(dy − yx dx) = (ηy − ξy yx )(dy − yx dx) = 0. (8.48)

The contact condition (8.44) is invariant under the prolonged group, and we
can write with confidence

d ỹ − ỹ{x̃} dx̃ = dy − y{x} dx . (8.49)

† Throughout the literature on group theory, the phrases “extended group” and “ prolonged group”
are normally used interchangably to refer to transformations extended to include derivatives such
as (8.41) and (8.42). In this text I will make a slight distinction and use “prolonged group” to
refer to transformations such as (8.45) that are supplemented by transformations of differentials.
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In other words, if (8.44), considered as a function of x, y, yx , dx, dy, were to
be expanded in a Lie series in the operator (8.46), the series would truncate to
(8.49). This confirms that, when a curve is transformed from the source space
(x, y) to the target space (x̃, ỹ), the tangent to a point in (x, y) will be trans-
formed to the tangent of the mapped point in (x̃, ỹ) as illustrated in Figure 7.1.
The transformation of points and first derivatives is a one-to-one invertible
map. This is a direct consequence of the group property of the extended trans-
formation. Similarly, all higher-order contact conditions are invariant under the
extended group, prolonged to include the required differentials.

Theorem 8.2. The pth-order contact condition d(y(p−1)x ) − ypx dx = 0 is pre-
served by the transformation group (8.1). So to all orders of derivatives,

d(ỹ) − ỹx̃ d x̃ = d(y) − yx dx,

d(ỹx̃ ) − ỹx̃ x̃ d x̃ = d(yx ) − yxx dx,
(8.50)...

d
(

ỹ(p−1)x̃
)

− ỹpx̃ d x̃ = d
(

y(p−1)x
)

− ypx dx .

The proof of this theorem is provided in Appendix 2.
The reader may wonder why we make such an issue of the contact condi-

tions at this stage, when they seem self-evident. It is in preparation for our
later consideration of Lie–Bäcklund transformations, where the contact condi-
tions play a nontrivial role in determining the infinite-order character of such
transformations. A much more detailed account of this point can be found in
Appendix 3.

8.2 Expansion of an ODE in a Lie Series – The Invariance
Condition for ODEs

Now that it is understood that a differential equation can be treated as a locally
analytic function of variables and derivatives, the invariance condition for an
ODE can be defined in exactly the same way that we defined the invariance
condition of a function in Chapter 5, Section 5.6. The whole mathematical
apparatus – Lie series, invariance condition, and so on – developed for func-
tions carries over intact to the treatment of differential functions (ODEs and
PDEs).

Theorem 8.3. The pth-order ODE ψ = ![x, y, yx , yxx , . . . , ypx ] = 0, treated
as a differential function of the variables x, y, yx , yxx , . . . , ypx , can be
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expanded in a Lie series as

![x̃, ỹ, ỹx̃ , ỹx̃ x̃ , . . . , ỹpx̃ ]

= ![x, y, yx , yxx , . . . , ypx ] + s X{p}! + s2

2!
X{p}

(

X{p}!
)

+ · · · , (8.51)

where X{p} is the operator of the p times extended group,

X{p} = ξ
∂

∂x
+ η

∂

∂y
+ η{1}

∂

∂yx
+ η{2}

∂

∂yxx
+ · · · + η{p}

∂

∂ypx
. (8.52)

The ODE is invariant if and only if

X{p}![x, y, yx , yxx , . . . , ypx ] = 0. (8.53)

The characteristic equations asssociated with (8.53) are

dx
ξ [x, y]

= dy
η[x, y]

= dyx

η{1}[x, y, yx ]
= dyxx

η{2}[x, y, yx , yxx ]
= · · · = dypx

η{p}

(8.54)

with p + 1 integral invariants.

8.2.1 What Does It Take to Transform a Derivative?

In order to apply the invariance condition (8.53), it is necessary to generate
the infinitesimal transformation functions η{1}, η{2}, . . . , η{p} for the various
derivatives that appear in the differential equation in question. For an equation
containing high-order derivatives this is not an attractive prospect. Figure 8.1
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Fig. 8.1. Number of terms in η{p} versus p for the case of one dependent variable and
one independent variable.
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illustrates why. The number of terms in η{p} grows rapidly as the order increases,
due to the nested differentiation in the first term on the right-hand, side of
(8.42). Additional variables increase the number of terms even more rapidly. The
software package IntroToSymmetry.m provided with the text automates
the generation of these transformations.

8.3 Group Analysis of Ordinary Differential Equations

In Chapter 6 it was shown that the knowledge of an invariant group leads
immediately to an integrating factor and the general solution of a first-order
ODE. It was also pointed out that there is no systematic way of finding the
group for a given first-order ODE. In the first part of this chapter, the procedure
for generating the transformations of derivatives was developed, and it was
shown that the contact conditions are preserved to infinite order by the extended
group. The condition for invariance of an ODE was then derived by treating
it as a differential function and expanding the ODE in a Lie series using the
extended group.

Now we are prepared to ask: what is the general form of the ODE that is
invariant under a given group with known infinitesimals (ξ, η)? For first-order
equations this consists in studying the equation in the three dimensional space
of differential variables, (x, y, yx ). The ideas presented then generalize easily to
second- and higher-order equations by considering higher-order ODEs as differ-
ential functions in higher dimensions: (x, y, yx , yxx ), (x, y, yx , yxx , yxxx ), etc.

8.4 Failure to Solve for the Infinitesimals That Leave a First-Order
ODE Invariant

In Chapter 3 we discussed the difficulty of finding the integrating factor that
will turn a first-order equation into an exact differential. In Chapter 6 we gave
this a group interpretation by stating that there is no systematic way to find the
group that leaves a given first-order ODE invariant. These results are essentially
equivalent, and it is instructive to examine the group approach.

The invariance condition for a first-order ODE ψ = ![x, y, yx ] is

X{1}! = ξ
∂!

∂x
+ η

∂!

∂y
+ η{1}

∂!

∂yx
= 0 (8.55)

with characteristic equations

dx
ξ [x, y]

= dy
η[x, y]

= dyx

η{1}[x, y, yx ]
. (8.56)
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Without loss of generality, let the equation be of the form

![x, y, yx ] = yx − f [x, y] = 0. (8.57)

Differentiating (8.57), substituting the expression for η{1} into (8.55), and re-
placing yx with f [x, y] leads to

ηx + (ηy − ξx ) f − ξy f 2 − ξ
∂ f
∂x

− η
∂ f
∂y

= 0. (8.58)

One solution of (8.58) is f [x, y] = η[x, y]/ξ [x, y], and so for any ξ [x, y],
without loss of generality, we can let

η[x, y] = ξ [x, y] f [x, y] + g[x, y]. (8.59)

Upon substitution of (8.59) into (8.58) and canceling terms, one finds that
g[x, y] is the solution of

1
∂ f/∂y

∂g
∂x

+ f [x, y]
∂ f/∂y

∂g
∂y

= g. (8.60)

According to the method of Lagrange developed in Chapter 3 Section 3.6, the
solution of (8.60) coincides with the characteristics of

∂ f
∂y

dx =
(

∂ f
∂y

)

1
f [x, y]

dy = dg
g

. (8.61)

But in order to complete the solution for the infinitesimals we have to solve
the first equality in (8.61), which is the original problem we set out to solve in
the first place. This approach has failed to provide any information about the
infinitesimals (ξ, η) that will leave a given first-order ODE invariant. In the next
section we consider the reverse problem.

8.5 Construction of the General First-Order ODE That Admits a
Given Group – the Ricatti Equation

Let the integral of the first equality in (8.56) be ψ1 = !1[x, y]. In general this
is a hard problem, since it requires the solution of a first-order nonlinear ODE
whose invariant group is not known. However, once !1 has been determined,
the second integral of (8.56) can always be determined, as we shall now demon-
strate. For the second integral, say ψ2 = !2[x, y, yx ], we need to solve

dyx

dx
= η{1}[x, y, yx ]

ξ [x, y]
= ηx

ξ
+

(

ηy

ξ
− ξx

ξ

)

yx − ξy

ξ
y2

x . (8.62)
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Usingψ1 =!1[x, y] to eliminate y in Equation (8.62) leads to a Ricatti equation
for yx of the form

dyx

dx
= A[x ; ψ1] + B[x ; ψ1]yx + C[x ; ψ1](yx )2, (8.63)

where

A[x ; ψ1] = ηx [x, y[x ; ψ1]]
ξ [x, y[x ; ψ1]]

, (8.64)

B[x ; ψ1] = ηy[x, y[x ; ψ1]]
ξ [x, y[x ; ψ1]]

− ξx [x, y[x ; ψ1]]
ξ [x, y[x ; ψ1]]

, (8.65)

C[x ; ψ1] = −ξy[x, y[x ; ψ1]]
ξ [x, y[x ; ψ1]]

. (8.66)

The general solution of Equation (8.63) can always be determined if a par-
ticular solution can be found. In this case the function

f [x ; ψ1] = η[x, y[x ; ψ1]]
ξ [x, y[x ; ψ1]]

(8.67)

satisfies (8.63). This can be seen as follows. Differentiate (8.67):

ξ d f + ξx f dx + ξy f dy − ηx dx − ηy dy = 0. (8.68)

Equation (8.68) can be rearranged to read the same as (8.62):

d f
dx

= ηx

ξ
+

(

ηy

ξ
− ξx

ξ

)

f − ξy

ξ
f 2. (8.69)

Therefore (8.67) is a solution of (8.62). Now let the complete solution of (8.63)
be written as

yx = f [x ; ψ1] + 1
h[x]

. (8.70)

Substitute (8.70) into (8.63). The result is

d(yx )
dx

= d f
dx

− 1
h2

dh
dx

= A[x ; ψ1] + B[x ; ψ1]
(

f + 1
h

)

+ C[x ; ψ1]
(

f + 1
h

)2

. (8.71)
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If (8.69) is subtracted from (8.71), the result is a linear equation for h(x),

dh
dx

= −(B[x ; ψ1] + 2 f [x ; ψ1]C[x ; ψ1])h − C[x ; ψ1], (8.72)

which can be solved using the integrating factor derived in Chapter 6,
Example 6.5:

h[x ; ψ1] =
∫

x

{

C exp
[

∫

x ′
(B+2 f C) dx ′′

]}

dx ′ − y exp
[

∫

x
(B + 2 f C) dx ′

]

.

(8.73)

Combining (8.73), (8.70), and (8.67) and replacing ψ2 by its expression in
terms of x and y, the second integral of (8.56) is finally:

ψ2 = !2[x, y, yx ] = yx − η[x, y]
ξ [x, y]

− 1
h[x ; !1[x, y]]

. (8.74)

The main point here is that once the first integral of (8.56) has been deter-
mined, the second integral is determined systematically. Since both integrals
are invariant under the same group, the most general first-order ODE invariant
under the group (ξ, η) is

ω = ([!1[x, y], !2[x, y, yx ]], (8.75)

where ( is an arbitrary function.

Example 8.1 (General first-order ODE invariant under the Lorentz group).
The Lorentz group is commonly expressed in terms of hyperbolic functions:

T Lorentz :
{

x̃ = x cosh[s] + y sinh[s]
ỹ = x sinh[s] + y cosh[s]

}

. (8.76)

The infinitesimals and first extension of the group are

ξ = y, η = x, η{1} = 1 − y2
x . (8.77)

The once extended invariance condition is

X{1}! = y
∂!

∂x
+ x

∂!

∂y
+

(

1 − y2
x

) ∂!

∂(yx )
= 0 (8.78)

with characteristic equations

dx
y

= dy
x

= dyx

1 − y2
x

(8.79)
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and first integral

ψ1 = !1[x, y] = x2 − y2. (8.80)

The second integral is found by solving

dy

±
√

ψ1 + y2
= dyx

1 − y2
x
, (8.81)

which can be integrated to give

sinh−1[y/ψ1] = tanh−1[yx ] + tanh−1[ψ2], (8.82)

where the constant of integration, ψ2, has been put inside the inverse tanh
function for convenience. Using some identities for the hyperbolic functions,
Equation (8.82) can be rearranged to read

ψ2 = !2[x, y, yx ] =
yx − y

x
y
x yx − 1

. (8.83)

The most general first-order ODE invariant under the Lorentz group is
therefore

ω = ([ψ1, ψ1] = (

[

x2 − y2,
yx − y

x
y
x yx − 1

]

, (8.84)

where ( is an arbitrary function. An equally general form is simply

yx =
y
x − )[x2 − y2]

1 − y
x )[x2 − y2]

, (8.85)

where ) is an arbitrary function.

8.6 Second-Order ODEs and the Determining Equations of the Group

The general second-order ordinary differential equation

ψ = ![x, y, yx , yxx ] = 0 (8.86)

is invariant under the twice extended group with infinitesimals (ξ, η, η{1}, η{2})
if and only if

X{2}! = 0. (8.87)



208 8 Ordinary Differential Equations

Written out, (8.87) is

ξ
∂!

∂x
+ η

∂!

∂y
+ η{1}

∂!

∂yx
+ η{2}

∂!

∂yxx
= 0, (8.88)

where η{1} and η{2} are given in (8.31) and (8.37). In contrast to first-order
ODEs, the invariance condition can generally be used to determine the group
that leaves a given second- or higher-order equation invariant. This is illustrated
by the following example.

8.6.1 Projective Group of the Simplest Second-Order ODE

Let’s work out the determining equations of the most elementary second-order
ODE,

yxx = 0. (8.89)

In this case ψ = ![x, y, yx , yxx ] = yxx . The invariance condition (8.87) be-
comes

X{2}! = η{2} = 0, (8.90)

which, written out fully, is

ηxx + (2ηxy − ξxx )yx + (ηyy − 2ξxy)y2
x

− ξyy y3
x + (ηy − 2ξx )yxx − 3ξy yx yxx = 0. (8.91)

Since (8.91) holds under the restriction yxx = 0, the invariance condition takes
the form

ηxx + (2ηxy − ξxx )yx + (ηyy − 2ξxy)y2
x − ξyy y3

x = 0. (8.92)

The quantity yx can take on arbitrary values limited only by the range of yx

covered by the family of solutions of yxx = 0. Thus the only way the invariance
condition can be satisfied is if each term in (8.92) is individually zero. Therefore
the infinitesimals must satisfy

ηxx = 0,

2ηxy − ξxx = 0,
(8.93)

ηyy − 2ξxy = 0,

ξyy = 0.
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The system of four linear PDEs in ξ and η in (8.93) are called the determining
equations of the group. This is the system generated by the function FindDe-
terminingEquations in the package IntroToSymmetry.m included
with the text. In contrast to the case of first-order ODEs, the invariance condi-
tion for higher-order ODEs generally contains enough information to find the
infinitesimals. One procedure for finding them is described in the next section.

8.6.1.1 Series Solution of the Determining Equations of the Group

The determining equations (8.93) comprise a (usually overdetermined) set of
linear PDEs governing the unknown infinitesimals, and there are no general
methods for finding all solutions in all circumstances. A variety of techniques
must be used.

The fact that the system is overdetermined tends to highly restrict the classes
of solutions that typically arise. For this reason it is always useful to first at-
tempt a power-series solution under the premise that for one or more of the
infinitesimals the power series has a good chance of truncating. In the example
just considered, we might try a third-order series of the form

ξ = a1 + a2x + a3 y + a4x2 + a5xy + a6 y2

+ a7x3 + a8x2 y + a9xy2 + a10 y3,
(8.94)

η = b1 + b2x + b3 y + b4x2 + b5xy + b6 y2

+ b7x3 + b8x2 y + b9xy2 + b10 y3.

The two series in (8.94) are substituted into the determining equations (8.93),
leading to the following algebraic system for the coefficients:

ηxx = 2b4 + 6b7x + 2b8 y = 0,

2ηxy − ξxx = 2b5 + 4b8x + 4b9 y − 2a4 − 6a7x − 2a8 y = 0,
(8.95)

ηyy − 2ξxy = 2b6 + 2b9x + 6b10 y − 2a5 − 2a8x − 2a9 y = 0,

ξyy = 2a6 + 2a9x + 6a10 y = 0.

Like powers of x and y are gathered together:

2b4 + 6b7x + 2b8 y = 0,

(2b5 − 2a4) + (4b8 − 6a7)x + (4b9 − 2a8)y = 0,
(8.96)

(2b6 − 2a5) + (2b9 − 2a8)x + (6b10 − 2a9)y = 0,

2a6 + 2a9x + 6a10 y = 0.
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The variables x and y are completely independent, and so the only way the sys-
tem (8.96) can be satisfied is if the coefficients of x and y are each individually
zero. The final result is

a7 = a8 = a9 = a10 = 0,

b7 = b8 = b9 = b10 = 0,

b5 = a4,
(8.97)

b6 = a5,

b4 = 0,

a6 = 0,

which yields

ξ = a1 + a2x + a3 y + a4x2 + a5xy,
(8.98)

η = b1 + b2x + b3 y + a4xy + a5 y2

for the infinitesimal group of the equation yxx = 0. These are the projective
transformations (groups that transform straight lines to straight lines) in the
plane with eight independent parameters.

The multivariate polynomial procedure just outlined is essentially the one
used by the software package IntroToSymmetry.m enclosed with this text.
As noted earlier the function that finds the determining equations is called
FindDeterminingEquations, and the function that carries out the series
solution is calledSolveDeterminingEquations. The choice of the order
of the series is up to the user; it might depend on the effort required. When the
substitution and solution process is automated, a longer series can be selected;
however, one must remember that the number of unknown coefficients grows
rapidly with the order of the series and that the solution process is a symbolic
one and therefore may be quite slow.

This is a particularly simple example where the series approach leads to
the complete solution of the determining equations. But the reader must be
aware that it is not at all unusual for the infinitesimals to contain transcendental
functions or even arbitrary functions. The following example illustrates this
point.

Example 8.2 (A nonlinear second-order ODE with infinitesimals that
involve logarithms). Now let’s use the tools just developed to work out the
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symmetries of the nonlinear second-order ODE

yxx + 1
x

yx + ey = 0. (8.99)

In this case,

ψ = ![x, y, yx , yxx ] = yxx + yx

x
+ ey . (8.100)

The invariance condition,

X{2}! = ξ
∂!

∂x
+ η

∂!

∂y
+ η{1}

∂!

∂yx
+ η{2}

∂!

∂yxx
= 0, (8.101)

is

− ξ

x2
yx + ηey + η{1}

x
+ η{2} = 0, (8.102)

which, written out fully, is

− ξ

x2
yx + ηey + 1

x
(ηx + (ηy − ξx )yx − ξy(yx )2)

+ ηxx + (2ηxy − ξxx )yx + (ηyy − 2ξxy)y2
x

− ξyy y3
x + (ηy − 2ξx )yxx − 3ξy yx yxx = 0. (8.103)

The relation (8.103) holds under the restriction yxx = −ey−yx/x . When this rule
is applied to (8.103), it takes the form

− ξ

x2
yx + ηey + 1

x

(

ηx + (ηy − ξx )yx − ξy y2
x

)

+ ηxx + (2ηxy − ξxx )yx + (ηyy − 2ξxy)y2
x

− ξyy y3
x + (ηy − 2ξx − 3ξy yx )

(

ey − 1
x

yx

)

= 0, (8.104)

which can be parsed into the final form of the invariance condition,

ηx

x
+ ηxx − (ηy − 2ξx − η)ey

+
(

− ξ

x2
+ 2ηxy − ξxx + ξx

x
+ 3ξyey

)

yx

+
(

ηyy − 2ξxy + 2ξy

x

)

y2
x − ξyy y3

x = 0 (8.105)

Now the same argument used in the last example applies. The quantity yx can
take on arbitrary values limited only by the range of yx covered by the family of
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solutions of (8.100). Thus the only way the invariance condition (8.105) can be
satisfied is if each coefficient in (8.105) is individually zero. The infinitesimals
satisfy the determining equations

ηx

x
+ ηxx − (ηy − 2ξx − η)ey = 0,

− ξ

x2
+ 2ηxy − ξxx + ξx

x
+ 3ξyey = 0,

(8.106)

ηyy − 2ξxy + 2ξy

x
= 0,

ξyy = 0.

The solution of (8.106) is

ξ = ax + b(x ln[x]),
(8.107)

η = a(−2) + b(−2 − 2 ln[x]),

with corresponding group operators

Xa = x
∂

∂x
− 2

∂

∂y
, Xb = x ln[x]

∂

∂x
− 2(1 + ln[x])

∂

∂y
. (8.108)

See [8.1] for details of the solution procedure.

Transcendental solutions of the determining equations require that a variety
of approaches be used in the solution of the determining equations. One proce-
dure is to use the series expansion method first and then add unknown functions
to each series. When the expressions are substituted into the determining equa-
tions, the result is usually a reduced number of determining equations, which
then need to be addressed. The package does not explicitly provide for this, but
it is quite easy to use the built-in functions in Mathematica® to manipulate and
reduce the determining equations in this fashion.

Occasionally, arbitrary functions can appear in the infinitesimals, and these
can often be detected by repeating the series expansion method for succes-
sively higher orders. If an arbitrary function is present, the highest-order terms
in the expansion will continue to have nonzero coefficients as the order is
increased.



8.7 Higher-Order ODEs 213

8.6.2 Construction of the General Second-Order ODE That
Admits a Given Group

The characteristic equations of (8.88) are

dx
ξ

= dy
η

= dyx

η{1}
= dyxx

η{2}
. (8.109)

The system (8.109) has three invariants:

ψ1 = !1[x, y], ψ2 = !2[x, y, yx ], ψ3 = !3[x, y, yx , yxx ]. (8.110)

The first invariant is found by solving the first equality in (8.109). As noted
before, this is a hard problem, since it involves the solution of a first-order ODE
that, in general, is nonlinear and for which there is no systematic method for
finding a group. The second invariant is found by solving a Ricatti equation as
discussed in Section 8.5. If the first invariant is known, the second can always
be found. The third invariant is found by solving

dyxx

dx
= η{2}[x, y[x, ψ1], yx [x, ψ1, ψ2], yxx ]

ξ [x, y[x, ψ1]]
. (8.111)

The linearity of η{2} with respect to yxx means that (8.111) is linear in yxx and
therefore always solvable. The most general second-order ODE that is invariant
under the group (ξ, η) is

ω = ([!1[x, y], !2[x, y, yx ], !3[x, y, yx , yxx ]], (8.112)

where ( is an arbitrary function.
Table 8.1 lists a few of the second-order ODEs that can be generated from a

known group.

8.7 Higher-Order ODEs

The general pth-order ordinary differential equation

ψ = ![x, y, yx , yxx , . . . , ypx ] = 0 (8.113)

is invariant under the p times extended group with infinitesimals (ξ, η, η{1},

η{2}, . . . , η{p}) if and only if

X{p}! = 0, (8.114)
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Table 8.1. Some second-order ODEs invariant
under a single group.

Equation ξ η

yxx = F[y, yx ] 1 0
yxx = F[x, yx ] 0 1
yxx = F[ax + by, yx ] b −a

yxx = (1 + (yx )2)F
[

x2 + y2,
y − xyx

x + yyx

]

y −x

yxx = y3
x F

[

y,
y − xyx

yx

]

y 0

yxx = F[x, y − xyx ] 0 x
xyxx = F[y/x, yx ] x y

yxx = yF[ye−x , yx/y] 1 y

yxx = xα−2 F[x−α y, x1−α yx ] x αy

yyxx = y2
x + y2 F

[

x,
xyx

y
− ln[y]

]

0 xy

x3 yxx = F[y/x, y − xyx ] x2 xy

where the group operator of the p times extended group is

X{p} = ξ
∂

∂x
+ η

∂

∂y
+ η{1}

∂

∂yx
+ η{2}

∂

∂yxx
+ · · · + η{p}

∂

∂ypx
. (8.115)

The characteristic equations are

dx
ξ

= dy
η

= dyx

η{1}
= dyxx

η{2}
= · · · = dypx

η{p}
. (8.116)

8.7.1 Construction of the General pth-Order ODE That
Admits a Given Group

The invariance condition (8.114) has p + 1 invariants

ψ1 = !1[x, y], ψ2 = !2[x, y, yx ], . . . ,

ψ p+1 = ! p+1[x, y, yx , . . . , ypx ]. (8.117)

The first three invariants are found using the procedure just described. All
higher invariants share the same property as (8.111); they are determined by
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the solution of a linear ODE and therefore are always solvable. The most general
pth-order ODE invariant under the group (ξ, η) is

ω = ([!1[x, y], !2[x, y, yx ], . . . , ! p+1[x, y, yx , . . . , ypx ]], (8.118)

where ( is an arbitrary function.

8.8 Reduction of Order by the Method of Canonical Coordinates

Lets suppose a pth-order ODE ypx = ![x, y, yx , yxx , . . . , y(p−1)x ], where p ≥
2, admits a one-parameter Lie group with group operator X = ξ ∂

∂x + η ∂
∂y .

Solving the equations X R = 0 and X+ = 1 produces canonical coordinates
r = R[x, y] and θ = +[x, y]. In principle these relations can be inverted to
yield the group

x = F[r, θ ], y = G[r, θ ]. (8.119)

Now form the derivative

dθ

dr
= +x + +y yx

Rx + Ry yx
. (8.120)

Solve (8.120) for yx in the form

yx = -1
[

r, θ,
dθ

dr

]

= H 1
[

r, θ,
dθ

dr

]

. (8.121)

Substituting (8.121) into (8.120) and differentiating again with respect to r
leads to

yxx =
(

d2θ

dr2

)

-2
[

r, θ,
dθ

dr

]

+ϒ1
[

r, θ,
dθ

dr

]

= H 2
[

r, θ,
dθ

dr
,

d2θ

dr2

]

. (8.122)

Similar relations can be derived for higher-order derivatives. At the pth-order,

ypx =
(

d pθ

dr p

)

- p
[

r, θ,
dθ

dr

]

+ ϒ p−1
[

r, θ,
dθ

dr
, . . . ,

d p−1θ

dr p−1

]

= H p
[

r, θ,
dθ

dr
, . . . ,

d p−1θ

dr p−1
,

d pθ

dr p

]

. (8.123)

Replacing x , y, and the various derivatives of y in the original equation leads
to an equivalent pth-order equation expressed in canonical coordinates:

d pθ

dr p
= (

[

r, θ,
dθ

dr
,

d2θ

dr2
, . . . ,

d p−1θ

dr p−1

]

. (8.124)
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But by the definition of canonical coordinates, this equation is invariant under
the translation group r̃ = r, θ̃ = θ+s. Therefore (8.124) cannot depend on θ , i.e.,

d pθ

dr p
= (

[

r,
dθ

dr
,

d2θ

dr2
, . . . ,

d p−1θ

dr p−1

]

. (8.125)

If we let

dθ

dr
= z[r ], (8.126)

the original pth-order ODE reduces to the system

d p−1z
dr p−1

= (

[

r, z,
dz
dr

, . . . ,
d p−2z
dr p−2

]

,
dθ

dr
= z. (8.127)

8.9 Reduction of Order by the Method of Differential Invariants

Higher-order invariants can always be generated from the first two without
necessarily solving the further equalities in (8.116). For example, we can con-
struct the third invariant in (8.110) from a linear combination of the first two
invariants. The function

α = !2[x, y, yx ] − β!1[x, y], (8.128)

where α and β are constants, is a first-order ordinary differential equation that
is clearly invariant under all three operators X , X{1}, and X{2}. Along a solution
trajectory y[x],

D(!2 − β!1)
Dx

= ∂!2

∂x
+ yx

∂!2

∂y
+ yxx

∂!2

∂yx
− β

(

∂!1

∂x
+ yx

∂!1

∂y

)

= 0.

(8.129)

Equation (8.129) must hold for any value of β, and so

d!2

d!1
=

∂!2

∂x + yx
∂!2

∂y + yxx
∂!2

∂yx

∂!1

∂x + yx
∂!1

∂y

= !3[x, y, yx , yxx ] (8.130)

is the required third invariant. The right-hand side of (8.130) can always be
rearranged so that

!3[x, y, yx , yxx ] = ([!1[x, y], !2[x, y, yx ]]. (8.131)

Note that (8.131) is essentially the general second-order equation invari-
ant under the group. The problem of solving the general second-order ODE
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invariant under the group (ξ, η) is reduced to the solution of the first-order
ODE

d!2

d!1
= ([!1, !2] (8.132)

plus one integration. In summary, if !1[x, y] and !2[x, y, yx ] are invariants
of the once extended group (ξ, η, η{1}), then d!2/d!1 is an invariant of the
twice extended group (ξ, η, η{1}, η{2}). Similarly, d(d!2)/d(!1)2, d(d(d!2))/
d(!1)3, . . . , d p!2/d(!1)p are invariants of the pth extended group.

From a study of the integral curves of (8.132), complete qualitative informa-
tion about the solutions of the second-order ODE can be found. The state-space
method described in Chapter 3 is particularly helpful in this regard. More-
over (8.132) may itself admit a group. This will be the case when the original
second-order equation admits two groups with a solvable Lie algebra, so that a
complete reduction to quadrature is possible. Recall the discussion in Chapter 5,
Section 5.11, where it was pointed out that every two-dimensional Lie algebra
is solvable.

All second-order ODEs that admit a two-dimensional Lie algebra and are
therefore fully integrable can be put into canonical form and completely catago-
rized into four basic classes. To learn about this system of classification the
reader should consult References [8.1] and [8.2].

8.10 Successive Reduction of Order; Invariance under a
Multiparameter Group with a Solvable Lie Algebra

If an ODE is invariant under a multiparameter group with a solvable Lie
algebra, the reduction procedure uses the groups one at a time to construct
level-1 invariants that become new variables for the once reduced equation.
The original, say pth-order, equation is expressed in terms of an (p − 1)th-
order equation plus a quadrature. The process then turns to a second group in
the Lie algebra. The action of this group on the level-1 invariants of the previ-
ous group is determined. This group is then used to construct a set of level-2
invariants, which are used to reduce the (p −1)th-order, equation to order p −2
plus a second quadrature, and so forth. The process works if the Lie algebra is
solvable. If the Lie algebra is solvable, then, as the order of the original ODE
is reduced, the new ODE inherits the remaining symmetries of the original Lie
algebra. The level-1 invariants are invariant families of the level-2 group, the
level-2 invariants are invariant families of the level-3 group, and so on.

Schematically the situation is as follows. Suppose a pth-order equation ad-
mits an r -parameter group with a q-parameter solvable Lie subalgebra. where
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q ≤ r and p ≥ q . Then it is possible to reduce the problem to a p − q order equa-
tion plus q quadratures. The first two invariants constructed from each group
in the subalgebra are as follows:

X1(x,y) : φ[x, y], G[x, y, yx ]

X2(φ,G) : γ [φ, G], H [φ, G, Gφ]
(8.133)

X3(γ ,H ) : θ [γ , H ], K [γ , H, Hγ ]
...

...

where the superscripts on the group operators indicate that the operator [origi-
nally expressed in terms of (x, y)] is rewritten in terms of new variables corre-
sponding to a given level of reduction.

For definiteness, let q = 3, and let the sequence of ideals be 10, 11 = X1,
12 = X1, X2, and 13 = X1, X2, X3. Begin with the ideal 12. This has the
commutator relation

{X1, X2} = β X1. (8.134)

If we operate on the level-1 invariant, the result is

{X1, X2}φ[x, y] = X1(X2φ) − X2(X1φ), (8.135)

or

β X1φ = X1(X2φ) − X2(X1φ). (8.136)

But since φ is an invariant, X1φ = 0 and we have

X1(X2φ) = 0. (8.137)

The implication of (8.137) is that

X2φ = f [φ]. (8.138)

In other words, the level-1 invariant φ[x, y] is an invariant family of the level-2
group X2.

The same holds for the extensions. If the first extension is worked out, the
commutator gives

{

X1
{1}, X2

{1}
}

= β X1
{1}. (8.139)

The same argument just used leads to

X2
{1}G = g[G]. (8.140)
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Similarly, all extended level-1 invariants are invariant families for the extended
level-2 group and so forth. The same result holds for γ and H at the second
level, for θ and K at the third level (if there is one), and so forth. See Bluman
and Kumei [8.3] for the general theory. The following examples illustrate the
idea.

8.10.1 Two-Parameter Group of the Blasius Equation

Now let’s look at a third-order nonlinear equation with a solvable two-
dimensional Lie algebra. We consider the Blasius equation,

![x, y, yx , yxx , yxxx ] = yxxx + yyxx = 0. (8.141)

This equation comes up in connection with laminar boundary-layer theory and
problems in nonlinear heat conduction. We will study it in considerable detail
when we get to the topic of boundary layers in Chapter 10.

8.10.1.1 Invariant Group of the Blasius Equation

First let’s determine the group that leaves (8.141) invariant. The invariance
condition is

ξ
∂!

∂x
+ η

∂!

∂y
+ η{1}

∂!

∂yx
+ η{2}

∂!

∂yxx
+ η{3}

∂!

∂yxxx

= ηyxx + η{2}y + η{3} = 0. (8.142)

Substitute into (8.142) the expressions for the second and third extensions [see
Equations (8.37) and (8.38)]. The invariance condition becomes the following
rather lengthy expression:

ηyxx + yηxx + (2yηxy − yξxx )yx + (yηyy − 2yξxy)y2
x

− yξyy y3
x + (yηy − 2yξx )yxx − 3yξy yx yxx

+ ηxxx + (3ηxxy − ξxxx )yx + (3ηxyy − 3ξxxy)y2
x

+ (ηyyy − 3ξxyy)y3
x − ξ 3

x − ξyyy y4
x + (3ηxy − 3ξxx )yxx

+ (3ηyy − 9ξxy)yx yxx − 6ξyy y2
x yxx − 3ξy y2

xx

+ (ηy − 3ξx )yxxx − 4ξy yx yxxx = 0. (8.143)

Now gather coefficients of various like derivatives of y:

yηxx + ηxxx + (2yηxy − yξxx + 3ηxxy − ξxxx )yx

+ (3ηxyy − 3ξxxy + yηyy − 2yξxy)y2
x

+ (ηyyy − 3ξxyy − yξyy)y3
x − ξyyy y4

x − 3ξy y2
xx
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+ (3ηxy − 3ξxx + η + yηy − 2yξx )yxx

+ (3ηyy − 9ξxy − 3yξy)yx yxx

− 6ξyy y2
x yxx + (ηy − 3ξx )yxxx − 4ξy yx yxxx = 0. (8.144)

The invariance condition (8.144) holds under the constraint that y is a solution
of the Blasius equation (8.141). To apply this constraint we use the rule yxxx =
−yyxx to replace the highest derivative in (8.144) and then regather terms:

yηxx + ηxxx + (2yηxy − yξxx + 3ηxxy − ξxxx )yx

+ (3ηxyy − 3ξxxy + yηyy − 2yξxy)y2
x

+ (ηyyy − 3ξxyy − yξyy)y3
x − ξyyy y4

x

+ (3ηxy − 3ξxx + η + yξx )yxx + (3ηyy − 9ξxy + yξxy + yξy)yx yxx

− 6ξyy y2
x yxx − 3ξy y2

xx = 0. (8.145)

The last two terms in (8.145) imply that ξyy = 0 and ξy = 0. Use these rules to
simplify (8.145):

yηxx + ηxxx + (2yηxy − yξxx + 3ηxxy − ξxxx )yx

+ (3ηxyy + yηyy)y2
x + (ηyyy)y3

x

+ (3ηxy − 3ξxx + η + yξx )yxx + 3ηyy yx yxx = 0 (8.146)

The last and third to last terms in (8.146) imply ηyy = 0 and ηyyy = 0. Apply
these rules to (8.146):

yηxx + ηxxx + (2yηxy − yξxx + 3ηxxy − ξxxx )yx

+ (3ηxy − 3ξxx + η + yξx )yxx = 0. (8.147)

Finally, the infinitesimals of the Blasius equation satisfy the following set of
determining equations:

ξyy = 0,

ξy = 0,

ηyy = 0,

ηyyy = 0, (8.148)

yηxx + ηxxx = 0,

2yηxy − yξxx + 3ηxxy − ξxxx = 0,

3ηxy − 3ξxx + η + yξx = 0,
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from which we can conclude

ξ = a + bx, η = −by. (8.149)

The result of this example points up a common aspect of the group methodol-
ogy, especially as applied to higher-order equations. It is one of those things that
tends to get complicated before it gets simple. Furthermore, the groups that an
equation will admit can often be identified by inspection, as is the case here.
Occasionally, an approach based on inspection plus the use of the commutator
table to identify additional groups can be employed to circumvent the rather
lengthy direct procedure for finding infinitesimals by means of the invariance
condition. The software package IntroToSymmetry.m provided with the
text and described in Appendix 4 makes the effort involved less of an issue by
automating the process.

8.10.1.2 The Commutator Table

The fact that the Blasius equation is invariant under a two-parameter group,
which we know is always solvable, guarantees that the order of the equation
can be reduced by two. The infinitesimal generators of (8.149) are

Xa = ∂

∂x
, Xb = x

∂

∂x
− y

∂

∂y
(8.150)

with the commutator table given in Table 8.2.
Clearly Xa is an ideal of the Lie algebra Xa , Xb. The order in which we use

these groups to reduce the Blasius equation is important.

8.10.1.3 First Reduction

We begin with the ideal Xa . The characteristic equations of the thrice extended
operator Xa

{3} are

dx
1

= dy
0

= dyx

0
= dyxx

0
= dyxxx

0
, (8.151)

Table 8.2.
Commutator table for
the Blasius equation.

Xa Xb

Xa 0 Xa

Xb −Xa 0
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and the first two invariants are

φ = y, G = yx . (8.152)

By the method of differential invariants, the equation

DG
Dφ

=
∂G
∂x dx + ∂G

∂y dy + ∂G
∂yx

dyx

∂φ
∂x dx + ∂φ

∂y dy
= yxx

yx
(8.153)

is an invariant, as is

D2G
Dφ2

=
(

yx yxxx − y2
xx

y2
x

)

1
yx

= yx (−yyxx ) − y2
xx

y3
x

, (8.154)

where the Blasius equation has been used to replace the third derivative.
Equation (8.154) can be rearranged to read

G
D2G
Dφ2

+ φ
DG
Dφ

+
(

DG
Dφ

)2

= 0. (8.155)

This is the once reduced Blasius equation.

8.10.1.4 Second Reduction

Now we determine the action of the group x̃ = ebx , ỹ = e−b y on the new vari-
ables (φ, G),

φ̃ = e−bφ, G̃ = e−2bG, (8.156)

and on equation (8.155), which we see is invariant: Note that the infinitesimals
of (8.156) can be determined directly from the once extended group operator
Xb

{1}, i.e., one does not actually need to construct the finite group (8.156).

G̃
D2G̃
Dφ̃2

+ φ̃
DG̃
Dφ̃

+
(

DG̃

Dφ̃

)2

= e−2b
(

G
D2G
Dφ2

+ φ
DG
Dφ

+
(

DG
Dφ

)2)

= 0. (8.157)

Now solve the characteristic equations of (8.156):

dφ

−φ
= dG

−2G
= dGφ

−Gφ

. (8.158)
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The invariants (new variables) at the second stage are

γ = G
φ2

, H = Gφ

φ
. (8.159)

Use the method of differential invariants to generate the second reduction of
order:

DH
Dγ

=
Hφ + HG

dG
dφ

+ HGφ

dGφ

dφ

γφ + γG
dG
dφ

=
− Gφ

φ2 + 1
φ

Gφφ

−2 G
φ3 + 1

φ2 Gφ

. (8.160)

Using the once reduced equation to eliminate the second-derivative term, the
right-hand side of (8.160) can be rearranged to read as follows:

DH
Dγ

=
− 1

φ2

( dG
dφ

)

+ 1
φ

(

− φ
G

( dG
dφ

)

− 1
G

( dG
dφ

)2)

−2 G
φ3 + 1

φ2

( dG
dφ

)

=
− 1

φ

( dG
dφ

)

− φ
G

( dG
dφ

)

− 1
G

( dG
dφ

)2

−2 G
φ2 + 1

φ

( dG
dφ

) . (8.161)

Using (8.159) in (8.161), the Blasius equation is finally reduced to the following
first-order ODE:

d H
dγ

= γ H + H + H 2

2γ 2 − Hγ
. (8.162)

This equation was discussed extensively in Chapter 3 Section 3.9.3 in con-
nection with phase-plane techniques. We will return to it again in Chapter 10,
where boundary conditions for the laminar boundary layer on a flat plate are
discussed.

8.10.1.5 The Solution

Once the correct solution trajectory of (8.162) is determined for given boundary
conditions,

H = F1[γ ; γ̃ , H̃ ], (8.163)

the solution of the original problem then requires two further integrations. The
first is

1
φ

dG
dφ

= F1[G/φ2], (8.164)
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which can be rearranged to read

d(G/φ2)
d ln[φ]

= F1[G/φ2] − 2G/φ2 (8.165)

with solution

G
φ2

= F2[φ]. (8.166)

The second integration is

x =
∫

dy
y2 F2[y]

+ C, (8.167)

where C is a constant of integration. Finally the solution is

y = Y [x ; γ̃ , H̃ , C], (8.168)

where the constants [γ̃ , H̃ , C] are related to the three boundary conditions of
the original problem. This problem is revisited with actual boundary conditions
in Chapter 10.

Occasionally we need to demonstrate that a solution is an invariant family
under a group X using the condition Xψ = F(ψ). The analysis can be a lit-
tle subtle and the following example illustrates the procedure in a particular
case.

Example 8.3 (A solution as an invariant family). Show that the solution of
yxx = e−yx is an invariant family under the two parameter family of translations
in y and x . The solution is easy to work out.

y − (x − ψ2) ln (x − ψ2) + (x − ψ2) − ψ1 = 0 (8.169)

where ψ1 and ψ2 are constants of integration corresponding to invariance under
translation in y and x respectively. Notice that ψ1 is defined so as to carefully
separate the effect of each group on the solution. That is, the ψ2 in the right
parentheses is not combined with ψ1 even though that would not change the
generality of the solution. It is clear from (8.169) that expressing the solution in
this fashion, the effect of a translation in y is to change only ψ1 and a translation
in x changes only ψ2. The group operators are

X1 = ∂

∂y
, X2 = ∂

∂x
(8.170)
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Now apply these to the solution. First apply X1 with ψ2 fixed,

X1(y − (x − ψ2)ln(x − ψ2) + (x − ψ2) − ψ1) = 1 − X1ψ1 = 0. (8.171)

This affirms that ψ1 is an invariant family. Demonstrating that ψ2 is an invari-
ant family is slightly more difficult since it appears implicitly in the solution.
Now apply X2 with ψ1 fixed.

X2(y − (x − ψ2) ln (x − ψ2) + (x − ψ2) − ψ1)

= −(1 − X2ψ2) ln (x − ψ2) = 0 (8.172)

According to this result X2ψ2 = 1 andψ2 is an invariant family under translation
in x .

The next example illustrates reduction of order in a second-order problem
with a somewhat more complex structure than we have seen before.

Example 8.4 (Complete reduction of a nonlinear second-order ODE). Find
the general solution of the following ODE:

yxx + xyx + xy3
x − y − yy2

x = 0. (8.173)

We will work out the various steps involved in some detail to demonstrate the
method of reduction. Running the package IntroToSymmetry.m reveals
that this equation admits the rotation group, (ξ, η) = (−y, x). The once extended
version of this group is

X{1} = −y
∂

∂x
+ x

∂

∂y
+

(

1 + y2
x

) ∂

∂yx
(8.174)

with characteristic equations

dx
−y

= dy
x

= dyx

1 + y2
x
. (8.175)

The first invariant is

u = x2 + y2. (8.176)

The second invariant is the solution of

dyx

1 + y2
x

= dx
−(u − x2)1/2

, (8.177)

which is

tan−1[yx ] + tan−1
[

x(u − x2)1/2

−u + x2

]

= tan−1
[

xyx − y
yyx + x

]

= tan−1[v]. (8.178)
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where we have used the identity

tan−1[a] + tan−1[b] = tan−1
[

ab + 1
b − a

]

. (8.179)

The second invariant is

v = xyx − y
yyx + x

, (8.180)

Let’s use reduction through the method of differential invariants. Differentiate
both invariants with respect to x :

Dv

Dx
=

y
(

1 + y2
x

)

− xyx
(

1 + y2
x

)

+ (x2 + y2)(−xyx + y)
(

1 + y2
x

)

(yyx + x)2
,

(8.181)
Du
Dx

= 2(yyx + x)

where (8.173) has been used to replace yxx .

Now divide out the Dx and rearrange:

Dv

Du
=

−v(1 + u)
(

1 + y2
x

)

2(yyx + x)2
. (8.182)

Our goal at this point is to rearrange the right-hand side of (8.182) so that it is
expressed only in terms of the new variables (u, v). Note that

(yyx + x)2 = (xyx − y)2

v2
, (8.183)

and so

Dv

Du
=

−v3(1 + u)
(

1 + y2
x

)

2(xyx − y)2
. (8.184)

Furthermore,

xyx − y = uv

vy − x
. (8.185)

Thus

Dv

Du
=

−v3(1 + u)
(

1 + y2
x

)

(vy − x)2

2(uv)2
. (8.186)

Noting

1 + y2
x = v2u + u

(vy − x)2
, (8.187)
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we finally have the sought-after reduction to first order,

dv

du
= −v(1 + u)(1 + v2)

2u
. (8.188)

This equation can be easily separated:

dv

v(1 + v2)
= 1 + u

2u
du, (8.189)

which leads to the solution of (8.188),

ψ = v2

1 + v2
ueu . (8.190)

But we want the solution of the original ODE. To this end we now solve
for v:

v = ±
(

ψ

ueu − ψ

)1/2

. (8.191)

Restoring the variables (x, y),

xyx − y
yyx + x

= ±
(

ψ

(x2 + y2)e(x2+y2) − ψ

)1/2

. (8.192)

The left-hand side can be rearranged to read

xyx − y
yyx + x

=
x2 d

dx

( y
x

)

yyx + x
= 2u

1 + (y/x)2

d
du

(

y
x

)

. (8.193)

Now

d(y/x)
1 + (y/x)2

= ±
(

ψ

ueu − ψ

)1/2 du
2u

. (8.194)

Integrating,

tan−1[y/x] = ±
∫

x2+y2

(

ψ

ueu − ψ

)1/2 du
2u

, (8.195)

or

y
x

= ±tan

[

∫

x2+y2

(

ψ

ueu − ψ

)1/2 du
2u

]

+ C. (8.196)
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The two constants of integration are ψ and C . Note that under rotation in x
and y,

ũ = u,
(8.197)

ỹ/x̃ = y/x + s,

which is consistent with the original observation that the equation (and solution
family) are invariant under the rotation group.

8.11 Group Interpretation of the Method of Variation of Parameters

Now let’s use our method to analyze the general linear, inhomogeneous second-
order ODE

h[x]yxx + g[x]yx + f [x]y = F[x], (8.198)

normally solved using the method of variation of parameters. In the context of
group theory, (8.198) is regarded as a differential function of (x, y, yx , yxx ):

ψ = ![x, y, yx , yxx ] = h[x]yxx + g[x]yx + f [x]y − F[x]. (8.199)

The invariance condition, X{2}! = 0, written out, is

ξ (hx yxx + gx yx + fx y − Fx ) + η f + η{1}g + η{2}h = 0, (8.200)

where the infinitesimals (ξ, η) are unknown functions that need to be deter-
mined. Now substitute the expressions for the extensions η{1} and η{2} [see
Equations (8.31) and (8.37)]:

ξ (hx yxx + gx yx + fx y − Fx ) + η f

+
(

ηx + (ηy − ξx )yx − ξy y2
x

)

g

+
(

ηxx + (2ηxy − ξxx )yx + (ηyy − 2ξxy)y2
x

)

h

+
(

−ξyy y3
x + (ηy − 2ξx )yxx − 3ξy yx yxx

)

h = 0. (8.201)

At this stage we could rearrange (8.201) so that all the products y of and its
various derivatives were gathered together, then proceed to identify and solve the
determining equations of the group. However, since f, g, h, and are assumed
to be arbitrary functions of x , the invariant group must leave x unchanged.
Therefore we can safely assume at the outset that ξ = 0, and so we need only
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solve for the one unknown function η(x, y). The invariance condition (8.201)
becomes

η f + (ηx + ηy yx )g +
(

ηxx + 2ηxy yx + ηyy y2
x

)

h + ηy yxx h = 0. (8.202)

This relationship is satisfied under the condition that (8.198) is satisfied by y[x].
Using (8.198) to replace yxx , Equation (8.202) becomes

(η f + ηx g + ηxx h + ηy F − yηy f ) + (2ηxyh)yx + (ηyyh)y2
x = 0. (8.203)

Since yx is arbitrary, each of the expressions in parentheses in (8.203) must be
individually zero. Thus for general f, g, h, and F the determining equations of
the group reduce to

ηyy = 0,

ηxy = 0,
(8.204)

ηy = 0,

hηxx + gηx + f η = 0.

The first three relations in (8.204) imply that η is independent of y. Comparing
the last relation in (8.204) with the original ODE, we recognize that η[x] is
an as yet unknown solution of the homogeneous equation. The homogeneous
equation has two independent solutions θ [x] andφ[x], and so (8.199) is invariant
under a two-parameter group with infinitesimals

ξ = 0, η = aθ[x] + bφ[x]. (8.205)

The corresponding finite group is

x̃ = x, ỹ = y + aθ [x] + bφ[x]. (8.206)

The invariant group (8.206) simply expresses the fact that to a solution of
(8.199) one can always add any linear combination of the two solutions of the
homogeneous equation. The group operators are

Xa = θ [x]
∂

∂y
, Xb = φ[x]

∂

∂y
, (8.207)

and the commutator of the group is {Xa, Xb} = 0. The Lie algebra of a two-
parameter group is always solvable, and a consequence of this for the present
example is that, once θ and φ are known, the solution of (8.198) can be reduced
by two orders to quadrature. An analogous situation exists for the first-order
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linear equation described in Chapter 6, Example 6.5, where the integral of
the homogeneous problem is the infinitesimal of the one-parameter translation
group that leaves the equation invariant.

8.11.1 Reduction to Quadrature

In the previous section we looked for the group that left (8.199) invariant.
Having identified the invariant group (8.206), we now turn to the problem of
finding invariants that can be used as new variables leading to a reduction of
order. So we look for other surfaces that are invariant under Xa and Xb. The
characteristic equations of the twice extended infinitesimal operator Xa

{2} are

dx
0

= dy
θ

= dyx

θx
= dyxx

θxx
(8.208)

with invariants

u = x, v = yx

θx
− y

θ
, w = yxx

θxx
− yx

θx
. (8.209)

The third invariant, w, is not actually required for what follows. Using the
method of differential invariants, we construct the first-order equation,

dv

du

(

θu

θ
−

(

f [u]
h[u]

)

θu

θu

)

u − F[u]
h[u]θu

= 0. (8.210)

Note that θ, f, h, and F are all functions of u (or x). Now let’s consider the
action of the group

x̃ = x,

ỹ = y + bφ, (8.211)

ỹ x̃ = yx + bφx

on u and v (the invariants corresponding to the group parameter a). These
transform as

ũ = u,
(8.212)

ṽ = v + b
(

W
θθu

)

,

where W is the Wronskian

W = θφu − θuφ. (8.213)
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As expected, Equation (8.210) is invariant under the group (8.212):

d ṽ

dũ
+

(

θũ

θ
−

(

f [ũ]
h[ũ]

)

θũ

θũ

)

ũ − F[ũ]
h[ũ]θũ

= dv

du
+

(

θu

θ
−

(

f [u]
h[u]

)

θu

θu

)

u − F[u]
h[u]θu

= 0. (8.214)

The integrating factor for (8.210) is

M = 1
Aη − Bξ

= θθu

W
, (8.215)

and the solution is

v = W
θθu

∫

u

f θ

hW
du′ + C1

W
θθu

, (8.216)

where C1, is a constant of integration. Use the expression in (8.209) to replace
v in (8.216) and replace u with x :

yx = θx

θ
y + W

θ

∫

x

f θ

hW
dx ′ + C1

W
θ

. (8.217)

We could have carried out this entire analysis in reverse order (using Xb first,
then Xa), in which case we would have wound up with an alternative form of
the solution:

yx = φx

φ
y + W

φ

∫

x

f φ

hW
dx ′ + C2

W
φ

, (8.218)

where C2 is a constant of integration. Equate (8.218) and (8.217) and solve
for y:

y[x] = φ

∫

x

f θ

hW
dx ′ − θ

∫

x

f φ

hW
dx ′ + C2φ + C1θ . (8.219)

This is the classical solution of an inhomogeneous second-order linear ODE,
usually derived by variation of parameters.

8.11.2 Solution of the Homogeneous Problem

Our analysis of the invariance condition (8.203) led to the two-parameter group
(8.206) for the inhomogeneous equation. The infinitesimal transformation of
y requires that the two independent solutions of the homogeneous equation
be known. As a result, this group is of no use in determining a solution of the
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homogeneous problem and thus the full solution. Let’s reexamine the invariance
condition (8.203) with F = 0:

(η f + ηx g + ηxx h − ηy f y) + (2ηxyh)yx + (hηyy)y2
x = 0. (8.220)

Now the determining equations are

ηyy = 0,

ηxy = 0, (8.221)

η f + ηx g + ηxx h − f ηy y = 0

with infinitesimals

ξ = 0, η = aθ [x] + bφ[x] + cy. (8.222)

The finite group corresponding to c is

x̃ = x, ỹ = ec y. (8.223)

Here we have picked up the invariance of the homogeneous equation under an
arbitrary stretching of y. The commutator table of (8.222) is given in Table 8.3;
it can be seen to be a solvable Lie algebra with ideal Xa, Xb. The characteristic
equations of (8.223) are

dx
0

= dy
y

= dyx

yx
= dyxx

yxx
(8.224)

with integrals

u = x, v = yx

y
. (8.225)

By the method of differential invariants the homogeneous second-order equa-
tion reduces to the first-order Ricatti equation

dv

du
= f

h
+ g

h
v + v2. (8.226)

Table 8.3. Commutator table for the
homogeneous problem.

Xa Xb Xc

Xa 0 0 Xa

Xb 0 0 Xb

Xc −Xa −Xb 0
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Although the Lie algebra in Table 8.3 is solvable, we can’t go beyond this point,
since the infinitesimals of the remaining two groups require that the solution of
the homogeneous equation be known.

We have a few options: The phase-plane method described in Chapter 3 can
be used to analyze (8.226) for given functions f, g, h. For example if f, g, and
h are constants, a solution of (8.226) is v[u] = constant. Let v = λ; then (8.226)
becomes

f
h

+ g
h

λ + λ2 = 0. (8.227)

Solving the quadratic for λ and solving λ = yx/y leads to the well-known ex-
ponential solutions (θ, φ) = (A exp[αx], B exp[βx]). All the classical cases of
second-order linear ODEs can be studied this way.

8.12 Concluding Remarks

In Section 8.10 it was stated that if a pth- order equation admits a q-parameter
solvable Lie algebra then it can be reduced to order p − q. It is important
to realize that this is not necessarily the end of the story. At each step in the
reduction process there exists the possibility that the reduced equation may
admit new symmetries. It is therefore useful to search for such symmetries in
order to exhaust all the possibilities for reduction of order. An example where
this occurs is discussed in Section 6.2 of Hydon [8.7].

Much more could be said about ODEs. However, we will leave the subject
at this point and in the next chapter develop the tools of symmetry analysis for
PDEs. The most important points to take away from this chapter are that the
group symmetries of a second- or higher-order ODE can be found systematically
and that the solvability of the Lie algebra determines how useful the symmetries
will be in the reduction of the order of the equation. ODEs will continue to pop
up throughout the text as we look at examples where the reduction of a PDE
leads to an ODE.

8.13 Exercises

8.1 Show that f = η/ξ is a solution of (8.58).
8.2 Write down the invariance condition and work out the determining equa-

tions for

yxx − x − ay2 = 0. (8.228)

Show that the determining equations have no solution and therefore the
equation has no symmetry.
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8.3 A problem of sound propagation through a free shear flow [8.4] leads to
the second-order, nonlinear ODE

y
d2 y
dx2

−
(

dy
dx

)2

− a2 y3 = 0. (8.229)

Show by inspection that the equation is invariant under a two-dimensional
Lie algebra. Use the package IntroToSymmetry.m to find the sym-
metries and compare results. Determine the general solution, and draw
the phase portrait. Identify any invariant solution trajectories.

8.4 Use the package to work out the infinitesimal group of

yxx = a(y)−3. (8.230)

Find the general solution, and check invariance.
8.5 Use the package to work out the symmetries of the equation

yxx = xn y2 (8.231)

for general n. By hand, work out the symmetries for the following cases:

(i) n = −5
(ii) n = − 15

7
(iii) n = − 20

7

Compare your results with Chapter 4 in Stephani [8.5].
8.6 Consider the undamped spring mass system shown in Figure 8.2. The

equation of motion is

m
d2x
dt2

+ kx = 0. (8.232)

Determine the unforced solution, and draw the phase portrait. Work out
the determining equations of the group, and solve for the infinitesimals.
Compare your results with the paper by Wulfman and Wybourne [8.4].

Fig. 8.2.
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Carefully study their discussion of the origin of periodic time in the
structure of the Lie algebra.

8.7 The spring constant in Exercise 8.6 may be a nonlinear function of x . Use
group theory to determine the unforced solution for each of the following
cases (i) k[x] = a|x |; (ii) k[x] = ax2. Draw the phase portrait for each
case.

8.8 Use the package IntroToSymmetry.m to identify a three-dimen-
sional Lie algebra of

yyxx + (yx )2 = 1, (8.233)

Is the Lie algebra solvable? Obtain the general solution and draw the
phase portrait.

8.9 Obtain the general solution of

xy2 yxx − xyx + y = 0, (8.234)

and draw the phase portrait.
8.10 Use the package IntroToSymmetry.m to show that the equation

yxx − (2/y)y2
x − (1/x)yx − y2/x = 0 (8.235)

admits a five parameter Lie algebra.
8.11 A problem involving wave propagation through an inhomogeneous

medium leads to the following rather nasty-looking nonlinear third-order
ODE:

yxxx +
(

yx

y

)

yxx −
(

2
yx

)

(yxx )2 + yx

y2
= 0. (8.236)

(1) Use the packageIntroToSymmetry.m to find the infinitesimals
of the group that leaves the equation invariant. Check the correct-
ness of your result by inspection.

(2) Solve the equation by the following steps:

(i) Use the method of differential invariants to reduce the problem
to the solution of a first-order ODE plus two integrations.

(ii) Sketch the phase portrait of the reduced system; locate and
identify any critical points.

(iii) Find an integrating factor, and solve the first-order ODE ana-
lytically. Use your result to carry out the remaining two inte-
grations and write down the general solution of the equation.
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8.12 The following fifth-order nonlinear system comes up in the context of a
buoyancy-driven flow in a container:

dy1

dt
= −σ y1 + σr y2 − σ sy4,

dy2

dt
= −y2 + y1 − y1 y3,

dy3

dt
= −ωy3 + ωy1 y2, (8.237)

dy4

dt
= −τ y4 + y1 − y1 y5,

dy5

dt
= −ωτ y5 + ωy1 y4,

where σ, ω, r, s, and τ are real constants. Use the package IntroTo-
Symmetry.m to search for invariant groups, and see how far you can
reduce the system.
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9
Partial Differential Equations

In Chapter 8 we considered group transformations in the plane involving one
dependent and one independent variable. This is appropriate for the treatment
of ODEs. Now it is time to go on to PDEs and consider groups with several de-
pendent and independent variables. Generally speaking, the ideas presented are
elementary extensions of those presented previously. PDEs are treated as dif-
ferential functions in a space whose coordinates include independent variables,
dependent variables, and partial derivatives. The procedure for extending the
group to include transformations of partial derivatives is essentially the same
as that used in the plane, and the formulas for the group extensions have much
the same form when written in terms of the total differentiation operator D.
As in the two-variable case, the extended transformation in many variables is
guaranteed to be a group, thus ensuring that it is is a one-to-one invertible map
in the higher-order tangent space of the transformation.

The infinitesimal invariance condition for a system of PDEs is derived in
the usual way from the group definition and an expansion of the system in a
Lie series. The invariance condition leads to the determining equations of the
group. These determining equations form a (usually highly overdetermined)
system of linear partial differential equations for the unknown infinitesimals.
The infinitesimals and associated Lie algebra define the fundamental symme-
tries of the system of equations in question. In the vast majority of cases the
determining equations can be solved, and over the past century these basic point
symmetries have been identified for practically all of the important equations
of mathematical physics. A very complete collection of results is contained in
the compilation edited by Ibragimov [9.1].

More recently there has been a great deal of interest in Lie–Bäcklund trans-
formations. These are higher-order tangent groups in which the transforma-
tions of dependent and independent variables can depend on derivatives up to
arbitrary order. In contrast to point groups, relatively little is known about the

237
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Lie–Bäcklund structure of many important equations. These is especially so
for higher-order transformations of complex systems, where the computational
effort needed to identify symmetries is immense and can only be contemplated
if the process is automated. These transformations are the main subject of
Chapter 14.

9.1 Finite Transformation of Partial Derivatives

Consider the finite one-parameter Lie point group, T s , in several variables:

T s :

{

x̃ j = F j [x, y, s], j = 1, . . . , n

ỹi = Gi [x, y, s], i = 1, . . . , m

}

. (9.1)

9.1.1 Finite Transformation of the First Partial Derivative

The first partial derivative is required to satisfy the first-order contact condition

d ỹi − ỹi
α dx̃α = 0, (9.2)

where the sum is over α = 1, . . . , n. To begin, prolong the group by taking
differentials of (9.1). In terms of the total differentiation operator the transfor-
mations of differentials are the following:

dx̃α = (Dβ Fα) dxβ,

d ỹi = (DβGi ) dxβ .
(9.3)

Substitute (9.3) into (9.2):
(

DβGi − ỹi
α Dβ Fα

)

dxβ = 0. (9.4)

The differentials dxβ are independent quantities. Therefore, in order for (9.4)
to be satisfied, the expression in parentheses must be zero:

DβGi − ỹi
α Dβ Fα = 0, i = 1, . . . , m. (9.5)

Assume that the determinant of the Jacobian of the transformation is nonzero,
|| Dβ Fα || ̸= 0. Then the inverse of Dβ Fα exists such that

Dβ Fα(D j Fβ)−1 = δα
j . (9.6)

Right-multiply both terms in (9.5) by (D j Fβ)−1:

DβGi (D j Fβ)−1 − ỹi
α Dβ Fα(D j Fβ)−1 = 0, (9.7)
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or

DβGi (D j Fβ)−1 − ỹi
αδα

j = 0. (9.8)

Noting that ỹi
j = ỹi

αδα
j , the finite transformation of first partial derivatives is

now determined:

ỹi
j = DβGi (D j Fβ)−1. (9.9)

The once extended finite transformation is

x̃ j = F j [x, y, s], j = 1, . . . , n,

ỹi = Gi [x, y, s], i = 1, . . . , m,

ỹi
j = Gi

{ j}[x, y, y1, s],

(9.10)

where y1 is the vector of all possible first partial derivatives and where

Gi
{ j}(x, y, y1, s) = DβGi (D j Fβ)−1. (9.11)

The extended group (9.10) can be shown to be a Lie group using the same ap-
proach used in Chapter 8, Section 8.1.2 to prove the group property in the case of
one dependent and one independent variable. By induction, the transformation
(9.1) extended to all higher partial derivatives is a group.

9.1.2 Finite Transformation of Second and Higher Partial Derivatives

The once extended group (9.10) satisfies the second-order contact condition

d ỹi
j1 − ỹi

j1α dx̃α = 0. (9.12)

Take differentials of (9.10):

dx̃α = (Dβ Fα) dxβ,

d ỹi
j1 =

(

DβGi
{ j}

)

dxβ .
(9.13)

Substitute (9.13) into (9.12), and solve for ỹi
j1 j2 using the same procedure as in

the last section:

ỹi
j1 j2 = DβGi

{ j1}(Dj2 Fβ)−1 = Gi
{ j1 j2}[x, y, y1, y2, s], (9.14)

where y2 refers to the vector of all possible second partial derivatives.
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Similarly the transformation (9.10) is extended to the pth derivative by
utilizing the contact conditions,

d(ỹi ) − ỹi
α dx̃α = 0,

d
(

ỹi
j1

)

− ỹi
j1α dx̃α = 0,

(9.15)...

d
(

ỹi
j1 j2... jp−1

)

− ỹi
j1 j2... jpα

dx̃α = 0,

at successive orders. The pth extended finite group is

x̃ j = F j [x, y, s], j = 1, . . . , n,

ỹi = Gi [x, y, s], i = 1, . . . , m,

ỹi
j1 = Gi

{ j1}[x, y, y1, s], (9.16)
...

ỹi
j1 j2... jp

= Gi
{ j1 j2... jp}[x, y, y1, . . . , yp, s],

where

Gi
{ j1 j2... jp}[x, y, y1, . . . , yp, s] = DβGi

{ j1 j2... jp−1}(D jp Fβ)−1. (9.17)

As usual, s is the group parameter which defines the mapping from the source
space

(x, y[x], y1[x], y2[x], . . . , yp[x]) (9.18)

to the target space

(x̃, ỹ[x̃], ỹ1[x̃], ỹ2[x̃], . . . , ỹp[x̃]). (9.19)

Recall the notation adopted in Chapter 7. The indices j1 j2 . . . jp on the left-hand
side of (9.16) refer to differentiation with respect to any possible combination
of independent variables, while the same lower indices with curly braces on the
right-hand side of (9.16) are part of the function name, i.e., they act as function
labels (as do the superscripts i).

For example, we might need to differentiate the first extension with respect
to one of the independent variables. We would write

∂Gi
{ j1}

∂x j2
= Gi

{ j1}x j2 , or just
∂Gi

{ j1}

∂x j2
= Gi

{ j1} j2 . (9.20)

The expressions in (9.20) would read: take the function, Gi
{ j1}, which defines

the transformation of yi
j1 under the once extended group, and differentiate with
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respect to x j2 . Naming functions this way avoids the problem of having to
introduce a whole zoo of function names – and, most importantly, this notation
ensures a transparent association between a function name and the derivative
it transforms.

9.1.3 Variable Count

The groups considered thus far in this text are point transformations extended
to derivatives of order p, (9.16). These transformations are closed in the tangent
space

(x, y, y1, y2, . . . , yp) (9.21)

with

q = n + m + mn + m
(

(n + 1)!
2!(n − 1)!

)

+ m
(

(n + 2)!
3!(n − 1)!

)

+ · · · + m
(

(n + p − 1)!
p!(n − 1)!

)

(9.22)

dimensions. The indistinguishability of partial derivatives with respect to the
order of differentiation is taken into account in (9.22). One can write (9.22)
concisely as

q = n + m
p

∑

k=0

(n + k − 1)!
k!(n − 1)!

. (9.23)

A plot of (9.23) for the case of one dependent variable and two independent
variables is shown in Figure 9.1.
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Fig. 9.1. Number of variables versus derivative order for m = 1, n = 2.
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9.1.4 Infinitesimal Transformation of First Partial Derivatives

The infinitesimal transformation corresponding to (9.1) is

T s :

{

x̃ j = x j + sξ j [x, y], j = 1, . . . , n

ỹi = yi + sηi [x, y], i = 1, . . . , m

}

, (9.24)

generated by expanding (9.1) in a Taylor series about s = 0. The infinitesimals
are

ξ j [x, y] =
(

∂ F j

∂s

)

s=0
, ηi [x, y] =

(

∂Gi

∂s

)

s=0
. (9.25)

Substitute Fβ = xβ + sξβ and Gi = yi + sηi into (9.9) to produce

ỹi
j = (Dβ(yi + sηi ))(D j (xβ + sξβ))−1. (9.26)

Carry out the differentiation indicated in (9.26):

ỹi
j =

(

yi
β + s Dβηi)(δ

β
j + s D jξ

β
)−1

. (9.27)

The group parameter s is assumed to be small, and so the matrix inverse can be
approximated using

(

δ
β
j + s D jξ

β
)−1 ≈ δ

β
j − s(D jξ

β). (9.28)

To derive (9.28) we have used the general exponential form of a matrix. Let
Aβ

j = D jξ
β ; then the matrix exp(sAβ

j ) ≈ δ
β
j +sAβ

j + O(s2) +· · · has the inverse

exp(−sAβ
j ) = (δβ

j + sAβ
j + O(s2) + · · ·)−1 ≈ δ

β
j − sAβ

j + O(s2) − · · · . Using
this result, Equation (9.27) becomes

ỹi
j =

(

yi
β + s Dβηi)(δ

β
j − s D jξ

β
)

. (9.29)

Retaining only lowest-order terms in s, the infinitesimal form of the transfor-
mation of first partial derivatives is now determined to be

ỹi
j = yi

j + s
(

D jη
i − yi

β D jξ
β
)

, (9.30)

and the once extended infinitesimal group is

x̃ j = x j + sξ j [x, y], j = 1, . . . , n,

ỹi = yi + sηi [x, y], i = 1, . . . , m, (9.31)

ỹi
j = yi

j + sηi
{ j}[x, y, y1],
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where

ηi
{ j}[x, y, y1] = D jη

i − yi
β D jξ

β . (9.32)

9.1.5 Infinitesimal Transformation of Second and Higher
Partial Derivatives

The transformation of second partial derivatives is generated in the same way.
Substitute Fβ = xβ +sξβ and Gi

{ j1} = yi
j1 +sηi

{ j1} into the finite transformation
(9.14):

ỹi
j1 j2 =

(

Dβ

(

yi
j1 + sηi

{ j1}
))(

D j2

(

xβ + sξβ
))−1

. (9.33)

Carry out the differentiation indicated in (9.33):

ỹi
j1 j2 =

(

yi
j1β + s Dβηi

{ j1}
)(

δ
β
j2 + s D j2ξ

β
)−1

. (9.34)

Approximating the inverse using (9.28) and retaining only the lowest-order term
in s produces the infinitesimal transformation of second partial derivatives,

ỹi
j1 j2 = yi

j1 j2 + s
(

D j2η
i
{ j1} − yi

j1β D j2ξ
β
)

. (9.35)

The twice extended group is

x̃ j = x j + ξ j [x, y]s,

ỹi = yi + ηi [x, y]s,
(9.36)

ỹi
j1 = yi

j1 + ηi
{ j1}[x, y, y1]s,

ỹi
j1 j2 = yi

j1 j2 + ηi
{ j1 j2}[x, y, y1, y2]s,

where

ηi
{ j1 j2} = D j2η

i
{ j1} − yi

j1β D j2ξ
β . (9.37)

Just as a reminder, the total differentiation operator acting on the first
extension is

D j2η
i
{ j1} =

∂ηi
{ j1}

∂x j2
+ yα

j2

∂ηi
{ j1}

∂yα
+ yα

β j2

∂ηi
{ j1}

∂yα
β

. (9.38)

One continues to use the contact conditions and the finite form of the transfor-
mation at successive orders. For (p−1)th derivatives the extended infinitesimal
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transformation is

x̃ j = x j + sξ j [x, y],

ỹi = yi + sηi [x, y],

ỹi
j1 = yi

j1 + sηi
{ j1}[x, y, y1],

(9.39)
ỹi

j1 j2 = yi
j1 j2 + sηi

{ j1 j2}[x, y, y1, y2],
...

ỹi
j1 j2... jp−1

= yi
j1 j2... jp−1

+ sηi
{ j1 j2... jp−1}[x, y, y1, y2, . . . , yp−1].

The vector y p refers to all possible pth derivatives. The pth-order infinitesimal
extension is derived from the pth-order finite transformation (9.17). Substitute
Fβ = xβ +sξβ and Gi

{ j1 j2... jp−1} = yi
j1 j2... jp−1

+sηi
{ j1 j2... jp−1} into (9.17). Carrying

out the differentiation and approximating the matrix inverse using (9.28) gives
the infinitesimal transformation of the pth partial derivative:

ỹi
j1 j2... jp

= yi
j1 j2... jp

+ sηi
{ j1 j2... jp}[x, y, y1, y2, . . . , yp], (9.40)

where

ηi
{ j1 j2... jp} = D jp η

i
{ j1 j2... jp−1} − yi

j1 j2... jp−1α
D jp ξ

α. (9.41)

Note that the indices j1, j2, . . . , jp refer to any combination of p of the inde-
pendent variables. The total differentiation operator appearing in (9.41) is

D jp ( ) = ∂( )
∂x jp

+ yi
jp

∂( )
∂yi

+ yi
j1 jp

∂( )
∂yi

j1

+ yi
j1 j2 jp

∂( )
∂yi

j1 j2

+ · · · + yi
j1 j2... jp−1 jp

∂( )
∂yi

j1 j2... jp−1

. (9.42)

In Figure 9.1 we plotted the number of variables in the higher-order tangent
space defined by the variables in Equation (9.21). This number increases sharply
with increasing derivative order p. In Figure 9.2 the number of terms in the
expression for a given infinitesimal transformation of a pth derivative is plotted
for the case of one dependent and two independent variables. As can be seen
in the figure, this number of terms increases hugely with p. This is precisely
why group methods have been so slow to be incorporated into the mainstream
curricula in science and engineering. Together Figure 9.1 and Figure 9.2 make
a compelling argument for the need to automate the procedure for analyzing
the group symmetries of ODEs and PDEs.
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Fig. 9.2. Plot of the number of terms in the pth-order infinitesimal for the case m = 1,
n = 2.

9.1.6 Invariance of the Contact Conditions

The transformation (9.31) leaves invariant the first-order contact condition

dyi − yi
j dx j = 0. (9.43)

To prove that (9.43) is invariant under the group (9.1), we use the once extended
infinitesimal transformation including the prolongation to include transforma-
tions of differentials:

x̃ j = x j + sξ j [x, y], j = 1, . . . , n,

ỹi = yi + sηi [x, y], i = 1, . . . , m,

ỹi
j = yi

j + sηi
{ j}[x, y, y1],

(9.44)

dx̃ j = dx j + s
(

∂ξ j

∂xα
dxα + ∂ξ j

∂yβ
dyβ

)

= dx j + s dξ j ,

d ỹi = dyi + s
(

∂ηi

∂xα
dxα + ∂ηi

∂yβ
dyβ

)

= dyi + s dηi .

The prolonged group operator corresponding to (9.44) is

X̂ {1} = ξ j ∂

∂x j
+ ηi ∂

∂yi
+ ηi

{ j}
∂

∂yi
j

+ dξ j ∂

∂(dx j )
+ dηi ∂

∂(dyi )
, (9.45)

where the hat over the operator symbol is used to distinguish the operator of
the prolonged group from the conventional operator. Apply this operator to the
contact condition (9.43):

X̂ {1}
(

dyi − yi
j dx j) = dηi − yi

j dξ j − ηi
{ j} dx j . (9.46)
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Equation (9.46) can be rearranged to read, after canceling terms,

X̂ {1}
(

dyi − yi
j dx j) =

(

∂ηi

∂yα
− yi

β

∂ξβ

∂yα

)

(

dyα − yα
j dx j) = 0. (9.47)

See Appendix 2 for details. The result (9.47) shows that (9.43) is invariant under
the group (9.1). That is, the Lie series for (9.43), expanded in terms of X̂ {1},
truncates to

d ỹi − ỹi
j d x̃ j = dyi − yi

j dx j . (9.48)

When the transformation of (x, y) to (x̃, ỹ) space is carried out, the tangent
to a point in (x, y) will be transformed to the tangent of the transformed point in
(x̃, ỹ). It follows from the group property of the once-extended transformation
that the mapping of source points and first partial derivatives to target points
and first partial derivatives is one-to-one and invertible. The same approach is
used to prove the invariance of all higher-order contact conditions. Appendix 2
contains the proof of this point for contact conditions of arbitrary order. It is
summarized in the following theorem.

Theorem 9.1. The Lie point group

T s :

{

x̃ j = F j [x, y, s], j = 1, . . . , n

ỹ j = Gi [x, y, s], i = 1, . . . , m

}

, (9.49)

extended to include the transformation of pth derivatives using the algorithm
described above preserves the pth-order contact conditions

d ỹi − ỹi
α dx̃α = dyi − yi

α dxα = 0,

d ỹi
j1 − ỹi

j1α dx̃α = dyi
j1 − yi

j1α dxα = 0,

... (9.50)

d ỹi
j1 j2··· jp−1

− ỹi
j1 j2··· jpα

dx̃α = dyi
j1 j2··· jp−1

− yi
j1 j2··· jpα

dxα = 0.

By induction the extended group preserves tangency to any order.

The transformation of variables and derivatives is an invertible map. If two
curves in the source space (x, y) are in contact to some arbitrary order, say p,
then the two image curves in the target space (x̃, ỹ) will also possess pth-order
tangency. Tangency to infinite order is preserved by the infinitely extended
group.
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9.2 Expansion of a PDE in a Lie Series; Invariance Condition for PDEs

With the infinitesimal transformations of partial derivatives in hand, we are now
in a position to generalize our invariance condition to systems of PDEs.

Theorem 9.2. The pth-order system of partial differential equations ψ i =
( i [x, y, y1, y2, . . . , yp] = 0 is a vector of locally analytic functions of the dif-
ferential variables x, y, y1, y2, . . . , yp. Expand ( i [x, y, y1, y2, . . . , yp] in a Lie
series

( i [x̃, ỹ, ỹ1, ỹ2, . . . , ỹp]

= ( i [x, y, y1, y2, . . . , yp] + s X{p}(
i + s2

2!
X{p}

(

X{p}(
i) + · · · , (9.51)

where X{p} is the pth extended group operator

X{p} = ξ j ∂

∂x j
+ ηi ∂

∂yi
+ ηi

{ j1}
∂

∂yi
j1

+ ηi
{ j1 j2}

∂

∂yi
j1 j2

+ · · · + ηi
{ j1 j2... jp}

∂

∂yi
j1 j2... jp

.

(9.52)

The system ( i is invariant under the group (ξ j, ηi ) if and only if

X{p}(
i = 0, i = 1, . . . , m. (9.53)

The characteristic equations corresponding to (9.53) are

dx j

ξ j
= dyi

ηi
=

dyi
j1

ηi
{ j1}

=
dyi

j1 j2

ηi
{ j1 j2}

= · · · =
dyi

j1 j2... jp

ηi
{ j1 j2... jp}

. (9.54)

9.2.1 Isolating the Determining Equations of
the Group – The Lie Algorithm

Generally the invariance condition (9.53) contains enough information to de-
termine the unknown infinitesimals (ξ j, ηi ) for a given system of PDEs. The
strategy for finding the infinitesimals is as follows.

Step 1. Note that there is one invariance condition for each equation in the
system ( i = 0. The invariance condition (9.53) is generally a rather long
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sum. Each term in (9.53) is of the form AB where A is some partial
derivative of ξ j or ηi and B is in general a product of partial derivatives of
the various yi . Begin by gathering together terms that multiply the same
combinations of derivatives of the yi .

Step 2. Attend to those combinations of derivatives of yi that appear in the
original system ( i . By assumption, the yi solve the original system, and so
all the relations ( i = 0 must be imposed on each invariance condition. This
is commonly done by solving for some isolated derivative in each of the ( i

and replacing the corresponding term(s) in the invariance condition(s). The
invariance conditions are then rearranged by gathering together common
products of derivatives.

Step 3. All the coefficients multiplying various combinations of derivatives
of the yi are set equal to zero. These are the determining equations of
the group. For a system of equations the determining equations from each
invariance condition are concatenated together. This is the complete system
of determining equations.

Step 4. The result of steps 2 and 3 is a (usually) overdetermined set of linear
PDEs in the unknown infinitesimals (ξ j , ηi ). Initial considerations of these
PDEs, many of which may be redundant, permit a number of them to be
eliminated, and ultimately relatively few play a role in determining the
(ξ j , ηi ).

The steps outlined above beginning with the invariance condition will be
collectively called the Lie algorithm. The infinitesimals (ξ j, ηi ) found by solv-
ing the determining equations form a Lie algebra. Over the last century most
of the equations of mathematical physics have been explored and their point
groups identified. In this and the next three chapters the point groups of several
well-known equations will be explored.

9.2.2 The Classical Point Group of the Heat Equation

The one-dimensional heat equation written as a differential function is

φ = *[x, t, u, ux , ut , uxx , uxt , utt ] = ut − uxx = 0. (9.55)

The dimensions of the variables have been scaled so that the diffusivity is one.
The infinitesimal form of the extended group that transforms a differential
function with one dependent variable and two independent variables is, in



9.2 Expansion of a PDE in a Lie Series 249

general,

x̃ = x + sξ [x, t, u],

t̃ = t + sτ [x, t, u],

ũ = u + sη[x, t, u],

ũ x̃ = ux + sη{x}[x, t, u, ux , ut ],
(9.56)

ũ t̃ = ut + sη{t}[x, t, u, ux , ut ],

ũ x̃ x̃ = uxx + sη{xx}[x, t, u, ux , ut , uxx , uxt , utt ],

ũ x̃ t̃ = uxt + sη{xt}[x, t, u, ux , ut , uxx , uxt , utt ],

ũ t̃ t̃ = utt + sη{t t}[x, t, u, ux , ut , uxx , uxt , utt ].

The unknown infinitesimals ξ , τ , and η are determined from the invariance
condition:

X{2}* = 0

= ξ
∂*

∂x
+ τ

∂*

∂t
+ η

∂*

∂u
+ η{x}

∂*

∂ux
+ η{t}

∂*

∂ut

+ η{xx}
∂*

∂uxx
+ η{xt}

∂*

∂uxt
+ η{t t}

∂*

∂utt
. (9.57)

Carrying out the indicated differentiation of (9.55) produces the rather
compact relation

η{t} − η{xx} = 0 (9.58)

as the invariance condition for the one-dimensional heat equation. Remember,
the subscripts in (9.58) are function labels, not derivatives. The correspondence
between the invariance condition (9.58) and the heat equation itself is a conse-
quence of the linearity of the equation. In (9.58) we have the immediate result
that η can be any solution of the heat equation. This simply expresses the fact
that one can always “translate” a given solution of a linear equation by any
function that is also a solution without changing the form of the equation. The
required extensions are

η{x} = Dxη − ux Dxξ − ut Dxτ,

η{t} = Dtη − ux Dtξ − ut Dtτ, (9.59)

η{xx} = Dxηx − uxx Dxξ − uxt Dxτ.
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Expanding the total differentiation operators with respect to x and t , the two
first-order infinitesimals are

η{x} = ηx + uxηu − ux (ξx + uxξu) − ut (τx + uxτu),
(9.60)

η{t} = ηt + utηu − ux (ξt + utξu) − ut (τt + utτu).

The second-order infinitesimal is considerably longer, since it depends on
derivatives of a first-order infinitesimal:

η{xx} = Dx Dxη − 2uxx Dxξ − 2uxt Dxτ − ux Dx Dxξ − ut Dx Dxτ. (9.61)

Fully expanded, this yields

η{xx} = ηxx + uxxηu − uxx utτu − 2ux uxtτu

− 3ux uxxξu + u2
xηuu − u2

x utτuu

− u3
xξuu − 2uxtτx − 2uxxξx + 2uxηxu

− 2ux utτxu − 2u2
xξxu − utτxx − uxξxx . (9.62)

Remember, the bracketed subscript refers to the name of the function that
transforms a derivative, whereas an unbracketed subscript denotes partial dif-
ferentiation with respect to the explicit dependence on the variable.

It is expressions like (9.60) and (9.62) that prompted our adoption in Chapter 7
of a clear, precise notation for distinguishing derivatives and the functions that
transform derivatives. Compare the left-hand side of (9.60) with the first term
on the right-hand side. On the left-hand side is η{x}, the name of the function
that transforms the first spatial derivative. The first term on the right of (9.62),
ηx , stands for the partial derivative of this function with respect to its explicit
dependence on x ,

ηx = ∂η

∂x
, (9.63)

and so forth.
Now form the fully expanded invariance condition (9.58):

η{t} − η{xx} = ηt − ηxx − uxxηu + utηu + uxx utτu

− u2
t τu + 2ux uxtτu + 3ux uxxξu − ux utξu

− u2
xηuu + u2

x utτuu + u3
xξuu + 2uxtτx

+ 2uxxξx − 2uxηxu + 2ux utτxu + 2u2
xξxu

+ utτxx + uxξxx − utτt − uxξt = 0. (9.64)
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The invariance condition (9.64) holds under the constraint that the function
u[x, t] is a solution of the heat equation. Replace uxx by ut wherever it appears
in (9.64). The final form of the invariance condition is

η{t} − η{xx} = (ηt − ηxx ) + 2ux uxt (τu) + 2ux ut (ξu + τxu)

+ u2
x (2ξxu − ηuu) + u2

x ut (τuu) + u3
x (ξuu) + 2uxt (τx )

+ ut (τxx + 2ξx − τt ) + ux (ξxx − ξt − 2ηxu) = 0 (9.65)

With the replacement complete, all other derivatives of u[x, t] are not re-
stricted in any way. Therefore, in order for the invariance condition to be satis-
fied, the various coefficients in (9.65) must be individually zero:

ηt − ηxx = 0, τuu = 0,

τu = 0, ξuu = 0,

ξu + τxu = 0, τx = 0, (9.66)

2ξxu − ηuu = 0, τxx + 2ξx − τt = 0,

ξxx − ξt − 2ηxu = 0.

These are the determining equations of the point group of the heat equation.
Four of the equations in (9.66) have only a single term and can be immediately
used to simplify some of the other equations.

The determining equations are always linear, regardless of whether the orig-
inal equation is linear or nonlinear. This can be traced to the expressions for the
transformations of derivatives – the group extensions (9.41) – which are linear
in the unknown infinitesimals.

9.2.2.1 Series Solution of the Determining Equations

Let’s use the power-series form of the solution of the determining equations
discussed in Chapter 8, Section 8.6.1. Initially we will try the third-order series
in (9.67). Note that we have adopted a certain convention for numbering the
group parameters in (9.67), where the first index in the superscript of the group
parameter marks the particular infinitesimal. The a-parameters go with the
independent variables, and the b-parameters go with the dependent variables.
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Various powers of the variables are then numbered consecutively. Let

ξ = a10 + a11x + a12t + a13u + a14x2 + a15xt

+ a16xu + a17t2 + a18ut + a19u2

+ a110x3 + a111x2t + a112x2u + a113xt2 + a114xtu

+ a115xu2 + a116t3 + a117t2u + a118tu2 + a119u3,

τ = a20 + a21x + a22t + a23u + a24x2 + a25xt

+ a26xu + a27t2 + a28ut + a29u2

+ a210x3 + a211x2t + a212x2u + a213xt2 + a214xtu

+ a215xu2 + a216t3 + a217t2u + a218tu2 + a219u3,

η = b10 + b11x + b12t + b13u + b14x2 + b15xt

+ b16xu + b17t2 + b18ut + b19u2

+ b110x3 + b111x2t + b112x2u + b113xt2 + b114xtu

+ b115xu2 + b116t3 + b117t2u + b118tu2 + b119u3.

(9.67)

The series (9.67) are substituted into the determining equations (9.66); then
like powers of x , t , and u are gathered together. The variables x , t , and u are
completely independent in the context of the infinitesimals, and so the only way
the system can be satisfied is if the coefficients of various power monomials of
x , t , and u are each individually zero. The resulting algebraic system for the
coefficients is solved symbolically for the nonzero coefficients. The power-
series procedure for solving the determining equations illustrated here is the
one implemented in the package IntroToSymmetry.m enclosed with this
text. The function that carries out the series solution is called SolvDeter-
miningEquations, and the numbering system used for the coefficients is
the same as that used above.

The final result is the classical six-parameter group of the heat equation,

ξ = a10 + b111t + a24x + b112(xt),

τ = a20 + a24(2t) + b112(t2),
(9.68)

η =
(

− b112
(

x2

4
+ t

2

)

− b111

2
x + b110

)

u + g(x, t),

where gxx − gt = 0.

The first two infinitesimals, which act on x and t , correspond to a subgroup of
the projective group in two dimensions discussed in Chapter 5, Section 5.10.1.
The last term in the third infinitesimal in (9.68) arises from superposition of
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solutions permitted by the linearity of the heat equation. It can be deduced using
the functionSolveDeterminingEquations by executing the function for
successively increasing powers of the trial polynomials.

The choice of what order polynomial to select for the series depends on
the highest power that appears in the infinitesimals. In practice, the order is
increased and the solve process is repeated until the power of the result stops
changing. Since the substitution and solution process is automated, one can
select a reasonably long series; however, one must remember that the number
of unknown coefficients in the series grows rapidly and that the process for
finding the coefficients is a symbolic one and therefore may be quite slow.

The operators of the six-dimensional Lie algebra ,6 of the infinitesimal
group (9.68) are

X1 = ∂

∂x
,

X2 = t
∂

∂x
− xu

2
∂

∂u
,

X3 = x
∂

∂x
+ 2t

∂

∂t
,

(9.69)

X4 = xt
∂

∂x
+ t2 ∂

∂t
−

(

x2

4
+ t

2

)

u
∂

∂u
,

X5 = ∂

∂t
,

X6 = u
∂

∂u
.

The commutator table of ,6 is shown in Table 9.1. One of its interesting
features is that all six operators can be constructed from just X1, X4, and X5.

Table 9.1. Commutator table of the point group
of the 1-D heat equation.

X 1 X 2 X 3 X 4 X 5 X 6

X 1 0 − 1
2 X 6 X 1 X 2 0 0

X 2 1
2 X 6 0 −X 2 0 −X 1 0

X 3 −X 1 X 2 0 2X 4 −2X 5 0
X 4 −X 2 0 −2X 4 0 −X 3 + 1

2 X 6 0
X 5 0 X 1 2X 5 X 3 − 1

2 X 6 0 0
X 6 0 0 0 0 0 0
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The logic for this is as follows:

X1 and X4 generate X2,

X1 and X2 generate X6,

X4 and X5 generate X3, knowing X6.

(9.70)

So, for example, invariance under translation in x (operator X1) and under the
projective group X2 implies invariance under dilation in u (the operator X6).

It is worth asking whether the fairly elaborate, systematic procedure using
the Lie algorithm just outlined is really required to identify all the symmetry
groups of the heat equation. Several of the groups in (9.69) can be deduced
by inspection, particularly invariance under translation of the independent vari-
ables X1 and X5. The operator X3 corresponding to dilation of the independent
variables can also be determined by inspection. The form of X3 is expected
given the dimensions of the diffusivity (κ̂ = L2T −1) and the requirement of
dimensional homogeneity. The equation places no restriction on the units of u,
and as a consequence it admits the operator X6, which implies invariance under
dilation of u by a parameter that is independent of the parameter that dilates
x and t . Inspection of the commutator table reveals that these four operators
form a subalgebra. However, the remaining two operators X2 and X4 cannot
be generated using the commutator, nor can they be found by inspection. The
bottom line here is that the Lie algorithm is required to fully define the Lie
algebra of the heat equation.

This example illustrates a case where the infinitesimal for the dependent
variable contains an arbitrary solution of the heat equation – a consequence of
the linearity of the PDE. Quite often, when arbitrary functions arise, they can
be detected using the package by repeating the series expansion method for
successively higher orders. If the highest-order terms in the expansion continue
to have nonzero coefficients as the order is increased, the presence of an arbitrary
function can be surmised.

A couple of further points should be made here. The main advantage of the
Lie algorithm, beginning with the invariance condition and ending with the
determining equations, is that it is purely algorithmic, nearly foolproof, and
therefore subject to automation. The main disadvantage, especially for higher-
order systems with many variables, is that the expressions that are generated
can become extraordinarily long, quickly overburdening a pencil-and-paper
approach. Even when the method is automated, it is not difficult to pose a
problem that brings even the most powerful computer to its knees. The software
provided with the text and described in Appendix 4 is designed to generate the
determining equations for essentially any system of ODEs or PDEs that is
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input by the user. In fact, one can use the package on essentially any differential
system, including systems that may be either under- or over-determined.

Perhaps the best practical approach for identifying the symmetry groups of
a given equation is to use a two-step process plus a little experience. In the
first step, inspection is used to identify as many groups as possible, including
translations, dilations, and perhaps rotations, with the possible use of the com-
mutator table to enlarge the set of known groups. In the second step, the package
IntroToSymmetry.m is used. First one calls the function FindDeter-
miningEquations to generate the determining equations of the group.
Then the power-series method is applied using the function SolveDeter-
miningEquations in a first attempt to solve the determining equations,
all the while checking the results against the known groups determined by in-
spection. This approach will run into difficulty when the infinitesimals contain
arbitrary functions, as is the case with the third infinitesimal of the heat equa-
tion. In this case already as noted above one can use the power-series approach
repeatedly with increasing orders of the trial polynomial. If the series fails to
truncate, then a general function is indicated. This approach will not uncover
transcendental functions. In this case, built-in Mathematica® functions can be
used, together with whatever groups may be known to this point, to reduce
the determining equations to as small a set as possible. At that stage special
methods may be needed to finish the solution. Even then, all the possible solu-
tions of the determining equations may not have been found. In Chapters 14,
15, and 16 we will look at symmetries that can depend on derivatives and/or
integrals. In every case these symmetries represent additional solutions of the
same determining equations used to identify point groups.

9.3 Invariant Solutions and the Characteristic Function

Once the symmetries of a PDE have been identified, one then turns to an ex-
amination of the boundary, initial and perhaps integral conditions that define a
physical problem. If a group with operator

X = ξ 1 ∂

∂x1
+ ξ 2 ∂

∂x2
+ · · · ξ n ∂

∂xn
+ η1 ∂

∂y1
+ η2 ∂

∂y2
+ · · · + ηm ∂

∂ym

(9.71)

can be found that leaves the problem as a whole invariant, then the existence
of an invariant solution, .i [x, y] , that satisfies X.i = 0 can be assumed. The
functional form of the invariant solution is constructed from the characteristic
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equations of the group operator

dx1

ξ 1
= dx2

ξ 2
= · · · = dxn

ξ n
= dy1

η1
= dy2

η2
= · · · = dym

ηm
(9.72)

with integrals

θ k = 0k[x, y], k = 1, . . . , m + n − 1. (9.73)

These integrals become the similarity variables of the problem and the invari-
ant solution is expressed in terms of them. When the similarity variables are
substituted into the original system of PDEs the result is a new system in one
fewer variables thus achieving a simplification of the problem. The substitution
process can be quite difficult if the integrals happen to be complicated func-
tions of the old variables. However, in practice, the groups that find the widest
application tend to be elementary dilation and translation groups for which the
characteristic equations can be separated. This makes it relatively easy to choose
which integrals to use as new independent variables and which to use as de-
pendent variables. Normally the new independent variables would be arranged
to involve only the original independent variables although, in principle, that
need not be the case and there are situations where one might want to exchange
independent and dependent variables. The examples in the next two sections
illustrate how to use groups to find invariant solutions.

A slightly different take on this issue can be made by assuming at the outset
that, without loss of generality, the invariant solution can be expressed in the
explicit form

.i [x, y] = yi − *i [x] = 0. (9.74)

Written out, the invariance condition is

X.i = ηi − ξ j
(

∂*i

∂x j

)

= ηi − ξ j
(

∂yi

∂x j

)

= 0, i = 1, . . . , m. (9.75)

These are just first order PDEs of the type discussed in Chapter 3 Sections 3.1
and 3.8 and, when collected together, are equivalent to the characteristic equa-
tions (9.72). The form (9.75) can sometimes help facilitate the choice of simi-
larity variables.

The combination of infinitesimals and first derivatives in (9.75) comes up
quite often in very useful ways and is called the characteristic function denoted

µi = ηi − ξ j yi
j . (9.76)
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Using the characteristic functions, the extended infinitesimals can be written in
the convenient form,

ηi
{ j1} = D j1µ

i + yi
j1αξα

ηi
{ j1 j2} = D2

j1 j2µ
i + yi

j1 j2αξα

(9.77)
· · · · · ·

ηi
{ j1 j2··· jp} = D p

j1 j2··· jp
µi + yi

j1 j2··· jpα
ξα.

where α is a dummy index summed over 1 to n. The generation of (9.77) is
left as an excercise for the reader. See Chapter 14 Section 14.1.1 and Exercise
14.1. Using (9.77) the extended operator (9.52) can be written in the alternative
form

X{p} = ξα ∂

∂xα
+ yi

αξα ∂

∂yi
+ yi

j1αξα ∂

∂yi
j1

+ · · · + yi
j1 j2··· jpα

ξα ∂

∂yi
j1 j2··· jp

+ µi ∂

∂yi
+ D j1µ

i ∂

∂yi
j1

+ · · · + D p
j1 j2··· jp

µi ∂

∂yi
j1 j2··· jp

(9.78)

We will see much more of the characteristic function in Chapter 14 where
Lie-Bäcklund transformations are considered and where the interest is in trans-
formations for which ξα = 0. In the last section of the present chapter the subject
of nonclassical symmetries is introduced and there the main interest is in a sit-
uation where µi = 0. In both cases the discussion is facilitated by considering
the extended operator in the form (9.78).

9.4 Impulsive Source Solutions of the Heat Equation

Consider a slab of thermally conducting material. Heat is added instantaneously
along an infinite vertical strip that divides the slab. As time proceeds, the heat
diffuses outward, leading to a decrease in temperature at the center of the strip
and an increase further out as the distribution broadens. The physical situation
is shown schematically in Figure 9.3.

It is worth noting that the initial condition is not singular. Instead, there is
some finite-width, smooth distribution of temperature at t = 0. The initial dis-
tribution may be symmetric as shown in the figure, or antisymmetric involving
insertion of heat on one side of the dividing line and removal on the other, or
something more complex. The governing equation is

ut − κuxx = 0 (9.79)
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x

u

t=0

t=t1>0

t=t2>t1

Fig. 9.3. Diffusion of heat from an impulsive source.

with boundary conditions

u[±∞, t + t0] = 0, t + t0 ≥ 0. (9.80)

Both the time t and the time origin parameter t0 are assumed to be positive. The
initial condition is specified such that

A =
∫ ∞

0
xαu[x, t0] dx . (9.81)

At this point we know very little about this integral except that at t = 0 it
converges for some value of α. We don’t even know if a solution to this problem
exists! To understand this a little further, multiply the heat equation by xα and
integrate twice by parts. The result is

d
dt

(

∫ ∞

0
xαu dx

)

= κ

∫ ∞

0
xαuxx dx

= κ(xαux − αxα−1u)|∞0 + α(α − 1)

(

κ

∫ ∞

0
xα−1u dx

)

.

(9.82)

It is clear that the right-hand side of (9.82) is zero when α equals 0 or 1 as long
as ux is zero at ∞ and u is even for α = 0 and odd for α = 1. For these values,
the integral is preserved for all time. At this point we can’t say anything about
other values of α.

It is relatively easy to show that this problem is invariant under the three-
parameter group of dilations in the dependent and independent variables and
translation in time:

x̃ = ea x, t̃ = e2at + (e2a − 1)t0, ũ = e−(1+α)au. (9.83)



9.4 Impulsive Source Solutions of the Heat Equation 259

Here the finite groups of the heat equation corresponding to the operators X3

(dilation in x and t), X5 (translation in t), and X6 (dilation in u) have been
combined to produce (9.83).

It is quite easy to demonstrate the invariance of the boundary conditions (9.80)
under the group (9.83). We know from the previous section that the governing
equation is invariant under the group (9.83). Now consider the boundary curves
and functions specified on those curves. First the boundary at infinity:

x̃ = ∞ ⇒ ea x = ∞ ⇒ x = ∞. (9.84)

On the boundary at infinity,

ũ = 0 ⇒ e−(1+α)au = 0 ⇒ u = 0. (9.85)

It is important that the value of u on the boundary be zero and not, say, a
constant. If it were a nonzero constant, then the transformation of ũ would give

u = constant e(1+α)a, (9.86)

which changes the value of the constant and breaks the invariance. The boundary
in time is treated the same way:

t̃ + t0 = 0 ⇒ e2a(t + t0) = 0 ⇒ t + t0 = 0. (9.87)

The integral (9.81) is easily shown to be invariant under the group (9.83):

A =
∫ ∞

0
x̃α ũ d x̃ =

∫ ∞

0
eaαxαe−a(1+α)uea dx =

∫ ∞

0
xαu dx . (9.88)

The demonstration that the problem (equation and boundary–initial condi-
tions) is invariant under a group is essentially a proof of the existence of a
similarity solution of the problem. This implies that there should exist a solu-
tion for which the integral (9.81) converges and is preserved for all α.

Now we use the infinitesimal method to generate the similarity variables.
The infinitesimal form of the group (9.83) is

x̃ = x + sx, t̃ = t + s(2t + 2t0), ũ = u − s(1 + α)u (9.89)

with characteristic equations

dx
x

= dt
2t + 2t0

= du
−(1 + α)u

. (9.90)
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The two integrals of (9.82) are

ζ = x
(2κ(t + t0))1/2

, U = u
A

(2κ(t + t0))(1+α)/2. (9.91)

These become the similarity variables of the problem. The fact that the equation
and boundary and initial conditions are invariant under the group (9.83) implies
that the solution should be invariant under the same group. Thus we expect the
solution to have the form

u = A(2κ(t + t0))−(1+α)/2U (ζ ), (9.92)

where the parameters A and κ have been used to nondimensionalize the sim-
ilarity variables ζ and U . Substituting the similarity forms into the invariant
integral gives

∫ ∞

0
ζ αU [ζ ] dζ = 1. (9.93)

The integral (9.81) is preserved for any α as long as u and ux go to zero
sufficiently fast at infinity.

Now substitute (9.92) into the heat equation. The result is a reduction of the
problem to a second-order ODE of Sturm–Liouville type,

Uζ ζ + ζUζ + (1 + α)U = 0, U (±∞) = 0. (9.94)

Solving (9.94) for integer values of α and using the integral (9.93) to normalize
the solution leads to

U [ζ ] =
(

√

2
π

1
α!

)

e−ζ 2/2 Hα[ζ ], (9.95)

where the Hα are Hermite polynomials generated by

Hα[ζ ] = (−1)αeζ 2/2 dα

dζ α

(

e−ζ 2/2). (9.96)

The first six Hermite polynomials are

H0 = 1, H1 = ζ,

H2 = ζ 2 − 1, H3 = ζ 3 − 3ζ,

H4 = ζ 4 − 6ζ 2 + 3, H5 = ζ 5 − 10ζ 3 + 15ζ.

(9.97)

The solution (9.95) is plotted in Figure 9.4 for the first six values of α.
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Fig. 9.4. Even and odd similarity solutions of the heat equation.

What about fractional values of α? In this case the even and odd solutions of
(9.94) can be expressed in terms of confluent hypergeometric functions,

Ueven = Ce−ζ 2/4 M
[

− α

2
,

1
2
,
ζ 2

2

]

, α = 0, 2, 4, . . . ,

(9.98)

Uodd = Cζe−ζ 2/4 M
[

− α

2
+ 1

2
,

3
2
,
ζ 2

2

]

, α = 1, 3, 5, . . . ,

where

M[a, b, s] = 1 +
∞

∑

k=1

ak

bk

sk

k!
,

(9.99)
ak = a(a + 1) · · · (a + k − 1),

bk = b(b + 1) · · · (b + k − 1).

However, these solutions cannot individually satisfy the integral constraint
(9.93). For fractional α and large values of the argument, the asymptotic be-
havior of the solutions (9.98) is

lim
ζ→∞

U ≈ ( )ζ αe−ζ 2/2 + ( )ζ−α−1 (9.100)

In this case the integral does not converge:

∫ ∞

0
ζ αU [ζ ] dζ ≈ ln ζ |∞0 (9.101)

Nevertheless it is possible to combine the solutions (9.98) so as to cancel the
singularity. This leads to the construction of the parabolic cylinder functions
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U = Dα[±ζ ], where

Dα[±ζ ] =
√

π2α/2e−ζ 2/4

[

M
[

− α
2 , 1

2 , ζ 2

2

]

3
[ 1

2 − α
2

] ∓
√

2ζ
M

[

− α
2 + 1

2 , 3
2 , ζ 2

2

]

3
[

− α
2

]

]

.

(9.102)

See Abramowitz and Stegun [9.2]. The gamma function is

3[a] =
∫ ∞

0
sa−1e−s ds. (9.103)

The branch cut for defining the parabolic cylinder functions in the complex
plane is taken to be along the negative complex axis, |Arg[θ]| < 3π/4. For
small values of ζ ,

lim
ζ→0

Dα[ζ ] =
√

π2α/2e−ζ 2/4

(

1 − α
2!ζ

2 + α(α−2)
4! ζ 4 − · · ·

3
[ 1

2 − α
2

]

−
√

2
ζ − α−1

3! ζ 3 + (α−1)(α−3)
5! ζ 5 − · · ·

3
[

− α
2

]

)

,

(9.104)

and for large ζ

lim
ζ→∞

Dα[ζ ] = ζ αe−ζ 2/4
(

1 − α(α − 1)
2ζ 2

+ α(α − 1)(α − 2)(α − 3)
8ζ 4

− · · ·
)

.

(9.105)

These functions yield solutions for fractional values of α with integrals of the
form of (9.93) that converge. However, as can be seen from the combination of
even and odd terms in (9.104), they are neither symmetric nor antisymmetric
functions.

The solutions (9.92) for various integer α form a complete set of orthogonal
functions. Therefore any smooth decaying solution that goes to zero sufficiently
fast at infinity can be represented as a series expansion

u[x, t] =
∞

∑

α=0

Aα(2k(t + t0))−(1+α)/2

((

√

2
π

1
α!

)

e−ζ 2/2 Hα[ζ ]

)

. (9.106)

The coefficients Aα in the series are determined from the various moments of the
initial condition using the orthogonality of the expansion functions. It is clear
from (9.106) that regardless of the initial condition, the terms that dominate
the large-time, final decay of the temperature are the lowest nonzero modes
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α = 0, 1. This is because these are the modes with the slowest decay. In the
next section we will study a remarkable example of nonlinear heat conduction
where the fractional-α solutions play a crucial role in a symmetric problem and
where the final state of decay is not α = 0 or α = 1.

Before we leave this example, it is worthwhile saying a few words about the
initial condition and about the effective origin in time that was included when
we incorporated time translation with the group (9.83). The distribution of u at
t = 0 is

u[x, 0] =
∞

∑

α=0

Aα(2kt0)−(1+α)/2

(

√

2
π

1
α!

)

e−x2/4kt0 Hα

[

x√
2kt0

]

. (9.107)

The parameter t0 enables one to specify an initial distribution that is smooth and
infinitely differentiable. In the limit t0 → 0 the α = 0 term in the distribution
(9.107) is a useful form of the Dirac delta function. Higher values of α corre-
spond to the various derivatives of the Dirac delta function, and the integral of
the α = 0 term is the Heaviside function.

9.5 A Modified Problem of an Instantaneous Heat Source

Now we consider the problem of diffusion in a nonlinear medium. Actually
the motivation for discussing the classical solutions in the previous section
was to prepare the student for the fascinating and important nonlinear problem
presented here. The type of problem we are about to encounter comes up in a
variety of filtration situations where the fluid velocity in a porous medium is
governed by Darcy’s law,

u = − k
µ

∇ p, (9.108)

where k is the permeability of the medium, µ is the viscosity, and p is the
pressure. The continuity equation is

∂σρ

∂t
+ ∇ · ρū = 0, (9.109)

where σ is the porosity of the medium and ρ is the density of the fluid. Now let

ρ = ρ0

(

1 + p − p0

λ

)

. (9.110)

The compressibility of the fluid is generally very small, with values of λ ≈ 104

kg/cm2. When we substitute (9.110) into (9.109) and use (9.108), we find that
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the pressure satisfies the heat equation,

∂p
∂t

− κ∇2 p = 0, (9.111)

where the diffusivity of pressure is

κ = kλ

µσ
. (9.112)

This equation governs the diffusion of the pressure field associated with the slow
movement of oil through sedimentary rock around a well. In most filtration
problems, the porous medium is assumed to be incompressible and one is
solving a conventional diffusion problem. But in the oil-well problem, the rock
medium has the property that, where the pressure is increasing with time, the
pores in the rock enlarge, producing one value of the diffusivity, and where the
pressure is decreasing with time, the rock has a tendency to collapse, leading to
a different value of the diffusivity. Where the time derivative of the pressure is
zero, there is a step in the diffusivity, introducing a nonlinearity into the problem.
See Barenblatt [9.3] for a complete discussion of the physics of problems of this
class. Here we will follow Barenblatt’s development. For pedagogical reasons I
have filled in most of the mathematical steps in the hope that an interested
reader will be able to follow the analysis in full detail and in comparison with
the solution of the conventional problem discussed in Section 9.4.

The diffusivity depends nonlinearly on the time derivative of the solution. In
Figure 9.5 the diffusivity “shock” is shown propagating along a fixed point in
similarity coordinates, ζa . In the uniform diffusivity case, the point xa where

x

p

∂p
∂t
------

x
xaxa−

κ
(1+ε)κ

xa ζa 2κ t t0+( )( )1 2⁄
=

Fig. 9.5. Spatial variation in diffusivity for the modified problem.
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∂p/∂t = 0 is located at xa = (2κ(t + t0))1/2. But in the nonlinear case there is
no justification for an assumption of self-similiar behavior. Furthermore there is
no reason to assume power-law behavior for the propagation of the diffusivity
front. All this will have to be justified a posteriori once a solution has been
shown to exist and has been determined.

The governing equations are

pt − (1 + ε)κpxx = 0, pt ≤ 0,

(9.113)pt − κpxx = 0, pt ≥ 0,

with boundary conditions

p[±∞, t + t0] = 0, t + t0 ≥ 0. (9.114)

Furthermore we recognize that the pressure and pressure gradient must be
continuous across the boundary x = xa (diffusion prevents infinite gradients in
pressure from developing anywhere):

p[xa−, t + t0] = p[xa+, t + t0],

px [xa−, t + t0] = px [xa+, t + t0].
(9.115)

Based on our knowledge of the conventional problem in Section 9.4, we seek
a solution where the integral

A =
∫ ∞

0
xα p[x, t + t0] dx (9.116)

is preserved. Following Section 9.4, the governing equation can be integrated
by parts as follows:

d
dt

(

∫ ∞

0
xα p dx

)

= (1 + ε)κ
∫ xa

0
xα pxx dx + κ

∫ ∞

xa

xα pxx dx

= (1 + ε)κ(xα px − αxα−1 p)|xa
0

+α(α − 1)

(

(1 + ε)κ
∫ xa

0
xα−1 p dx

)

+ κ(xα px − αxα−1 p)|∞xa
+ α(α − 1)

(

κ

∫ ∞

xa

xα−1 p dx

)

.

(9.117)

For α = 0, 1, corresponding to the first even and odd solutions respectively,



266 9 Partial Differential Equations

the integral becomes

d
dt

(

∫ ∞

0
xα p dx

)

= εκ
(

xα
a px

∣

∣

x=xa
− αxα−1

a p
∣

∣

x=xa

)

. (9.118)

In this case the integral for these two values of α is clearly not preserved, and
a similarity solution of the problem does not exist for ε ̸= 0.

In spite of the fact that no solution exists for α = 0, 1, we will continue to
investigate whether a solution can exist for some value of α. In fact the problem
really boils down to this: given ε > 0, does there exist a value of α that solves
the problem defined by (9.113) and (9.114)?

So we push on and assume the existence of a solution that is invariant under
the group (9.83), with similarity variables of the same form as in the uniform
diffusivity case:

ζ = x
(2κ(t + t0))1/2

, p = A(2κ(t + t0))−(1+α)/2 P[ζ ]. (9.119)

Upon substitution of these variables, the governing equation in each domain is

(1 + ε)P−
ζ ζ + ζP−

ζ + (1 + α)P− = 0, 0 ≤ ζ ≤ ζα,

P+
ζ ζ + ζP+

ζ + (1 + α)P+ = 0, ζa ≤ ζ ≤ ∞,
(9.120)

where

ζa = xa

(2κ(t + t0))1/2
. (9.121)

The solution is subject to the far-field condition

P+[±∞] = 0 (9.122)

and the integral invariant
∫ xa

0
ζ α P−[ζ ] dζ +

∫ ∞

xa

ζ α P+[ζ ] dζ = 1. (9.123)

Equations (9.120), (9.122), and (9.123) constitute a nonlinear eigenvalue prob-
lem for the unknowns α and ζa .

At the internal boundary ζ = ζa the following matching conditions apply:

P−[ζa] = P+[ζa],

P−
ζ [ζa] = P+

ζ [ζa],
(9.124)
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and

ζa P−
ζ [ζa] + (1 + α)P−[ζa] = 0,

ζa P+
ζ [ζa] + (1 + α)P+[ζa] = 0.

(9.125)

The last condition comes from the fact that, by assumption, the time derivative of
the pressure is zero at the internal boundary and therefore pxx = 0 ⇒ Pζ ζ = 0
at xa . An even solution, valid for arbritrary α, inside the internal boundary is

P−[ζ ] = C1e−ζ 2/4(1+ε)

(

Dα

[

ζ√
1 + ε

]

+ Dα

[

− ζ√
1 + ε

]

)

= C1

(

2

3
[ 1

2 − α
2

]

)

√
π2α/2e−ζ 2/2(1+ε) M

[

−α

2
,

1
2
,

ζ 2

2(1 + ε)

]

,

0 ≤ ζ ≤ ζa, (9.126)

where we have used the parabolic cylinder functions introduced in Section 9.3.
A solution beyond the internal boundary that ensures convergence of the integral
constraint (9.123) is

P+[ζ ] = C2e−ζ 2/4 Dα[ζ ]

= C2
√

π2α/2e−ζ 2/2

(

M
[

− α
2 , 1

2 , ζ 2

2

]

3
[ 1

2 − α
2

] −
√

2ζ
M

[

− α
2 + 1

2 , 3
2 , ζ 2

2

]

3
[

− α
2

]

)

.

(9.127)

See (9.101). Now apply the first matching condition in (9.124) to eliminate C2:

C1e−ζ 2
a /4(1+ε)

(

Dα

[

ζa√
1 + ε

]

+ Dα

[

− ζa√
1 + ε

])

= C2e−ζ 2
a /4 Dα[ζa].

(9.128)

The second matching condition in (9.124) is automatically satisfied if (9.125)
is satisfied. The first relation in (9.125) becomes

sa

(

d M
[

− α
2 , 1

2 , s
]

ds

∣

∣

∣

∣

s = sa

− M
[

−α

2
,

1
2
, sa

]

)

+ 1 + α

2
M

[

−α

2
,

1
2
, sa

]

= 0,

(9.129)

where sa = ζ 2
a /(2(1 + ε)). Using the identity

s
d M[a, b, s]

ds
+ (b − a − s)M[a, b, s] = (b − a)M[a − 1, b, s], (9.130)
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Equation (9.129) becomes

M
[

−α

2
− 1,

1
2
,

ζ 2
a

2(1 + ε)

]

= 0. (9.131)

Given the diffusivity ratio 1 + ε, the matching condition (9.131) provides a
relation between α and ζa . The second condition in (9.125) yields

ζa
d Dα

dζ

∣

∣

∣

∣

ζ=ζa

+
(

1 + α − ζ 2
α

2

)

Dα[ζa] = 0. (9.132)

Now use the following identities for parabolic cylinder functions:

d Dα

dζ
+ Dα+1 − ζ

2
Dα = 0,

(9.133)
Dα+2 − ζ Dα+1 + (α + 1)Dα = 0.

Using (9.133) to simplify (9.132) gives

Dα+2[ζa] = 0, (9.134)

or, in terms of hypergeometric functions,

M
[

−α
2 − 1, 1

2 ,
ζ 2

a
2

]

3
[

− 1
2 − α

2

] −
√

2ζa
M

[

− α
2 − 1

2 , 3
2 ,

ζ 2
a
2

]

3
[

−1 − α
2

] = 0. (9.135)

Equations (9.131) and (9.135) provide two equations in two unknowns, allowing
one to solve for α and ζa given ε. The results are plotted in Figure 9.6.

The remarkable feature of this problem, the feature that makes it an impor-
tant problem, is that when full numerical solutions are carried out for a general
initial condition, it is found that after an early period of non-self-similar de-
velopment the solution approaches the one similarity solution that exists for a
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Fig. 9.6. Solution parameters of the modified diffusion problem.
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given choice of the material constant ε (see Barenblatt [9.3], Figures 3.3 and
3.4, and the discussion in Sections 3.2.4 and 3.2.5). By one means or another,
symmetry finds a way! The group that leaves the asymptotic solution invariant
is the same dilation group of the heat equation we encountered in Section 9.4,
Equation (9.83),

x̃ = ea x, t̃ = e2at + (e2a − 1)t0, p̃ = e−(1+α)a p, (9.136)

where the constant α is determined from the solution of the nonlinear eigenvalue
problem (9.131) and (9.135).

This is an example of a wide class of important problems in filtration, and
further examples can be found in the work of Baikov, Gladkov, and Wiltshire
[9.4] and Baikov [9.5].

9.6 Nonclassical Symmetries

There is a nonlinear alternative to the Lie algorithm that, in several applications,
has led to the identification of new point symmetries of differential equations
that do not correspond to classical Lie symmetries. The basic idea is to replace
the requirement that the differential equation be invariant under a certain sym-
metry with a somewhat less restrictive requirement that the equation admit a
symmetry over a limited set of solutions of the equation.

In the Lie procedure one solves the pth order extended invariance condition

X{p}(
i = 0, i = 1, . . . , m (9.137)

for the unknown infinitesimals (ξ i [x, y], ηi [x, y]) subject to the constraint im-
posed by the requirement that y[x] is a solution of the original system of
equations. Namely.

( i = 0. (9.138)

Equation (9.138) is used to replace derivatives of the yi that appear in (9.137).
When (9.137) is parsed, the result is the set of linear determining PDEs for
the infinitesimals and the solution of this system is the set of classical point
symmetries of the system of equations.

Alternatively, one can search for symmetries that are valid only over some
set of invariant solutions of the system of equations. This is accomplished by
adding to (9.137) an additional constraint in the form of the invariance condition
on a solution. Let the invariant solution be expressed in the form

.i [x, y] = yi − *i [x] = 0. (9.139)
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The invariance condition is

X.i = ηi − ξ j yi
j = 0, i = 1, . . . , m (9.140)

Recalling the definition of the characteristic function, µi = ηi − ξ j yi
j , intro-

duced in Section 9.3, the new condition is simply µi = 0. The difficulty with
this approach is that when (9.140) is is used to replace m of the yi

j in (9.137)
and the equation is parsed, the result is a set of nonlinear determining PDEs
for the infinitesimals.

Some simplification is possible. Note that the extended operator that we are
dealing with is one where µi = 0 in (9.86). The implication of this is that if
(ξ j , ηi ) satisfy (9.86) then ( f ξ j , f ηi ) also satisfy (9.86) where f [x, y] is any
scalar function. This permits one of the ξ j to be set to unity without loss
of generality. Nevertheless, solving the determining equations in this case
is much more difficult and only a few examples are known. Note that the
set of solutions that admit the symmetry X is determined once X has been
identified.

9.6.1 A Non-classical Point Group of the Heat Equation

To illustrate these ideas let’s look again at the heat equation

ut − uxx = 0. (9.141)

The invariance condition (9.58) after replacing uxx by ut is given in equation
(9.65) and repeated here for convenience.

η{t} − η{xx} = (ηt − ηxx ) + 2ux uxt (τu) + 2ux ut (ξu + τxu)

+ u2
x (2ξxu − ηuu) + u2

x ut (τuu) + u3
x (ξuu) + 2uxt (τx )

+ ut (τxx + 2ξx − τt ) + ux (ξxx − ξt − 2ηxu) = 0

(9.142)

In the usual approach, with the replacement complete, all other derivatives of
u[x, t] are not restricted in any way and in order for (9.142) to be satisfied, the
coefficients of various products of derivatives of u are set to zero forming the lin-
ear determining equations for the unknown infinitesimals ξ [x, t, u], τ [x, t, u]
and η[x, t, u].

Instead we now apply the condition

η[x, t, u] − ξ [x, t, u]ux − τ [x, t, u]ut = 0. (9.143)
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Without loss of generality let τ = 1 and make the replacement,

ut = η[x, t, u] − ξ [x, t, u]ux (9.144)

in (9.142). The result is

η{t} − η{xx} = (ηt − ηxx ) + 2ux (η − ξux )ξu + u2
x (2ξxu − ηuu)

+ u3
x (ξuu) + (η − ξux )2ξx + ux (ξxx − ξt − 2ηxu) = 0

(9.145)

or, with some rearrangement

η{t} − η{xx} = (ηt − ηxx + 2ηξx )

+ ux (2ηξu − 2ξξx + ξxx − ξt − 2ηxu)

+ u2
x (2ξxu − ηuu − 2ξξu) + u3

x (ξuu) = 0 (9.146)

In order for (9.146) to be satisfied for arbitrary derivatives of u the coefficients
in parentheses must be zero and so the determining equations in this case are

ηt − ηxx + 2ηξx = 0,

2ηξu − 2ξξx + ξxx − ξt − 2ηxu = 0,

2ξxu − ηuu − 2ξξu = 0,

ξuu = 0.

(9.147)

The nonlinearity of the system (9.147) precludes any sort of elementary ap-
proach to a solution including the power series method used in the linear case.
The only reasonable way to make progress is to look for simplifying assump-
tions that lead to interesting solutions. Let

η = 0

ξu = ξt = 0
(9.148)

The determining equations reduce to

ξxx − 2ξξx = 0. (9.149)

with the solution

ξ = −
√

C2tanh[
√

C2x + C1

√
C2]. (9.150)
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Using this procedure we find that the heat equation admits the nonclassical
point symmetry

X = −
√

C2tanh[
√

C2x + C1

√
C2]

∂

∂x
+ ∂

∂t
. (9.151)

A couple of questions remain. What sort of solution does this symmetry gener-
ate? And, what symmetry arises if we assume ξ = 1 instead of τ = 1? These are
left as exercises for the reader. Nonclassical symmetries are the subject of con-
siderable research and the reader is referred to the treatments in Hydon [9.8] and
Baumann [9.9] as well as the papers of Bluman and Cole [9.10] and more
recently Clarkson [9.11]. The package IntroToSymmetry.m can aid in
the search for nonclassical symmetries and several examples are included on
the CD.

9.7 Concluding Remarks

In Chapters 10, 11, 12 and 13 we will apply the methods developed here to
a variety of classical problems in fluid mechanics. The theme is simple, and
the same illustrated here in the context of the heat equation; (i) formulate the
problem with boundary conditions, (ii) identify the symmetries of the governing
equation(s), (iii) find the subgroup that leaves the boundary conditions invariant,
(iv) work out new variables based on the invariants of the group, (v) generate
the reduced equation(s) and solve. At this point the reader should compare the
three versions of the invariance condition developed for PDEs (Section 9.2),
ODEs (Chapter 8, Section 8.2) and functions (Chapter 5, Section 5.6). The
basic theory in all three cases is fundamentally the same. Actually we will go
through the same development one more time in Chapter 14 when we treat
Lie–Bäcklund groups and, once again, the theory will be seen to be essentially
the same; simply expand a differential function in a Lie series and define the
invariance condition so that all higher order terms in the series are zero.

Two questions commonly arise at this point. The first is, does the Lie algo-
rithm find all symmetries of a given system of differential equations and the
second is, are all clever reductions related to symmetries? The answer to the
first question is clearly no given the discussion of nonclassical symmetries pre-
sented in the last section. In fact quite a few different types of symmetries can
be identified and one has to get used to the names. Here are a few.

• Point symmetries – These are the symmetries we have dealt with thus far
where the infinitesimals depend only on coordinates. They are also called
classical symmetries.
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• Nonclassical symmetries – See Section 9.7.
• Lie–Bäcklund symmetries – These are symmetries where the infinitesimals

can depend on derivatives. See Chapter 14.
• Generalized symmetries – The name preferred by some authors for Lie–

Bäcklund symmetries.
• Nonlocal symmetries – These are symmetries where the infinitesimals depend

on integrals of the dependent variables. See Chapters 14 and 16.
• Potential symmetries – These are nonlocal symmetries that arise when an

equation is expressed in terms of a potential function. See Chapters 14 and 16.
• Hidden symmetries – These are symmetries that arise when an equation is

broken into an equivalent system of equations. They are usually nonlocal in
nature.

• Variational symmetries – A subset of the symmetries connected with a vari-
ational principle that can be used to construct conserved vectors, closely
related to Noether symmetries. See Chapter 15.

Despite the variety, the infinitesimals associated with these symmetries are all
solutions of the fundamental invariance condition (9.53).

In a sense the second question is really asking whether there are examples of
reductions that don’t originate from (9.53). Schemes for simplifying equations
take an incredible variety of forms and so a simple, safe, answer would be yes,
there must be exceptions. But, deep down I believe that all clever reductions
probably are related to symmetries in one way or another, one just has to look
at the problem in the right way. I can’t prove this though and given the open-
ended nature of the symmetry problem a firm answer to this question is still far
out of reach.

9.8 Exercises

9.1 Show by composition that the extended transformation (9.10) is a Lie
group. Consider the case of one dependent and two independent vari-
ables.

9.2 The elliptic equation below has been used by Mahalingham [9.6] to
model the effects of streamwise and cross-stream diffusion in a planar,
low-speed, nonpremixed jet flame called a Burke–Schumann flame:

φxx + φyy − cφy = 0. (9.152)

Using hand calculations only, find the determining equations and solve
for the infinitesimal groups of (9.152). Let

φ[x, y] = e(c/2)y f [x, y], (9.153)
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and convert the equation to the symmetric form

fxx + fyy − c2

4
f = 0. (9.154)

Use the package IntroToSymmetry.m to find the infinitesimals.
Compare your results with Reference [9.6].

9.3 Consider the generalized equation for 1-D flow in a porous medium,

∂p
∂t

= ∂

∂x

(

κ[p]
∂p
∂x

)

. (9.155)

Use the package IntroToSymmetry.m to help determine the in-
finitesimal group for each of the following cases:

(i) κ[p] arbitrary
(ii) κ[p] = ep

(iii) κ[p] = pn, n ̸= − 4
3

(iv) κ[p] = p−4/3

Carefully work out the groups by hand. What is special about n = − 4
3 ?

Check your result against Ibragimov [9.1] Volume 1 Section 10.2.
9.4 Use the package IntroToSymmetry.m to help work out the groups

of the 1-D nonlinear wave equation

φt t − c[φ]2φxx = 0. (9.156)

Determine the infinitesimal group for each of the following cases:

(i) c[φ] arbitrary
(ii) c[φ] = φn, n ̸= 2

(iii) c[φ] = φ2,

9.5 Use the package IntroToSymmetry.m to determine the infinitesi-
mals for each of the following equations:

(i) The axially symmetric wave equation

utt − urr − 1
r

ur = 0. (9.157)
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(ii) A diffusion equation with shearing convection,

ut + yux − uy − µ(uxx + uyy) = 0. (9.158)

(iii) Laplace’s equation in n dimensions,

φxi xi = 0. (9.159)

(iv) The (n + 1)-dimensional axisymmetric Laplace equation

φrr + α

r
φr + φxi xi = 0, i = 1, . . . , n, (9.160)

where α(α − 2) ̸= 0. See Aksenov [9.7] for the solution.
9.6 Use the package IntroToSymmetry.m to work out the infinitesimal

groups of the force-free convection equation

∂ui

∂t
+ u j ∂ui

∂x j
= 0, i = 1, 2, 3, j = 1, 2, 3. (9.161)

9.7 Find the solution of the heat equation corresponding to the nonclassical
symmetry (9.151). What symmetry of the heat equation is found using
the nonclassical method with ξ = 1. See Baumann [9.9] Section 6.3.
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10
Laminar Boundary Layers

Fluids exhibit an incredible variety of physical phenomena that, with suitable
approximations, can be reduced to the solution of many of the classical equations
of mathematical physics. In this chapter we will look at several examples of vis-
cous, nearly parallel, incompressible flow along a wall. The selected problems
demonstrate several important aspects of the use of point groups to simplify
nonlinear problems. This field is an especially fertile source of interesting and
practical problems that can be approached using the techniques of symmetry
analysis.

10.1 Background

The idea of the boundary layer was one of the seminal developments in fluid
mechanics. Until the early 1900s fluid mechanics tended to be treated either
by the hydraulic engineer with a purely empirical approach or by the applied
mathematician solely interested in theoretical hydrodynamics, which at that
time consisted almost entirely of the theory of frictionless flow. There was
practically no overlap between the two disciplines, and the difficult problem
of viscous flow resisted all attempts at solution except for the discovery of
a few exact results for problems posed in highly simplified geometries. This
situation began to change though the efforts of Ludwig Prandtl (1875–1953),
who became professor of mechanics at the University of Hanover in 1901.
Prandtl’s goal was to develop a sound theoretical basis for fluid mechanics. At
the International Mathematics Congress in Heidelberg in 1904 he gave a paper
on his work entitled “Fluid motion with very small friction.” In his paper he
showed how the flow over a body could be divided into a thin region close to
the body where viscous effects are important, which he called the boundary
layer, and a region outside the boundary layer (essentially all the rest of the
flow) where the flow is irrotational and therefore unaffected by viscosity. In the

277
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audience was Felix Klein, who invited him to Göttingen, where Klein founded
an institute of mechanics and appointed the twenty-nine-year-old Prandtl to be
the first director. The first application of Prandtl’s boundary-layer concept was
in 1908, to the flow past a flat plate, by one of his students, H. Blasius [10.1].

In this chapter we will take a detailed look at the laminar boundary-layer
problem in steady plane flow with two independent variables in space (x, y) and
two dependent velocity variables (u, v). The pressure outside the boundary layer
is governed by the Bernoulli relation, while the pressure within the boundary
layer is assumed to be independent of the wall-normal direction and equal to
the Bernoulli pressure at the outer edge of the boundary layer.

When viewed in the context of the main subject matter of this book, the
boundary-layer problem has it all. The highlights of what we are about to
discuss are the following:

• We convert two coupled PDEs to a single PDE by the introduction of a stream
function. In this way the underlying structure of the flow in two dimensions
is seen to be Hamiltonian.

• The stream-function PDE is reduced to the third-order Blasius ODE through
the use of similarity variables derivable from dimensional analysis and/or Lie
analysis.

• The Lie group of the Blasius equation contains two symmetry operators with
a solvable Lie algebra. See Chapter 8, Section 8.10.1. The Lie algebra is
used to decide the order in which the symmetries must be used to reduce
the problem to a first-order ODE. Failure to follow this order leads to a dead
end.

• The Blasius solution is identified in the phase portrait of the resulting first-
order ODE. This last step in the process requires a fairly sophisticated analysis
of the asymptotic structure of the solution near the wall.

• The identified solution trajectory must be integrated twice to generate the
Blasius velocity profile. The pros and cons are discussed of numerically in-
tegrating the third-order Blasius equation by iteration, treating it as a Cauchy
initial-value problem. It is shown how knowledge of the Lie group of the
equation can be used to map an initial numerical guess to the correct solution
in one step.

• A nonlinear heat conduction problem is solved that demonstrates a discontin-
uous propagating front governed locally by a Hamilton–Jacobi equation. A
slight modification of boundary conditions converts this problem to an exact
thermal analogy of the Blasius problem.

• Following the discussion of the Blasius problem, a full Lie analysis of
the stream-function PDE leads to infinite-dimensional symmetries. These
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symmetries can be joined to the boundary-layer solution on a flat plate with
a specified free-stream velocity distribution, thereby enabling solutions for
an arbitrary wall shape to be determined from the flat plate result.

• The Lie analysis enables one to identify certain classes of free-stream velocity
distributions that can be expected to yield similarity solutions. This leads to
the famous Falkner–Skan class of boundary layers.

10.2 The Boundary-Layer Formulation

We are considering incompressible, viscous, laminar flow at high Reynolds
number past a thin flat plate as shown in Figure 10.1. The flow, approaching the
leading edge of the plate, splits about the forward stagnation point as shown
in the close-up. In this region, the no-slip condition, together with the strong
curvature of the plate surface, generates large velocity and pressure gradients
for which no simplification of the governing equations is available. However,
once the flow reaches well beyond the leading edge, the guiding influence of
the plate comes into effect, and the streamwise gradients in velocity become
small compared to the transverse velocity gradients. Meanwhile wall-normal
gradients in pressure become small, and the thickness of the boundary layer
increases through the diffusion of x-momentum from the free stream toward
the wall.

The local Reynolds number based on distance from the leading edge is

Re = Ue[x]x
ν

. (10.1)

As the Reynolds number increases, the boundary layer itself becomes more and
more slender and the flow near the wall becomes more and more parallel to the
wall.

y

x

Ue[x]

δ

Leading-edge flow

∇ u ≠    0×

∇ u× 0=

Fig. 10.1. Boundary layer on a flat plate.
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In this limit the governing equations of motion reduce to the following set

∂u
∂x

+ ∂v

∂y
= 0,

u
∂u
∂x

+ v
∂u
∂y

= − 1
ρ

∂p
∂x

+ ν
∂2u
∂y2

, (10.2)

∂p
∂y

= 0.

The irrotational flow outside the boundary layer satisfies the incompressible
Bernoulli relation,

Ptotal = Pe[x] + 1
2
ρUe[x]2. (10.3)

Introduce the stream function to integrate the continuity equation

u = ∂ψ

∂y
, v = −∂ψ

∂x
. (10.4)

Recall that the velocity components are the time derivatives of the position of
a fluid particle, and so the equations for particle paths (x[t], y[t]) have the
Hamiltonian structure,

dx
dt

= ∂ψ

∂y
,

dy
dt

= −∂ψ

∂x
. (10.5)

The last relation in (10.2) implies that p = Pe[x] and the Bernoulli constant is
used to replace the pressure term in the x-momentum equation. This leads to
the boundary-layer equation for the stream function:

ψyψxy − ψxψyy − Ue
dUe

dx
− νψyyy = 0. (10.6)

The premise underlying the boundary-layer formulation is that the velocity
distribution in the free stream, Ue[x], is presumed to be a known function.
Just how it gets determined is something we will consider later. The remaining
boundary conditions needed to solve the problem are that the velocity must
satisfy the no-slip condition at the plate surface and that the streamwise velocity
must approach the free-stream value at large y:

ψ |y=0 = 0,
∂ψ

∂y

∣

∣

∣

∣

y=0
= 0,

∂ψ

dy

∣

∣

∣

∣

y→∞
= Ue[x]. (10.7)

Let’s begin with the zero-pressure-gradient case studied by Blasius [10.1].
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10.3 The Blasius Boundary Layer

This is the case where the free-stream velocity is constant, dUe/dx = 0,
and the governing equation (10.6) reduces to

ψyψxy − ψxψyy − νψyyy = 0 (10.8)

with boundary conditions

ψ[x, 0] = 0, ψy[x, 0] = 0, ψy[x, ∞] = Ue = constant. (10.9)

Begin by checking the invariance of the governing equation under a three-
parameter dilation group

x̃ = ea x, ỹ = eb y, ψ = ecψ, (10.10)

where a, b, and c are initially independent group parameters. Substitute (10.10)
into (10.8). The result is

ψ̃ ỹψ̃ x̃ ỹ − ψ̃ x̃ ψ̃ ỹ ỹ − νψ̃ ỹ ỹ ỹ

= e2c−a−2bψyψxy − e2c−a−2bψxψyy − νec−3bψyyy = 0. (10.11)

The equation is invariant if and only if the exponents are all equal:

2c − a − 2b = c − 3b. (10.12)

Note that the invariance relies on the fact that the equation is equal to zero, so
that the common exponential term that factors out of the left-hand side can be
canceled and the governing equation in untilde’d variables is (10.8). So far we
have invariance of the equation under a two-parameter group

x̃ = ea x, ỹ = eb y, ψ̃ = ea−bψ. (10.13)

What about boundary conditions? Before we can conclude that the problem
has a similarity solution, we must show that the whole problem is invariant.
The boundary curve y = 0 is clearly invariant under the group (10.13), since
application of the group yields

ỹ = 0 ⇒ eb y = 0 ⇒ y = 0. (10.14)

Note that the fact that the plate extends to infinity is crucial to the invariance.
A finite plate would have its length changed by the dilation, thus breaking the
symmetry of the problem. This is a theme we have emphasized before. Our
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abstraction of the problem has a built-in assumption that in a real flat-plate
flow, a region exists that is far downstream of the leading edge and far upstream
of the end of the plate where it can be argued that the Reynolds number is large
and that the real flow should closely approximate the similarity solution treated
here.

Now for the remaining boundary conditions; at the wall,

ψ̃[x̃, 0] = 0|all x̃ ⇒ ea−bψ[ea x, 0] = 0 ⇒ ψ[x, 0] = 0|all x (10.15)

and

ψ̃ ỹ[x̃, 0] = 0|all x̃ ⇒ ea−2bψy[ea x, 0] = 0 ⇒ ψy[x, 0] = 0|all x .

(10.16)
The boundary condition at y → ∞ restricts the group:

ψ̃ ỹ[x̃, ∞] = Ue|all x ⇒ ea−2bψy[ea x, ∞] = Ue|all x (10.17)

Invariance of the outer boundary condition, namely,

ψy[x, ∞] = Ue|all x , (10.18)

is only satisfied of we require a = 2b. The notation ( )|all x is intended to convey
the fact that the range indicated by ea x |all x is the same as x |all x ; this validates
the removal of the exponential in the function arguments in (10.15), (10.16),
and (10.17), completing the invariance argument.

10.3.1 Similarity Variables

Finally, the group that leaves the whole problem invariant is

x̃ = e2bx, ỹ = eb y, ψ̃ = ebψ (10.19)

with infinitesimals

ξ = 2x, ζ = y, η = ψ (10.20)

and characteristic equations

dx
2x

= dy
y

= dψ

ψ
. (10.21)

Integrating the characteristic equations and using Ue and ν to nondimensionalize
variables leads to the group invariants

F = ψ

(2νUex)1/2
, α = y

(2νx/Ue)1/2
. (10.22)
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Since the equation in (10.8) with boundary conditions (10.9) is invariant
under the group (10.19), the solution of the problem must be invariant under
the same group. That is, the solution must be some general function of the form

ω = *

[

ψ

(2νUex)1/2
,

y
(2νx/Ue)1/2

]

. (10.23)

With equal generality, we can say that the solution is of the form

ψ

(2νUex)1/2
= F[α]. (10.24)

Let’s consider what line of reasoning would be required to reach the re-
sult (10.24) by means of dimensional analysis. The Buckingham Pi algorithm
applied to the parameters (x, y, ψ, ν, Ue) would lead to the dimensionless
combinations

+1 = ψ

(2νUex)1/2
, +2 = y

(2νx/Ue)1/2
, +3 = y

x
. (10.25)

The variables +1 and +2 are the ones we just derived, but +3 does not come
up in the group approach. The reason is that the group method starts with the
boundary-layer equations. In effect, it begins with a knowledge of the boundary-
layer approximation. In contrast, pure dimensional analysis presupposes noth-
ing about the physics.

The boundary-layer approximation distinguishes physically between the
streamwise and cross-stream coordinates. This is evidenced by the invariance
of the governing equation under the two-parameter group (10.19) where a and
b are independent parameters (the full equations are invariant under only a
one-parameter dilation group where a and b are equal). Without the phys-
ical understanding derived from Prandtl’s experiments and contained in the
boundary-layer approximation, there is no logical basis for assuming that the
problem cannot depend on +3.

This highlights the fundamental difference between the group-theoretical
approach and dimensional analysis. With just the parameters in hand, there is
no way to demonstrate that the spatial coordinates x and y are not equivalent;
in a sense one has to anticipate the boundary-layer approximation in order
to get to the correct dimensional-analysis result. Group theory only begins
when all of the science needed to deduce the boundary-layer approximation
has been established. When one begins with the boundary-layer equations and
constant Ue, the variable y/x never comes up. This is clear from the 2x that
appears in (10.21). Nevertheless, much of what Prandtl was eventually able
to deduce came from the clever and repeated use of dimensional analysis.
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In the end, dimensional analysis and the group methodology go hand in hand,
and the development of a new theory is not a one-step process; hypothesis,
theory, experiment, revised hypothesis, revised theory, etc. all play a role in
what eventually becomes a refined, validated result. Dimensional analysis alone
isn’t enough, nor is group theory, and both must be checked by experiment.

In any case, the basic symmetry of the problem eventually finds its way into
the solution. The self-similar velocities are

u
Ue

= Fα,
v

Ue
= 1√

2

(

1
Re

)1/2

(F − αFα). (10.26)

The appearance of the Reynolds number in the denominator of the expression
for the normal velocity component supports the qualitative argument made
earlier concerning the flow becoming more and more parallel to the wall as
the Reynolds number is increased (limRe→∞ v/u = 0). Note however that an
assumption of exactly parallel flow would produce an erroneous result. Upon
substitution of (10.22) into (10.8) the result is the Blasius equation

Fααα + F Fαα = 0 (10.27)

with boundary conditions

F[0] = 0, Fα[0] = 0, Fα[∞] = 1. (10.28)

10.3.2 Reduction of Order; The Phase Plane

The problem now is to reduce the order of (10.27). To accomplish this we need
to work out the symmetries of (10.27). In fact, we already did this in Chapter 8,
Section 8.10.1. There we transformed the equation according to

α̃ = α + sξ [α, F],

F̃ = F + sη[α, F].
(10.29)

Using the Lie algorithm described in Chapter 8, the infinitesimals were deter-
mined to be

ξ = a + bα, η = −bF. (10.30)

The Blasius equation is invariant under a two-parameter group, which we
recall is always guaranteed to have a solvable Lie algebra. This ensures that the
order of (10.27) can be reduced by two. To reiterate the results in Chapter 8,
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Table 10.1.
Commutator table for
the Blasius equation.

Xa Xb

Xa 0 Xa

Xb −Xa 0

the infinitesimal generators of (10.30) are

Xa = ∂

∂α
, Xb = α

∂

∂α
− F

∂

∂ F
(10.31)

with the commutator table given in Table 10.1.
As was pointed out in Chapter 8, Section 8.10 the order in which we use

these groups to reduce the Blasius equation is important. We must begin with
the ideal Xa . The characteristic equations of the thrice extended operator Xa

{3}
are

dα

1
= d F

0
= d Fα

0
= d Fαα

0
= d Fααx

0
, (10.32)

and the first two invariants are

φ = F, G = Fα. (10.33)

By the method of differential invariants, the equation

dG
dφ

=
∂G
∂α

dα + ∂G
∂ F d F + ∂G

∂ Fα
d Fα

∂φ
∂α

dα + ∂φ
∂ F d F

= Fαα

Fα

(10.34)

is an invariant, as is

d2G
dφ2

=
(

Fα Fααα − F2
αα

F2
α

)

1
Fα

= Fα(−F Fαα) − F2
αα

F3
α

, (10.35)

where the Blasius equation has been used to replace the third derivative. As
expected, Equation (10.35) can be rearranged to read entirely in terms of the
new invariants:

GGφφ + φGφ + (Gφ)2 = 0. (10.36)

The boundary conditions on (10.36) are

G(0) = 0, G(∞) = 1, (10.37)
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and so the third-order Blasius equation has been reduced to the solution of a
second-order system plus the quadrature,

d F
dα

= G[F]. (10.38)

Now we determine the action of the second group α̃ = ebα, F̃ = e−b F on
the new variables (φ, G). The appropriate group in new variables is

φ̃ = e−bφ, G̃ = e−2bG. (10.39)

When (10.39) is used to transform Equation (10.36), the result is

G̃G̃ φ̃φ̃ + φ̃G̃ φ̃ + (G̃ φ̃)2 = e−2b(GGφφ + φGφ + (Gφ)2) = 0. (10.40)

As expected, the reduced equation inherits the symmetry under Xb of the orig-
inal Blasius equation.

The reader may wonder why in dealing with ODEs we are not concerned with
demonstrating the invariance of the boundary conditions (10.37) and (10.28).
In fact they are not invariant; for example, G̃[∞] = 1 ⇒ G[∞] = e2b. When
we apply group analysis to an ODE, the role of boundary conditions recedes
somewhat, at least until the final solution is determined. The invariant (multi-
parameter) group of an ODE transforms the entire solution family to itself while
individual solution curves are mapped to different curves [recall Chapter 1,
Example 1.1, Equations (1.20) and (1.21)]. Only one curve in the family actually
satisfies the given boundary conditions. When the final solution is determined,
the boundary conditions are often not invariant under the group of the ODE,
in contrast to the invariance of the boundary conditions of the original PDE. It
may not seem so now, but this is a highly useful fact. It means that one can often
use the group to map an initial guess to the correct solution through a specific
choice of the group parameter. We shall return to this point shortly.

Now solve the characteristic equations of (10.39),

dφ

−φ
= dG

−2G
= dGφ

−Gφ

. (10.41)

The invariants (new variables) at the second stage are

γ = G
φ2

= Fα

F2
,

H (γ ) = Gφ

φ
= Fαα

F Fα

.

(10.42)
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The method of differential invariants is used to generate the twice reduced
equation

( DH
Dφ

)

( Dγ
Dφ

) = d H
dγ

=
Hφ + HG

dG
dφ

+ HGφ

dGφ

dφ

γφ + γG
dG
dφ

=
− Gφ

φ2 + 1
φ

(Gφφ)

−2 G
φ3 + 1

φ2 Gφ

. (10.43)

Equation (10.36) is used to eliminate the second-derivative term in (10.43), and
the right-hand side of (10.43) can be rearranged to read as follows:

d H
dγ

= γ H + H + H 2

2γ 2 − γ H
. (10.44)

This equation was discussed extensively in Chapter 3, Example 3.7, in connec-
tion with phase-plane techniques.

The phase portrait derived from the autonomous system

d H
ds

= γ H + H + H 2,

dγ

ds
= 2γ 2 − γ H

(10.45)

is shown in Figure 10.2. See the isocline plot of the same system in Chapter 3,
Figure 3.6. The critical points are clearly identifiable as points where the local
slope becomes indeterminate. Solving for the roots of

2γ 2 − γ H = 0,

γ H + H + H 2 = 0,
(10.46)

-1 1

-1.5

-1

0.5
H =

γ
2

γ

Blasius

H

-2/3
Nonlinear heat conduction

a

b

-1/3

Free
stream

Wall

Heated
wall

Fig. 10.2. Phase portrait of the Blasius system (10.45).
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we find critical points at (γc, Hc) = (0, 0), (0, −1), and (− 1
3 , − 2

3 ). The critical
point at (0, 0) is nonlinear. The critical point at (0, −1) with invariants (P, Q) =
(0, −1) is a saddle, and that at (− 1

3 , − 2
3 ) with invariants (P, Q) = ( 4

3 , 2
3 ) is a

stable focus. The eigenvectors at the saddle (0, −1) give the precise orientation
of the trajectories that pass through the saddle.

Notice that the final solution in the (γ , H ) plane – H =.[γ ] or, in terms of
earlier variables,

Fαα

F Fα

= .[Fα/F2] (10.47)

– is invariant under the original two-parameter finite group of the Blasius
equation,

α̃ = ebα + a,

F̃ = e−b F,

F̃ α̃ = e−2b Fα.

(10.48)

But which trajectory in the (γ , H ) plane is the correct one for the given boundary
conditions? We have tracked the boundary conditions of the problem through
the first reduction, but the reduced conditions, (10.37), are not very helpful for
solving the first-order equation. We need to take a closer look at the problem.

The friction coefficient at the wall is

C f = τxy
1
2ρU 2

e

∣

∣

∣

∣

y=0
=

(

2ν

xUe

)1/2

Fαα[0]. (10.49)

Recognizing that the stress at the wall cannot be infinite or zero, it can be argued
that Fαα must be finite at the wall except near the leading edge of the plate, where
the boundary-layer approximation breaks down anyway. Let τ0 = Fαα[0]. In
the neighborhood of the wall,

Gφ

φ
= τ0

F Fα

= τ0

φG
. (10.50)

Thus near the wall,

G = (2τ0φ)1/2. (10.51)

Note that this result is consistent with the boundary condition, G[0] = 0.
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Now we have enough information to determine the behavior of H and γ near
the wall:

lim
φ→0

H = 1
2

(

2τ0

φ3

)1/2

,

lim
φ→0

γ =
(

2τ0

φ3

)1/2

.

(10.52)

Note that in the limit φ → 0 both H and γ become infinite. Moreover, both
variables are positive. Thus the solution trajectory lies in the upper right quadrant
of Figure 10.2 and asymptotes to

lim
γ→∞

(

H
γ

)

= 1
2
. (10.53)

The trajectory of the solution in the (γ , H ) plane is shown as the bold curve in
the upper right quadrant of Figure 10.2. The same solution is shown in more
detail in Figure 10.3. Notice that this curve does not depend on the explicit
value of τ0. In fact, this single curve in the (γ , H ) plane corresponds to an
infinity of curves in the (φ, G) plane and a double infinity of curves in the
(α, F) plane, corresponding to a range of values of τ0. Only one curve in, say,
the (α, Fα) plane can satisfy the boundary condition Fα[∞] = 1, and this curve
will correspond to the correct value of τ0.

Note the high degree of tangency as the solution approaches the free stream
in Figure 10.3. We shall have more to say about this later, but for now it can be
pointed out that this is the main physical feature of the problem that is captured
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Fig. 10.3. Blasius solution in the phase plane.
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by the boundary-layer approximation and that supports the concept of dividing
the flow into two distinct regions. Prandtl was right: the boundary layer has a
distinct outer edge where the vorticity decays exponentially with distance from
the plate.

In summary, we have finally reduced the third-order Blasius equation to a
first-order equation plus two quadratures,

Gφ

φ
= H [G/φ2] (10.54)

and (10.38). At first sight (10.54) may not seem like a simple quadrature, but
consider

d(G/φ2)
dφ

= −2G
φ3

+ Gφ

φ2
= 1

φ

(

H [G/φ2] − 2G
φ2

)

. (10.55)

Once the function H [γ ] is determined, then the function G[φ] is determined
from

dφ

φ
= d(G/φ2)

H (G/φ2) − 2G/φ2
= dγ

H [γ ] − 2γ
. (10.56)

Integrating (10.56) and applying the boundary conditions (10.37), then inte-
grating (10.38) and applying the boundary conditions (10.28), leads to the
solution F[α]. The Blasius velocity profile is shown in Figure 10.4. Evaluat-
ing the second derivative at the wall leads to τ0 = 0.46965, and the friction
coefficient at the wall is

C f 0 = τ0
1
2ρU 2

e

= 0.664√
Re

. (10.57)
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Fig. 10.4. The Blasius velocity profile.
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This goes back to the point made above concerning boundary conditions and
ODEs. Any curve in the (γ , H ) plane depicted in Figure 10.2 is invariant under
(10.48) and, as just noted, can be mapped to a whole family of geometrically
similar curves in the (α, F) plane by arbitrarily choosing the values of the
group parameters (a, b). In effect, the group (10.48) maps the complete solution
family of the Blasius equation in the (α, F) plane to itself. Of course, only one
of these curves actually satisfies the given boundary conditions of the problem,
F[0] = 0, Fα[0] = 0, Fα[∞] = 1. The ability to map one solution curve into
another using the group provides a powerful method for finding the desired
solution.

10.3.3 Numerical Solution of the Blasius Equation as a Cauchy
Initial-Value Problem

The Blasius problem puts into focus an interesting debate about the efficacy of
symmetry analysis. The procedure of reducing the problem to first order and
then numerically integrating to find the trajectory of the solution in the phase
plane, then integrating a second time to find the velocity profile and perhaps
a third time to find the stream function, is a lot of work. If all one wants is
the velocity profile, then it is a lot easier to numerically integrate the origi-
nal third-order Blasius equation. In this approach one treats the Blasius prob-
lem as a Cauchy initial-value problem with initial conditions F[0], Fα[0] = 0,
and Fαα[0] = τ0. The constant τ0 is continuously adjusted until the numer-
ical solution of the initial-value problem matches the free-stream boundary
condition, Fα[∞] = 1. A few minutes of iteration on a hand calculator is all
that is required to reach the value, τ0 = 0.46965. The process is illustrated in
Figure 10.5.
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Fig. 10.5. Iteration process leading to the correct match with the free-stream boundary
condition limα→∞ Fα = 1.
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Fig. 10.6. Mapping of an initial guess to the correct solution along the pathlines of the
dilation group of the Blasius equation.

So why bother with all the extra work connected with the use of symmetries?
One reason becomes clear when it is realized that once the appropriate sym-
metry group is known, one can directly transform an initial guess to the final
solution by correctly choosing the value of the group parameter. The mapping
is accomplished using the group

α̃ = ebα,

F̃ = e−b F,

F̃ α̃ = e−2b Fα,

F̃ α̃α̃ = e−3b Fαα.

(10.58)

This procedure is illustrated in Figure 10.6. The lightweight lines in Figure 10.6
are the pathlines of (10.58) along which the solution is mapped. The initial guess
using Fαα[0] = 0.2 produces limα→∞ Fα = 0.566067. The value of the group
parameter needed to scale this result to the correct solution is given by

1 = e−2b(0.566067) ⇒ b = −0.284557. (10.59)

The correct wall stress is also determined immediately from the mapping
of Fαα:

0.2 = e−3b Fαα[0] ⇒ Fαα[0] = 0.46965. (10.60)

Thus the correct numerical solution is reached in one step.
A broader vision behind symmetry analysis is that it enables one to attack an

equation in light of its symmetries – symmetries that approximately describe
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the real objects modeled by the equation. Symmetry analysis enables one to
examine a problem in a general context that can reach far beyond the isolated
consideration of a specific set of boundary conditions. Together with phase-
space analysis, it provides a means for understanding the whole manifold in
which a particular solution is imbedded. Often this leads to connections that
might never be revealed through straight numerical analysis. In fact, this is
probably the most general criticism that can be leveled at a purely numerical
approach: that a broad view of the problem is rarely revealed by a single ap-
proximate result. To make this point concrete, we will now consider a problem
in nonlinear heat conduction and then relate it to the Blasius problem.

10.4 Temperature Gradient Shocks in Nonlinear Diffusion

Now we consider heat conduction in a medium where the thermal diffusiv-
ity is proportional to the temperature, κ = λT . The governing nonlinear heat
equation is

∂T
∂t

= λ
∂

∂x

(

T
∂T
∂x

)

. (10.61)

This is a reasonable model for heat conduction in gases, although a more
realistic model would be κ = λT σ where σ is in the range 0.5 < σ < 1 (see
Exercise 10.4). Let’s consider the diffusion of heat in a semiinfinite slab where
the temperature of the wall is impulsively set to T0. The boundary condi-
tions are

T [x, 0] = 0, x > 0,

T [0, t] = T0, t > 0.
(10.62)

Note that the temperature appears explicitly in the governing equation, making
it not invariant under translation in temperature. This prevents us from working
the problem in terms of temperature differences; the zero boundary condition
at infinity is truly zero. Note that this implies that the diffusivity at infinity is
also zero.

This problem is invariant under a one-parameter dilation group

x̃ = es x, t̃ = e2s t, T̃ = T (10.63)

with characteristic equations

dx
x

= dt
2t

= dT
0

. (10.64)
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The corresponding similarity form of the solution is

T
T0

= g[θ ], θ = x
(2λT0t)1/2

. (10.65)

When we substitute (10.65) into (10.61), the result is a nonlinear second-order
ODE,

ggθθ + θgθ + (gθ )2 = 0, (10.66)

with boundary conditions,

g[0] = 1, g[∞] = 0. (10.67)

10.4.1 First Try: Solution of a Cauchy Initial Value
Problem – Uniqueness

Let’s try to solve the boundary-value problem (10.66) and (10.67) as a Cauchy
initial-value problem. This is the same approach we used to solve the third-order
Blasius problem in Section 10.3.3, except that here we are dealing with just a
second-order equation and so things should be easier. A trial value of gθ [0]
is selected, and the solution is computed numerically, beginning at θ = 0 and
progressing to large values of θ , in the hope that the solution will approach the
far-field boundary condition, g[∞] = 0. If it fails to do so, a new value of gθ [0]
is selected and the process is repeated. This is an entirely reasonable strategy
given the fundamentally diffusive nature of the problem and the expectation
that the solution should be smooth everywhere.

Figure 10.7. shows several trial solutions, and as we can see, there is a bit
of a problem. For gθ [0] < −0.627554 there appear to be an infinite number
of possible solutions that can match the zero boundary condition at infinity.
Furthermore, these solutions reach g = 0 at a finite distance from the origin, θ0,
where the temperature gradient appears to be discontinous. Our intuition would
suggest that the gradient shouldn’t be discontinuous; that perhaps there should
be some sort of very thin diffusion layer near g = 0 that we simply can’t resolve
with our numerical method.

Is the solution nonunique? Is it discontinuous? There does seem to be one
trajectory that is special, corresponding to gθ [0] = −0.627554, but before we
can conclude anything about the solution, we need an additional piece of infor-
mation. Where will it come from? Group theory and phase-plane analysis will
show the way.
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Fig. 10.7. Trial solutions of (10.66) and (10.67) with specified initial slope.

10.4.2 Second Try: Solution Using Group Theory

Note that Equation (10.66) is identical to the second-order equation (10.36),
once-reduced from the Blasius equation. Thus we can expect invariance of
(10.66) under the group

θ̃ = e−bθ , g̃ = e−2bg (10.68)

with new variables,

γ = g
θ2

,

H = gθ

θ
.

(10.69)

The reduction to first order of course leads to the same equation, (10.44), and
the same phase portrait depicted in Figure 10.2.

But we face the same question we did earlier with the Blasius problem. Which
trajectory in the phase portrait corresponds to the solution? Figure 10.2 shows
that the solution trajectory must lie wholly in one of the four quadrants; this
is ensured by the vectors aligned with the coordinate axes, which prevent any
trajectories from crossing the coordinate axes. Furthermore, we know that the
solution lies in the range θ > 0, and that somewhere g > 0 and therefore γ > 0.
Thus the solution is precluded from lying to the left of the origin in Figure 10.2.
In addition, since the temperature in the far field goes to zero, there must be
some point where gθ < 0 and H < 0. This implies that the solution must lie in
the lower right quadrant in Figure 10.2. That narrows things quite a bit. Now
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we make the reasonable assumption that far from the hot wall, at the point θ0

where g = 0, the second derivative gθθ is either finite or zero. At that point
Equation (10.66) reduces to

gθ |g=0(gθ |g=0 + θ0) = 0, (10.70)

where θ0 is still to be determined. At the point where the temperature reaches
zero, the derivative has two possible values,

gθ |g=0 = 0, −θ0, (10.71)

and the coordinates in the phase plane corresponding to the physical far bound-
ary of the solution also have two possible values,

(γ H ) = (0, 0), (γ , H ) = (0, −1). (10.72)

The only solution trajectory in Figure 10.2 that can satisfy this condition is the
one that joins the origin with the saddle at (γ , H ) = (0, −1) and then passes to
infinity (i.e., to the heated wall) in the lower right quadrant. This analysis tells
us that, indeed, the solution does reach g = 0 at some finite distance θ0 from
the heat source and that the temperature gradient is discontinuous there.

The saddle point at (γ , H ) = (0, −1) contains all the information we need to
determine the solution from an initial-value problem, but one that starts at the
outer boundary and integrates to the wall. The autonomous pair that determines
the phase portrait in Figure 10.2 is

dγ

ds
= 2γ 2 − γ H = A(γ , H ),

(10.73)
d H
ds

= γ H + H + H 2 = B(γ , H ).

If we linearize this system near the saddle in Figure 10.2, the result is
⎡

⎢

⎢

⎣

dγ

ds
d H
ds

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

∂ A
∂γ

∂ A
∂ H

∂ B
∂γ

∂ B
∂ H

⎤

⎥

⎥

⎦

∣

∣

∣

∣

∣

∣

∣

∣

(γ ,H )=(0,−1)

[

γ

H + 1

]

=
[

1 0
−1 −1

] [

γ

H + 1

]

.

(10.74)

The eigenvalues at the saddle are λi = ±1, and the normalized eigenvectors are

e1 =

⎡

⎣

1

−1
2

⎤

⎦ , e−1 =
[

0
1

]

. (10.75)
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The slope of the eigenvector emanating from the saddle is

d H
dγ

= −1
2
. (10.76)

Using the initial values H [0] = −1, Hγ [0] = − 1
2 , the integration proceeds along

the diverging sepratrix shown as a bold line in Figure 10.2.

10.4.2.1 Asymptotic Solution Near θ = θ0

The slope of the eigenvector at (γ , H ) = (0, −1) tells us that near θ0,

H = − 1
2γ − 1, (10.77)

which we can write as

gθ

θ
= −1

2
g
θ2

− 1, (10.78)

or

θ
d

dθ

(

g
θ2

)

= −5
2

(

g
θ2

)

− 1. (10.79)

Equation (10.79) can be integrated:

∫ g/θ2

0

dγ
5
2γ + 1

= −
∫ θ

θ0

dθ

θ
, (10.80)

to generate the asymptotic solution near the outer boundary,

lim
θ→θ0

g[θ ] = 2
5

(

θ
5/2
0

θ1/2
− θ2

)

. (10.81)

The local solution (10.81) can be used to evaluate the derivatives of the full
solution at θ = θ0. At this boundary we have

g[θ0] = 0,

gθ [θ0] = −θ0,

gθθ [θ0] = − 1
2 .

(10.82)

Remarkably, through a combination of group theory and phase-plane analysis,
we have discovered all of the needed properties of the solution at the boundary,
including the value of the second derivative.
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Fig. 10.8. Propagation of a thermal front in a nonlinear medium: (a) self-similar tem-
perature, (b) self-similar temperature gradient.

10.4.3 The Solution

We can now use (10.82), together with the shooting method used in Section
10.4.4 to produce Figure 10.7, to determine the correct and unique solution of
the problem. The result is shown in Figure 10.8. The correct trajectory is found
by adjusting gθ [0] until gθθ = − 1

2 is reached at g = 0. Alternatively, one can
adjust gθ [0] until gθ [θ0] = −θ0 is reached. Both conditions occur together, as
indicated by the analysis that led us to (10.82). Only one trajectory satisfies
(10.82).

So it does turn out that the solution exhibits behavior that is somewhat sur-
prising in view of the diffusive nature of the problem. Whereas heat conduction
in a linear medium produces a temperature field that extends to infinity with an
exponential decay, the nonlinear medium produces a temperature field with a
finite signal speed terminated by a temperature-gradient shock that propagates
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with a speed proportional to t1/2 into the undisturbed field. It is important to rec-
ognize that the temperature gradient shock is a true discontinuity in the deriva-
tive. A numerical solution of the same problem that ignores the phase plane
is almost certain to smooth out the solution, possibly leading to the erroneous
conclusion that there exists a thin internal diffusion layer near the shock. In fact
the phase portrait suggests exactly how the numerical solution should proceed if
high precision is desired. One begins at the saddle and integrates in the direction
of the eigenvector emanating along the separatrix leading away from the saddle
into the lower right quadrant. This provides the precise direction for the first
numerical step away from the saddle; the integration then continues to large
values of γ . In similarity coordinates, one is beginning at the temperature gradi-
ent shock and integrating backward toward the heated boundary. Finally, notice
how the line joining the origin at a and the saddle at b in the phase portrait,
Figure 10.2, is collapsed into the corner of the temperature gradient shock
shown in Figure 10.8.

One can make a further physical argument that this is the correct solution
by considering a situation where the temperature at infinity is not zero. In that
instance, a smooth solution will solve the problem. Two such solutions matching
a finite temperature at infinity are shown in Figure 10.7. In the (γ , H ) plane,
these trajectories flow into the critical point at (γ , H ) = (0, 0). If we imagine
a process whereby the temperature at infinity is reduced to zero, the limiting
solution as Tinfinity → 0 is precisely the discontinuous one we worked out,
with gθ [0] = −0.627554 and gθ [1.1425] = −1.1425. In the (γ , H ) plane
these solutions flow off to (γ , H ) = (0, −∞).

Most materials exhibit a thermal diffusivity K = λT σ where σ < 1. The case
of σ < 1 is explored in Exercises 10.3 and 10.4 and generally it is found that the
propagation speed of the heat remains finite. The practically more important
case is where the temperature at infinity is nonzero. In this case the discontinuity
disappears but the propagation speed remains finite as shown by the gθ [0] =
−0.5, −0.6 curves in Figure 10.7.

10.4.4 Exact Thermal Analogy of the Blasius Boundary Layer

Now let’s change the boundary condition at the wall and consider the situation
where the temperature at the wall is suddenly reduced to zero while the tem-
perature of the medium remains finite. In this case the boundary conditions for
(10.66) change to

g[0] = 0, g[∞] = 1. (10.83)

The self-similar temperature profile for this case is shown in Figure 10.9.
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Fig. 10.9. Cooling of a nonlinear medium – analogy with the Blasius boundary layer.

A comparison of these two problems lends some insight into the effect of a
nonlinear medium. Pushing heat into the medium creates a situation where the
heat flux is in the same direction as the propagation of the disturbance, with the
highest diffusivity occurring at the rear. In effect, heat to the rear catches up with
heat near the front in a process of nonlinear steepening that produces a finite
disturbance region bounded by a temperature gradient shock. Withdrawing heat
from the medium causes the direction of heat flux to be opposite to that of the
propagation of the disturbance, with the highest diffusivity at the front; heat
farther away diffuses more rapidly than heat near the wall. This is a gentler
process that produces a disturbance region that spreads out and extends to
infinity with no discontinuities, as shown in Figure 10.9. The whole process is
quite reminiscent of the flow produced by a piston moving into, or away from,
a compressible gas in a tube.

Finally, we point out that this latter problem – governed by Equation (10.61)
with similarity variables (10.65) together with the boundary conditions (10.83) –
is an exact thermal analog of the Blasius flat-plate boundary-layer problem
governed by (10.36) and (10.37), with the following correspondence between
variables [10.2]:

T
T0

→ u
Ue

,

x
(2λT0t)1/2

→ ψ

(2νUex)1/2
.

(10.84)
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The velocity (or temperature) is plotted against the stream function (or x) in
Figure 10.9.

10.5 Boundary Layers with Pressure Gradient

Now let’s return to the group analysis of the boundary-layer equations with
pressure gradient (10.2) and (10.6) and ask: how general is the boundary-layer
concept, and how widely applicable are the solutions of the boundary-layer
equations? In particular, are we restricted to flat plates? To answer these ques-
tions we need to examine the full Lie group of Equation (10.6), repeated here
for convenience:

∂ψ

∂y
∂2ψ

∂x ∂y
− ∂ψ

∂x
∂2ψ

∂y2
− Ue

dUe

dx
− ν

∂3ψ

∂y3
= 0. (10.85)

For the moment we regard Ue as a known function of x . The infinitesimal
transformation is

x̃ = x + sξ [x, y, ψ],

ỹ = y + sζ [x, y, ψ],

ψ̃ = ψ + sη[x, y, ψ].

(10.86)

Using the IntroToSymmetry.m package leads to the infinitesimals

ξ [x, y, ψ] = a
(

4UeUex

U 2
ex + UeUexx

)

,

ζ [x, y, ψ] = −ay + g[x],

η[x, y, ψ] = aψ + b,

(10.87)

where g[x] is an arbitrary function and Ue[x] is required to satisfy

(UeUex )(UeUex )xx = (UeUex )2. (10.88)

The solution of (10.88) is

Ue =
(

A + Bex/L)1/2
. (10.89)

The finite group associated with the group parameter a leads to a similarity
solution for an exponentially changing free stream – a highly interesting result.

But there is another, even more interesting, and much more important result
contained in (10.87). This is associated with the arbitrary function of x appearing
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in the infinitesimal transformation of y. The corresponding infinite-dimensional
finite group is

x̃ = x,

ỹ = y + g[x], (10.90)

ψ̃ = ψ.

The invariance of the boundary-layer equations (10.85) under the group (10.90)
vastly expands the usefulness of the boundary-layer approximation. The impli-
cation of (10.90) is that if

ψ[x, y] (10.91)

is a solution of the untilde’d boundary-layer equations for flow over a flat plate
with some specified Ue[x], then

ψ̃[x̃, ỹ − g[x̃]] (10.92)

is a solution of the tilde’d equations for flow over a body with the boundary
shape y = 0 ⇒ ỹ = g[x̃] and Ue[x̃] = Ue[x]. In effect, the solution on a body
with arbitrary shape ỹ = g[x̃] and free-stream velocity Ue[x̃] can be directly
transformed to the solution on a flat plate with the same Ue[x]. Furthermore,
the problem of determining the boundary layer on a body of a given shape is,
to within the boundary-layer approximation, completely decoupled from the
problem of determining Ue[x]. This is valid as long as x is measured from the
same effective origin and the body geometry is such that the flow remains nearly
parallel to the body – the flow doesn’t separate.

Incidentally, a more general result holds for the flow over a surface that is
moving. The unsteady boundary-layer equation

∂ zψ

∂t∂y
+ ∂ψ

∂y
∂2ψ

∂x ∂y
− ∂ψ

∂x
∂2ψ

∂y2
− ∂Ue

∂t
− Ue

dUe

dx
− ν

∂3ψ

∂y3
= 0 (10.93)

is invariant under the infinite-dimensional group

x̃ = x + h[t],

ỹ = y + g[x, t],

ψ̃ = ψ,

Ũ e = Ue,

(10.94)

where h[t] and g[x, t] are arbitrary functions. This allows the unsteady flow
over a moving surface to be mapped to the flow over a flat plate with the same
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Fig. 10.10. Boundary layer on an unsteady wing transformed to the boundary layer on
a flat plate. The function h[t] in (10.94) is assumed to be zero.

Ue[x, t]. Further details can be found in the paper by Ma and Hui [10.3], who
provide a comprehensive discussion of various groups and similarity solutions
of the unsteady boundary-layer equations.

From a practical standpoint the boundary-layer approximation and the sym-
metries carried with it probably represents the most important theoretical sim-
plification in all of mechanics. It is the basis of a general method for solving
the viscous flow over complex body shapes in low-speed flow. The general
idea is illustrated in Figure 10.10, where the flow over a 2-D unsteady airfoil is
mapped to the flow over a flat plate with the same Ue[x, t].

Of course, for a given shape to give a realistic solution it must be consistent
with the basic assumptions of the boundary-layer approximation. In the case
of the airfoil depicted in Figure 10.10, accurate treatment of the flow near
the leading and trailing edges would require an analysis of the full equations
of motion. As Prandtl first showed, at high Reynolds number the flow past a
body such as that illustrated in Figure 10.10 divides neatly into two regions.
There is an outer flow away from the wall where the motion is irrotational
and can be treated as frictionless. The flow in this region is determined by
solving Laplace’s equation for the velocity potential, ∇2φ = 0, from which
the velocity is generated using u = ∇φ. The boundary conditions for the outer
problem are that the velocity must match the free stream far from the wing and
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it must lie parallel to the surface at the surface. In addition, the flow leaving
the trailing edge must satisfy the Kutta condition that states that the potential
flow leaves the trailing edge of the wing smoothly. The Kutta condition forces
the potential solution to mimic the behavior of the actual viscous flow. The real
high Reynolds number flow can’t negotiate the sharp trailing edge, due to very
large viscous dissipation of kinetic energy that would occur if the flow were to
go around a sharp corner. This latter requirement in fact implies that there is a
net circulation about the wing proportional to the lift on it. The circulation is
put into the problem by adding to the irrotational outer flow a potential vortex
located on the chord line at the quarter-chord point of the wing. Adjusting the
strength of the vortex until the potential flow leaves the trailing edge smoothly
yields a reasonably accurate value for the lift on the wing.

However, in a steady flow the drag on the wing is zero – the so-called
d’Alembert’s paradox. To determine the drag one needs to solve for the bound-
ary layer. The boundary-layer solution provides the value of the viscous friction
at the wall. The steps needed to solve the flow with a boundary layer are as fol-
lows. The potential solution is used to solve for the frictionless-flow velocity
at the wall. The potential-flow velocity evaluated at the wall is used as Ue[x]
for a subsequent boundary-layer calculation. The boundary-layer calculation
defines a modified effective shape for the wing, which is used to repeat the
potential-flow calculation, which defines a new Ue[x] for a revised boundary-
layer calculation, and so forth. After a few iterations accurate values for both
the lift and drag on the wing are obtained.

Finally, what is the justification for dividing the flow into such distinct re-
gions? The main contribution to the vorticity comes from the y-derivative of
the velocity,

ω ≈ ∂u
∂y

= Ue

x

(

Uex
2ν

)1/2

Fαα. (10.95)

Let σ = Fαα . The Blasius equation in terms of σ is

dσ

dα
= −Fσ. (10.96)

For constant Ue and large α we have F ≈ α, and so at the edge of the layer we
can approximate the behavior of the vorticity as

σ ≈ e−α2/2. (10.97)

This quantifies the point made earlier in conjunction with Figure 10.3 that at the
edge of the boundary layer the vorticity decays exponentially fast. This is the
fundamental justification for the separation of the flow into two distinct regions.
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Finally, we consider other free-stream velocity distributions that lead to sim-
ilarity solutions in addition to the exponential flow described in (10.89). We
again analyze the group properties of the stream-function equation

* = ψyψxy − ψxψyy − Ue
dUe

dx
− νψyyy = 0 (10.98)

using theIntroToSymmetry.m package. But this time we will use a slightly
different approach. Instead of thinking of Ue[x] as an arbitrary function only
of x , we will initially regard it as a second dependent variable Ue[x, y]. Then
we will stipulate that Ue must be independent of y by applying the rule uey = 0
to the invariance condition. In this approach we are analyzing the invariance of
a system of one equation in two dependent variables. This may seem futile at
first, but as far as symmetry analysis is concerned, the method can be applied
to any mathematical expression or set of expressions whatsoever. The fact that
the system we are considering is unclosed has no effect at all on how the Lie
algorithm is applied and on its ability to reveal symmetries.

The infinitesimal transformation is

x̃ = x + sξ [x, y, ψ, Ue],

ỹ = y + sζ [x, y, ψ, Ue],

ψ̃ = ψ + sη[x, y, ψ, Ue],

Ũe = Ue + sθ [x, y, ψ, Ue].

(10.99)

Since there is only one equation, there is only one invariance condition
X{3}* = 0. Fully written out, this is

ξ
∂*

∂x
+ ζ

∂*

∂y
+ η

∂*

∂ψ
+ θ

∂*

∂Ue

+ η{x}
∂*

∂ψx
+ η{y}

∂*

∂ψy
+ η{xx}

∂*

∂ψxx
+ η{xy}

∂*

∂ψxy
+ η{yy}

∂*

∂ψyy

+ η{xxx}
∂*

∂ψxxx
+ η{xxy}

∂*

∂ψxxy
+ η{xyy}

∂*

∂ψxyy
+ η{yyy}

∂*

∂ψyyy

+ θ{x}
∂*

∂Uex

+ θ{y}
∂*

∂Uey

+ θ{xx}
∂*

∂Uexx

+ θ{xy}
∂*

∂Uexy

+ θ{yy}
∂*

∂Ueyy

+ θ{xxx}
∂*

∂Uexxx

+ θ{xxy}
∂*

∂Uexxy

+ θ{xyy}
∂*

∂Uexyy

+ θ{yyy}
∂*

∂Ueyyy

= 0.

(10.100)
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When the differentiation indicated in (10.100) is carried out, the invariance
condition reduces to

−θ
∂Ue

∂x
− η{x}ψyy + η{y}ψxy + η{xy}ψy − η{yy}ψx − νη{yyy} − θ{x}Ue = 0.

(10.101)

The resulting infinitesimals generated by the package are

ξ (x, y, ψ, Ue) = a + (b + c)x,

ζ (x, y, ψ, Ue) = cy + g[x],

η(x, y, ψ, Ue) = d + bψ,

θ (x, y, ψ, Ue) = (b − c)Ue,

(10.102)

where dUe/dy = 0. The characteristic equations corresponding to (10.102) are

dx
a + (b + c)x

= dy
cy + g[x]

= dψ

d + bψ
= dUe

(b − c)Ue
. (10.103)

First we solve

dx
a + (b + c)x

= dUe

(b − c)Ue
(10.104)

to give

Ue = M(x + x0)β, (10.105)

where

β = b − c
b + c

, x0 = a
b + c

, (10.106)

and M is a constant of integration with units

M̂ = L1−β/T . (10.107)

We find from this analysis that similarity solutions of (10.98) exist for a class of
power-law free-stream velocity distributions given by (10.105). This is the well-
known Falkner–Skan family of boundary layers [10.4], [10.5], and the exponent
β is the Falkner–Skan pressure-gradient parameter. The arbitrary translation of
y by g[x] can be incorporated at any time, as can the stream-function translation
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parameter d in (10.102). The parameters M and ν are used to nondimensionalize
the similarity variables derived from the remaining equalities in (10.103),

α =
(

M
2ν

)1/2 y
(x + x0)(1−β)/2

,

F = ψ

(x + x0)(1+β)/2(2νM)1/2
.

(10.108)

Substitution of (10.108) and (10.105) into the stream-function equation (10.98)
yields

(x + x0)2β−1(Fα((1 + β)F − (1 − β)αFα)α
− Fαα((1 + β)F − (1 − β)αFα) − 2β − Fααα) = 0. (10.109)

Canceling terms produces the Falkner–Skan equation

Fααα + (1 + β)F Fαα − 2β(Fα)2 + 2β = 0 (10.110)

with boundary conditions

F[0] = 0, Fα[0] = 0, Fα[∞] = 1. (10.111)

Note that β = 0 reduces (10.110) to the Blasius equation. It is fairly easy
to work out the groups of (10.110) based on our experience with the Blasius
equation. The constant 2β breaks the dilational invariance, and so one is left
with only the invariance under translation in α:

ξ = 1, η = 0, (10.112)

and so we should be able to reduce the order by one. The new variables are the
invariants of (10.112):

φ = F, G = Fα. (10.113)

By the method of differential invariants, the expression
( DG

Dα

)

( Dφ
Dα

) = dG
dφ

=
∂G
∂α

dα + ∂G
∂ F d F + ∂G

∂ Fα
d Fα

∂β
∂α

dα + ∂β
∂ F d F

= Fαα

Fα

. (10.114)

is an invariant, as is

d2G
dφ2

=
(

Fα Fααα − F2
αα

F2
α

)

1
Fα

= Fα(−(1 + β)F Fαα + 2β(Fα)2 − 2β) − F2
αα

F3
α

, (10.115)
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Fig. 10.11. Falkner–Skan velocity profiles.

where the Falkner–Skan equation (10.110) has been used to replace the third
derivative. As we expect, equation (10.115) can be rearranged to read entirely
in terms of the new variables:

GGφφ + (1 + β)φGφ + (Gφ)2 + 2β

(

1
G

− G
)

= 0 (10.116)

with the boundary conditions

G[0] = 0, G[∞] = 1. (10.117)

Several velocity profiles are shown in Figure 10.11.
A particularly interesting case occurs when β = −1. The pressure gradient

term is

Ue = M
x

⇒ Ue
dUe

dx
= − M2

x3
, (10.118)

and the original variables become

α =
(

2ν

|M |

)

y
x + x0

,

F = ± ψ

(2ν|M |)1/2
.

(10.119)

In this case the units of the governing parameter, M̂ = L2/T , are the same
as those of the kinematic viscosity, and so the ratio |M |/ν is the (constant)
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Table 10.2.
Commutator table for

the case β = −1.

Xa Xb

Xa 0 0
Xb 0 0

Reynolds number for the β = −1 flow. The governing equation becomes

Fααα ± (2(Fα)2 − 2) = 0. (10.120)

The quantity M is an area flow rate and can change sign depending on whether
the flow is created by a source or a sink. The plus sign corresponds to a source,
and the minus sign to a sink. To avoid an imaginary root, the absolute value of
M is used to nondimensionalize the stream function in (10.119).

For β = −1, the second term in (10.116) vanishes, introducing a new sym-
metry, which produces an equation that is invariant under translation in φ. The
corresponding two-parameter group of (10.120) is the two-parameter Abelian
group ξ = a, η = b (corresponding to invariance under translation in F and α)
with group operators Xa = ∂/∂α and Xb = ∂/∂ F and solvable Lie algebra given
by Table 10.2. The once reduced equation is

G2Gφφ + GG2
φ ± 2(G2 − 1) = 0, (10.121)

where

φ = F, G = Fα. (10.122)

This equation admits the group

ξ = 1, η = 0 (10.123)

with invariants

γ = G, H = Gφ . (10.124)

From the method of differential invariants or just by inspection

d H
dγ

=
Hφ + HG

dG
dφ

+ HGφ

dGφ

dφ

γφ + γG
dG
dφ

= Gφφ

Gφ

=
− (Gφ )2

G − 2
G2 + 2

Gφ

. (10.125)
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Equation (10.121) reduces to

d H
dγ

= −H 2γ ± (2 − 2γ 2)
γ 2 H

. (10.126)

Equation (10.126) is invariant under the group

γ̃ = γ ,

H̃ =
(

H 2 ∓ s
2
γ 2

)1/2 (10.127)

with group parameters and infinitesimals

ξ = 0, η = ∓ 1
γ 2 H

, (10.128)

where the plus sign corresponds to the sink flow case. Based on the invariance
under (10.127), we should expect (10.126) to be fully integrable.

10.6.1 Falkner–Skan Sink Flow

At this point we will restrict ourselves to the case of a sink flow [choose the minus
sign in (10.121), (10.126), (10.127) and the plus sign in (10.128)]. See Landau
and Lifshitz [10.6] for the case of a source, which is much more complex (see
also Exercise 10.5). The flow we are considering is sketched in Figure 10.12.

The negative sign in front of the F in (10.119) ensures that the velocity
derived from the stream function is directed in the negative x-direction. The
first order ODE (10.126) (with the minus sign selected) can be broken into the
autonomous pair

d H
ds

= −H 2γ − 2 + 2γ 2,

dγ

ds
= γ 2 H

(10.129)

x

y

Fig. 10.12. Falkner–Skan sink flow for β = −1.
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Fig. 10.13. Phase portrait of the Falkner–Skan case β = −1.

with critical points at (γ , H ) = (0±1). The phase portrait of (10.129) is shown
in Figure 10.13.

Equation (10.126) is rearranged to read

(γ H 2 + 2 − 2γ 2) dγ + (γ 2 H ) d H = 0, (10.130)

which, by the cross-derivative test, can be shown to be a perfect differential
with the integral

ψ = 2γ − 2
3γ 3 + 1

2γ 2 H 2. (10.131)

Recall that

γ = G = Fα,

H = Gφ = Fαα

Fα

.
(10.132)

At the edge of the boundary layer,

lim
α→∞

Fα = 1

lim
α→∞

Fαα = 0

}

⇒ H [1] = 0. (10.133)

This allows us to evaluate ψ in (10.131). The result is

ψ = 4
3 (10.134)
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Solving (10.131) for H yields

H =
(

4γ

3
− 4

γ
+ 8

3γ 2

)1/2

(0 < γ < 1), (10.135)

where the positive root is recognized to be the physical solution. The solution
(10.135) is shown as the thicker trajectory in Figure 10.13. Equation (10.135)
can be written as

γ H =
√

4
3 ((γ − 1)2(γ + 2))1/2. (10.136)

In terms of the original variables, we obtain

Fαα =
√

4
3 ((Fα − 1)2(Fα + 2))1/2 (10.137)

and

α = tanh−1

[

√

Fα + 2
3

]

− tanh−1

[

√

2
3

]

. (10.138)

The latter result can be solved for the negative of the velocity, Fα:

Fα = 3 tanh2
[

α + tanh−1
√

2
3

]

− 2. (10.139)

This is shown plotted in Figure 10.14.
The Falkner–Skan sink flow represents one of the few known exact solutions

of the boundary-layer equations. However, the fact that an exact solution exists

1 2 3 4 5
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0.4

0.6

0.8

1

Fα

α

Fig. 10.14. Falkner–Skan sink-flow velocity profile β = −1.
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for the caseβ = −1 is no accident. Neither is the fact that this case corresponds to
an independent variable of the form α ≈ y/x where both coordinate directions
are in some sense equivalent. Remember that the essence of the boundary-layer
approximation is that the streamwise direction is in a sense “convective” while
the transverse direction is “diffusive,” producing a flow that is progressively
more slender in the y-direction as x increases. In the case of the Falkner–Skan
sink flow the aspect ratio of the flow is constant. This point will be clarified
in Chapter 11, where the group properties of the full Navier–Stokes equations
are discussed. There we will study the flow produced by a source or a sink
in a diverging channel. It will be seen that the diverging-channel problem is
invariant under the dilation group that leaves the full Navier–Stokes equations
invariant and that this group is identical to the group (10.102) with the group
parameter b = 0 ⇒ β = −1.

In fact the flow in a diverging channel is one of the few know exact solutions of
the full Navier–Stokes equations, and at high Reynolds number, the sink version
of it asymptotically approaches the exact solution (10.138) of the Falkner–Skan
sink flow. Both flows are invariant under the spatially uniform dilation group
x̃ = ecx, ỹ = ec y, ψ̃ = ψ .

10.7 Concluding Remarks

This completes our discussion of laminar boundary layers for now. We shall
return to the Falkner–Skan problem again at the end of Chapter 11, after looking
at the invariance properties of the full Navier–Stokes equations for incompress-
ible flow.

10.8 Exercises

10.1 In Section 10.1 it is stated that the flow outside the boundary layer is
“irrotational (∇ × u = 0) and therefore unaffected by viscosity.” Justify
this statement using the incompressible Navier–Stokes equations

∂ui

∂t
+ ∂

∂xk

(

ui uk + p
ρ

δi
k

)

− ν
∂ui

∂xk ∂xk
= 0,

∂uk

∂xk
= 0 (10.140)

and the identity ∇ × (∇ × u) = ∇(∇ · u) − ∇2u.
10.2 Take the boundary-layer variables

F = ψ

(2νUex)1/2
, α = y

( 2νx
Ue

)1/2 , (10.141)
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and substitute them into the full Navier–Stokes equations, written in
terms of the stream function,

∂ψ

∂y
∂

∂x

(

∂2ψ

∂x2
+ ∂2ψ

∂y2

)

− ∂ψ

∂x
∂

∂y

(

∂2ψ

∂x2
+ ∂2ψ

∂y2

)

− ν

(

∂4ψ

∂x4
+ 2

∂4ψ

∂x∂∂y2
+ ∂4ψ

∂y4

)

= 0. (10.142)

Use the fact that Re = Uex/ν is large to reduce the resulting equation to
the Blasius ODE,

Fααα + F Fαα = 0. (10.143)

10.3 Formulate the nonlinear heat conduction problem

∂T
∂t

= λ
∂

∂x

(

T σ ∂T
∂x

)

(10.144)

with boundary conditions

T [x, 0] = 0, x > 0,

T [0, t] = T0, t > 0,
(10.145)

for values of σ other than one. Reduce the problem to a first order ODE
and set up the phase plane. Describe what happens as σ is varied. Interpret
your results physically.

10.4 Consider the case of an instantaneous source that injects a finite amount
of heat, E , at a point in a nonlinear medium. The temperature diffuses,
and the total heat added is constant. In this case the temperature at the
origin decreases with time as the distribution spreads out. The governing
equation is

∂T
∂t

= λ
∂

∂x

(

T σ ∂T
∂x

)

(10.146)

with initial source distribution

T [x, 0] = Eδ[x] (10.147)

and conserved integral
∫ ∞

−∞
T [x, t] dx = E . (10.148)
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This problem is exactly solved by a parabolic distribution of temperature,

T =

⎧

⎨

⎩

E2/(σ+2)

(λt)1/(σ+2)

(

σ

2(σ + 2)
(θ2

0 − θ2)
)1/σ

, θ ≤ θ0, σ ̸= −2,

0, θ > θ0,
(10.149)

where

θ = x
(Eσ λt)1/(σ+2)

(10.150)

and

θ0 =
(

π−1/2
(

2σ + 4
σ

)1/σ 7
( 1

σ
+ 3

2

)

7
( 1

σ
+ 1

)

)
σ

σ+2

(10.151)

(Zel’dovich and Kompaneets [10.7]). What group is the solution invariant
under? Reduce the problem to a phase plane, and try to identify the
solution trajectory, see Ibragimov [10.8] for the solution of the impulsive
problem in n dimensions.

10.5 Consider the Falkner–Skan case β = −1. Show that (10.127) is a group,
and show that (10.126) is invariant under (10.127). Use phase-plane
analysis to examine the case where the origin is a source, M > 0
[cf. Equation (10.129) with a plus sign]. Comment on the existence
of the solution. Why is this case more difficult than the sink flow?

10.6 Consider the buoyancy induced flow produced by a heated flat plate
sketched in Figure 10.15. This flow is governed by a coupled system
of convection–diffusion equations for the momentum and temperature.
Changes in density are related to changes in temperature by a thermal
expansion coefficient:

ρ − ρ∞ = β(T − T∞). (10.152)

If changes in density are small [(ρ − ρ∞)/ρ∞ ≪ 1], the fluid behaves
incompressibly (∇ · u = 0) with a local body force equal to (ρ − ρ∞)g.
The governing equations are u = ∂ψ/∂y, v = −∂ψ/∂x,

∂ψ

∂y
∂2ψ

∂x ∂y
− ∂ψ

∂x
∂2ψ

∂y2
− ν

∂3ψ

∂y3
= β(T − T∞)g

ρ∞
,

∂ψ

∂y
∂T
∂x

− ∂ψ

∂x
∂T
∂y

= κ
∂2T
∂y2

.

(10.153)
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u

T∞

Twall

g

Fig. 10.15.

(1) Use the package IntroToSymmetry.m to work out the infinitesi-
mal groups for this system. Generate the commutator table, and fully
characterize the Lie algebra.

(2) Construct similarity variables for the problem depicted above, reduce
the governing equations to a pair of coupled ODEs, and solve for the
self-similar velocity and temperature profiles.

(3) Show whether a similarity solution exists when the free stream ve-
locity is non zero.

(4) How is the symmetry of the problem changed when the plate is
cooled instead of heated?

10.7 Consider the group (10.87) and a free-stream velocity distribution of the
form

Ue =
(

A + Bex/L)1/2
. (10.154)

Determine similarity variables and work out the solution of the governing
equation for this case. Think about what sort of wall shape would be
needed to generate this free-stream velocity field.

10.8 Show by direct substitution that the unsteady boundary-layer equation

ψyt + ψyψxy − ψxψyy − ∂Ue(x, t)
∂t

− Ue(x, t)
∂Ue(x, t)

∂x
− νψyyy = 0

(10.155)
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is invariant under the infinite-dimensional group

x̃ = x, ỹ = y + g[x, t], t̃ = t, ψ̃ = ψ, (10.156)

where g[x, t] is arbitrary. Use the package IntroToSymmetry.m to
work out the invariant groups of (10.155).

(1) Compare your results with the paper by Ma and Hui [10.3]. Work
out the unsteady stagnation-point flow discussed in Section 5 of
their paper. Why, on the basis of group invariance, does the solution
given by Equation (40) in their paper satisfy the full Navier–Stokes
equations?

(2) Consider the case where Ue = Mxβ . Use the dilation invariance
of the problem to reduce the unsteady boundary-layer equation in
(ψ, x, y, t) to a PDE in (G, r, s), where

G = ψ

νa Mbtc
, r = x

Mdte
, s = y

(νt)1/2
. (10.157)

Determine (a, b, c, d, e).
(3) Consider a two-parameter dilation group on G, r , and s of the form

r̃ = exp
[

2
1 − β

b
]

r , s̃ = ebs, G̃ = exp
[

1 + β

1 − β
b
]

G.

(10.158)

Use this group to generate similarity variables and reduce the equa-
tion found in part (2) to the steady Falkner–Skan ODE (10.110).
Does the group (10.158) leave the equation from part(2) invariant?
Why does this reduction work?
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11
Incompressible Flow

This chapter is concerned with the application of symmetry analysis to problems
of incompressible flow governed by the full Navier–Stokes equations. Two
examples are described in considerable detail, illuminating several facets of the
method not discussed thus far. Extensive use is made of the three-dimensional
state-space methods introduced in Chapter 3. Here, the phase space in question
is the space of similarity coordinates. It will be shown how the analysis of
symmetries can lead to a description of flow dynamics that is independent of
the observer. Fundamental questions are addressed concerning moving frames
of reference and the distinction between streamlines and particle particle paths
in unsteady flow.

The parameter that governs the dynamics of a viscous flow is the Reynolds
number. In the selected examples this is defined in terms of the kinematic
viscosity and an integral constant of the motion derived from an overall mass
or momentum balance. In the two examples considered, the Reynolds number
is constant and the flow field can be represented as a phase portrait in similarity
coordinates. Bifurcations in the phase portrait can occur as the Reynolds number
is varied. The joining of Lie theory and bifurcation analysis in phase space
produces a complete understanding of the Reynolds-number dependence of the
space–time structure of the flow.

11.1 Invariance Group of the Navier–Stokes Equations

The Navier–Stokes equations governing incompressible flow are

∂u j

∂x j
= 0, (sum over j = 1, 2, 3),

∂ui

∂t
+ u j ∂ui

∂x j
+ ∂p

∂xi
− ν

∂2ui

∂x j∂x j
= 0, i = 1, 2, 3,

sum over j = 1, 2, 3

(11.1)
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where p is the kinematic pressure (pressure/density) and ν is the kinematic
viscosity (viscosity/density). We transform (11.1) using the following infinites-
imal group

x̃ i = xi + sξ i [x, t],

t̃ = t + sτ [x, t],

ũi = ui + sηi [x, t],

p̃ = p + sζ [x, t].

(11.2)

Running the package IntroToSymmetry.m on (11.1) leads to the following
set of group operators:

(1) Invariance under translation in time:

X1 = ∂

∂t
. (11.3)

(2) An arbitrary function of time, g[t], added to the pressure:

X2 = g[t]
∂

∂p
. (11.4)

(3) Rotation about the z-axis:

X3 = y
∂

∂x
− x

∂

∂y
+ v

∂

∂u
− u

∂

∂v
. (11.5)

(4) Rotation about the x-axis:

X4 = z
∂

∂y
− y

∂

∂z
+ w

∂

∂v
− v

∂

∂w
. (11.6)

(5) Rotation about the y-axis:

X5 = z
∂

∂x
− x

∂

∂z
+ w

∂

∂u
− u

∂

∂w
. (11.7)

(6) Nonuniform translation in the x-direction:

X6 = a[t]
∂

∂x
+

(

da
dt

)

∂

∂u
− x

(

d2a
dt2

)

∂

∂p
. (11.8)

a[t] is an arbitrary, twice differentiable function of time. Simple translation
in x corresponds to a[t] = const.

(7) Nonuniform translation in the y-direction:

X7 = b[t]
∂

∂y
+

(

db
dt

)

∂

∂v
− y

(

d2b
dt2

)

∂

∂p
. (11.9)

b[t] is an arbitrary, twice differentiable function.
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(8) Nonuniform translation in the z-direction:

X8 = c[t]
∂

∂z
+

(

dc
dt

)

∂

∂w
− z

(

d2c
dt2

)

∂

∂p
. (11.10)

c[t] is an arbitrary, twice differentiable function.
(9) The one-parameter dilation group of the equation

X9 = 2t
∂

∂t
+x

∂

∂x
+ y

∂

∂y
+z

∂

∂z
−u

∂

∂u
−v

∂

∂v
−w

∂

∂w
−2p

∂

∂p
. (11.11)

The finite form of the dilation group corresponding to the infinitesimal operator
X9 is

x̃ i = es xi ,

t̃ = e2s t,
(11.12)

ũi = e−sui ,

p̃ = e−2s p.

Note that the stretching in all three coordinate directions is the same. This
should be compared with the dilation group of the boundary-layer equations
discussed in Chapter 10. Intrinsic to the form of the boundary-layer equations
is the approximation recognized by Prandtl that distinguishes between convec-
tion in the streamwise direction and diffusion in the cross-stream direction.
This distinction is expressed by the invariance of the boundary-layer equa-
tions under a two-parameter dilation group in the spatial coordinates, whereas
the full Navier–Stokes equations admit only the one-parameter dilation group,
(11.12). The implication of this is that the boundary-layer equations govern a
wider range of similarity solutions (wider in terms of flow geometry) than the
full Navier–Stokes equations. This is the main reason why Prandtl’s ideas have
played such an important role in the advancement of the theory of viscous flow.

If the kinematic viscosity in (11.1) is set equal to zero, the full equations
reduce to the incompressible Euler equations, which are invariant under X1 to
X8 and a two-parameter dilation group in space and time given by

x̃ i = es xi ,

t̃ = es/k t,
ũi = es(1−1/k)ui,

p̃ = es(2−2/k) p

(11.13)

with group parameters s and k. The group (11.13) is the main symmetry
group governing elementary turbulent shear flows and is discussed further in
Chapter 13.
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Occasionally, exact solutions of the full Navier–Stokes equations are dis-
covered, and when they are, it is virtually always the case that the solution is
invariant under one or more of the above groups. Some of the most interesting
solutions are those invariant under the dilation group (11.12) and in the later
sections we will describe two famous examples. First, we consider the implica-
tions of the invariance under the nonuniform translation groups (11.8), (11.9),
and (11.10).

11.2 Frames of Reference

Following References [11.1] and [11.2], the finite form of the infinite-
dimensional groups corresponding to nonuniform translation in three space
directions X6, X7, and X8 can be written concisely as

x̃ j = x j + a j [t],
t̃ = t,

ũi = ui + dai

dt
,

p̃ = p − x j d2a j

dt2
+ g[t].

(11.14)

The arbitrary functions translating the coordinates imply that the Navier–Stokes
equations are invariant for all moving observers as long as the observer moves
irrotationally. An observer translating and accelerating arbitrarily in three di-
mensions will sense the same equations of motion as an observer at rest. This
invariance implies a great degree of flexibility in the choice of the observer
used to view a flow. For example, one may wish to move with a particular fluid
element. Or, if some convecting vortical feature happens to be of interest, then
one is free to select a frame of reference attached to that feature. This has been
used in Figure 11.1 to view the wake of a circular cylinder in a frame where
the eddying motions in the wake become apparent. Flow fields are commonly
studied this way. However, there is a danger in attaching too much dynamical
significance to the flow patterns seen by any specific observer, since the choice
of the frame of reference is itself arbitrary and the flow patterns seen by different
observers may differ dramatically, as they do in Figure 11.1.

The term added to the pressure in (11.14) represents a spatially uniform
effective body force induced by the acceleration of the observer. This force is
purely hydrostatic in nature in that it is exactly balanced everywhere by the
rate of change of the velocity field (the derivative of the translation term in the
transformation of the velocity) and has no dynamical significance; it produces
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Fig. 11.1. Velocity vector field in the wake of a circular cylinder from Reference [11.6]
as viewed by two observers: (a) frame of reference moving downstream at 0.755U∞,
(b) frame of reference fixed with respect to the cylinder. The dashed contour roughly
corresponds to the instantaneous boundary of turbulence.
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no net force on the flow field. The compressible equations of motion, do not
admit this symmetry although in one space dimension they are invariant for an
accelerating observer moving according to a specific choice of the acceleration
function. See Exercise 16.8.

Similarly, the group (11.14) would not be admitted by incompressible prob-
lems involving variable density and/or a free boundary. Such flows do involve
a rich variety of similarity solutions, and interesting examples can be found in
References [11.3] and [11.4].

11.3 Two-Dimensional Viscous Flow

The 2-D equations of unsteady incompressible flow are

∂u
∂x

+ ∂v

∂y
= 0,

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

+ ∂p
∂x

− ν
∂2u
∂x2

− ν
∂2u
∂y2

= 0,

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ ∂p

∂y
− ν

∂2v

∂x2
− ν

∂2v

∂y2
= 0.

(11.15)

Introduce the stream function

u = ∂ψ

∂y
, v = −∂ψ

∂x
, (11.16)

and take the curl of the momentum equation to produce the equation for the
vorticity,

∂ω

∂t
+ u

∂ω

∂x
+ v

∂ω

∂y
− ν

∂2ω

∂x2
− ν

∂2ω

∂y2
= 0, (11.17)

where

ω = −
(

∂u
∂y

− ∂v

∂x

)

= −
(

∂2ψ

∂x2
+ ∂2ψ

∂y2

)

. (11.18)

If we substitute (11.16) and (11.18) into (11.15), the result is the 2-D unsteady
stream-function equation

∂

∂t

(

∂2ψ

∂x2
+ ∂2ψ

∂y2

)

+ ∂ψ

∂y
∂

∂x

(

∂2ψ

∂x2
+ ∂2ψ

∂y2

)

− ∂ψ

∂x
∂

∂y

(

∂2ψ

∂x2
+ ∂2ψ

∂y2

)

− ν

(

∂4ψ

∂x4
+ 2

∂4ψ

∂x2 ∂y2
+ ∂4ψ

∂y4

)

= 0. (11.19)
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The stream-function equation is invariant under all of the groups of the Navier–
Stokes equations plus the group of uniform rotations (Reference [11.2]) with
group operator

X10 = yt
∂

∂x
− xt

∂

∂y
− 1

2
(x2 + y2)

∂

∂ψ
+ ∂

∂ω
. (11.20)

The finite form of the group (11.20) is

x̃ = x cos[)t] − y sin[)t],
ỹ = x sin[)t] + y cos[)t],
t̃ = t,

ψ̃ = ψ − )
x2 + y2

2
,

ω̃ = ω + )

(11.21)

and represents a transformation to a system of coordinates rotating counter-
clockwise at a constant angular velocity ). The finite transformation corre-
sponding to nonuniform translation in the x and y directions is

x̃ = x + a[t],
ỹ = y + b[t],
t̃ = t,

ψ̃ = ψ − x
db
dt

+ y
da
dt

.

(11.22)

The terms added to the stream function in (11.21) and (11.22) have a simple
interpretation as the area flux between the origin of the tilde’d coordinates and a
given point, induced by the nonuniform translating and/or uniformly rotating
motion of the observer.

The invariance of the stream-function equation under the group of uniform
rotations, (11.21), is interesting in that it is not a symmetry of the Navier–
Stokes equations in their primitive form (11.1). This is an example of a type
of symmetry called a potential symmetry that can arise when the equation is
expressed in terms of a potential function. The effect of such a change in the
equation is to raise the order of the derivatives that appear, and in the process
point symmetries can arise that are nonlocal symmetries of the original system
(symmetries depending on an integral of the relevant variables; see Bluman
and Kumei [11.5]). These are sometimes termed hidden symmetries. We shall
have much more to say about nonlocal symmetries in Chapters 14 and 16.

The transformations of the vorticity and stream function by the dilation group
(11.12) are

ψ̃ = ψ,

ω̃ = e−2sω.
(11.23)
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Having discussed the basic symmetries of the equations governing incom-
pressible flow, it is now time to see how they can be used to solve problems.
In the first example we will examine the steady viscous flow produced by a
source of mass at the apex of a diverging channel. This example illustrates how
a conserved integral governs the overall motion. Very often for problems set in
an infinite or semi infinite domain, invariance of the overall problem under a
group boils down to invariance of the conserved integral. The second example
considers starting vortex formation in an impulsively started round jet. This
problem illustrates the use of the Reynolds number as a bifurcation parame-
ter in phase space. The final example demonstrates the use of symmetries to
catagorize the Falkner–Skan boundary layers described in Chapter 10.

11.4 Viscous Flow in a Diverging Channel

Figure 11.2 depicts a source (or sink) of mass at the apex of a diverging 2-
D channel of half angle θ1/2. This is the so-called Jeffery–Hamel flow [11.7],
[11.8].

The flow is incompressible, and so we can interpret the source as essentially
a generator of area per second. The same area flow per second passes through
any cross section at a radius r :

M =
∫ θ1/2

−θ1/2

ur dθ, (11.24)

where u is the velocity in the radial direction. The first step is to show that
this problem is invariant under the group (11.12). The walls extend to infinity
and thus are invariant under dilation in r and so in the main, this involves
transforming (11.24) using (11.12) to show that the integral remains invariant:

M̃ =
∫ θ̃1/2

−θ̃1/2

ũr̃ d θ̃ =
∫ θ1/2

−θ1/2

(e−su)(esr ) dθ =
∫ θ1/2

−θ1/2

ur dθ = M. (11.25)

x

y

θ1/2M

u
v

Fig. 11.2. Viscous flow in a diverging channel.
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The dimensions of the conserved integral are [M] = L2/T , and the ratio

Re = M/ν (11.26)

is the Reynolds number of the flow. The point nature of the source, the invariance
of the area flux integral, and the obvious invariance of the semiinfinite channel
boundaries under the dilation group (11.12) are the ingredients of a similarity
solution – in this case, an exact solution. Integrating the characteristic equations

dx
x

= dy
y

= dψ

0
(11.27)

of the group (11.12), (11.23) leads to the similarity variables

θ = arctan[y/x],

G(θ ) = ψ

6ν
.

(11.28)

Note that the group (11.12) produces a similarity solution of the full Navier–
Stokes equations that is in the same functional form as the β = −1 case of
the Falkner–Skan boundary layers treated in Chapter 10; both problems are
invariant under the group (11.12), and their solutions are closely related to
one another. In the case of the Jeffrey–Hamel flow the appropriate similarity
variable is the flow angle. The radial velocity component is

u = 1
r

∂ψ

∂θ
= 6ν

r
Gθ . (11.29)

The reason for using the similarity variable in the form of θ instead of y/x is to
simplify some of the later relationships that develop. Note that the 1/r decay
of the radial velocity is the same as that of the potential flow produced by a
source or a sink, although in this viscous case the flow also satisfies the no-slip
condition at the wall. When ψ = 6νG[θ] is substituted into the stream-function
equation (11.19), the result is the following fourth-order ODE:

Gθθθθ + 12Gθ Gθθ + 4Gθθ = 0. (11.30)

The conserved integral takes the normalized form

M
6ν

=
∫ θ1/2

−θ1/2

Gθdθ = G[θ1/2] − G[−θ1/2], (11.31)

and the boundary conditions at the wall are

Gθ [θ1/2] = Gθ [−θ1/2] = 0. (11.32)
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Now let’s use group theory to reduce the order of (11.30). Note that the apex
of the channel can be a source or a sink of area, depending on the sign of M .

The package IntroToSymmetry.m is used to search for infinitesimal
transformations of (11.30) of the form

θ̃ = θ + sξ [θ, G],

G̃ = G + sη[θ, G].
(11.33)

The result is a three-parameter group with infinitesimals

ξ = b + cθ,

η = a + c
(

− 2
3θ − G

)

.
(11.34)

The corresponding group operators are

Xa = ∂

∂G
, Xb = ∂

∂θ
, Xc = θ

∂

∂θ
+

(

− 2
3
θ − G

)

∂

∂G
(11.35)

with the commutator table shown in Table 11.1, which is a solvable Lie algebra
with ideal Xa, Xb. In retrospect the invariance under translation in θ and G is
obvious from the fact that the equation does not depend explicitly on either
variable. The finite group corresponding to the parameter c can be determined
by summing the Lie series. The result is

θ̃ = esθ,

G̃ = e−s G − 2
3θ sinh[s].

(11.36)

The solvability of the three-parameter group (11.34) tells us that (11.30) can
be reduced three times, to a first-order equation. Whether that final first-order
equation can be reduced to quadrature remains an open question unless we
can, by inspection or otherwise, identify a group of the ODE. If we can, the

Table 11.1. Commutator table for
the group (11.34).

Xa Xb Xc

Xa 0 0 − 2
3 Xa + Xb

Xb 0 0 Xa

Xc 2
3 Xa − Xb −Xa 0
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group can then be used to generate an integrating factor, and the entire problem
can be reduced to a series of four quadratures.

Let’s begin with the group Xa corresponding to translation in G, for which
the characteristic equations are

dθ

0
= dG

1
= dGθ

0
= · · · . (11.37)

with invariants θ and Gθ . Let F = Gθ . The once reduced equation becomes

Fθθθ + 12F Fθ + 4Fθ = 0. (11.38)

At this point we can easily accomplish two more reductions as follows.
Equation (11.38) can be written

Fθθθ + 6(F2)θ + 4Fθ = 0, (11.39)

which integrates immediately to

Fθθ + 6F2 + 4F = 2C1. (11.40)

If we multiply (11.40) by Fθ , we can integrate again to produce

1
2 (Fθ )2 + 2F3 + 2F2 = 2C1 F + 2C2, (11.41)

or

1
2 Fθ = ±(C1 F + C2 − F3 − F2)1/2. (11.42)

The final solution is expressed as

2θ = ±
∫

1
(C1 F + C2 − F3 − F2)1/2

d F + C3. (11.43)

The three constants of integration are determined from the conditions

∫ θ1/2

−θ1/2

F dθ = M
6ν

(11.44)

and

F[θ1/2] = F[−θ1/2] = 0. (11.45)

For the case where the apex is a sink (M < 0), the velocity field can be
assumed to be symmetric about the centerline. On the centerline one assumes
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the conditions

F(0) = −u0,

Fθ (0) = 0.
(11.46)

This enables the constant C2 in (11.43) to be evaluated as

C2 = C1u0 + u2
0 − u3

0. (11.47)

Using (11.47), the solution can now be expressed as

2θ = ±
∫ F

−u0

1

((u0 + F̂)(C1 + (u0 − F̂) − u0 F̂ − (u0 − F̂)2))1/2
dF̂, (11.48)

where the integral begins at the centerline. The constants u0 and C1 are evaluated
using

2θ1/2 =
∫ 0

−u0

1

((u0 + F̂)(C1 + (u0 − F̂) − u0 F̂ − (u0 − F̂)2))1/2
dF,

(11.49)

M
12ν

=
∫ 0

−u0

1

((u0 + F̂)(C1 + (u0 − F̂) − u0 F̂ − (u0 − F̂)2))1/2
dF̂.

Note that the square-root singularity that occurs in the denominator as F → −u0

is easily integrable and presents no problem.
The case where the apex is a source is much more complex, and the assump-

tion of symmetric flow is only valid below a certain critical Reynolds number
for a given wedge angle. An extensive discussion can be found in the classic
text by Landau and Lifshitz [11.9]. In two papers, Moffat [11.10] and Moffat
and Duffy [11.11] present a complete discussion of the rich variety of viscous
flow patterns that can occur near a sharp corner. In the latter paper it is shown
that the similarity solution of the Jeffery–Hamel flow only exists for a range of
wedge angles.

11.5 Transition in Unsteady Jets

Transition in fluid flow can occur in a variety of ways, but in general two basic
types can be distinguished. The first and most common type is transition to
turbulence. The classic case here is the zero-pressure-gradient Blasius boundary
layer discussed in Chapter 10. The Reynolds number of this flow increases with
distance from the leading edge of the plate:

Reflat plate = Uex
ν

. (11.50)
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The streamwise increase in Reynolds number leads to a succession of insta-
bilities, first linear, then nonlinear, that give rise to a chaotic motion that is
ultimately turbulent. The flow, which is initially stable and steady, becomes
unstable and unsteady as the Reynolds number is increased.

The second type of transition is one where, by parametric variation of the
Reynolds number, a flow at low Reynolds number that is steady and stable is
replaced abruptly by a new flow that is also steady and stable as the Reynolds
number is increased. The classic case here is that of circular Couette flow studied
by G.I. Taylor in 1923 [11.12] and more recently by Donald Coles [11.13], who
documented a very complex set of stages through which the laminar flow may
pass before becoming turbulent. This type of transition has been the subject of
intense research in recent years, partly for its own sake, and partly because it
is felt that an increased understanding of transition of the second type will lead
to an increased understanding of transition to turbulence.

The next example is concerned with the second type of transition. We consider
the onset of a starting vortex generated by an impulsively started axisymmetric
jet produced by a point force. Like the diverging channel flow, this problem is
invariant under the one-parameter dilation group of the Navier–Stokes equations
(11.12), and the Reynolds number is a constant in time and space. In this respect,
transition in the jet is reminiscent of transition in Couette flow. However, the
round jet differs from Couette flow in that, Couette flow involves a bounded
steady flow that bifurcates to a new steady flow, whereas the jet involves an
unbounded, unsteady, self-similar flow that bifurcates to a topologically distinct
unsteady self-similar flow.

11.5.1 The Impulse Integral

Before we treat the specific case of an impulsively started point force, let’s
examine a control-volume balance of momentum for the flow produced by a
compact time-dependent force distribution acting in an infinite domain. The
sketch in Figure 11.3 depicts the flow produced after the force distribution,
F(x, t), is turned on in an infinite, incompressible, viscous fluid initially at
rest. The outline of the jet is shown schematically in Figure 11.3 and roughly
delineates the boundary between rotational and irrotational flow. The force and
its associated vorticity distribution occupy a finite region inside a spherical
control volume V with surface normal vector n d A. The momentum equation
can be integrated exactly over V .

Integrating the momentum equation exactly over V leads to a relationship
between the force applied at the origin of the flow, the far-field distribution
of pressure, and the total hydrodynamic impulse. Recalling the discussion of
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∇ u× 0≠

Fig. 11.3. Spherical control volume surrounding a force distribution in a viscous fluid.

incompressible flow in Chapter 3, Section 3.6.3, the vorticity vectorω is related
to the vector potential A through the vector Poisson equation,

ω = −∇2A. (11.51)

The general solution of (11.51) is

A[x, t] = 1
4π

∫

V

ω[x′, t]
|x − x′|

dx′, (11.52)

where dx′ is a volume element in V . We want to find an expression for the
volume-integrated momentum divided by the density, given by

H[t] =
∫

V
u[x, t] dx, (11.53)

which we can write as a surface integral of the vector potential,

H[t] =
∫

S
n × A[x, t] d S = R2

∫

S

x
R

× A[x, t] d), (11.54)

where

n = x
R

= i sin θ cos φ + j sin θ sin φ + k cos θ, (11.55)

and d) is an infinitesimal solid angle, d) = sin θ dθ dφ. Substituting the
expression for A from (11.52) into (11.54), exchanging the order of integration,
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and making use of
∫

S

x
|x − x′|

d) = 4π

3

(

x
R

)

, (11.56)

we obtain

H[t] = 2
3 I[t], (11.57)

where

I[t] = 1
2

∫

V
x ×ω[x, t] dx (11.58)

is the hydrodynamic impulse of the vorticity distribution [11.14], [11.15].
Saffman [11.15] includes the effect of compressibility in the calculation of
the impulse. Note that the integral of the momentum is fully converged as long
as one has added up all the contributions from the vorticity-bearing part of the
flow. Potential flow motions beyond the vortical region do not contribute to the
total momentum.

In order to actually evaluate the impulse integral (11.53), one needs to carry
out an integral momentum balance over V . The momentum equation is

∂u
∂t

+ ∇ · (uu) + ∇
(

p
ρ

)

− ν∇2u = F[x, t]
ρ

. (11.59)

The Laplacian in (11.59) can be written in terms of the vorticity using the vector
identity

∇ × ∇ × u = ∇(∇ · u) − ∇2u (11.60)

and continuity, ∇ · u = 0, so that the momentum equation takes the form

∂u
dt

+ ∇ · (uu) + ∇
(

p
ρ

)

+ ν∇ ×ω = F[x, t]
ρ

. (11.61)

See Chapter 10 Exercise 10.1. Equation (11.61) is integrated over V , and
Gauss’s theorem is used to convert volume integrals to surface integrals, lead-
ing to

dH
dt

+
∫

S

(

uu + p
ρ

I
)

· n d S + ν

∫

S
(ω× n) d S =

∫

V

F[x, t]
ρ

dV .

(11.62)
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The vorticity on the control-volume surface is zero, and so the integrated mo-
mentum balance becomes

dH
dt

+
∫

S

(

uu + p
ρ

I
)

· n dS =
∫

V

F[x, t]
ρ

dV . (11.63)

At large values of r , the vector potential may be approximated by the first
few terms of a multipole expansion:

A = q
4πr

+ Q · x
4πr3

+ O
(

1
r3

)

, (11.64)

where q and Q are

q = −
∫

V
ω[x′, t] dx′, Q = −

∫

V
ω[x′, t]x′ dx′. (11.65)

The fact that ω is divergence-free and localized and that F[x, t] applies no net
moment to the fluid implies that q = 0. The numerator of the second term in
(11.64) can be written

Q · x = −x ×
(

1
2

∫

V
x′ ×ω[x′, t] dx′

)

. (11.66)

Thus at large r the vector potential to lowest order is

A = 1
4π

I[t] × x
r3

+ O
(

1
r3

)

. (11.67)

These results for the far-field vector potential have a direct analogy with mag-
netostatics. The velocity u is analogous to the magnetic field, and the vorticity
ω/4π is analogous to the current density. Jackson [11.16] provides an excellent
reference in this connection. Using (11.67), we can estimate the surface integral
of the nonlinear term in (11.63) as

∫

S
(uu) · n dS ∼ 1

R4 as R → ∞. (11.68)

Thus as R → ∞ the integral momentum balance reduces to the elegantly simple
form

dH
dt

+
∫

S

(

p
ρ

)

n dS =
∫

V

F[x, t]
ρ

dV (11.69)
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At large values of r the nonlinear terms become small compared to accelera-
tion and pressure and the momentum equation reduces to

∂u
∂t

+ 1
ρ

∇p = 0. (11.70)

We can use (11.70) to determine an equation for the far-field pressure. Using
(11.67) for the vector potential and the fact that ∇ · (x/r3) = ∇ × (x/r3) = 0,
we can write the velocity as the gradient of a scalar. At large r ,

u = − 1
4π

∇
(

I · x
r3

)

. (11.71)

Substituting (11.71) into (11.70) and solving, we have, to within an additive
function of time,

lim
R→∞

(

p
ρ

)

= 1
4π

(

dI
dt

)

· x
r3

. (11.72)

The surface integral of the pressure in (11.69) can now be evaluated as

∫

S

(

p
ρ

)

n dS = 1
3

dI[t]
dt

. (11.73)

Substituting (11.73) and (11.57) into (11.69) and integrating over time gives

I[t] =
∫ t

0

∫

V

F[x, t]
ρ

dx dt. (11.74)

The function I[t] is the total mechanical impulse applied by the force dis-
tribution since the onset of the motion. According to (11.57), two-thirds of the
applied impulse is transferred to the momentum of the fluid, and the remain-
ing one-third is removed by the far-field pressure (11.73), which opposes the
motion.

Note that this whole analysis of the impulse is exact, regardless of whether
the jet under consideration is laminar or turbulent [11.17]. The far-field vec-
tor potential is the same in either case. The general ideas presented in this
section form the basis for the identification of conserved integrals in a wide
variety of laminar and turbulent shear flows, many of which will be discussed
in Chapter 13.
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Fig. 11.4. Schematic of the unsteady propagation of a started jet. The boundary
schematically delineates the regions of rotational and irrotational flow.

11.5.2 Starting-Vortex Formation in an Impulsively Started Jet

With the discussion of the momentum integral complete, we can begin to con-
sider the problem of starting-vortex formation in the impulsively started laminar
jet, following References [11.17] and [11.18]. This flow exemplifies a wide class
of problems in low-speed fluid mechanics where the motion is governed by a
single integral invariant.

The unsteady flow dynamics in the jet can be completely understood by
working out the Reynolds-number dependence of the three-dimensional phase
portrait of particle paths in similarity coordinates. In fact it is not really necessary
to look at the whole space, since virtually all of the interesting dynamics can be
described in terms of the movement and topological changes (bifurcations) of
critical points in the phase portrait as the Reynolds number is varied. These ideas
can be further refined by considering just the invariants of the critical points
and the trajectories of the critical points in the space of invariants. Moving back
and forth between the space of the flow (the phase portrait) and the space of
critical-point invariants provides a complete picture of the Reynolds-number
dependence of the flow.

Figure 11.4 schematically shows the development of the vorticity-bearing
region of an unsteady jet at several successive times. The jet is produced by a
point force acting impulsively in a fluid that is initially everywhere at rest. The
force distribution is of the form

F[x, t]
ρ

= J
ρ

h[t]δ[x]δ[y]δ[z], (11.75)

where h[t] is the Heaviside function,

h[t] =
{

0, t < 0,

1, t > 0,
(11.76)
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δ[x] is the Dirac delta function and J is the amplitude of the force directed
along the x-axis. Using (11.57) and (11.73), the impulse integral is

∫

V
u[x, t] dx = 2

3

(

J
ρ

)

t, (11.77)

indicating that the total momentum of the fluid grows linearly with time.
Now let’s show that this problem is invariant under the fundamental dilation

group of the Navier–Stokes equations,

x̃ i = ea xi , t̃ = e2at,

ũi = e−aui ,
p̃
ρ

= e−2a p
ρ

,

ω̃ = e−2aω, ψ̃ = eaψ.

(11.78)

Note that ψ in (11.78) is the Stokes stream function with dimensions ψ̂ =
L3/T . The invariance is confirmed by transforming the impulse integral

∫

V
ũ d x̃ = 2

3

(

J
ρ

)

t̃ ⇒ e2a
∫

V
u dx = e2a 2

3

(

J
ρ

)

t

⇒
∫

V
u dx = 2

3

(

J
ρ

)

t. (11.79)

The governing parameter of the motion has units J/ρ = L4/T 2. This flow
has in common with the diverging channel flow just treated in Section 11.4, the
fact that the governing parameter J/ρ has dimensions commensurate with the
dimensions of the kinematic viscosity, ν̂ = L2/T . In fact, as long as the force
is assumed to act at a point, so that no length scale is introduced, then the only
two parameters appearing in the jet problem are J/ρ and ν. The infinite nature
of the flow, the absence of any walls, and the assumption that the force acts
at a point are the ingredients that make the problem invariant under the group
(11.78). The natural definition of the jet Reynolds number is

Re = (J/ρ)1/2

ν
, (11.80)

which is a constant independent of space and time. As was noted earlier, this is
in contrast to the boundary layer on a flat plate or, for that matter, the majority
of shear flows where the Reynolds number depends on space and time. As in
the Jeffrey–Hamel flow, this is the key feature of the problem, which admits a
type of transition that does not necessarily lead to turbulence.

Our whole analysis is directed at one basic question: is there a critical
Reynolds number for the onset of a starting vortex from the jet, and if so
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what is it? In the end we shall see that two critical Reynolds numbers are found,
and the concept of a starting vortex will be given a precise definition. The main
results are derived from an examination of the solution for the creeping flow
limit Re → 0 at Reynolds numbers that lie outside the region of validity of the
solution. Nevertheless the method of analysis is fundamentally nonlinear and
will be used to investigate the structure of a numerical solution of the full non-
linear equations of motion. The creeping solution, which is perfectly symmetric
about the equatorial plane cos θ = 0, is shown to have a suprisingly complex
structure when analyzed in terms of nonsteady particle paths. As the Reynolds
number is increased, the flow pattern of the jet undergoes a sequence of regular
changes, each of which occurs at a specific critical value of the Reynolds num-
ber (11.80). In this sense, transition in the unsteady jet is reminiscent of the
transition in steady Couette flow studied by Taylor [11.12].

11.5.2.1 Governing Equations

The problem is most conveniently formulated in spherical polar coordinates,
and the governing equations in in these variables are

1
r

∂(r2u)
∂r

+ 1
sin θ

∂(v sin θ )
∂θ

= 0, (continuity),

∂(rv)
∂r

− ∂u
∂θ

= rω (vorticity),

∂(rω)
∂t

+ ∂(ruω)
∂r

+ ∂(vω)
∂θ

= ν

(

1
r

∂

∂θ

(

1
sin θ

∂(ω sin θ )
∂θ

)

+ ∂2(rω)
∂r2

)

(momentum).
(11.81)

The Stokes stream function is introduced to integrate the continuity equation:

u = 1
r2 sin θ

∂ψ

∂θ
, v = −1

sin θ

∂ψ

∂r
. (11.82)

Note that the dimensions of ψ in (11.82) are L3/T , whereas for the stream
function in 2-D flow the units are L2/T . We are primarily concerned with the
ODEs governing particle paths,

dr
dt

= u[r, θ, t],
dθ

dt
= v[r, θ, t]

r
, (11.83)

where the jet is directed along the polar axis and the velocity components, u and
v, are in the radial and tangential directions respectively. See Figure 11.4. The
group (11.78) can be cast in spherical polar coordinates (the transformations of
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the radius and angle are simply r̃ = ear, θ̃ = θ ), and the characteristic equations
are

dr
r

= dθ

0
= dt

2t
= du

−u
= dv

−v
= d(p/ρ)

−2p/ρ
= dω

−2ω
= dψ

ψ
. (11.84)

All the relevant similarity variables are generated as the integrals of (11.84):

ξ = r/(νt)1/2,

θ = θ,

U [ξ, θ] = ut1/2

ν1/2
,

V [ξ, θ] = vt1/2

ν1/2
,

P[ξ ] =
(

p
ρ

)

t
ν
,

)[ξ, θ] = ωt,

0[ξ, θ] = ψ

ν3/2t1/2
.

(11.85)

Upon substitution of (11.85), the equations of motion (11.81) become

1
ξ

∂(ξ 2U )
∂ξ

+ 1
sin θ

∂(V sin θ)
∂θ

= 0 (continuity),

∂(ξV )
∂ξ

− ∂U
∂θ

= ξ) (vorticity),

∂

∂ξ

((

U − ξ

2

)

ξ)

)

+ ∂(V ))
∂θ

= 1
ξ

∂

∂θ

(

1
sin θ

∂() sin θ )
∂θ

)

+ ∂2(ξ))
∂ξ 2

(momentum),

(11.86)

and the self-similar velocities are

U = 1
ξ 2 sin θ

∂ψ

∂θ
, V = −1

sin θ

∂ψ

∂ξ
. (11.87)

The particle path equations (11.83) become

∂ξ

dτ
= U [ξ, θ ; Re] − ξ

2
,

dθ

dτ
= V [ξ, θ ; Re]

ξ
, (11.88)

where τ = ln[t].
Expressing the particle path equations in terms of similarity variables con-

verts the nonautonomous system (11.83) to an autonomous one, (11.88). Note
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that, in an unsteady flow, the self-similar velocity vector field is quite different
from the vector field of particle paths, and the distinction is evident in the extra
term −ξ/2 that appears in the radial equation in (11.88). This term adds a
radially inward-directed component to the velocity vector field.

The self-similar velocities in (11.88) depend parametrically on the Reynolds
number, although at this point it is not quite clear how the Reynolds-number
dependence arises, in view of the fact that our normalization has removed
the kinematic viscosity altogether from the governing momentum equation in
(11.86).

We shall now consider several solutions of the system (11.86) and (11.88).
The first will be the classical steady solution, first discovered by Landau in 1944
[11.20] and independently by Squire in 1951 [11.21], which, when recast in un-
steady similarity coordinates, forms the boundary condition for the impulsively
started jet in the limit ξ → 0 (t → ∞). The second will be the irrotational flow
due a dipole of linearly increasing strength located at the origin. This forms
the boundary condition for the started jet in the limit ξ → ∞ (t → 0). The key
feature of the problem is that, although the reduced system (11.86) does not
contain the Reynolds number explicitly, the boundary conditions at ξ → 0 and
ξ → ∞ do depend on Re. Finally the creeping solution in the limit Re → 0 is
examined. In each case the Reynolds number appears in the system (11.88) as
a parameter and the possibility of bifurcation in the phase portrait follows.

11.5.2.2 Critical Points in Three Dimensions

Much of the analysis that follows will focus on the various vector field patterns
of (11.88) and on the critical points (ξc, θc); we have

U [ξc, θc; Re] − ξc

2
= 0,

V [ξc, θc; Re]
ξc

= 0,

(11.89)

where the parametric dependence of the velocity field on the Reynolds number is
indicated. One of the most important aspects of this approach is that structural
features of the flow, which are not visible in the streamline pattern, become
evident in the pattern of particle trajectories.

The analysis of the critical points of (11.88) is carried out using the theory
developed in Chapter 3, Section 3.9.4. For this purpose it is easier to work with
the particle path equations in Cartesian coordinates,

dxi

dt
= ui (x, t) ⇒ dξ i

dτ
= U i [ξ; Re] − ξ i

2
. (11.90)

where ξ i = xi/
√

νt .
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The character of a critical point is determined by expanding the flow in a
Taylor series near the critical point and truncating at first order:

dξ i

dτ
=

(

Ai
j − 1

2
δi

j

)
∣

∣

∣

∣

ξ=ξc

(

ξ j − ξ j
c

)

. (11.91)

The similarity form of the velocity gradient tensor is

ai
j = ∂ui

∂x j
= 1

t
∂U i

∂ξ j
= 1

t
Ai

j [ξ]. (11.92)

Note that the value of the dimensioned velocity gradient tensor does not depend
on J/ρ or ν. Therefore an observer moving at a fixed ξ can use the current value
of the velocity gradient as a local clock to determine the global age of the flow,
regardless of the flow Reynolds number.

The nature of the critical point is determined by the invariants of the matrix

Mi
j = Ai

j − 1
2δi

j (11.93)

in (11.91) evaluated at the critical point. The first invariants of A and M are

PM = 3
2 , PA = 0. (11.94)

The second and third invariants (Q, R) are expressed in terms of matrix elements

Q A = − 1
2 Ai

k Ak
i ,

QM = 9
8 − 1

2 Mi
k Mk

i

(11.95)

and

RA = − 1
3 Ai

k Ak
j A j

i ,

RM = − 1
3 Mi

k Mk
j M j

i − 3
2 QM + 27

24 .
(11.96)

The invariants of M and A are related to one another as follows

QM = Q A + 3
4 ,

RM = RA + 1
2 Q A + 1

8 .
(11.97)

The discriminant of A is

DA = Q3
A + 27

4 R2
A, (11.98)

and the discriminant of M is

DM = Q3
M + 27

4 R2
M + 27

4 RM
( 1

2 − QM
)

− 9
16 Q2

M . (11.99)
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If D > 0, the eigenvalues are complex and vorticity dominates the rate-of-
strain. If D < 0, the eigenvalues are real and rate-of-strain dominates vorticity.
A complete road map to (P, Q, R) space is given in Reference [11.19].

For the axisymmetric flow considered here, the velocity gradient tensor takes
the form

Ai
j =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

∂U
∂ξ

1
ξ

∂U
∂θ

− V
ξ

0

∂V
∂ξ

1
ξ

∂V
∂θ

+ U
ξ

0

0 0
V
ξ

cot θ + U
ξ

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (11.100)

Given the velocity functions, Equation (11.100) is evaluated at the critical point
and the invariants are computed. Interestingly, it turns out that often the values
of the invariants can be determined without knowing the velocity functions ex-
plicitly. In general, Q, R, ξc, and θc all depend on Re resulting in the possibility
of bifurcation in the phase space of particle paths.

11.5.2.3 The Limit ξ → 0

Landau in 1944 [11.20] and, independently, Squire in 1951 [11.21] solved the
steady problem of a jet emerging from a point source of momentum that was
assumed to have been turned on for all time. The Stokes stream function for
this case is

ψ = νr
(

2 sin2 θ

A[Re] − cos θ

)

. (11.101)

The constant of integration, A, is related to the Reynolds number by considering
an integral momentum balance over a sphere of fixed radius, R, enclosing the
origin as shown in Figure 11.5.

R

J
ρ
---

Fig. 11.5. Control volume surrounding the steady round jet.
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In this instance the rotational flow of the jet penetrates the control-volume
surface, but the solution is known and the integration can be carried through.
Balancing forces on the control volume leads to

J
ρ

=
∫ π

0
(u(u cos θ − v sin θ) −

(

τrr

ρ
cos θ − P

ρ
cos θ − τrθ

ρ
sin θ

)

× 2π R2 sin θ dθ . (11.102)

The stresses are related to the velocity field by the usual Newtonian relations,

τrr

ρ
= ν

(

2
∂u
∂r

)

,
τrθ

ρ
= ν

(

r
∂

∂r

(

v

r

)

+ 1
r

∂u
∂θ

)

. (11.103)

The pressure is related to the velocity field by the r and θ components of the
momentum equation. In short, all the terms in (11.102) can be represented
explicitly in terms of r , θ , and A, through repeated use of the Landau–Squire
solution (11.101). When the integration is carried out, the result is

Re2

16π
= A + 4

3

(

A
A2 − 1

)

− A2

2
ln

(

A + 1
A − 1

)

. (11.104)

This relation is plotted in Figure 11.6.
The solution (11.101) is a perfectly steady flow. However, we can put it in

the unsteady self-similar form (11.85) by simply multiplying and dividing by√
vt . We obtain the following limiting solution of the impulsively started jet

near ξ = 0

00 = ξ

(

2 sin2 θ

A[Re] − cos θ

)

. (11.105)
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16π
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---------Re ∞→
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Fig. 11.6. The constant A in the Landau–Squire solution.
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11.5.2.4 The Limit ξ → ∞
In the previous section we examined Landau’s solution for the steady jet cast
in the form of an unsteady self-similar solution to the system (11.86). This
solution conserves the flux of momentum from the source at ξ = 0, and at first
glance there would seem to be no reason to go any further. However, we wish to
consider a jet that has been turned on for a finite time and therefore has produced
a flow field that contains a finite amount of momentum. The solution (11.105)
violates this requirement. The flow at ξ → ∞ must conserve momentum and
be irrotational.

We have already worked out the vector potential at infinity when we worked
out the impulse integral in Section 11.5.1. The Stokes stream function at
infinity is

ψ = 1
4π

(

J
ρ

t
)

sin2 θ

r
. (11.106)

Here we replace r → ξ
√

νt and J/ρ = Re2ν2. The limiting solution in the far
field is

0∞ = Re2

4π

(

sin2 θ

ξ

)

. (11.107)

The flow at infinity is that of a dipole of linearly increasing strength, J t/ρ. This
is also the total impulse applied to the fluid since the initiation of the momentum
source (force) at the origin. As indicated in (11.57) and (11.73), two-thirds of
this impulse is contained in the motion of the fluid directed along the jet axis,
and one-third is lost to opposing unsteady pressure forces that act at infinity.

11.5.2.5 The Limit Re → 0

If one takes the limit of (11.104) as Re → 0(A → ∞), the result is

A = 16π/Re2. (11.108)

In this limit the solution near ξ = 0 becomes symmetric in θ , and one can expect
an overall solution of the form

lim
Re→0

0[ξ, θ] = Re2

16π
(sin2 θ)g[ξ ], (11.109)

where the radial function must satisfy

lim
ξ→0

g[ξ ] = 2ξ, lim
ξ→∞

g[ξ ] = 4
ξ
. (11.110)
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The corresponding vorticity is of the form

lim
Re→0

)[ξ, θ] = Re2

16π
(sin2 θ ) f [ξ ]. (11.111)

Equations (11.109) and (11.111) are substituted into (11.86), and higher-order
terms in the small parameter Re2/16π are neglected. The result is the linear
vorticity diffusion equation [the momentum equation in (11.81) with the non-
linear terms removed]. Finally we end up with a linear second-order ODE
governing the radial vorticity function f [ξ ]:

ξ 2 fξξ + 2ξ

(

1 + ξ 2

4

)

fξ + (ξ 2 − 2) f = 0. (11.112)

The radial parts of the vorticity function and stream function, f and g, are
related through the definition of the vorticity,

d
dξ

(

1
ξ 2

d
dξ

(ξg[ξ ])
)

= − f [ξ ]
8

. (11.113)

Equations (11.112) and (11.113) are solved using (11.110), leading to the so-
lution of the Stokes creeping jet:

lim
Re→0

0[ξ, θ] = Re2

16π
sin2 θ

(

2ξ − 4√
π

e−ξ 2/4 −
(

2ξ − 4
ξ

)

erf [ξ/2]
)

.

(11.114)

11.5.2.6 Particle Paths of the Landau–Squire Jet

Now let’s examine the flow pattern of the Landau–Squire solution, 00[ξ, θ].
Using (11.87), substitute (11.105) into the particle-path equations in similarity
coordinates (11.88). The result is

dξ

dτ
= 2

ξ

(

A2 − 1
(A − cos θ )2

− 1
)

− ξ

2
,

dθ

dτ
= 2 sin θ

ξ 2(A − cos θ)
.

(11.115)

The system (11.115) has a single critical point on the axis of the jet, located at

(ξc, θc) =
(

23/2

(A − 1)1/2
, 0

)

. (11.116)
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The relevant gradient tensors evaluated at the critical point are

Ai
j =

⎡

⎢

⎢

⎣

− 1
2 0 0

0 1
4 0

0 0 1
4

⎤

⎥

⎥

⎦

, Mi
j =

⎡

⎢

⎢

⎣

−1 0 0

0 − 1
4 0

0 0 − 1
4

⎤

⎥

⎥

⎦

, (11.117)

and the invariants of Mi
j are (PM , QM , RM ) = ( 3

2 , 9
16 , 1

16 ), independent of the
Reynolds number. In the terminology of Reference [11.19], the critical point is
a stable star node with three real negative eigenvalues, two of which are equal.
As the Reynolds number is increased, the radial coordinate of the critical point
increases although the invariants remain constant.

11.5.2.7 Particle Paths of the Unsteady Dipole

The solution for the far field, (11.107), is substituted into (11.87) and (11.88),
producing

dξ

dτ
= Re2

2π

cos θ

ξ 3
− ξ

2
,

dθ

dτ
= Re2

2π

sin θ

ξ 4
. (11.118)

This system has a critical point on the jet axis at (ξc, θc) = (Re1/2/π1/4, 0). The
two gradient tensors evaluated at the critical point are

Ai
j =

⎡

⎢

⎢

⎣

− 3
2 0 0

0 3
4 0

0 0 3
4

⎤

⎥

⎥

⎦

, Mi
j =

⎡

⎢

⎢

⎣

−2 0 0

0 1
4 0

0 0 1
4

⎤

⎥

⎥

⎦

, (11.119)

and the invariants of Mi
j are (PM , QM , RM ) = ( 3

2 , − 15
16 , 1

8 ). In the parlance of
reference [11.19] the critical point is a node–saddle–saddle with three real
eigenvalues: one negative, and two positive and equal. Here again, the invariants
are independent of the Reynolds number, whereas the position of the critical
point moves outward along the axis as the Reynolds number is increased.

We have seen that, while the ξc-coordinates of the critical points of both 00

and 0∞ increase with Re, the values of the invariants at the respective points are
independent of Re. Thus the stable star node of the Landau–Squire jet remains
a stable star node at all Reynolds numbers, and the node–saddle–saddle of
the unsteady dipole remains such at all Reynolds numbers. Neither of these
flows is subject to transition as we shall define it shortly. In the full solution the
flow at intermediate values of ξ must accommodate both the steady Landau–
Squire behavior at ξ → 0 and the unsteady dipole behavior at ξ → ∞. If one
accepts that the on-axis critical point moves to larger and larger values of ξc as
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the Reynolds number is increased, then this would suggest that the stable node
obtained at small Reynolds numbers (small ξc) could not remain a stable node
when the Reynolds number (and thus ξc) becomes large.

11.5.2.8 Particle Paths in the Low-Reynolds-Number Jet

With that background we now consider particle paths of the low-Reynolds-
number solution of the jet. Upon substitution of (11.114) into the particle-path
equations (11.88) we have

dξ

dτ
= Re2

2π

cos θ

ξ 2

(

ξ

2
− 1√

π
e−ξ 2/4 −

(

ξ

2
− 1

ξ

)

erf [ξ/2]
)

− ξ

2
,

dθ

dτ
= − Re2

4π

sin θ

ξ 2

(

1
2

+ 1
ξ
√

π
e−ξ 2/4 −

(

1
2

+ 1
ξ 2

)

erf [ξ/2]
)

.

(11.120)

The critical points of (11.120) now need to be located. This is done by setting
the right-hand sides equal to zero and solving for the roots. The zeros of the
θ -equation occur at θ = 0, π for all ξ and at ξ = 1.7633 for all θ , independent
of the Reynolds number. However, the zeros of the ξ -equation depend on Re
as follows:

Re2 = πξ 3
c

(

ξc
2 − 1√

π
e−ξ 2

c /4 −
(

ξc
2 − 1

ξc

)

erf [ξc/2]
)

cos θ
. (11.121)

Equation (11.121) defines a family of curves in the (ξc, θc) plane, of which
several are drawn in Figure 11.7. The intersections between the zeros of the
right-hand sides of (11.120) for a given Reynolds number define the locations
of the critical points. This is illustrated in Figure 11.7.

It is clear from Figure 11.7 that there is a critical value of Re between 6
and 8. Below this value there is only one intersection (one critical point) on
the axis of the jet, whereas above this Re there are two critical points, one
on the axis and one off the axis. Due to the axisymmetry, the off-axis point is
in fact a degenerate line of critical points on an azimuthal circle about the jet
axis.

The trajectories of the critical points in the space of invariants of both Ai
j

and Mi
j are shown in Figure 11.8. The direction arrows on these figures in-

dicate the direction of increasing Reynolds number. The axisymmetry of the
on-axis critical point implies that there are always two equal eigenvalues. In the
space of invariants, the values of (RA, Q A) and (RM , QM ) at the critical point
are confined to the R > 0 branch of the zero discriminant curve, DA = 0 and
DM = 0 respectively. See Equations (11.98) and (11.99). The off-axis critical



11.5 Transition in Unsteady Jets 347

-0.5 0 0.5 1 1.5 2 2.5 3
-2

-1

0

1

2
Re = 16

14
12

10
8

6

4

2
1 x

νt
---------

y

νt
---------

ξ = 1.7633

Fig. 11.7. Critical-point locations at several Reynolds numbers for the Stokes jet. The
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point follows the straight line

RA + 1
2 Q A + 1

8 = 0, RM = 0. (11.122)

Note that the vector field of particle paths near the off-axis critical point is in-
trinsically two-dimensional (third invariant equal to zero), whereas the velocity
vector field is not.

If Re < 6.7806, there is a single axisymmetric node lying on the axis of the jet,
θc = 0. In this Reynolds-number range, Equation (11.121) provides a relation
between the Reynolds number and the radial coordinate of the on-axis critical
point, which moves outward along the axis of the jet as the Reynolds number is
increased. When Re exceeds Re1 = 6.7806 (point b in Figure 11.8), the flow
bifurcates to an axisymmetric saddle situated on the jet axis and an off-axis
node above and below the axis. Actually the off-axis node is a circular line in
the azimuthal direction about the axis. We shall return to this point shortly; first
we complete the discussion of the jet structure.

Figure 11.9 and Figure 11.10 depict the phase portrait of the jet on a cut at
z/

√
νt = 0 at three Reynolds numbers in the regimes of interest. The off-axis

critical point lies at a radius ξc = 1.7633 and angle

θc = ± cos−1
[(

6.7806
Re

)2]

. (11.123)

As the Reynolds number is increased above Re1, the node moves away from
the axis while the radius of the on-axis saddle continues to follow (11.121). The

Fig. 11.9. Particle paths for the impulsively started creeping jet at (a) Re = 4 and (b)
Re = 8.
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Fig. 11.10. Particle paths for the impulsively started creeping jet at Re = 16.

invariants of the off-axis critical point follow:

PM |θc ̸= 0 = 3
2 ,

QM |θc ̸= 0 = 6.8143 × 10−5 Re4 − 0.14405,

RM |θc ̸= 0 = 0.

(11.124)

The off-axis node changes to a stable focus when QM |θc ̸= 0 exceeds 9
16 (Point

d in Figure 11.8). This transition from a stable node to a stable focus occurs
where the trajectory of QM |θc ̸= 0 crosses the left branch of the DM = 0 line.
According to (11.124), this occurs at Re2 = 10.09089. Thus a starting vortex
is created. Note that only the first bifurcation involves a change in the actual
topology of the phase portrait.

There is an obvious question at this point. What relevance does the behavior
of the creeping jet have to the full nonlinear problem? This is answered by
recognizing that the trajectory of the invariants in Figure 11.8 comes solely
from consideration of boundary conditions, continuity, and axisymmetry and
therefore holds for both the linear and nonlinear problems. At low Reynolds
number (ξc small), QM and RM approach the values for the Landau–Squire
solution, whereas at high Reynolds number (ξc large) they approach the values
for the unsteady dipole. Therefore the sequence of states (on-axis node, followed
by saddle plus off-axis node, followed by saddle plus off-axis focus) is preserved
in the nonlinear axisymmetric problem, although the critical Reynolds numbers
are different from those obtained from the creeping solution.

A numerical solution of the nonlinear problem is reported in References
[11.23] and [11.22], where it is noted that the critical Reynolds numbers of
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the nonlinear jet are Re1 = 5.50 and Re2 = 7.545 respectively. The phase
portrait of particle paths in similarity coordinates from this computation is
shown in Figure 11.11. The starting vortex from the jet is defined as the rollup
of particle paths shown in Figure 11.11c and d. Interestingly, the vorticity
decays monitonically through the rollup. There is a pervasive misconception
in the fluid mechanics literature that a rollup of fluid such as that shown is
accompanied by a local concentration of the vorticity. But there is no peak in
the vorticity, and a brief analysis of the invariants of the particle-path equations
(11.95) and (11.96) in the neighborhood of the stable focus reveals that it is a

x νt⁄

x νt⁄

y

νt
---------

y

νt
---------

(a) (b)

(c)

(d)

-1 0 2
0

1

2

3

0

1

2

3

-1 0 1 3 4 5 6 7 82

1 3 4 5 6 7 8

x νt⁄ x νt⁄

y

νt
---------

0

1

2

3

3210-1 1 3

1

2

3

42-14 0
0

Fig. 11.11. Numerically computed particle paths in the round jet at Reynolds numbers
(a) Re = 4, (b) Re = 6, (c) Re = 15, (d) Re = 25.
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balance between vorticity and strain that determines whether or not the fluid
will roll up. If vorticity dominates the rate of strain, then the rollup will occur
as in Figure 11.11c and d. If the rate of strain dominates the vorticity, then the
flow will tend to exhibit nodal or saddle-like behavior as in Figure 11.11a and b.

11.5.2.9 Invariance of the Vector Field of Particle Paths Relative
to a Moving Observer

In Sections 11.1 and 11.2 we saw that the incompressible Navier–Stokes equa-
tions are invariant with respect to any nonuniformly moving observer as long as
the observer moves without rotating. [Actually, a constant rotation frequency is
permitted in two dimensions according to invariance under the group (11.21)
with operator X10 given by (11.20)]. On changing observers, the velocity
vector field changes dramatically, and this was illustrated in Figure 11.1 where
the velocity field in the wake of a circular cylinder was observed in two frames
of reference. Now it is time to revisit this issue in the context of the round jet
analyzed in the previous sections.

The self-similarity in time of the jet enabled us to reduce the particle-path
equations (11.83) to an autonomous system, (11.88). The invariance of the
governing equations under the nonuniform translation group (11.14) can be
used to show that, the vector field of particle paths in similarity coordinates is
the same for all observers moving with the time scale appropriate to the flow.
In Cartesian coordinates the equations for particle paths are

dxi

dt
= ui [x, t], (11.125)

which, when transformed to similarity variables, become

dξ i

dτ
= U i [ξ] − 1

2
ξ i , (11.126)

where ξ i = xi/(νt)1/2 and τ = ln t . In the round jet all length scales vary in
proportion to (νt)1/2. For an observer translating according to this function, the
appropriate transformation of coordinates is

x̃ j = x j + α j (νt)1/2,

t̃ = t,

ũi = ui + αi

2
ν1/2t−1/2,

p̃
ρ

= p
ρ

+ xk αk

4
ν1/2t−3/2, sum over k

(11.127)
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where the αi determine the rate at which the observer moves in each of the
three coordinate directions. In terms of similarity variables the transformation
of velocities and coordinates, (11.127), becomes

ξ̃ j = ξ j + α j ,

Ũ i = U i + αi

2
.

(11.128)

In contrast to the velocity vector field, the vector field of particle paths is
invariant. To see this we transform the right-hand side of (11.126):

Ũ i − 1
2
ξ̃ i =

(

U i + αi

2

)

−1
2

(ξ j + α j ) = U i−1
2
ξ j . (11.129)

Because the αi cancel all observers, moving or not, would assign the same
numerical values to the components dξ i , i = 1, 2, 3, of the particle-path dis-
placement vectors in similarity coordinates. A moving observer would assign
these values at points that are uniformly displaced by a fixed amount (αiαi )1/2

along a ray θ = constant, but this displacement does not affect the pattern
of particle trajectories.

This invariance is extremely important. It means that the location and char-
acter of a critical point in similarity coordinates is fixed by the dynamics that
govern the flow and not by the incidental choice of speed for a moving observer.
In general, when a flow is self-similar in time, the vector field of particle paths
is invariant for any observer whose position varies in proportion to the global
time scale of the flow. Thus any critical points that may appear in the phase
portrait are intrinsic properties of the flow and not a figment of a particular
choice of observer. The node of the Landau–Squire jet cannot be changed to a
saddle, and similarly the saddle of the unsteady dipole cannot be changed to a
node, by merely referring the flow to a new observer. Bifurcations in the phase
portrait of particle paths that are produced by changing the Reynolds number
cannot be modified by changing frames of reference.

Additional discussion of invariant particle trajectories in the context of a
turbulent flow may be found in [11.24], where particle trajectories are used to
experimentally identify critical points in the ensemble-averaged flow pattern
of a turbulent spot. A photograph of a turbulent spot from these experiments is
shown on the front cover of this book. A similar approach is used in [11.25] to
collapse data from a turbulent vortex ring. We will look at the turbulent-vortex-
ring problem in detail in Chapter 13.
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11.6 Elliptic Curves and Three-Dimensional Flow Patterns

It is interesting to note the prevalence of rational fractions at the intersections
of the invariant trajectories shown in Figure 11.8. Note also the mixture of
quadratic and cubic terms in the expressions for the discriminant, (11.98) and
(11.99). For constant, nonzero discriminant, these equations belong to a class
of functions called elliptic curves. We considered this class of functions in
Chapter 6, Example 6.10, where we discussed a pair of ODEs that describe
the time evolution of the invariants of a cubic equation. Elliptic curves were
further discussed in Section 6.7 along with the Diophantine construction used
to identify rational roots on elliptic curves. Elliptic curves have the property that
there is a unique tangent everywhere on the curve; hence D = 0 is excluded,
and they are parameterized by elliptic functions. The curve D = 0, which has
a cusp at the origin, is parameterized by rational functions.

11.6.1 Acceleration Field in the Round Jet

Here some of the theory of elliptic curves and the development in Reference
[11.28] will be used to explore the geometry of the forces at the critical points
of the round jet. First we need to develop the transport equation for the velocity
gradient tensor ai

j = ∂ui/∂x j by taking the gradient of the Navier–Stokes
equations,

∂

∂x j

(

∂ui

∂t
+ uk ∂ui

∂xk
+ 1

ρ

∂p
∂xi

− ν
∂2ui

∂xk ∂xk

)

= 0. (11.130)

Carrying out the differentiation and applying the continuity equation for in-
compressible flow, ai

i = 0, leads to

∂ai
j

∂t
+ uk

∂ai
j

∂xk
+ ai

kak
j + 1

ρ

∂2 p
∂xi ∂x j

− ν
∂2ai

j

∂xk ∂xk
= 0. (11.131)

Now take the trace of (11.131) to generate the Poisson equation for the pressure:

1
ρ

∂2 P
∂xi ∂xi

= −ai
kak

i . (11.132)

Equation (11.132) is subtracted from (11.131) to make the pressure term trace-
free. The final result is the transport equation for the velocity gradient tensor,

Dai
j

Dt
+ ai

kak
j − 1

3

(

am
n an

m

)

δi
j = hi

j , (11.133)
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where

hi
j = − 1

ρ

(

∂2 p
∂xi ∂x j

− 1
3

∂2 p
∂xk ∂xk

δi
j

)

+ ν
∂2ai

j

∂xk ∂xk
. (11.134)

The tensor hi
j is the divergence-free (Ph = 0) part of the gradient of the accel-

eration vector field following a fluid element.
When (11.133) is transformed to similarity variables for the round jet, the

result is

−Ai
j +

(

Uk − 1
2
ξk

)

∂ Ai
j

∂ξk
+ Ai

k Ak
j − 1

3

(

Am
n An

m

)

δi
j = Hi

j , (11.135)

where H is the same as (11.134) but expressed in terms of (U i, P, ξ i ). At
a critical point, the convective term in (11.135) is zero, and A and H are
algebraically related by

−Ai
j + Ai

k Ak
j − 1

3

(

Am
n An

m

)

δi
j = Hi

j . (11.136)

Squaring (11.136) and taking the trace produces

Q H = − 1
3 Q2

A + Q A − 3RA. (11.137)

Cubing (11.136) and taking the trace produces

RH = −R2
A − RA + Q A RA − 2

3 Q2
A − 2

27 Q3
A. (11.138)

Now switch over, and square (11.138) and cube (11.137) to form the discrimi-
nant of the acceleration gradient tensor H : The result is

Q3
H + 27

4 R2
H =

(

Q3
A + 27

4 R2
A

)

(I + Q A − RA)2. (11.139)

A remarkably simple result! A generalization of this procedure is described in
[11.27].

We can express the invariants of H in terms of the invariants of M . The
result is

Q H = 3QM − 3RM − 1
3 Q2

M − 27
16 ,

RH = −R2
M − 9

4 RM + 2QM RM − 2
27 Q3

M − 5
4 Q2

M + 9
4 QM − 27

32 ,

Q3
H + 27

4 R2
H =

(

Q3
M + 27

4 R2
M + 27

4 RM
( 1

2 − QM
)

− 9
16 Q2

M

)(

RM − 3
2 QM

)2
.

(11.140)
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Note that the terms of sixth order in Q A or QM that would be expected when
the discriminant of H is formed in (11.139) and (11.140) have canceled. At the
off-axis critical point in Figure 11.11, where RM = 0 we find,

Q H = 3QM − 1
3 Q2

M − 27
16 ,

RH = − 2
27 Q3

M − 5
4 Q2

M + 9
4 QM − 27

32 , (11.141)

Q3
H + 27

4 R2
H = 9

4 Q4
M

(

QM − 9
16

)

.

The trajectory of the critical points of the round jet in the (RH , Q H ) plane,
with the off-axis point parameterized by QM as in (11.141), is depicted in
Figure 11.12. Four significant points are labeled in these plots:

Point a. This corresponds to the zero-Reynolds-number (Stokes flow) limit
of the jet, where there is a single stable node on the jet axis. The invariants
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Fig. 11.12. Trajectory of the critical points of the round jet in the (Q H , RH ) plane
at three levels of magnification. Dots indicate several rational roots on the DH = 0
boundary (on-axis critical point) and on the trajectory of the off-axis critical point. The
labels a, b, c, and d coincide with the same labels in Figure 11.8.



356 11 Incompressible Flow

of this critical point are

(RA, Q A) =
( 1

32 , − 3
16

)

,

(RM , QM ) =
( 1

16 , 9
16

)

,

(RH , Q H ) =
(

− 125
2048 , − 75

256

)

.

(11.142)

Point b. Let the Reynolds number increase. At a critical Reynolds number
of 5.5 the jet undergoes a bifurcation to a saddle on the jet axis and a stable
node off the axis. The invariants at the bifurcation point are

(RA, Q A) =
( 1

4 , − 3
4

)

,

(RM , QM ) = (0, 0),

(RH , Q H ) =
(

− 27
32 , − 27

16

)

.

(11.143)

Point c. As the jet Reynolds number increases to infinity, the on-axis critical
point moves to infinity and the invariants asymptote to the values given
at c:

(RA, Q A) =
( 27

32 , − 27
16

)

,

(RM , QM ) =
( 1

8 , − 15
16

)

,

(RH , Q H ) =
(

− 9261
2048 , − 1323

256

)

.

(11.144)

Point d. Above the first bifurcation Reynolds number, the invariants of the
off-axis critical point move upward along a straight line until, at a second
critical Reynolds number of 7.545, the off-axis critical point turns into a
stable node. Thus a starting vortex from the jet is born. The invariants of
the off-axis point at this Reynolds number are

(RA, Q A) =
(

− 1
32 , − 3

16

)

,

(RM , QM ) =
(

0, 9
16

)

,

(RH , Q H ) =
( 27

2048 , − 27
256

)

.

(11.145)

We learn quite a bit from this analysis. Virtually every interesting intersection
(bifurcation) in the starting jet flow coincides with a rational root in the plane
of critical-point invariants. Note that the rational roots on the trajectory of the
off-axis critical point in (Q H , RH ) generated by (11.141) are densely spaced,
just as they are on the real line. Moreover they coincide with rational values of
the discriminant. This can be exploited to identify at least one rational root on
any curve of constant discriminant derived from a rational value of QM and/or
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RM and intersected by (11.140). The Diophantene construction can then be
used to identify further rational roots.

These results have interesting implications for the limiting behavior of the
off-axis critical point, which, eventually closes on the DH = 0, RH < 0 line as
Re → ∞. The signs of the discriminant of all three tensors are the same. Thus
if M has complex eigenvalues, so have H and A. This means that the purely
viscous, antisymmetric part of Hi

j remains important but diminishes compared
to the symmetric pressure-dominated part as the Reynolds number increases.
The viscous contribution to the forces at the critical point is never negligible.
Finally, the invariants of the on-axis critical point have finite, rational values
as the limit Re → ∞ is taken. Few such infinite-Reynolds-number limits are
known in fluid mechanics.

A detailed example of the relationship between elliptic curves, elliptic func-
tions, and fluid mechanics can be found in [11.26].

11.7 Classification of Falkner–Skan Boundary Layers

In Chapter 10 we examined the Falkner–Skan class of boundary layers corre-
sponding to a power-law dependence of the free-stream velocity. The general
Falkner–Skan ODE cannot be reduced to first order except for the case β = −1,
and therefore it cannot be analyzed on a phase plane in terms of an autonomous
system.

However, we can use a rather different approach based on the method used
to analyze the impulsively started round jet. Recall that in Section 11.5.2.3 we
expressed the steady Landau–Squire solution for the jet in unsteady similar-
ity coordinates. Let’s use the same procedure to examine the structure of the
Falkner–Skan flow field on a phase plane. The basic idea is to examine par-
ticle trajectories of the flow in coordinates that are self-similar in time. The
Falkner–Skan variables are

α =
(

M
2ν

)1/2 y
(x + x0)(1−β)/2 ,

F = ψ

(x + x0)(1+β)/2(2νM)1/2
.

(11.146)

An equivalent form of (11.146) with the variables recast in unsteady self-similar
form is

α = φ

θ (1−β)/2 ,

F = ψ

ν1/2 M1/(1−β)t (1+β)/2(1−β)
,

(11.147)
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where

θ = x
(Mt)1/(1−β)

, φ = y√
νt

, (11.148)

and

F[θ, φ] = θ (1+β)/2G[α]. (11.149)

Note how the normalization of coordinates falls in neatly with the streamwise
coordinate normalized by an inertial–convective time scale and the wall-normal
coordinate normalized by a viscous–diffusive time scale. This is directly related
to the two-parameter dilational invariance of the boundary-layer equations dis-
cussed in Chapter 10 and reflects the distinction between the two coordinate
directions inherent in the boundary-layer approximation.

Particle paths are determined by the system

dx
dt

= u[x, y, t] = ∂ψ

∂y
,

dy
dt

= v[x, y, t] = −∂ψ

∂x
.

(11.150)

Now we replace x and y in favor of similarity variables (11.148) using the
differentials

dx = (Mt)1/(1−β) dθ + θ

(1 − β)t
(Mt)1/(1−β) dt,

dy = (νt)1/2 dφ + (νt)1/2

2t
φ dt.

(11.151)

The resulting particle-path equations in similarity coordinates are

dθ

dτ
= Fφ − θ

1 − β
,

dφ

dτ
= Fθ − φ

2
.

(11.152)

For the Falkner–Skan steady boundary layers, the function F is given by
(11.149). Substituting (11.149) into (11.152) produces

dθ

dτ
= θβGα − θ

1 − β
,

dφ

dτ
= −θ (β−1)/2

(

1 + β

2
G −

(

1 − β

2

)

αGα

)

− φ

2
.

(11.153)
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In this procedure we have reduced the Falkner–Skan flow to an autonomous
system of equations for particle paths whose trajectories can be displayed on a
phase plane. Setting the right-hand side of (11.153) equal to zero at a critical
point (θc, φc) enables G and Gα to be evaluated at the point:

G[αc] = 0,

Gα[αc] = θ
1−β
c

1 − β
,

(11.154)

where αc = φc/θ
(1−β)/2
c . Near a critical point (11.153) can be expanded as

dθ

dτ
= a(θ − θc) + b(φ − φc),

dφ

dτ
= c(θ − θc) + d(φ − φc),

(11.155)

where

a = −1 −
(

1 − β

2

)

φcθ
(3β−3)/2
c Gαα[αc],

b = θ
(3β−1)/2
c Gαα[αc],

c = φc

θc

(

3β − 1
4

)

−
(

1 − β

2

)2

φ2
c θ

(3β−5)/2
c Gαα[αc],

d = − 1 + β

2(1 − β)
+ 1 − β

2

(

φcθ
(3β−3)/2
c Gαα[αc]

)

.

(11.156)

Note that, although the individual coefficients in (11.156) depend on Gαα[αc],
the invariants p and q do not:

p = −(a + d) = 3 − β

2(1 − β)
,

q = ad − bc = 1 + β

2(1 − β)
.

(11.157)

Eliminating β between the two expressions in (11.157) produces

q = p − 1. (11.158)

All the various well-known cases are indicated on the plot of critical-point
invariants shown in Figure 11.13.

The relevant critical point of (11.153) is at the leading edge of the plate,
(θ, φ) = (0, 0). As far as the invariants are concerned, the leading edge, where
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p

q

β =
(constant-wall-stress layer)

β 0 (Blasius layer)=

β 1–=

q =
p2

4
------

q = p – 1

(plane diverging channel flow
with a source at the vertex)

β 0.091 (zero-wall-stress layer)–=

1
3

Fig. 11.13. Classification of Falkner–Skan boundary layers in the (p, q) plane.

Gαα → ∞, is a removable singularity. For the Blasius layer (β = 0), the leading-
edge critical point is a stable node with invariants (p, q) =

( 3
2 , 1

2

)

.
A constant-wall-stress layer is produced by a free-stream velocity distribution

with a mildly favorable pressure gradient:

Ue = M(x + x0)1/3. (11.159)

See the velocity profiles in Chapter 10, Figure 10.11. This is a situation where
the weak acceleration of the free stream exactly balances diffusion of vorticity
from the wall to produce a boundary layer with a wall shear stress that remains
constant with x . The critical point at the leading edge is a star node with two
equal eigenvalues.

The case β = −1 is the flow generated by a source of area at the plate leading
edge and was treated in detail in Chapter 10 and in Section 11.4. It is a case
where length scales in both coordinate directions vary like

√
t , the same as for

the round jet. This can be seen by setting this value of β in (11.148).

11.8 Concluding Remarks

In this chapter we have applied symmetry analysis to two problems of incom-
pressible flow governed by the full Navier–Stokes equations. The joining of
Lie theory and bifurcation analysis in phase space produces a complete under-
standing of the Reynolds-number dependence of the space–time structure of
the flow. The phase portrait of particle paths in similarity coordinates is invari-
ant under a change of observer. This enabled fundamental questions concerning
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moving frames of reference and the distinction between streamlines and particle
trajectories in unsteady flow to be addressed.

The character of a critical point in the phase portrait is determined by the
matrix invariants of the gradient tensor evaluated at the point. A new element
was introduced when we analyzed the evolution of flow structure in terms of the
trajectory of critical points in the space of matrix invariants. Interestingly, these
invariants can often be evaluated without knowing the flow solution. This was
exploited in the last example, where we classified the family of Falkner–Skan
boundary layers knowing only the similarity form of the solution.

11.9 Exercises

11.1 Return to the Jeffery–Hamel problem and explore the invariance of Equa-
tion (11.38), Fθθθ + 12F Fθ + 4Fθ = 0, under translation in θ . Use the
method of differential invariants to reduce the problem to the second-
order equation

H Hφφ + (Hφ)2 + 12φ + 4 = 0. (11.160)

The first two terms on the left-hand side can be combined to yield

1
2 (H 2)φφ + 12φ + 4 = 0. (11.161)

Integrate twice to reproduce the solution (11.41).
11.2 Work out the dilation group that leaves invariant a steady plane laminar

jet generated by flow from a narrow slit. The conserved integral is

M =
∫ ∞

−∞
u2 dy. (11.162)

Discuss the problems encountered in searching for a similarity solution of
the full Navier–Stokes equations for this problem. Compare your group
with that of the boundary-layer equations. Work out a similarity solution
using the boundary-layer approximation.

11.3 Use direct substitution to show that the incompressible Navier–Stokes
equations,

∂u j

∂x j
= 0, (sum over j = 1, 2, 3),

∂ui

∂t
+ u j

∂ui

∂x j
+ ∂p

∂xi
− ν

∂2ui

∂x2
j

= 0, i = 1, 2, 3,

(11.163)
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are invariant under a transformation to a noninertial frame of reference
(11.41). Consider two coordinate systems related as follows:

x̃ i = xi − fi [t],

ũi = ui − ḟ i [t],

t̃ = t,

p̃ = p + xk f̈ k[t].

(11.164)

Thus we can always view a flow from the frame of reference of an
accelerating observer without changing the physics of the flow. Provide
a physical interpretation of the transformation of the pressure.

11.4 A steady, axisymmetric (nonbuoyant) jet is produced by a heated source
of momentum. How would you expect the centerline temperature of the
jet to vary with distance from the source? The exact solution for the
laminar heated jet is presented by Squire [11.21].

11.5 Work out the dependence on distance from the leading edge of the wall-
normal velocity component for the Falkner–Skan constant-stress layer
β = 1

3 .
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12
Compressible Flow

The equations that describe compressible flow admit a wide variety of sym-
metries, far more than we can discuss fully here. For a complete discussion
the reader is referred to the seminal work of Ovsiannikov [12.1], the collected
results in Ibragimov [12.2], and the recent text by Andreev et al. [12.3]. Rather
than try to provide a comprehensive discussion of all the interesting symme-
tries connected with the equations of compressible flow, three problems will be
described in detail that illustrate some of the features that are commonly encoun-
tered in the application of point groups. The first has to do with the specification
of the relation between pressure and density. The number of group operators
increases as the function connecting pressure and density is selected among
less and less general forms. The second is the occasional ability of group anal-
ysis to generate nontrivial exact solutions without having to solve a differen-
tial equation. Finally we will examine a scaling example from aerodynamic
theory.

For simplicity, we will focus our attention on the inviscid equations of motion.
Applications of group theory to the full viscous, compressible equations are
few and far between. Some of the reasons for this are discussed in Reference
[12.4] where a weakly compressible viscous flow case is treated. The inviscid
equations consist of a coupled system of relatively low order, and provide us
with a good opportunity to pick apart the group methodology and to look in
detail at the algorithm that leads to the invariance condition for a system with
several equations.

364
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12.1 Invariance Group of the Compressible Euler Equations

The equations governing inviscid, compressible flow in three dimensions are

!1 = ut + uux + vuy + wuz + px

ρ
= 0,

!2 = vt + uvx + vvy + wvz + py

ρ
= 0,

!3 = wt + uwx + vwy + wwz + pz

ρ
= 0,

!4 = ρt + uρx + vρy + wρz + ρ(ux + vy + wz) = 0,

!5 = pt + upx + vpy + wpz + F[p, ρ](ux + vy + wz) = 0.

(12.1)

The first three equations represent conservation of momentum in an inviscid
medium, the fourth is the equation of continuity, and the fifth is one form of
the energy equation (actually derived from the equation for conservation of
entropy). The function F is related to the entropy S of the medium by

F[p, ρ] = −ρ
∂S/∂ρ

∂S/∂p
. (12.2)

For the moment we take F(p, ρ) to be an arbitrary function. Using the cor-
respondence (x, y, z, t) → (x1, x2, x3, t) and (u, v, w) → (u1, u2, u3), one ex-
pands each equation in the differential system (12.1) in a Lie series in terms of
the infinitesimal group

x̃ j = x j + sξ j [x, t, u, p, ρ],

t̃ = t + sτ [x, t, u, p, ρ],

ũi = ui + sηi [x, t, u, p, ρ],

p̃ = p + sζ [x, t, u, p, ρ],

ρ̃ = ρ + sσ [x, t, u, p, ρ]

(12.3)

and the once extended group operator

X{1} = ξ j ∂

∂x j
+ τ

∂

∂t
+ ηi ∂

∂ui
+ ζ

∂

∂p
+ σ

∂

∂ρ

+ ηi
{ j}

∂

∂ui
j

+ ηi
{t}

∂

∂ui
t
+ ζ{ j}

∂

∂p j
+ ζ{t}

∂

∂pt
+ σ{ j}

∂

∂ρ j
+ σ{t}

∂

∂ρt
.

(12.4)

So we have a system with four independent variables, five dependent variables
and nine unknown group infinitesimals.
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There are five equations in the system, and so five invariance conditions are
involved in solving for the groups of (12.1). The invariance conditions written
out are listed below:

X{1}!
1 = X{1}

(

ut + uux + vuy + wuz + px

ρ

)

= uxη
1 + uyη

2 + uzη
3 +

(

− px

ρ2

)

σ

+ uη1
{1} + vη1

{2} + wη1
{3} + η1

{t} + 1
ρ

ζ{1} = 0, (12.5)

X{1}!
2 = X{1}

(

vt + uvx + vvy + wvz + py

ρ

)

= vxη
1 + vyη

2 + vzη
3 +

(

− py

ρ2

)

σ

+ uη2
{1} + vη2

{2} + wη2
{3} + η2

{t} + 1
ρ

ζ{2} = 0, (12.6)

X{1}!
3 = X{1}

(

wt + uwx + vwy + wwz + pz

ρ

)

= wxη
1 + wyη

2 + wzη
3 +

(

− pz

ρ2

)

σ

+ uη3
{1} + vη3

{2} + wη3
{3} + η3

{t} + 1
ρ

ζ{3} = 0, (12.7)

X{1}!
4 = X{1}(ρt + uρx + vρy + wρz + ρ(ux + vy + wz))

= η1ρx + η2ρy + η3ρz + σ (ux + uy + uz) + ρ
(

η1
{1} + η2

{2} + η3
{3}

)

+ uσ{1} + vσ{2} + wσ{3} + σ{t} = 0, (12.8)

X{1}!
5 = X{1}(pt + upx + vpy + wpz + F(p, ρ)(ux + vy + wz))

= η1 px + η2 py + η3 pz

+ ζ Fp(ux + uy + uz) + σ Fρ(ux + uy + uz) + F
(

η1
{1} + η2

{2} + η3
{3}

)

+ uζ{1} + vζ{2} + wζ{3} + ζ{t} = 0. (12.9)

The variables (u, v, w, p, ρ) satisfy the system (12.1), and this condition has
to be imposed on (12.5) to (12.9). To accomplish this we use (12.1) to define a
set of replacement rules to be inserted in each of the five invariance conditions
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(12.5) to (12.9). A reasonable choice would be

ut → −
(

uux + vuy + wuz + px

ρ

)

,

vt → −
(

uvx + vvy + wvz + py

ρ

)

,

wt → −
(

uwx + vwy + wwz + pz

ρ

)

,

ρt → −(uρx + vρy + wρz + ρ(ux + vy + wz)),

pt → −(upx + vpy + wpz + F[p, ρ](ux + vy + wz)).

(12.10)

It is important to keep in mind two points when making the replacements:

• All five replacements in (12.10) must be made in each of (12.5) to (12.9).
• It is essential to isolate a single term in each of the governing equations,

such as the time derivatives in (12.10), in order to make the replacement.
Replacing a product such as, say, uwx is incorrect, because u and wx do
not only appear as that particular product in (12.5) to (12.9). Moreover, u is
one of the independent variables of the infinitesimals. To remove it where it
might appear explicitly in the invariance conditions would produce an overly
restricted system of determining equations. For the same reason, it would
not be appropriate to solve for ρ and try to remove it from the invariance
conditions. For some complicated nonlinear equations, isolating a single term
may be extremely difficult, but such cases are relatively rare.

Running the package IntroToSymmetry.m reveals that (12.1) is invari-
ant under an 11-parameter group with the following operators:

(1) Invariance under translation in time:

X1 = ∂

∂t
. (12.11)

(2) Invariance under translation in x :

X2 = ∂

∂x
. (12.12)

(3) Invariance under translation in y:

X3 = ∂

∂y
. (12.13)
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(4) Invariance under translation in z:

X4 = ∂

∂z
. (12.14)

(5) Rotation about the z-axis:

X5 = y
∂

∂x
− x

∂

∂y
+ v

∂

∂u
− u

∂

∂v
. (12.15)

(6) Rotation about the x-axis:

X6 = z
∂

∂y
− y

∂

∂z
+ w

∂

∂v
− v

∂

∂w
. (12.16)

(7) Rotation about the y-axis:

X7 = z
∂

∂x
− x

∂

∂z
+ w

∂

∂u
− u

∂

∂w
. (12.17)

(8) Constant-speed translation in the x-direction:

X8 = t
∂

∂x
+ ∂

∂u
. (12.18)

(9) Constant-speed translation in the y-direction:

X9 = t
∂

∂y
+ ∂

∂u
. (12.19)

(10) Constant-speed translation in the z-direction:

X10 = t
∂

∂z
+ ∂

∂u
. (12.20)

(11) The fundamental dilation group of the equation:

X11 = t
∂

∂t
+ x

∂

∂x
+ y

∂

∂y
+ z

∂

∂z
. (12.21)

Additional groups arise when the function F[p, ρ] is restricted in some way.
A few examples are given below.

Case 1: F = f [ρ]. For this case there is one additional operator:

X12 = ∂

∂p
. (12.22)
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Case 2: F = f [p]. In this case the new symmetry is

X12 = t
∂

∂t
− u

∂

∂u
− v

∂

∂v
− w

∂

∂w
+ 2ρ

∂

∂ρ
. (12.23)

Case 3: F = Aρσ , σ ̸= 0. Two additional symmetries arise:

X12 = (σ−1)t
∂

∂t
− (σ − 1)u

∂

∂u
− (σ − 1)v

∂

∂v
− (σ−1)w

∂

∂w

− 2ρ
∂

∂ρ
− 2σ p

∂

∂p
,

X13 = ∂

∂p
.

(12.24)

Case 4: F = Ap. This form of F also brings in two additional symmetries:

X12 = t
∂

∂t
− u

∂

∂u
− v

∂

∂v
− w

∂

∂w
+ 2ρ

∂

∂ρ
,

X13 = p
∂

∂p
+ ρ

∂

∂ρ
.

(12.25)

Case 5: F = 5
3 p. This choice of F corresponds to the isentropic flow of

a monatomic gas with ratio of specific heats γ = 5
3 . In this case three

additional group operators arise:

X12 = t
∂

∂t
− u

∂

∂u
− v

∂

∂v
− w

∂

∂w
+ 2ρ

∂

∂ρ
,

X13 = p
∂

∂p
+ ρ

∂

∂ρ
,

X14 = t2 ∂

∂t
+ xt

∂

∂x
+ yt

∂

∂y
+ zt

∂

∂z

+ (x − ut)
∂

∂u
+ (y − vt)

∂

∂v
+ (z − wt)

∂

∂w

− 5pt
∂

∂p
− 3ρt

∂

∂ρ
.

(12.26)

For more on the compressible flow equations see Ovsiannikov [12.2] as well
as the CRC series edited by Ibragimov [12.3].

12.2 Isentropic Flow

The Gibbs equation discussed in Chapter 3, Section 3.4 is

T d S = de + p dv. (12.27)
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For an ideal gas with equation of state p = ρRT , the internal energy and en-
thalpy depend only on temperature. The heat capacities at constant volume and
constant pressure are defined by

de = Cv[T ] dT, dh = C p[T ] dT, (12.28)

where Cv[T ] and C p[T ] are weakly increasing functions of tempetature. A
common approximation is to let Cv and C p be constant. This permits the Gibbs
equation to be integrated explicitly from a reference state to produce

p
pr

= e(S−Sr )/Cv

(

ρ

ρr

)γ

, (12.29)

where γ is the ratio of specific heats, γ = C p/Cv . In the case of homentropic
(homogeneously isentropic, ∇S = 0) flow, the inviscid, compressible flow equa-
tions take the form

∂ui

∂t
+ u j ∂ui

∂x j
+ ργ−2 ∂ρ

∂xi
= 0,

∂ρ

∂t
+ u j ∂ρ

∂x j
+ ρ

∂u j

∂x j
= 0, (12.30)

i = 1, . . . , n, sum over j = 1, . . . , n,

where n is the number of space dimensions. The group operator X14 in case 5
[Equation (12.26)] appears in a physically subtle and interesting form when
the equations (12.30) are examined in one, two, and three dimensions. This is
illustrated in the next section.

12.3 Sudden Expansion of a Gas Cloud into a Vacuum

Instead of beginning with the problem statement and then searching for an
invariant group, let’s back into this problem by beginning with the group X14

appended to the time translation group X1, and then see what physical prob-
lem fits naturally into the chosen symmetries. For a perfect gas in n space
dimensions, the group t2

0 X1 + X14 takes the form

t2
0 X1 + X14 =

(

t2
0 + t2) ∂

∂t
+ x j t

∂

∂x j

+ (x j − u j t)
∂

∂u j
− (n + 2)pt

∂

∂p
− nρt

∂

∂ρ
, (12.31)
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where t2
0 is an arbitrary constant that will eventually play the role of an effective

origin in time. The characteristic equations of (12.31) are

dt
t2
0 + t2

= dx j

x j t
= du j

x j − u j t
= dp

(n + 2)pt
= dρ

nρt
. (12.32)

The last two terms generate the invariant

ψ = pρ−(n+2)/n. (12.33)

The system (12.30) is invariant under the group (12.31) (more particularly the
group X14) if and only if

γ = n + 2
n

. (12.34)

We therefore expect similarity solutions which are invariant under this group
for one-, two-, and three-dimensional flow only for γ = 3, 2, and 5

3 res-
pectively.

In a way (12.34) is a remarkable result. It is the same one that comes from
the kinetic theory of gases, where n is the number of degrees of freedom of
an individual gas molecule, yet there is nothing in (12.30) to suggest the cor-
puscular nature of the medium governed by (12.30). It almost seems that the
equations anticipate the existence of monatomic gases with n = 3. Essentially,
(12.34) expresses the dilation symmetry in the pressure and density common
to both theories.

12.3.1 The Gasdynamic–Shallow-Water Analogy

The two-dimensional case with γ = 2 corresponds to a gas where the molecules
are constrained to move in a plane. This is not a physically realizable situation,
but it happens that for this value of γ the governing equations (12.30) correspond
exactly to the equations for the flow of shallow water over a solid wall in the
(x, y) plane, where ρ is interpreted as the height of the liquid surface above the
wall, as sketched in Figure 12.1. In the shallow-water approximation the flow
velocity is assumed constant over the height of the layer.

The one-dimensional case with γ = 3 corresponds to a gas where the
molecules are constrained to move on a line. Neither the one or two dimen-
sional cases are physically realizable however both have been the subject of
interesting discrete-particle simulations.
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x

y

ρ [x,y] u[x,y]

Wall

Free surface

Fig. 12.1. Flow sketch for shallow-water analogy.

12.3.2 Solutions

What kind of solutions come out of this group? Solving the characteristic equa-
tions (12.32) leads to the following invariants:

αi = xi

(

t2
0 + t2

)1/2 ,

U i [α] = ui(t2
0 + t2)1/2 − xi

t
(

t2
0 + t2

)1/2 ,
(12.35)

P[α] = p
(

t2
0 + t2)(n+2)/2

,

R[α] = ρ
(

t2
0 + t2)n/2

.

Now substitute (12.35) into (12.30) with γ = (n + 2)/n. The result is

αi + U j ∂U i

∂α j
+ R(2/n)−1 ∂ R

∂αi
= 0,

∂(RU j )
∂α j

= 0,
(12.36)

i = 1,. . . , n, sum over j = 1,. . . , n.

The similarity variables (12.35) lead to the expected reduction in the number
of independent variables; time is eliminated from the problem.

As was pointed out above, every once in a while group analysis can lead
directly to interesting nontrivial solutions of the equations of motion. Let’s
consider the simplest possible case with U i [α] = 0. The self-similar continuity
equation is satisfied and so (12.36) reduces to

αi + R(2/n)−1 ∂ R
∂αi

= 0, i = 1,. . . , n, sum over j = 1, . . . , n. (12.37)
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Hence we need only solve for the density function R[α]. Let’s look at the three
relevant cases.

12.3.2.1 Case 1: n = 1, γ = 3

The solution is

R = (C2 − α2)1/2, (12.38)

where C is a constant of integration. The density and velocity profiles in
physical coordinates are

ρ = 1
(

t2
0 + t2

)1/2

(

C2 − x2

t2
0 + t2

)1/2

,

u = xt
t2
0 + t2

.

(12.39)

as shown in Figure 12.2.

12.3.2.2 Case 2: n = 2, γ = 2

The self-similar density is

R = C2

2
− α2

1 + α2
2

2
, (12.40)

where C is again a constant of integration. The density and velocity profiles in
physical coordinates are

ρ = 1
2
(

t2
0 + t2

)

(

C2 − x2 + y2

t2
0 + t2

)

,

(12.41)
u = xt

t2
0 + t2

, v = yt
t2
0 + t2

.
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Fig. 12.2. Density profiles for a 1-D gas expanding into vacuum.
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Fig. 12.3. Height profiles of a collapsing parabolic pile of water.

Following Reference [12.5], we can interpret the solution as a parabolic pile of
water collapsing under its own weight. The solution is plotted in Figure 12.3.

12.3.2.3 Case 3: n = 3, γ = 5
3

The density solution is

R =
(

C2

3
− α2

1 + α2
2 + α2

3

3

)3/2

, (12.42)

where C is a constant of integration. The density and velocity profiles for this
case are

ρ = 1

33/2
(

t2
0 + t2

)3/2

(

C2 − x2 + y2 + z2

t2
0 + t2

)3/2

,

u = xt
t2
0 + t2

, v = yt
t2
0 + t2

, w = zt
t2
0 + t2

,

(12.43)

as shown in Figure 12.4.
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Fig. 12.4. Density profiles for a monatomic gas expanding into vacuum.
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This solution represents the expansion into vacuum of a monatomic gas
such as helium with an initial density profile given by (12.43). The pressure
distribution is generated from p = ρ5/3, and the speed of sound comes from
a2 = 5

3 (p/ρ).
We have been a little cavelier in the use of dimensionless variables. Clearly

there are parameters of the initial conditions that can be used to nondimensional-
ize variables such as the initial radius r0 of the density distribution, and the initial
pressure p0 and density ρ0 at the center of the distribution. See Exercise 12.1.
The total energy contained in the gas cloud is

E =
∫ Rs

0

(

ρCvT + 1
2
ρu2

)

4πr2 dr =
∫ Rs

0

(

p
γ − 1

+ 1
2
ρu2

)

4πr2 dr.

(12.44)

Further discussion of this problem can be found in the classic text by
Zel’dovich and Raizer [12.6]. Several of the references cited in [12.6] extend
the results above to more complex cases, including the free expansion of an
initially ellipsoidal gas cloud. Further applications of group methods to gasdy-
namics as well as kinetic theory are presented by Meleshko [12.7], [12.8]. This
problem serves as a prototype for models of the expanding gas nebula from a
supernova.

12.4 Propagation of a Strong Spherical Blast Wave

Although the equations of motion described in Section 12.1 do not allow for
either viscosity or heat conduction, they can support discontinuous solutions
where the effects of diffusion are concentrated in a thin region called a shock
wave. An outstanding example is the famous blast-wave problem, solved in
1941 by Taylor [12.9], [12.10] and von Neumann [12.11], and also in 1946 by
Sedov [12.12], [12.13]. This problem describes the flow behind a spherically
expanding shock wave caused by a very strong point explosion in a homoge-
neous atmosphere. Taylor used the results of this problem, together with a set
of photos released by the Army showing the growth of the blast, to estimate
the energy released by the first nuclear bomb test at Alamogordo in 1945. His
publication sent more than a few shock waves of embarassment through U.S.
military circles at the time, since the blast energy was supposed to be a closely
guarded secret. The flow situation is depicted in Figure 12.5.

In the blast a huge amount of energy, E , is released in a small region, essen-
tially a point, in an ideal gas. The extreme overpressure produced by the blast,
which can be thousands of atmospheres, causes a very strong spherical shock
wave to propagate away from the source. As the shock wave moves outward,
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Fig. 12.5. Spherical point explosion.

it weakens, and the pressure just behind the wave decreases. However, if the
energy is large enough, the wave will move a considerable distance before the
pressure behind the wave begins to approach the ambient pressure p∞. As a
result there is a limited period of time, corresponding to a characteristic radius
of propagation R0, over which the shock wave is unaffected by the magnitude
of the ambient pressure. One can estimate an upper limit of this radius by cal-
culating the size of a sphere that would encompass a volume of gas at ambient
conditions that would contain a total amount of thermal energy equal to the
energy released in the explosion. That is,

E = 4
3π R3

0ρ∞CvT∞. (12.45)

The characteristic radius is

R0 =
(

3
4

γ − 1
π

E
p∞

)1/3

, (12.46)

where γ is the ratio of specific heats, γ = C p/Cv .
As long as the radius of propagation of the shock satisfies Rs ≪ R0, the

following assumptions hold:

(i) The thermal energy per unit volume of the ambient gas can be neglected
compared to the energy per unit volume of the gas within the wave.

(ii) The pressure ratio across the shock is large: pS/p∞ ≫ 1.
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As a consequence of these two assumptions one can assume that the strong-
shock limit can be used to characterize the jump in gas properties across the
blast wave. Namely,

ρs = γ + 1
γ − 1

ρ∞,

ps = 2
γ + 1

ρ∞U 2
s ,

us = 2
γ + 1

Us,

(12.47)

where Us = d Rs/dt is the shock speed and us is the gas speed behind the shock.
Notice that the limiting density ratio across the shock is finite. Therefore,

in contrast to the ambient pressure, the effect of the ambient density on the
shock speed cannot be ignored. Thus the flow pattern generated by the blast
wave is completely determined by only two physical parameters, the energy E
and the ambient density ρ∞. Dimensional analysis applied to these parameters,
including the time and the shock radius, with dimensions

Ê = M L2/T 2, ρ̂ = M/L3, R̂s = L , t̂ = T, (12.48)

leads to
(

ρ∞

E

)1/5 Rs

t2/5
= constant = αs . (12.49)

The shock speed is

Us = d Rs

dt
= αs

2
5

(

E
ρ∞

)1/5

t−3/5. (12.50)

The constant αs remains to be determined. The flow conditions just behind
the shock are

ρs = γ + 1
γ − 1

ρ∞,

ps = 2
γ + 1

ρ∞U 2
s = α2

s

(

4
25

)(

2
γ + 1

)

(

ρ3/5
∞ E2/5)t−6/5,

us = 2
γ + 1

Us = αs

(

2
5

)(

2
γ + 1

)(

E
ρ∞

)1/5

t−3/5.

(12.51)

In order to determine αs we turn to the equations of motion and solve for the
flow between the shock front and the origin of the explosion, 0 < r < Rs . The
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properties of the flow just behind the shock front, (12.47), serve as boundary
conditions for the solution. Since there are no shocks in this region, the flow
can be assumed to be entropy-conserving. The conservation equations of mass,
momentum, and energy for this spherically symmetric flow are

ρt + uρr + ρ

(

ur + 2u
r

)

= 0,

ut + uur + pr

ρ
= 0,

pt + upr + γ p
(

ur + 2u
r

)

= 0.

(12.52)

The last equation in (12.52) is derived from the equation for conservation of
entropy. When combined with the continuity equation it can be written as

(

∂

∂t
+ u

∂

∂r

)

ln[p/ργ ] = 0. (12.53)

Noting the formula (12.29) for the entropy of an ideal gas, we can write
(12.53) as

DS
Dt

= 0, (12.54)

which states that the entropy S = ln[p/ργ ] following a fluid particle inside
the blast zone is conserved. There is of course an enormous increase in entropy
across the blast wave. This is obviated by the fact that, while the density increase
is relatively modest, the pressure and temperature increases across the wave are
huge.

If we neglect the internal energy of the ambient fluid being continuously
enclosed by the outwardly moving shock, then the total energy of the gas
between the origin and the shock front is approximately constant,

E =
∫ Rs

0

(

ρCvT + 1
2
ρu2

)

4πr2 dr =
∫ Rs

(

p
γ − 1

+ 1
2
ρu2

)

4πr2 dr.

(12.55)

See equation (12.44). The spherical symmetry of the problem, together with
the result (12.49) from dimensional analysis and the conserved integral (12.55),
suggests that the problem may be invariant under a dilation group. Let’s try

r̃ = ear, t̃ = ebt, ũ = ecu, p̃ = ed p, ρ̃ = e f ρ . (12.56)
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Transforming (12.52) using (12.56) and requiring invariance reduces the group
to the following:

r̃ = ear, t̃ = ebt, ũ = ea−bu,
(12.57)

p̃ = ed p, ρ̃ = ed−2a+2bρ .

The infinitesimal three-parameter group operator corresponding to (12.57) is

X = ar
∂

∂r
+ bt

∂

∂t
+ (a − b)u

∂

∂u
+ (d)p

∂

∂p
+ (d − 2a + 2b)ρ

∂

∂ρ
. (12.58)

This is a sum of group operators for the basic compressible flow equations,
(12.1). In particular, we add the dilation operator X11 in (12.21) to the operators
X12 and X13 in (12.25) corresponding to case 4 (F = Aρ). That is,

X = aX11− (a − b)X12 + d X13. (12.59)

At this point we have a three-parameter group. However, the conditions of
the problem eventually reduce this to a one-parameter group as follows. The
position of the shock transforms as

R̃sρ
1/5
∞

E1/5 t̃2/5
= ea−(2/5)b Rsρ

1/5
∞

E1/5t2/5
, (12.60)

or

α̃s = ea−(2/5)bαs . (12.61)

The constancy of αs suggested by the results of dimensional analysis (12.49)
implies that b = 5

2 a. The group is now simplified to

r̃ = ear, t̃ = e(5/2)at, ũ = e−(3/2)au, p̃ = ed p, ρ̃ = ed+3aρ .

(12.62)

Using (12.62) to transform the energy integral leads to

E =
∫ Rs

0

(

p̃
γ − 1

+ 1
2
ρ̃ũ2

)

4π r̃2 dr̃ = ed+3a
∫ Rs

0

(

p
γ − 1

+ 1
2
ρu2

)

4πr2 dr,

(12.63)

and for invariance we require d = −3a. Finally, the one-parameter group that
leaves the entire problem invariant is

r̃ = ear, t̃ = e(5/2)at, ũ = e−(3/2)au, p̃ = e−3a p, ρ̃ = ρ .

(12.64)
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The characteristic equations of (12.64) are

dr
r

= 2 dt
5t

= 2 du
−3u

= dp
−3p

= dρ

0
. (12.65)

Dimensionless similarity variables constructed from the invariants of (12.65)
and nondimensionalized using E and ρ∞ are

α =
(

ρ∞

E

)1/5 r
t2/5

, αU [α] = 5
2

(

γ + 1
2

)(

ρ∞

E

)1/5

ut3/5,

(12.66)

α2 P[α] = 25
4

(

γ + 1
2

)(

1

ρ
3/5
∞ E2/5

)

pt6/5, G[α] =
(

γ − 1
γ + 1

)

ρ

ρ∞
.

The lack of scaling on the density in (12.64) is a reflection of the fact that,
over the time of validity of the solution, the density behind the shock and the
density variation to the origin is a time-independent function of r/Rs – the
region of density variation simply grows as the shock propagates outward. In
contrast, the gas pressure and radial velocity decay fairly rapidly against the
backdrop of a frozen density distribution. Only when Rs approaches R0 does
the density inside the blast wave begin to fade. The factors involving γ are
introduced to provide a convenient normalization of the solution.

Now substitute (12.66) into (12.52) and rearrange to put the equations of
motion into self-similar form:

((

2
γ + 1

)

U − 1
)(

2
γ − 1

)

G
dU

d ln α
+

(

2
γ + 1

)

d P
d ln α

− 5
2

(

2
γ − 1

)

GU

+
(

4
γ 2 − 1

)

GU 2 +
(

2
γ + 1

)

P = 0,

dU
d ln α

+
(

V − γ + 1
2

)

d ln G
d ln α

+ 3U = 0, (12.67)

d
d ln α

ln[P/Gγ ] + 4U − 5(γ + 1)
2U − (γ + 1)

= 0.

The governing equations (12.67) were solved exactly by von Neumann
[12.11]. The velocity is related to the radial coordinate by

α

αs
= U−2/5

(

γU − γ+1
2

γ−1
2

)µ1
(

7−γ
2

5
2 (γ + 1) − (3γ − 1)U

)µ2

, (12.68)
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where

µ1 = γ − 1
2γ + 1

, µ2 = 13γ 2 − 7γ + 12
5(3γ − 1)(2γ + 1)

. (12.69)

The density is determined as a function of velocity:

G =
(

γU − γ+1
2

γ−1
2

)µ3
(

7−γ
2

5
2 (γ + 1) − (3γ − 1)U

)µ4
(

γ−1
2

γ+1
2 − U

)µ5

,

(12.70)

where

µ3 = 3
2γ + 1

, µ4 = 13γ 2 − 7γ + 12
(2 − γ )(3γ − 1)(2γ + 1)

, µ5 = 1
2 − γ

.

(12.71)

Finally, the pressure is expressed in terms of the density and velocity functions:

P
G

=
(

γ+1
2 − U

γU − γ+1
2

)

U 2. (12.72)

Typical results are shown Figure 12.6.

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

α
αs
------

u
us
-----

p
ps
------

ρ
ρs
-----

Fig. 12.6. Velocity, density, and pressure for γ = 1.4.
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The ranges of these functions are

0 ≤ α ≤ αs,

γ + 1
2γ

≤ U [α] ≤ 1,

0 ≤ G[α] ≤ 1,

∞ ≥ P[α] ≥ 1.

(12.73)

Note that the physical velocity is zero at the origin (α = 0) and the physical
pressure has a finite limit. This can be seen from the limits,

lim
α→0

(

α

αs

)

U = 0,

lim
α→0

(

α

αs

)2

P =
(

γ + 1
2γ

)
6
5
(

γ

γ + 1

)

γ−1
2−γ

(

γ (7 − γ )
(γ + 1)(2γ + 1)

)

(9−2γ )(13γ 2−7γ+12)
5(2−γ )(3γ−1)(2γ+1)

(12.74)

12.4.1 Effect of the Ratio of Specific Heats

According to kinetic theory, the ratio of specific heats for an ideal gas is

γ = n + 2
n

, (12.75)

where n is the number of degrees of freedom of the gas molecule (for example,
three translational degrees for a monatomic gas such as helium, and additionally
two rotational and two vibrational degrees for diatomic molecules plus further
degrees arising from chemical reactions and possible dissociation and ionization
of the gas as temperatures increase). The gas inside the blast wave is heated to
extreme temperatures, and there is a high degree of uncertainty in the appropriate
value of γ . The number of excited degrees of freedom can be quite large, causing
γ to tend toward one. It is therefore useful to look at the effect of γ on the
properties of the flow.

First we plot the pressure at the origin as a function of γ , as shown in
Figure 12.7. Note that for values of γ close to one, the radial pressure variation
becomes very small. The constant αs is determined from the energy integral,

E =
∫ Rs

0

(

p
γ − 1

+ 1
2
ρu2

)

4πr2 dr, (12.76)
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Fig. 12.7. Dependence of the pressure at the origin of the blast on γ .

which, in nondimensional terms, becomes

32π

25(γ 2 − 1)

∫ αs

0
(P + GU 2)α4 dα = 1. (12.77)

It is actually simpler to carry out the integration in (12.77) by integrating with
respect to U (which is monotonic in α) and making use of (12.68) to replace α.
Let α/αs = F[U ]. Now

32πα5
s

25(γ 2 − 1)

∫ 1

(γ+1)/2γ

(P + RU 2)(F4 FU ) dU = 1, (12.78)

which, using (12.72), becomes

32πα5
s

25(γ 2 − 1)

∫ 1

(γ+1)/2γ

(

γ − 1

γU − γ+1
2

)

GU 3(F4 FU ) dU = 1. (12.79)

The relation (12.79) is integrated, allowing αs to be evaluated. This process is
carried out for various γ , and the result is as shown in Figure 12.8. Note that
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Fig. 12.8. The shock speed parameter as a function of γ .
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αs varies relatively little for a range of γ between 1.1 and 1.4. Since there is
considerable uncertainty in the actual value of γ inside the blast zone, this is the
key feature of the problem that enabled Taylor to use the theory to estimate the
energy of the first atomic bomb blast with some reasonable hope of accuracy.

We recall that
(

ρ∞

E

)1/5 Rs

t2/5
= constant = αs, (12.80)

or

Rs = αs

(

E
ρ∞

)1/5

t2/5, (12.81)

or

ln Rs = ln
[

αs

(

E
ρ∞

)1/5]

+ 2
5

ln t. (12.82)

When ln Rs is plotted versus ln t with αs estimated from Figure 12.8 the result
is a value for E .

12.5 Compressible Flow Past a Thin Airfoil

Following World War II there was a greatly increased interest in high speed
flight. Lacking analytical tools for handling this complex problem, aerodynamic
designers turned to similarity methods to extrapolate low speed wind tunnel data
to high Mach numbers. Here we shall examine several of these similarity rules
from the point of view of group theory. Figure 12.9 shows the flow past a thin
symmetric airfoil at zero angle of attack. The fluid is assumed to be inviscid,

U∞1

4x1
c

---------

c

-2 -1 1 2
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C p–

t1

Fig. 12.9. Pressure variation over a thin symmetric airfoil in low-speed flow.
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and the flow Mach number U∞/a∞, where a2
∞ = γ p∞/ρ∞ is the speed of

sound, is assumed to be much less than one. The airfoil chord is c, and the
maximum thickness is t1. The subscript 1 is applied in anticipation of the fact
that we will shortly scale the airfoil to a new shape with subscript 2.

The surface pressure distribution is shown below the wing, expressed in terms
of the pressure coefficient

C p1 = ps1 − p∞
1
2ρ∞U 2

∞1

. (12.83)

The pressure and flow speed throughout the flow satisfy the Bernoulli relation.
Near the airfoil surface,

p∞ + 1
2ρ∞u2

∞1 = ps1 + 1
2ρ∞U 2

s1. (12.84)

The pressure is high at the leading edge where the flow stagnates; then, as the
flow accelerates about the body, the pressure falls rapidly at first, then more
slowly, reaching a minimum at the point of maximum airfoil thickness. From
there the surface velocity decreases and the pressure increases continuously to
the trailing edge. The reader can find an instructive set of pictures of the flow
being discussed here in the book of flow visualization photographs collected
by Van Dyke [12.14]. In the absence of viscosity, the flow is irrotational:

∇ × u1 = 0. (12.85)

This permits the velocity to be described by a potential function:

u1 = ∇φ1. (12.86)

When this is combined with the condition of incompressibility, ∇ · u1 = 0, the
result is Laplace’s equation,

∂2φ1

∂2x1
+ ∂2φ1

∂2 y1
= 0. (12.87)

Let the shape of the airfoil surface in (x1, y1) be given by

y1

c
= τ1g[x1/c], (12.88)

where τ1 = t1/c is the thickness-to-chord ratio of the airfoil. The boundary
conditions that the velocity potential must satisfy are

(

∂φ1

∂y1

)

y1 = cτ1g[x1/c]
= U∞1

(

dy1

dx1

)

body
= U∞τ1

dg[x1/c]
d(x1/c)

,

∂φ1

∂x1

∣

∣

∣

∣

x1→−∞
= U∞1 . (12.89)
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Any number of methods of solving for the velocity potential are available,
including the use of complex variables. In the following we are going to restrict
the airfoil to be thin (τ2 ≪ 1). In this context we will take the velocity potential
to be a perturbation potential, φ′ so that

u1 = U∞1 + u′
1, v1 = v′

1, (12.90)

or

u1 = U∞1 + ∂φ′
1

∂x1
, v1 = ∂φ′

1

∂y1
. (12.91)

The boundary conditions on the perturbation potential in the thin-airfoil ap-
proximation are

(

∂φ′
1

∂y1

)

y1 = 0
= U∞1

(

dy1

dx1

)

body
= U∞τ1

dg[x1/c]
d(x1/c)

,

∂φ′
1

∂x1

∣

∣

∣

∣

x1→∞
= 0. (12.92)

The surface pressure coefficient in the thin-airfoil approximation is

C p1 = − 2
U∞1

(

∂φ′
1

∂x1

)

y1 = 0
. (12.93)

Note that the boundary condition on the vertical velocity is now applied on the
line y1 = 0.

In effect the airfoil has been replaced with a line of volume sources whose
strengths are proportional to the local slope of the actual airfoil. This sort
of approximation is really unnecessary in the low-Mach-number limit, but it
is essential when the Mach number is increased and compressibility effects
come into play. Equally, it is essential in this example, where we will map a
compressible flow to the incompressible case.

12.5.1 Subsonic Flow, M∞ << 1

Now imagine a second flow at a free-stream velocity U∞2 in a new space (x2, y2)
over a new airfoil of the same shape (defined by the function g[x/c]), but with
a new thickness-to-chord ratio τ2 = t2/c ≪ 1. Part of what we need to do is to
determine how τ1 and τ2 are related to one another. The boundary conditions
that the new perturbation velocity potential must satisfy are

(

∂φ′
2

∂y2

)

y2 = 0
= U∞2

(

dy2

dx2

)

body
= U∞2τ2

dg[x1/c]
d(x1/c)

,

∂φ′
2

∂x2

∣

∣

∣

∣

x2→∞
= 0. (12.94)
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In this second flow the Mach number has been increased to the point where
compressibility effects become important: the density begins to vary signifi-
cantly, and the pressure distribution begins to deviate from the incompressible
case. As long as shock waves do not form on the wing, the flow will be nearly
isentropic. In this instance the 2-D steady compressible flow equations are

u2
∂u2

∂x2
+ v2

∂u2

∂y2
+ 1

ρ2

∂p2

∂x2
= 0,

u2
∂v2

∂x2
+ v2

∂v2

∂y2
+ 1

ρ2

∂p2

∂y2
= 0, (12.95)

u2
∂ρ2

∂x2
+ v2

∂ρ2

∂y2
+ ρ2

∂u2

∂x2
+ ρ2

∂v2

∂y2
= 0,

p2 = Aρ
γ
2 .

Let

u2 = U∞2 + u′
2, v2 = v′

2, ρ2 = ρ∞ + ρ ′
2, p2 = p∞ + ρ ′

2,

(12.96)

where the primed quantities are assumed to be small compared to the free-stream
conditions. When quadratic terms in the equations of motion are neglected, the
equations (12.95) reduce to

(

1 − ρ∞U 2
∞2

γ p∞

)

∂u′
2

∂x2
+ ∂v′

2

∂y2
= 0. (12.97)

Introduce the perturbation velocity potential:

u′
2 = ∂φ′

2

∂x2
, v′

2 = ∂φ′
2

∂y2
. (12.98)

The equation governing the disturbance flow becomes

(

1 − M2
∞2

)∂2φ′
2

∂x2
2

+ ∂2φ′
2

∂y2
2

= 0. (12.99)

Notice that (12.99) is valid for both sub- and supersonic flow.
Since the flow is isentropic, the pressure and velocity disturbances are related

to lowest order by

p′
2 + ρ∞U∞2u′

2 = 0, (12.100)
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and the surface pressure coefficient retains the same basic form as in the in-
compressible case,

C p2 = − 2
U∞2

(

∂φ′
2

∂x2

)

y2 = 0
. (12.101)

This last relation is valid only within the thin-airfoil, small-disturbance approx-
imation and therefore may be expected to be invalid near the leading edge of
the airfoil, where the velocity change is of the order of the free-stream velocity.
For example, for the “thin” airfoil depicted in Figure 12.9, which is actually not
all that thin, the pressure coefficient is within −0.2 < C p < 0.2 except over a
very narrow portion of the chord near the leading edge.

Equation (12.99) can be transformed to Laplace’s equation (12.87) using the
dilation group

x2 = x1, y2 = 1
√

1 − M2
∞2

y1, φ′
2 = 1

A

(

U∞2

U∞1

)

φ′
1, (12.102)

where, at the moment, A is an arbitrary constant. The velocity potentials are
related by

φ′
2[x2, y2] = 1

A

(

U∞2

U∞1

)

φ′
1[x1, y1], (12.103)

or

φ′
1[x1, y1] = A

(

U∞1

U∞2

)

φ′
2

⎡

⎣x1,
1

√

1 − M2
∞2

y1

⎤

⎦ , (12.104)

and the boundary conditions transform as

(

∂φ′
1

∂y1

)

y1 = 0
= U∞1

⎛

⎝

Aτ2
√

1 − M2
∞2

⎞

⎠

dg[x1/c]
d(x1/c)

,

∂φ′
1

∂x1

∣

∣

∣

∣

x1→∞
= ∂φ′

2

∂x2

∣

∣

∣

∣

x2→∞
= 0. (12.105)

The transformation between flows 1 and 2 is completed by the correspondence

τ1 = Aτ2
√

1 − M2
∞2

, (12.106)
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or
t1
c

= A
√

1 − M2
∞2

(

t2
c

)

. (12.107)

Finally the transformed pressure coefficient is

C p1 = AC p2. (12.108)

These results may be stated as follows. The solution for incompressible flow
over a thin airfoil with shape g[x1/c] and thickness-to-chord ratio t1/c at veloc-
ity U1 is identical to the subsonic compressible flow at velocity U2 and Mach
number M2 over an airfoil with a similar shape but with the thickness-to-chord
ratio

t2
c

=

√

1 − M2
∞2

A

(

t1
c

)

. (12.109)

R. T. Jones [12.15] presents a lucid physical description of the effects of
moderate compressibility in terms of the lateral expansion of streamlines com-
pared to the incompressible case. The pressure coefficient for the compressible
case is derived by adjusting the incompressible value using C p2 = C p1/A. This
result equates to several different similarity rules that can be found in the aero-
nautical literature, depending on the choice of the free constant A. The one of
greatest interest is the so-called Prandtl–Glauert rule that describes the varia-
tion of pressure coefficient with Mach number for a body of a given shape and
thickness-to-chord ratio. In this case we select

A =
√

1 − M2
∞2, (12.110)

so that the two bodies being compared in (12.109) have the same shape and
the same thickness-to-chord ratio. The pressure coefficient for the compressible
flow is

C p2 = C p1
√

1 − M2
∞2

. (12.111)

Several scaled profiles are shown in Figure 12.10. Keep in mind the lack of
validity of (12.111) near the leading edge, where the pressure coefficient is
scaled to unphysical values greater than one.

12.5.2 Supersonic Similarity, M∞ >> 1

All the theory developed in the previous subsection can be extended to the
supersonic case by simply replacing 1 − M2

∞ with M2
∞ − 1. In this instance the
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Fig. 12.10. Pressure coefficient over the airfoil in Figure 12.9 at several Mach numbers
as estimated using the Prandtl–Glauert rule (12.111).

mapping is between the equation

(

M2
∞2 − 1

)∂2φ′
2

∂x2
2

− ∂2φ′
2

∂y2
2

= 0 (12.112)

and the simple wave equation

∂2φ′
1

∂x2
1

− ∂2φ′
1

∂y2
1

= 0. (12.113)

A generalized form of the pressure coefficient valid for subsonic and supersonic
flow is

C p

A
= F

⎡

⎣

τ

A
√

∣

∣1 − M2
∞

∣

∣

⎤

⎦ , (12.114)

where A is taken to be a function of
∣

∣1 − M2
∞

∣

∣.

12.5.3 Transonic Similarity, M∞ ≈ 1

When the Mach number is close to one, the simple linearization used to obtain
(12.99) from (12.95) loses accuracy. In this case the equations (12.95) reduce
to the nonlinear equation

(

1 − M2
∞1

)∂u′
1

∂x1
+ ∂v′

1

∂y1
− (γ1 + 1)M2

∞1

U∞1
u′

1
∂u′

1

∂x1
= 0. (12.115)

In terms of the perturbation potential,

(

1 − M2
∞1

)∂2φ′
1

∂x2
1

+ ∂2φ′
1

∂y2
1

− (γ1 + 1)M2
∞1

U∞1

∂φ′
1

∂x1

∂2φ′
1

∂x2
1

= 0. (12.116)



12.6 Concluding Remarks 391

This equation is invariant under the scaling

x2 = x1, y2 =

√

1 − M2
∞1

√

1 − M2
∞2

y1, φ′
2 = 1

A

(

U∞2

U∞1

)

φ′
1, (12.117)

where

A =
(

1 + γ2

1 + γ1

)(

1 − M2
∞1

1 − M2
∞2

)(

M2
∞2

M2
∞1

)

. (12.118)

Notice that, due to the nonlinearity of the transonic equation (12.116), the
constant A is no longer arbitrary. The pressure coefficient becomes

C p1 =
(

1 + γ2

1 + γ1

)(

1 − M2
∞1

1 − M2
∞2

)(

M2
∞2

M2
∞1

)

C p2, (12.119)

and the thickness-to-chord ratios are related by

t2
c

=
(

1 + γ1

1 + γ2

)(

1 − M2
∞2

1 − M2
∞1

)3/2( M2
∞1

M2
∞2

)

t1
c

. (12.120)

In the transonic case, it is not possible to compare the same body at different
Mach numbers or bodies with different thickness-to-chord ratios at the same
Mach number except by selecting gases with different γ . For a given gas it is
only possible to map the pressure distribution for one airfoil to an airfoil with
a different thickness-to-chord ratio at a different Mach number. A generalized
form of (12.114) valid from subsonic to sonic to supersonic Mach numbers is

C p
(

(γ + 1)M2
∞

)1/3

τ 2/3
= F

[

1 − M2
∞

(

τ (γ + 1)M2
∞

)2/3

]

. (12.121)

12.6 Concluding Remarks

Prior to the advent of supercomputers capable of solving the equations of high-
speed flow, similarity methods and wind-tunnel correlations were the only tools
available to the aircraft designer, and these methods played a key role in the
early development of transonic and supersonic flight. As a result, similarity
solutions and comparisons with experimental data fill the aeronautics literature
after World War II. It is only possible to scratch the surface of this vast subject
and much more on transonic aerodynamics and the application of similarity
rules can be found in References [12.16], [12.17], [12.18], [12.19], [12.20],
and [12.21].
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12.7 Exercises

12.1 Consider the isentropic expansion of a monatomic gas in three dimen-
sions discussed in Section 12.3. Put in the parameters of the problem
that characterize the initial conditions, including the initial radius of the
cloud, the initial pressure and density at the center of the cloud, and C p

and Cv . Discuss the evolution of the cloud front as well as the energy in-
tegral (12.44) in terms of the initial conditions. Indicate how you would
reach these results using dimensional analysis.

12.2 Use the packageIntroToSymmetry.m to determine the infinitesimal
groups of the reduced system of gasdynamic equations (12.36),

αi + U j ∂U i

∂α j
+ R(2/n)−1 ∂ R

∂αi
= 0,

∂(RU j )
∂α j

= 0, (12.122)

i = 1, . . . , n, sum over j = 1, . . . , n.

Solve the system (12.122) for the case n = 1. What sort of initial velocity
and density distributions are admitted by the solution?

12.3 Solve the blast wave problem in two dimensions. Formulate the problem
in cylindrical coordinates, and let the wave be produced by an explosion
on a line.

12.4 The equations of homentropic flow (homogeneously isentropic, ∇S = 0)
are

∂ui

∂t
+ u j ∂ui

∂x j
+ ργ−2 ∂ρ

∂xi
= 0,

∂ρ

∂t
+ u j ∂ρ

∂x j
+ ρ

∂u j

∂x j
= 0, (12.123)

i = 1, . . . , n, sum over j = 1, . . . , n.

Use the packege IntroToSymmetry.m to work out the infinitesimal
groups of (12.123) for general γ , and compare with those of (12.1).

12.5 Use the packageIntroToSymmetry.m to work out the six-parameter
infinitesimal group of the equation

uyy − (γ + 1)ux uxx = 0, (12.124)

which governs transonic small-disturbance flow over a thin two-
dimensional wing. Check your answer by directly transforming the equa-
tion. Work out the symmetries of (12.116), and compare with those of
(12.124).
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12.6 The full viscous equations governing the motion of a compressible gas,
including the equation of state, are

! i = ∂ρui

∂t
+ ∂

∂x j

(

ρui u j + Pδi
j

)

− ∂

∂x j

(

µ

(

∂ui

∂x j
+ ∂u j

∂xi

)

− 2
3
µδi j

∂uk

∂xk

)

= 0; i = 1, 2, 3,

!4 = ∂ρ

∂t
+ ∂

∂x
(ρui ) = 0, (12.125)

!5 =
∂ρ

(

CvT + 1
2 ukuk

)

∂t
+ ∂

∂xi

(

ρui
(

C pT + 1
2

ukuk
)

− κ
∂T
∂xi

)

− u j ∂

∂xi

(

µ

(

∂ui

∂x j
+ ∂u j

∂xi

)

− 2
3
µδi j

(

∂uk

∂xk

))

= 0,

!6 = p − ρRT = 0.

Assume for simplicity that the parameters, µ, C p, Cv , and κ are constant.
Use the package IntroToSymmetry.m to work out the infinitesimal
groups of (12.125). Compare with the inviscid case. Note that you will
need to fully expand the equations to produce the various derivatives that
appear in the twice extended group operator.

12.7 Consider the flow generated by an impulsively started jet in a compress-
ible medium. Carry out the integral momentum balance (similar to that
used for the incompressible case in Chapter 11, Section 11.5.1), and
determine the fraction of impulse contained in the axial momentum of
the fluid and the fraction carried to infinity by the pressure disturbance
of the jet. See Reference [12.22], where this problem is dealt with.
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13
Similarity Rules for Turbulent Shear Flows

Once the Reynolds number of a viscous flow is large enough to produce in-
stability and once the amplitude of the instability is large enough to produce
turbulence, then further amplification ceases and the overall behavior of the
flow tends to be independent of the viscosity. The purpose of this chapter is
to explore some of the ramifications of this ubiquitous property of turbulence
in light of the group symmetries of the governing Navier–Stokes equations,
the Euler equations, and their variant, the Reynolds-averaged Navier–Stokes
equations. First, some of the basic features of Reynolds number invariance are
discussed in conventional terms without reference to groups; then the concept
of a one-parameter turbulent flow is defined, and Reynolds number invariance
of this class of flows is interpreted in terms of the general dilation group of
the Euler equations. The result of this process is a set of similarity rules that
define the scaling properties of a wide range of geometrically simple flows.
The rules are used to design an experiment to measure the structure of turbulent
vortex rings at very high Reynolds number. This is then followed by a discus-
sion of two models of the geometry of the fine-scale structure of turbulence.
These discussions utilize the tools for analyzing three-dimensional vector fields
discussed in Chapter 3 and used in Chapter 11 in the analysis of the impusively
started laminar jet.

13.1 Introduction

The unsteady motion in turbulent shear flows is dominated by large eddies
whose size is of the order of the overall thickness of the flow, δ. Moreover the
large eddy length scales in the streamwise and cross-stream direction tend to
be of the same order. These large-scale motions contain most of the kinetic
energy of the flow and, as noted above, are relatively unaffected by changes in
the kinematic viscosity. Figure 13.1, from the landmark paper by Brown and

395
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Fig. 13.1. Effects of Reynolds number on a plane mixing layer between helium (upper
stream) and nitrogen (lower stream) from Brown and Roshko [13.1] and Roshko[13.2].
The Reynolds number in (a) is approximately 1.3 × 104 centimeter−1. The thickness of
the layer at the right side of the picture is approximately 2 cm. The speed of the lower
stream is 10 m/s. Test-section pressures in atmospheres are: (a) 2, (b) 4, (c) 8. Dynamic
pressures in the upper and lower streams are the same: ρ1u2

1 = ρ2u2
2.

Roshko [13.1] depicting a plane mixing layer at three Reynolds numbers, is the
best visualization of this behavior that I know of.

The velocities in the upper and lower streams are the same for each picture,
while the pressure of the flow increases from top to bottom. Increasing the
pressure increases the density, hence decreasing the kinematic viscosity of the
fluid and leading to a factor-of-four increase in Reynolds number from top
to bottom. Note that the growth rate of the layer is approximately linear (δ∝ x)
and the angle of spread of the mixing layer is virtually the same in all three
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photos. In contrast, the thickness of a laminar mixing layer would decrease
as the Reynolds number is increased, in proportion to the square root of the
kinematic viscosity: δlaminar ∝

√
νx .

Similar observations hold for jets and wakes: once the Reynolds number is
high enough to produce turbulence, the scale of the flow is set by the apparatus
that creates the flow and tends to be nearly independent of viscosity. As a
result, free shear flows (flows away from walls) are often modeled by neglecting
viscous transport of momentum altogether.

The most pronounced dependence on viscosity occurs in the case of turbulent
flow along a wall, yet even in this case, the region dominated by viscosity tends
to be confined to a very thin layer near the wall, and the wall shear stress is a
very slowly decreasing function of the Reynolds number. Over the streamwise
distance required for the thickness of a turbulent boundary layer to double, the
skin friction may only decrease by a few percent.

13.2 Reynolds-Number Invariance

We will use the customary decomposition of the velocity and pressure intro-
duced in 1895 by Osborne Reynolds [13.3],

u = ū + u′, p = p̄ + p′, (13.1)

where u is the vector velocity at an instant, ū is the ensemble mean over a large
number of realizations of the flow, and u′ is a velocity fluctuation away from
the mean for a given realization.

The notion of an ensemble is one of the central statistical tools of turbulence
theory and enables the mean flow to be regarded as time-dependent, so that
almost any flow can be treated using the Reynolds decomposition. One way
to conceive of the ensemble is to imagine repeating a numerical simulation
of the flow with some form of randomness in the initial conditions from one
realization to another. Each simulation represents a history of the complete
three-dimensional flow field. The ensemble mean is formed by averaging over
the entire ensemble at each instant in time.

However, there are serious theoretical questions regarding the uniqueness
of the mean and its possible dependence on the choice of initial conditions.
There is now ample evidence from both numerical simulations and experi-
ment that much of the development of turbulent shear flows at the moderate
Reynolds numbers observable in the laboratory does depend on details of the
initial conditions, particularly with respect to regular versus randomized ini-
tial disturbances [13.4], [13.5], [13.6], [13.7]. The degree of variation tends to
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be reduced as the Reynolds number is increased, but the jury is still out as to
the existence of a uniquely defined mean independent of initial conditions for
the extreme high-Reynolds-number limit, which is so extraordinarily hard to
observe in the laboratory.

Even if the initial conditions could be suitably randomized and independence
of initial conditions achieved, it is still a matter of debate whether the angle of
spread of a mixing layer would be truly independent of the Reynolds number or
whether there might exist an intrinsic, slow (say logarithmic) dependence on
Reynolds number that simply could not be detected over the range of Reynolds
numbers available in the laboratory. There is no theory yet that can shed light
on this issue. Perhaps symmetry methods will eventually show the way.

In any case, when the Reynolds decomposition is introduced into the Navier–
Stokes equations and the equations are averaged, they become the Reynolds-
averaged equations,

∂ ūi

∂xi
= 0,

∂ ūi

∂t
+ ∂

∂x j
(ū j ūi ) + 1

ρ

∂ p̄
∂xi

− 1
ρ

∂τ i j

∂x j
− 2ν

∂ s̄i j

∂x j
= 0,

(13.2)

where ν = µ/ρ is the kinematic viscosity, p̄ is the mean pressure, and s̄i j is the
rate of strain of the mean velocity field,

s̄i j = 1
2

(

∂ ūi

∂x j
+ ∂ ū j

∂xi

)

. (13.3)

The density ρ is constant. The new term that appears in these equations orig-
inates from the quadratic convective velocity term in the Navier–Stokes equa-
tions and takes the form of effective stresses arising from the correlation of the
velocity fluctuations. These are the so-called Reynolds stresses,

τ i j

ρ
= −u′i u′ j . (13.4)

The linear pressure and viscous diffusion terms contribute to momentum trans-
port only through gradients in the ensemble mean flow. The Reynolds stresses
add six new unknowns to the equations of motion, and as they stand the Reynolds
equations (13.2) are not closed. In essence the “turbulence problem” boils down
to finding additional equations to relate the Reynolds stresses (13.4) to the mean
flow and close the equations. This is the domain of turbulence modeling. In this
chapter we will not delve into the complexities of turbulence modeling, but
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rather we will concentrate on those properties of turbulent flows that can be
deduced from symmetry analysis alone in the absence of a model and with
relatively little quantitative knowledge of the flow field. Although we will not
address the issue here, symmetry analysis is an extremely useful tool in the
construction of rational turbulence models.

Measurements of the fluctuating velocity in a wide variety of turbulent shear
flows show that, away from a wall, the Reynolds stresses tend to be much larger
than the viscous stresses,

−u′i u′ j ≫ 2ν s̄i j . (13.5)

As a consequence the last term in (13.2) is often dropped, leading to a simplified
form of the Reynolds equations,

∂ ū j

∂x j
= 0,

(13.6)
∂ ūi

∂t
+ ∂

∂x j
(ū j ūi ) + 1

ρ

∂ p̄
∂xi

− 1
ρ

∂τ i j

∂x j
= 0.

Dropping the viscous term has important consequences for the group invariance
of the governing equations, as we shall see shortly. First we define

u0 = integral velocity scale characterizing the overall motion,

δ = integral length scale characterizing the overall motion.

From a wide variety of experiments it is observed that the intensity of tur-
bulence scales with the characteristic integral velocity of the flow. There are
several ways to define the turbulence intensity, but the most common method
is to use the turbulent kinetic energy. Let

u′ =

√

u′2
1 + u′2

2 + u′2
3

2
. (13.7)

It is found that

u′∝ u0, (13.8)

independent of ν. For example, if in the plane mixing layer shown in Figure 13.1
the velocity difference u0 = u1 − u2 were to be doubled keeping the velocity
ratio u1/u2 the same, then one could expect the turbulent fluctuations to double.
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If the viscosity were decreased keeping everything else the same, the rms tur-
bulent velocity fluctuations would not be expected to change. The spectrum of
turbulent fluctuations broadens as the Reynolds number is increased; the range
of scales increases, but u′ stays about the same and the size of the largest-scale
eddies stays about the same.

This change in the range of scales can be clearly seen in Figure 13.1. Perhaps
suprising is how wide the range of scales seems to become for only a factor-
of-four increase in Reynolds number. The constancy of the angle of spread in
these pictures reflects the invariant size of the large eddies; in general, for free
shear flows, the scale δ of the flow is independent of ν.

Using the momentum equation, one can form an equation governing the tur-
bulent kinetic energy. Consideration of the order of magnitude of various terms
in this equation reveals that – in contrast to the momentum equation where
viscous transport can be neglected – viscous dissipation of turbulent kinetic
energy (TKE),

ε = 2νs ′i j s ′ j i , (13.9)

contributes to the energy transport a term that is of the order of the other terms
in the equation. The quantity

s ′i j = 1
2

(

∂u′i

∂x j
+ ∂u′ j

∂xi

)

(13.10)

is the fluctuating rate of strain. In a turbulent flow, s ′ j i ≫ s̄ j i for reasons that
will become clear shortly. The dissipation term cannot be neglected, in spite
of the fact that the viscosity may be very small. In general, the dissipation is
proportional to the production of TKE:

ε ∝ u′i u′ j
∂ ūi

∂x j
. (13.11)

In the usual notation,

ε ∝
u3

0

δ
. (13.12)

The implication of (13.11) is that the fluctuating strain rates must be large and
inversely dependent on ν, so that as the Reynolds number (kinematic viscosity)
is changed, the fluctuating strain rates change so as to maintain the proportion-
ality indicated in (13.11) and (13.12).
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13.3 Group Interpretation of Reynolds-Number Invariance

Recall the two-parameter dilation group of the Euler equations discussed in
Chapter 11, Section 11.1 [cf. Equation (11.13)],

x̃ i = es xi , t̃ = es/k t, ˜̄ui = es(1−1/k)ūi ,

τ̃ i j = es(2−2/k)τ i j , ˜̄p = es(2−2/k) p̄, (13.13)

where s and k are arbitrary group parameters. Note that we have invoked
Reynolds-number invariance in writing down the group (13.13). In particu-
lar, Equations (13.5) and (13.8) have been used to deduce that τ i j should be
stretched by the square of the factor used to stretch ui . Furthermore, all three
coordinate directions are stretched in the same proportion to one another. If we
act on the Reynolds equations using this group, the result is

∂ ˜̄ui

∂ t̃
+ ∂

∂ x̃ j
˜̄u j ˜̄ui + ∂ ˜̄p

∂ x̃ i
− ∂τ̃ i j

∂ x̃ j

=
(

∂ ūi

∂t
+ ∂

∂x j
ū j ūi + ∂ p̄

∂xi
− ∂τ i j

∂x j

)

ea(1−2/k) = 0. (13.14)

Recall that the group (13.13) reduces to the dilation group of the Navier–Stokes
equations for k = 1

2 . The point of all this is that when we remove the viscous
stress term from the Reynolds equations and assume that fluctuating velocities
scale with the mean, the result is a system that is invariant under the two-
parameter dilation group (13.13) of the Euler equations (see references [13.8],
[13.9], [13.10]) rather than just the one-parameter group of the full viscous
equations. The additional parameter can be used to define a large class of flows
that are self-similar within the assumption of Reynolds-number invariance.

13.3.1 One-Parameter Flows

These are turbulent shear flows in open domains governed by a single global
parameter with units

M̂ = Lm T −n. (13.15)

Usually M is an integral invariant related to the forces that create the flow. We
saw an example of how such an invariant integral is determined in Chapter 11,
Section 11.5.1, where the impulse integral was derived. Recall that the anal-
ysis in that section is exact, regardless of whether the flow is laminar or tur-
bulent. This is because the volume integral of the momentum can be trans-
formed to a surface integral involving only the exactly known far-field potential
flow. The momentum integral can no longer be determined exactly when the
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control-volume boundary is penetrated by the turbulence as in the momentum
balance for a stationary (time-constant ensemble mean) jet. Nevertheless, the
dimensions of the conserved quantity remain the same, and the arguements put
forth below for determining the self-similar behavior of the flow can still be
carried through. Some typical examples are:

Stationary plane jet. The integral momentum flux J/ρ is approximately
constant at any streamwise position:

J
ρ

=
∫ ∞

−∞
ũ2 d ỹ = ea(3−2/k)

∫ ∞

−∞
u2 dy. (13.16)

The integral is invariant under dilation only for k = 2
3 .

Vortex ring. The hydrodynamic impulse, I/ρ, is the conserved integral for
this flow (cf. Chapter 11, Section 11.5.1):

I
ρ

= 3
2

∫

ũ d x̃ d ỹ d z̃ = ea(4−1/k) 3
2

∫

u dx dy dz. (13.17)

In this case the integral is invariant for k = 1
4 .

Invariance under the group (13.13) implicitly assumes that the flow is created
at a point in an infinite domain. It is easy to modify the problem so as to break
this symmetry, and any real flow does so. For example, if the force creating
the flow (say, a jet tube) is allowed to have a finite size, then the dilation
invariance of the problem will be broken. The implication of this is that results
based on self-similar behavior really apply to the asymptotic (far field) behavior
of the flow. In practice, the self-similar region is not so far from the origin as
one might imagine, and similarity behavior is observed in a remarkably broad
range of important flows.

Later in this chapter we will look at an experimental investigation of turbulent
vortex rings, where all sorts of symmetry-breaking parameters are present but
where a substantial region of nicely self-similar flow does occur and is quite
accessible experimentally. Nevertheless, one must be aware that the far field of
any flow can be affected by length scales that may have been omitted when the
near field is collapsed to a point. The results have to be used with some caution,
particularly when they are generalized to new geometries.

If we attempted to reincorporate the viscous stress term neglected in (13.6),
the symmetry (13.13) would be broken. Since real flows are viscous, one should
expect that all turbulent shear flows (except those with k = 1

2 ) will include
fine-scale dissipating motions that break the symmetry associated with the large
eddies, and therefore such flows should all exhibit a weak dependence on the
Reynolds number. At the present time there is neither theory nor experiment
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that sheds much light on how this broken symmetry affects the overall behavior
(rate of spread, rate of velocity decay, etc.) of turbulent shear flows. Broadly
speaking, there is always a price to be paid when seeking a similarity solution to a
physical problem. The price is that the invariance requirements of the applicable
group inevitably force the suppression of certain physical parameters of the real
problem. And so any claims we might make for the generality of a similarity
solution must always be tempered by comparison with experiment.

13.3.2 Temporal Similarity Rules

Following Reference [13.9], we can use invariance under the group (13.13) to
develop a general set of similarity rules for characterizing the space-time evolu-
tion of one-parameter turbulent (and k = 1

2 laminar) flows. This is accomplished
by solving the characteristic equations of (13.13),

dxi

xi
= k

dt
t

=
(

k
k − 1

)

dui

ui
=

(

k
2k − 2

)

dp
p

=
(

k
2k − 2

)

dτ i j

τ i j
(13.18)

with integrals

ξ i = xi

δ[t]
, U i = ui

u0[t]
, P = p

u0[t]2
, T i j = τ i j

u0[t]2
. (13.19)

The time-dependent length and velocity scales in (13.19) are

δ[t]∝ M1/m(t − t0)k, u0[t]∝ M1/m(t − t0)k−1, (13.20)

where t0 is the effective origin in time. The group parameter k is determined by
the units of the governing parameter M :

k = n/m. (13.21)

The general form of the similarity solution that derives from invariance under
(13.13) is

ūi

u0[t]
= U i

[

x
δ[t]

]

,
p̄

u0[t]2
= P

[

x
δ[t]

]

,
τ i j

u0[t]2
= T i j

[

x
δ[t]

]

. (13.22)

The functional relationships in (13.22) are consistent with the notion of self-
similarity taught by Townsend [13.11]. But there is one important difference:
here the characteristic velocity and length scales are functions of time linked
by a single governing parameter, whereas traditional approaches usually deal
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only with stationary flows with scales that depend on streamwise distance. As
we shall see shortly, the time-dependent approach includes stationary, spatially
developing flows as well.

One of the implications of the similarity form (13.22) derived from the group
(13.13) is that, for a flow governed by a single global parameter, the size of
the large eddies in the flow scales with the same power of time in all three
coordinate directions. This is consistent with the observation that large eddy
length scales tend to be of the same order in all three coordinate directions. It
also implies that a boundary-layer approximation is not needed to accomplish
a simplification of the problem.

13.3.3 Frames of Reference

When the similarity variables (13.22) are substituted into the Reynolds equa-
tions (13.2), the result is that time drops out of the equations and the number
of independent variables is reduced from four to three:

∂U j

∂ξ j
= 0,

(k − 1)U i + (U j − kξ j )
∂U i

∂ξ j
+ 1

ρ

∂ P
∂ξ i

− 1
ρ

∂

∂ξ j
(T i j ) = 0. (13.23)

This is the same equation encountered in Chapter 11, Section 11.5 [cf. Equation
(11.86)] where we analyzed the round jet with k = 1

2 . The equations for particle
paths,

dxi

dt
= ui [x, t], (13.24)

transform to the autonomous system

dξ i

dτ
= U i [ξ] − kξ i . (13.25)

In these one-parameter flows all lengths scale with the same power of time.
If an observer is selected to convect with a particular feature of the flow, then
the observer will have to translate nonuniformly according to the power of time
appropriate to the flow. Such a transformation is defined by

x̃ i = xi − αi M1/m(t − t0)k,

t̃ = t,
(13.26)

˜̄ui = ūi − kαi M1/m(t − t0)k−1,

˜̄p = p̄ + x j k(k − 1)α j M1/m(t − t0)k−2,
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where the αi determine the relative rates of motion of the observer in the
three directions. We already know from the discussion in Chapter 11, Section
11.2, that the Navier–Stokes and Euler equations are invariant under the group
(13.26). The Reynolds equations with the viscous term removed, (13.6), are as
well. In terms of similarity variables, (13.26) becomes a simple translation,

ξ̃ i = ξ i − αi ,

τ̃ = τ,
(13.27)

Ũ i = U i − kαi ,

P̃ = P + α jξ j k(k − 1).

In similarity coordinates, the equations for particle paths transform as fol-
lows:

d ξ̃ i

d τ̃
= dξ i

dτ
,

(13.28)
Ũ i [ξ̃] − kξ̃ i = U i [ξ] − kξ i .

The second relation in (13.28) comes directly from subtracting the first and
third relations in (13.27) and implies that the vector field of particle paths
is independent of the αi . So, whereas the velocity field U changes when the
observer is changed, the vector field of particle paths, U−kξ, is the same for all
observers who move with the relevant time scale. We saw a beautiful example
of this in Chapter 11 when we looked at particle paths in the impulsively started
round jet. See Figures 11.11 and 11.12.

13.3.4 Spatial Similarity Rules

Using the fact that one-parameter flows evolve in the streamwise direction
according to the same law as the evolution in the cross-stream direction, the
following conversion between x and t can be used:

(x − x0)∝ M1/m(t − t0)k . (13.29)

Jetlike flows originate from a point force acting in a surrounding fluid at rest.
In this case one uses (13.29) to replace (t − t0) in (13.20). The result is the
following set of spatial similarity rules for jets:

δ ∝ (x − x0), u0 ∝ M1/n(x − x0)1−1/k . (13.30)
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Wakes originate from the drag on a body immersed in a surrounding fluid
moving at a velocity U∞. A typical example is the flow past a sphere studied
in Chapter 2, Section 2.3. The drag in this case is

D
ρ

= CD

(

1
2

U 2
∞

)

(π R2). (13.31)

In the near wake, the drag on the body creating the flow and the free-stream
velocity are independent parameters. As a result, wakes are not self-similar in
the near field, even with the stipulation that the force is concentrated at a point.

This last statement needs to be clarified. Concentrating the drag force at a
point is, of course, not the same as reducing the body to a point. The radius of
the body continues to be the appropriate length scale for measuring distance in
the flow and for identifying the far field even as the applied force is collapsed
to the origin of coordinates.

Far from the origin, an integral of the momentum flux over a control volume
that contains the body and traverses the wake reduces to

D
ρ

∝
∫

A
U (U∞ − U ) d A, (13.32)

where the integral is carried out in a plane perpendicular to the wake and
extending to infinity. In the far wake the Oseen approximation U∞ − U ≪ U∞
becomes valid and the drag integral reduces to

D
ρU∞

∝
∫

A
(U∞ − U ) d A. (13.33)

In this limit, the drag and free-stream velocity merge into the single governing
parameter D/ρU∞ with units L3/T for a three-dimensional wake or L2/T for a
plane wake (where D is drag per unit span). This limiting flow is invariant under
the group (13.13) combined with a translation. The transformation between
space and time for wakes is

(x − x0) = U∞(t − t0). (13.34)

Using (13.34) to replace the time in (13.20) leads to the following spatial
similarity rules for wakes:

δ∝ M1/mU−k
∞ (x − x0)k, u0 ∝ M1/mU 1−k

∞ (x − x0)k−1. (13.35)

Note that for k = 1 jets and wakes have same spatial scaling as is the case for
the plane mixing layer depicted in Figure 13.1.
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13.3.5 Reynolds Number Scaling

The similarity rules (13.20), (13.30), and (13.35) can be used to determine the
temporal or spatial evolution of the flow Reynolds number,

Rδ = U0δ

ν
∝

M2/m

ν
(t − t0)2k−1. (13.36)

From (13.36) we can see that if k > 1
2 , the Reynolds number increases with time

and we would expect the range of scales in the flow to increase as shown in
Figure 13.1. If k < 1

2 , then the Reynolds number decreases with time and there
is a tendency for the flow to relaminarize. If k = 1

2 , then the Reynolds number
is constant.

The case k = 1
2 is highlighted once again. This case is special in that the

full Navier–Stokes equations (including the viscous term) are invariant under
the group (13.13). In fact, the few well-known exact solutions of the Navier–
Stokes equations that are set in an infinite domain are all cases that correspond to
this value of k. Included in this group are the Landau–Squire axisymmetric jet
and the Jeffrey–Hamel plane flow in a diverging channel, studied in Chapter 11.
Several additional cases can be found in Table 13.1, including the Oseen viscous
vortex and the round buoyant thermal (with a Boussinesq approximation where
the density of the jet is assumed to differ only slightly from the surrounding
medium).

Turbulent flows are often characterized by a transport coefficient in the form
of an effective “eddy” viscosity ντ . In general ντ is a function of both space and
time. In a thin shear layer the eddy viscosity can be deduced from measurements
of the Reynolds stress and mean velocity using the equality

−u′v′ = ντ

∂ ū
∂y

. (13.37)

From the previously discussed scaling relationships we deduce from (13.37)

ντ ∝ u0 δ. (13.38)

One can define a turbulent Reynolds number as

Reτ = u0δ

ντ

∝ constant (13.39)

where the constant varys from flow to flow and tends to fall between 10 and 50
(Reference behave [13.12]). In a gross sense the overall mean field in a turbulent
flow tends to behave somewhat like a very viscous constant Reynolds number
flow.
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Table 13.1. Various one-parameter shear flows and the units of the
associated governing parameter.

Flow Invariant M Units k

Jetlike flows
Plane mixing layer Velocity difference U0 LT −1 1

Plane jet 2-D momentum flux U 2
0 δ L3T −2 2

3

Round jet 3-D momentum flux U 2
0 δ2 L4T −2 1

2

Radial jet 3-D momentum flux U 2
0 δ2 L4T −2 1

2

Vortex pair 2-D impulse U0δ
2 L3T −1 1

3

Vortex ring 3-D impulse U0δ
3 L4T −1 1

4

Plane plume 2-D buoyancy flux U 3
0 L3T −3 1

Round plume 3-D buoyancy flux U 3
0 δ L4T −3 3

4

Plane thermal 2-D buoyancy U 2
0 δ L3T −2 2

3

Round thermal 3-D buoyancy U 2
0 δ2 L4T −2 1

2

Line vortex Circulation U0δ L2T −1 1
2

Diverging channel Area flux U0δ L2T −1 1
2

Vortex-sheet rollup Apex α; n = 1/(2 − α/π ) U 2
0 δ2−n L3−n T −1 1/(3− n)

Wakelike flows
Plane wake (2-D drag)/U∞ U0δ L2T −1 1

2

Round wake (3-D drag)/U∞ U0δ
2 L3T −1 1

3

Plane jet in cross flow (2-D mom. flux)/U∞ U0δ L2T −1 1
2

Round jet in cross flow (3-D mom. flux)/U∞ U0δ
2 L3T −1 1

3

Plane plume in cross flow (2-D buoy. flux)/U∞ U 2
0 L2T −2 1

Round plume in cross flow (3-D buoy. flux)/U∞ U 2
0 δ L3T −2 2

3

Grid turb. initial decay Saffman invariant U 2
0 δ3 L5T −2 2

5

Grid turb. initial decay Loitsianski invariant U 2
0 δ5 L7T −2 2

7

13.4 Fine-Scale Motions

So far we have used symmetry analysis to derive a great deal of information
about the evolution of a turbulent flow at the largest scales of motion. Now let’s
turn our attention to the fine scales and see what we can learn about the physics
of energy dissipation. This necessitates looking closely at fluctuating strain
rates, and since in a turbulent flow the strain is closely linked to the vorticity,
one is eventually led to a general study of the behavior of the velocity gradient
tensor.



13.4 Fine-Scale Motions 409

Using the scaling relation (13.11) that comes from the turbulent kinetic energy
equation, we can write

ε ∝
u3

0

δ
, (13.40)

which can be rearranged to read
√

s ′iks ′ki ∝
u0

δ

(

u0δ

2ν

)1/2

(13.41)

This affirms the statement made earlier that the instantaneous rates of strain are
larger than mean rates of strain by a factor proportional to the square root of the
Reynolds number. Given u0 and δ, this result can be used to estimate, the size
of the microscale motions that contribute the largest fluctuating strain rates and
therefore the bulk of the energy dissipation in a one-parameter flow.

We now define a new length scale, λ, called the Taylor microscale, that, when
associated with u0, can account for turbulent kinetic energy dissipation [13.11],
[13.13]:

ε ∝ ν

(

u2
0

λ2

)

. (13.42)

Combining (13.42) with (13.40) leads to the following estimates for the Taylor
microscale:

λ

δ
∝

1
(Rδ)1/2

, λ ∝ (ν(t − t0))1/2. (13.43)

According to this estimate, there is always some eddying motion in the flow
which has a characteristic length that varies like

√
νt and is independent of the

governing parameter M. In a similar vein note that the velocity gradients of the
large-scale motion vary according to

u0

δ
∝

1
t − t0

(t > t0), (13.44)

which is also independent of M . In a sense the large-scale gradients constitute
a clock that can be used to date the evolution of the flow just as in the case of
the laminar round jet.

Now let’s define new length and velocity scales that can account for dissipa-
tion of TKE. These are the velocity and length scales defined by Kolmogorov
[13.14]. See also the discussion of Kolmogorov theory in References [13.15]
and [13.16]. The Kolmogorov scales can be regarded as motions that constitute
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the lower limit for instability – motions with a characteristic Reynolds number
of order one. Let

ε ∝ ν

(

υ2

η2

)

,
vη

ν
≈ 1. (13.45)

Equation (13.45) can be used in conjunction with (13.12) to generate the fol-
lowing estimates of the Kolmorgorov velocity and length scales:

η

δ
∝

1
(Rδ)3/4

, η ∝ ν3/4 M−1/2m(t − t0)3/4−k/2 (13.46)

and

υ

u0
∝

1
(Rδ)1/4

, υ ∝ ν1/4 M1/2m(t − t0)k/2−3/4. (13.47)

In a sense, the Taylor and Kolmogorov microscales bracket the range of scales
that contribute the bulk of the dissipation of TKE in the flow. At scales larger
than the Taylor microscale the turbulent motion is considered to be essentially
inviscid. At the smallest scale are the Kolmogorov microscales with a local
Reynolds number of order one. The fine-scale gradients over the whole range
of dissipating motions vary according to

u0

λ
∝

υ

η
∝ ν−1/2 M1/m(t − t0)k−3/2. (13.48)

Toward the end of this chapter we will develop a simple model for the flow
geometry of these fine-scale motions.

13.4.1 The Inertial Subrange

In 1941 Kolmogorov [13.14] hypothesized that at high Reynolds number there
exists a range of scales, termed the inertial subrange, that depends only on the
rate of dissipation of TKE imposed by the forces that drive the flow.

Originally the theory was developed in the context of homogeneous and
isotropic turbulence, and the question of what parameter governs the large-scale
motion was not of primary interest. Several invariants based on volume integrals
of moments of the correlation function have been proposed for this seemingly
simplest of all flows. Unfortunately, none can be derived from an unassail-
able first-principles approach, and data from studies of the initial decay of grid
turbulence are too scattered to clarify precisely what quantity if any is con-
served. In fact, Kolmogorov assumed that the scaling of the inertial subrange is
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independent of the large-scale motion. Furthermore, there is nothing in the anal-
ysis that should necessarily restrict the results to isotropic turbulence. For this
reason Kolmogorov’s ideas are often used to characterize the high-Reynolds-
number behavior of inhomogeneous flows typified by the one-parameter class
discussed in Section 13.3.1.

The inertial subrange envisioned by Kolmogorov lies between the M-
dependent, ν-independent large-scales and the M-independent, ν-dependent
Taylor microscale that defines the upper size limit of dissipating motions. We
can derive one of Kolmogorov’s most famous results using purely dimensional
reasoning and the similarity rules worked out earlier. Let’s accept Kolmogorov’s
basic tenet and assume that a range of scales exists where the turbulent motion
is independent of both ν and M and is governed only by the local volumetric
rate of TKE dissipation. We can think of the eddy motions associated with the
inertial subrange as a kind of universal one-parameter flow governed by

M = ε ∝ u3
0/δ (13.49)

with units û3
0/δ̂ = L2T −3 and exponent k = 3

2 . The temporal evolution of the
characteristic scales of the inertial subrange should follow the similarity rules
in (13.30),

δ ∝ ε1/2(t − t0)3/2, u0 ∝ ε1/2(t − t0)1/2 (13.50)

and

Rδ ∝ (t − t0)2, λ ∝ (t − t0)1/2, η ∝ (t − t0)0. (13.51)

Looking at the examples listed in Table 13.1, it is noteworthy that k > 1
never occurs. The value k = 3

2 implies very strong local forcing of the flow,
typically much stronger than the forcing in most common situations. For
example, to produce k = 3

2 at the largest scale of a jet, one would need to
apply a force that increased in proportion to the fourth power of the time (see
Exercise 13.1).

We can use (13.50) to establish a scaling law for a portion of the TKE
spectrum. Assume that a range of scales exists that is characterized by the rules
for δ and u0 given in (13.50). Ask: how is the kinetic energy distributed among
the various eddy length scales? Let κ be the wave number of an eddy in the
inertial subrange,

κ ∝ 1/δ. (13.52)
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The kinetic energy per unit wave number at a given wave number can be related
to the time as follows:

E(κ) ∝
u2

0

1/δ
∝ ε3/2(t − t0)5/2. (13.53)

Solving for the time in (13.50), we have

t − t0 ∝
δ2/3

ε1/3
∝

κ−2/3

ε1/3
. (13.54)

Substituting (13.54) into (13.53) produces the classical result first postulated
by Kolmogorov,

E(κ) ∝ ε2/3κ−5/3. (13.55)

The κ−5/3 rolloff in the TKE spectrum has been confirmed in a wide variety
of high-Reynolds-number experiments, and so the arguments of Kolmogorov
and the postulated existence of the inertial subrange are generally accepted
as correct. The fact that these results can be derived within the framework of
the group-theoretical approach used to determine conventional scaling laws of
free shear flows adds further support to Kolmogorov’s ideas. However, the very
strong forcing required to generate the inertial subrange suggests that it can
exist only in a very vigorously stirred flow.

Furthermore, Reynolds-number invariance is still a purely empirically
observed property of high-Reynolds-number turbulence. There is no first-
principles theory that can draw it out of the equations of motion. Also, we
live in a world where the range of Reynolds numbers encountered is very lim-
ited. Referring to the drag law for circular cylinders presented in Chapter 2,
Figure 2.4, we can see that overall features of turbulent flows tend to change
very slowly (logarithmically) with Reynolds number. In fact, unexpected vari-
ations tend to occur up to the highest Reynolds numbers tested. As a practical
matter there is simply no scale available in the laboratory or in nature on this
Earth that can provide a Reynolds number large enough to ensure that truly
asymptotic behavior prevails. This is one of the most important stumbling blocks
to the development of a theory of turbulence. Taking the flow over a sphere for
example, we have no idea what the infinite-Reynolds-number value of the drag
coefficient is, nor do we know if the limit is unique for a given set of flow pa-
rameters. The same goes for the limiting friction coefficient on a flat plate, and
so on.
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13.5 Application: Experiment to Measure Small Scales
in a Turbulent Vortex Ring

To illustrate the practical use of the similarity rules developed in the preceding
sections let’s design a science experiment with the aim of studying the physics
of kinetic energy dissipation in a turbulent vortex ring at very high Reynolds
number. The goal is to come up with hard numbers for the apparatus design
and choice of working fluid. The dye visualization photos in Figure 13.2, from
the paper by Glezer and Coles [13.17], show the flow in question at low and
moderately high Reynolds numbers. The upper photo shows a highly turbulent
flow, but the experiment we intend to design will be required to reach Reynolds
numbers two orders of magnitude higher.

To accomplish our goal it is necessary to construct a laboratory apparatus to
contain the flow. This would consist of a large tank full of a transparent fluid,
such as air or water, and an impulsively driven pump to produce the forcing
needed to generate the flow. In general, we would select the fluid to have as

Fig. 13.2. Turbulent and laminar vortex rings produced by an impulsive force, from
the paper by Glezer and Coles [13.17]. Initial Reynolds number .0/ν is (a) 27,000,
(b) 7,500.
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Fig. 13.3. Vortex-ring apparatus with experimental parameters. The sketch in the upper
part of the figure defines parameters used to determine the effective origin of the ring.

low a kinematic viscosity as possible. However, this generally implies a high-
density fluid and therefore more force required to produce the ring; only through
proper analysis of scaling laws can we determine how these effects balance
out.

Figure 13.3 shows a typical experimental setup. The vortex rings are produced
by turning on and off the flow from an orifice of diameter d . The jet exit speed
is ujet[t], and the flow is turned on for a time Tjet.

The vortex ring evolves according to its size δ[t] and convection speed uc[t].
To study kinetic energy dissipation, it is necessary to carry out measurements
of the fine scales. The requirements of the experiment are as follows:

(1) The experimental measurements should be capable of reaching values of
Rλ = 2000, where

Rλ = u0λ

ν
(13.56)

is the Reynolds number based on the Taylor microscale. This is an order
of magnitude larger than the Taylor-microscale Reynolds number reached
in the experiments of Glezer and Coles and will require an initial jet-tube
Reynolds number two orders of magnitude larger than their value of 27,000.
Both the characteristic velocity u0 and the Taylor microscale are functions
of time. Moreover, the Reynolds number is a decreasing function of time.
This means that the measurements need to be made reasonably close to the
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jet exit, but not so close so as to be within the initial formation region of
the ring.

(2) The experimental technique should be capable of spatially resolving the
Kolmogorov microscale. The measurements will make use of standard op-
tical diagnostic techniques such as laser Doppler anemometry, in which
the measurement volume cannot typically be made smaller than about
50 µm in diameter. This effectively sets the lower limit for the size of the
facility.

(3) The vortex ring must become fully developed within a reasonable distance
from the jet exit so that the flow can be accessed by the diagnostic technique
at the desired Reynolds number.

For the sake of the estimates to be carried out below, we will assume that the
generation mechanism operates with a top-hat exit velocity profile and an ideal
on–off characteristic. We will use group methods, the assumption of Reynolds-
number invariance, and the data of Glezer and Coles [13.17] to estimate the
following quantities:

• The local Reynolds number of the vortex ring needed to satisfy require-
ment (1).

• The jet exit Reynolds number needed to reach the required local ring Reynolds
number at the point where the ring becomes fully developed and begins to
follow a similarity law.

• The distance required for the vortex ring to become fully developed.

These estimates, together with the size limitations of the optics, will determine
the tank size, orifice diameter, exit velocity, and fluid kinematic viscosity re-
quired to generate and study vortex rings at the desired Reynolds number.

13.5.1 Similarity Rules for the Turbulent Vortex Ring

Recalling the analysis of a general distribution of forces in an infinite fluid
developed in Chapter 11, Section 11.5.1, we know that the hydrodynamic im-
pulse is conserved for an idealized version of this flow. If the force is an impulse
function in space and time located at the origin of coordinates, then

3
2

∫

V
u dx dy dz =

∫ t

0

∫

V

I
ρ

δ[x]δ[y]δ[z]δ[t] dx dy dz dt = I
ρ

, (13.57)

where u is the velocity component in the axial direction. The hydrodynamic
impulse is the total mechanical impulse generated by the applied force since
the onset of the flow.
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Experimentally characterizing this integral is somewhat problematic. In prin-
ciple, the impulse integral requires a control volume that extends to infinity.
Later we will invoke invariance of the problem under a dilation group, which
carries an implied assumption that there are no length scales that limit the size
of the domain or that characterize the generation of the force. In the experiment
both of these requirements are violated. The tank is finite, and the force is gen-
erated by a finite-diameter jet tube. This greatly limits the size of the region
where we should expect self-similar behavior to prevail since we have to be
both far from the jet and at the same time far from the end wall of the tank.

Given this situation, it is legitimate to ask whether the impulse is truly constant
and, if it is, whether the equality (13.57) holds. We know from the analysis of
the impulse integral in Chapter 11, Section 11.5.1 that when the jet is turned on,
a roughly cosine-shaped pressure distribution acts on the inside of the tank, with
the maximum pressure disturbance occurring on the jet axis. Due to the no-slip
condition on the tank surface, this pressure distribution will induce viscous shear
layers at the wall. It is possible that these motions slightly modify the impulse,
although this effect is probably below the uncertainty of the measurements
carried out by Glezer and Coles who found that the impulse is conserved within
experimental error.

Thus we should expect various length and velocity scales in the experiment
to behave according to the similarity rules developed earlier:

δ[t] ∝ (I/ρ)1/4(t − t0)1/4, u0[t] ∝ (I/ρ)1/4(t − t0)−3/4, (13.58)

where t0 is a virtual origin in time and δ and u0 are length and velocity scales
that characterize the overall motion. Note that they can be any overall length
or velocity scale. In Figure 13.3, δ is used to characterize the width of the ring,
but it could just as easily be used for the distance the ring has traveled from the
flow origin. The characteristic velocity is generally used to denote a measure
of turbulent kinetic energy as in (13.8), but it could equally well denote the
convection speed of the ring, uc. Typically, turbulent fluctuation levels are on
the order of a third of the mean velocity in a free shear flow, and so we would
estimate u′ ∝ 0.3uc to hold (roughly).

The basic assumption is that, over some region of the tank, the overall motion
is completely determined by just one parameter, I/ρ. All the other parameters
of the problem – the tank length, the jet tube diameter, turbulent velocity fluc-
tuations in the jet tube, residual motion of the tank fluid from previous ring
firings, and the kinematic viscosity of the fluid – are ignored. The fact is that
all could play a role in determining the ring growth and decay, and the data
that exist today are too limited to determine how large this role may be. The
transformation (13.29) can be used to convert the temporal similarity rules to
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spatial rules:

δ ∝ (x − x0), U0 ∝
I
ρ

(x − x0)−3, (13.59)

where x0 is the spatial origin of the flow. Note that angle of growth of the ring
is independent of the impulse.

13.5.2 Particle Paths in the Turbulent Vortex Ring

Glezer and Coles painstakingly measured the ensemble mean velocity field
of a turbulent vortex ring by using laser Doppler anemometry to sample two
velocity components at several stations along the axis of the flow. By averaging
velocity–time traces from roughly 30 realizations at each of several hundred
measurement points they were able to reconstruct the self-similar streamlines
and particle paths in a plane through the axis. Their main result is shown in
Figure 13.4.

Ignoring all parameters except I/ρ, this flow should be invariant under the
dilation group,

x̃ i = ea xi , t̃ = e4at, ˜̄ui = e−3aūi ,

τ̃ i j = e−6aτ i j , ˜̄p = e−6a p̄. (13.60)

The similarity form derived from (13.60) used to approximate the data is

U i

(I/ρ)1/4(t − t0)−3/4
= G

[

x − x0

(I/ρ)1/4(t − t0)1/4

]

. (13.61)

The paper contains a good deal of evidence demonstrating that the data collapse
well in these variables, confirming that a region does indeed exist where the
flow evolves in an approximately self-similar fashion.

The coordinates in Figure 13.4 are

ξ = x − x0

(I/ρ)1/4(t − t0)1/4
, η = y

(I/ρ)1/4(t − t0)1/4
(13.62)

A perceptive reader will notice a flaw in the way Figure 13.4a is presented. We
can understand the problem by first examining Figure 13.4b. This figure shows
the phase portrait of particle paths defined by the vector field U − ξ/4, which
we know from the discussion in Section 13.3.2 is invariant for all observers
moving in proportion to t1/4. The phase portrait is seen to consist of two on-
axis saddles: one at the head of the ring located at ξc = 25.21, and one at
the tail at ξc = 24.85. In addition, the ring rolls up fluid in an off-axis focus
located at (ξc, ηc) = (25.03, 0.213). This critical point is actually a critical line
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Fig. 13.4. Experimental results from [13.17]: (a) streamline pattern of the ensem-
ble mean velocity field referred to an observer translating to the right with the ring,
(b) particle paths of the ensemble mean velocity field.

of foci joined in an azimuthal circle surrounding the axis. The numbers on the
horizontal axis in Figure 13.4b are referred to an observer fixed with respect
to the laboratory frame, as are the numbers on the horizontal axis in Figure
13.4a. But the streamlines displayed in Figure 13.4a are with respect to an
observer that moves with the focal point at x − x0 = 25.03(I/ρ)1/4(t − t0)1/4.
Such an observer will see a closed center in the streamline pattern at ξ̃c = 0. To
be consistent, either the numbers on the horizontal axis in Figure 13.4a should
have a zero under the streamline center, or the streamlines should be referred to
the laboratory frame, in which case there will be no closed orbits at all, only a
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slight bump in the region of the vortex ring. This highlights the advantage of the
phase portrait of particle paths for identifying flow structure – such ambiguities
are completely avoided.

The critical points provide well defined velocity and length scales for ana-
lyzing the flow. Using the diameter and speed of the off-axis stable focus to
define length and velocity scales, we have from the data in Figure 13.4

δ[t] = 0.426(I/ρ)1/4(t − t0)1/4,
(13.63)

u0[t] = 25.03
4

(I/ρ)1/4(t − t0)−3/4 = 6.27(I/ρ)1/4(t − t0)−3/4.

The time evolution of the turbulent Reynolds number can be estimated as

Rδ = u′δ

ν
= 0.89

(I/ρ)1/2

ν(t − t0)1/2
, (13.64)

where we have used u′ ∝ u0/3 to estimate the magnitude of the turbulent
fluctuations. The spatial evolution of the ring can be estimated in a similar
manner. The streamwise position of the ring is x−x0 = 25.03(I/ρ)1/4(t−t0)1/4,
which we can solve for the time in the motion of the ring as

t − t0 = 1
I/ρ

(

x − x0

25.03

)4

. (13.65)

Now substitute (13.65) into (13.63) to get

δ[t] = 0.017(x − x0),

u′[t] = 3.32 × 104(I/ρ)(x − x0)−3. (13.66)

The spatial dependence of the Reynolds number is

Rδ = 562
I/ρ

ν(x − x0)2
. (13.67)

13.5.3 Estimates of Microscales

In Section 13.4 we used energy considerations to develop a series of relations
that can be used to estimate the size of the microscale motions that contribute the
bulk of kinetic energy dissipation. We can use results from the classical theory of
homogeneous and isotropic turbulence to refine the estimates in (13.43). Using
a Taylor microscale based on the curvature of the lateral correlation function
[13.11], [13.13], the dissipation of TKE is given by

ε = 15ν

(

u′

λ

)2

. (13.68)
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The Reynolds number based on the Taylor microscale is now

Rλ =
√

15Rδ. (13.69)

Our experiment is required to reach values of Rλ = 2000, which implies
a large-scale value of Rδs = 267,000. The factor of 15 helps considerably in
reaching our experimental goals by reducing the required large-scale Reynolds
number Rδ needed to generate the design value of Rλ. This optimistic estimate
seems to be justified in that recent direct simulations also suggest that the
turbulent microscales are not as small as was once assumed.

13.5.4 Vortex-Ring Formation

Figure 13.3 shows the geometrical construction used to define the initial for-
mation of a vortex ring. The quantities ts and xs are the time and position of
the ring when the flow first begins to exhibit self-similar behavior after an ini-
tial period of formation. The quantities δs and u′

s are the characteristic width
and turbulence level at the same point. In the following, we will use physical
reasoning, along with the data of Glezer and Coles [13.17], to estimate these
parameters of the formation process.

The impulse generated by forcing a slug of fluid of length L jet over a period
Tjet through a jet orifice as shown in Figure 13.3 is given by

I
ρ

= π

4
d2u2

jetTjet = π

4
d2ujetL jet. (13.70)

Substituting (13.70) into (13.64) leads to an expression for the Reynolds number
in terms of the jet exit conditions:

u′δ

ν
= 0.89

(

π

4

)1/2( Tjet

t − t0

)1/2(ujetd
ν

)

= 562
(

π

4

)(

L jetd
(x − x0)2

)(

ujetd
ν

)

,

(13.71)

where (13.65) has been used. Equation (13.71) defines a consistency relation
between the time and position of vortex-ring formation. This can be written as

(0.89)2
(

Tjet

t − t0

)

= (562)2
(

π

4

)

(L jetd)2

(x − x0)4
. (13.72)

The on time of the exit flow, Tjet, in Glezer and Coles’s experiment was 0.05 s,
and the measured virtual origin in time was t0 = −0.44 s. They were able to col-
lapse the mean data beginning approximately 0.7 s after ring initiation. In
other words, self-similarity of the mean field was reached at approximately,
ts − t0 = 1.14 s. Using these data, the left-hand side of (13.72) is (0.89)2Tjet/
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(ts − t0) = 0.035. Their experiments used a piston mechanism to drive a slug
of fluid 6.52 cm long through an orifice 1.9 cm in diameter. It was found that
the rings first began to follow a similarity law at xs = 35 cm, that is, 5.4 slug
lengths downstream of the orifice. The virtual origin of the ring in space was
x0 = −145 cm. Using this value, the right-hand side of (13.71) is 0.036. The
close correspondence between these two numbers supports the consistency of
the choice of virtual origin in space and time used by Glezer and Coles.

The diameter of the vortex ring at the time of formation is determined both
by the jet tube diameter and by the length of the slug of fluid used to generate
the ring. The ring diameter at the beginning of the self-similar zone is given by
(13.66) as δs = 0.017(xs − x0). Let’s construct a simple model of the formation
process using the following assumptions:

• The position of ring formation scales linearly with the slug length with a
constant of proportionality that is independent of Reynolds number at high
Reynolds number. That is, let

xs = AL jet. (13.73)

The data of Glezer and Coles [13.17] suggest a value of A = 5.4.
• The virtual origin in space scales with the diameter of the jet tube, also with

a constant of proportionality that is independent of the Reynolds number at
high Reynolds number:

x0 = Bd. (13.74)

The data suggest a value of B = 77.

Thus for high-Reynolds-number vortex rings we might expect xs − x0 =
5.4L jet + 77d, which implies that the point where similarity behavior begins is
characterized by

Tjet

ts − t0
= 3.9 × 105

(

π

4

)(

L jet

d

)2 1
(

5.4 L jet

d + 77
)4 ,

δs

d
= 0.017

(

5.4
L jet

d
+ 77

)

, (13.75)

u′
s

ujet
= 3.32 × 104

(

π

4

)

(

(

L jet

d

)

1
(

5.4 L jet

d + 77
)3

)

.
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Fig. 13.5. Vortex-ring Reynolds number versus fluid slug length.

The Reynolds number of the ring at this point is

Rδs

Rjet
= u′

sδs

ujetd
= 562

(

π

4

)(

L jet

d

)

1
(

5.4 L jet

d + 77
)2 , (13.76)

where the jet Reynolds number is Rjet = ujetd/v. Equation (13.76) is plotted in
Figure 13.5.

The Reynolds number based on the Taylor microscale at xs is

Rδs = R2
λs

/15, (13.77)

and the Kolmogorov microscale is

ηs/δs = 155/4 R−3/2
λs

. (13.78)

All of these relationships highlight the key role played by the ratio of slug length
to jet diameter, L jet/d .

13.5.5 Apparatus Design

The design process begins with the specification of Rλs = 2000 and ηs = 50 µm.
The apparatus is then defined through the following steps:

Step 1. Use (13.77) and (13.78) to determine Rδs and δs .
Step 2. According to (13.76), a maximum in Rδs /Rjet occurs for L jet/d = 14.3.

However, this is likely to be too large for stable ring formation. A very
long slug is likely to be unstable and form multiple rings that may col-
lide and scatter in unpredictable directions. In addition, the longer the
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slug, the longer the tank required to contain the flow. Glezer and Coles
used L jet/d = 3.4 and observed relatively large scatter in their vortex-
ring trajectories. Axisymmetric jets are known to have a natural Strouhal
number, St = ujetTjet/d = 0.3, corresponding to a slug length per vortex
of L jet = ujetTjet = 3.3d , and so the observed scatter, is not suprising. In
Figure 13.5 we have selected a value of L jet/d = 2 to promote stable ring
formation. This generates Rδs /Rjet = 0.11; the jet exit Reynolds number
must be almost an order of magnitude larger than the desired ring Reynolds
number at the point where self-similar behavior begins.

Step 3. Given L jet/d and δs from step 1, the required d is determined from
the middle relation in (13.75).

Step 4. Finally, xs/d is determined from (13.73). This is used to infer the
minimum tank length required to contain the flow. The actual tank size
is decided with some discretion with regard to the distance over which
self-similar behavior is to be studied.

If the apparatus is designed around the specifications discussed earlier,

Rλs = 2000,

ηs = 50 µm, (13.79)

L jet/d = 2,

then the steps defined above generate the following numbers:

δs = 15 cm,

Rjet = 2,340,000,
(13.80)

d = 10 cm,

xs = 107 cm.

If we assume that the self-similar region begins at the midpoint of the tank, then
we require a tank at least 214 cm long.

13.5.5.1 Choice of Working Fluid

Once the jet diameter and Reynolds number have been specified, the ratio ujet/ν

is determined. A relationship that shows the dependence of this quantity on the
specified parameters Rλs , ηs , and L jet/d can be found by combining (13.76),
(13.77), and (13.78):

ujetηs

ν
= 0.76 × 10−4(Rλs )

1/2
(

1
L jet/d

)(

5.4
L jet

d
+ 77

)3

. (13.81)
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Recalling that L jet/d is limited by stability considerations to values less than
about 3 and noticing the relatively weak dependence on Rλs , we recognize that
ujet/ν is essentially inversely proportional to ηs . The calculations carried out in
the previous examples lead to a jet Reynolds number of about two million and
jet diameter of 10 cm. The required ratio of exit velocity to kinematic viscosity
is ujet/ν = 230,000 cm−1. Although a different choice of Rλs or L jet/d would
modify this somewhat, it is clear from (13.81) that we do not have a whole lot
of flexibility.

At this point we need to consider the working fluid. We will use water at 20◦C
with ν = 0.01 cm2/s and ρ = 1 g/cm3. In this case the required jet exit velocity
is ujet = 2340 cm/s which is approximately a factor of fifteen larger than the
value used by Glezer and Coles. The piston stroke time is Tjet = (20/2342) sec.
The required steady-state piston pressure is

J = ρu2
jet = 5.5 × 106 g/cm-s2 = 80 psi. (13.82)

This estimate does not take into account the force required to accelerate the
slug of fluid from rest. If we make the assumption that the piston speed must
be reached in, say, 10% of the stroke time, then the required acceleration is

a = ujet/0.1Tjet = 2,930,000 cm/s2. (13.83)

Neglecting the mass of the piston compared to the mass of the water being set
into motion, then the required piston force is

F = ma = (π/4)ρd2L jeta = 4.6 × 104 N = 10,300 lbf, (13.84)

corresponding to a piston pressure of 850 psi. Adding the estimated piston mass
to these calculations is likely to raise the required pressure to over 1000 psi.
Although the pressures involved are large and so is the tank, this design has a
reasonable probability of success, although very thick glass or a free surface
may be required to withstand the impulsive pressures required. This completes
the design of our apparatus. By this time the reader should appreciate the key
role of symmetry analysis as well as the need to deal impirically with the virtual
origin in space and time where non self-similar behavior occurs.

13.6 The Geometry of Dissipating Fine-Scale Motion

In Section 13.2 the turbulence closure problem was briefly discussed. There
it was pointed out that the problem of turbulence modeling is that of finding
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a set of independent equations relating the Reynolds stresses to the ensemble
mean flow that can be included with the Reynolds-averaged equations to close
the system. To date no universal turbulence model has been developed and the
models that are used successfully rarely venture far from the experimental data
base of flow cases used to select values for the model parameters. See Wilcox
[13.18] for an authoritative treatment of the problem.

Many different kinds of models have been developed over the years and the
successful ones all have one thing in common; they do a good job of modeling
the transport of kinetic energy, particularly kinetic energy dissipation. For this
reason, efforts to develop improved theories of turbulence tend to focus on the
physics of turbulent fine scale motions. This has become even more true with
the advent in recent years of large eddy simulation techniques (LES) where
unsteady large scale motions are computed explicitly while fine scale motions
below the spatial resolution of the computational grid must be modeled.

The discussion in Section 13.4 was concerned with estimating the size of
dissipating fine-scale motions. We are in the rather odd position of being able to
estimate the size of something for which we have no physical picture. It is clear
from the discussion of similarity rules that, except for the case k = 1

2 , there are
invariably important symmetry-breaking motions in all turbulent shear flows.
These motions are characterized by instantaneous vorticity and rates of strain
that, according to (13.41), are a factor

√
Rδ larger than that associated with the

large-scale motion.
To complete the discussion of applications to turbulence, we will turn our

attention to a physical picture of the geometry of small-scale motions [13.19],
[13.20]. It needs to be stated from the outset that although we now know quite
a bit about the local flow patterns associated with turbulent fine-scale motions,
there is as yet no rigorous theory for the flow dynamics, and so we shall be
necessarily dealing with highly simplified models. The main purpose of this
section is to illustrate a further application of the techniques for analyzing 3-D
vector fields developed in Chapter 3 and used to investigate the round jet in
Chapter 11.

13.6.1 Transport Equation for the Velocity Gradient Tensor

In Chapter 11, Section 11.6.1, we developed the transport equation for the
velocity gradient tensor from the gradient of the Navier–Stokes equations. The
result was

Dai
j

Dt
+ ai

kak
j − 1

3

(

am
n an

m

)

δi
j = hi

j , (13.85)
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where ai
j = ∂ui/∂x j and

hi
j = − 1

ρ

(

∂2 p
∂xi ∂x j

− 1
3

∂2 p
∂xk ∂xk

δi
j

)

+ ν
∂2ai

j

∂xk ∂xk
. (13.86)

If (13.85) is differentiated with respect to time, the result is

D2ai
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)

δi
j . (13.87)

The first invariant, P = −ai
i , is zero by incompressibility, and the second and

third invariants are related to ai
j by

Q = − 1
2 ai

j a
j
i ,

(13.88)
R = − 1

3 ai
kak

j a
j
i .

Multiplying (13.85) by a p
i and then by a p

q aq
i and taking the traces of the resulting

equations leads to the evolution equations for the invariants (see Reference
[13.19]). Thus

d Q
dt

+ 3R = −ai
khk

i (13.89)

and

d R
dt

− 2
3

Q2 = −ai
nan

mhm
i . (13.90)

The tensor hi
j describes the effect of viscous diffusion and pressure forces on

the evolution of the velocity gradient tensor; it is essentially the anisotropic part
of the acceleration gradient tensor following a fluid particle, ∂(Dui/Dt)/∂x j .
We looked at the case hi

j = 0 in Chapter 6, Example 6.10.
The character of the eigenvalues of ai

j is determined by the cubic discriminant,

D = Q3 + 27
4 R2. (13.91)

Also of interest are the nonzero invariants of the rate-of-strain and rate-of-
rotation tensors,

Qs = − 1
2 si

j s
j

i ,

Rs = − 1
3 si

ksk
j s

j
i , (13.92)

Qw = − 1
2wi

jw
j
i = ωiωi ,
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where ai
j = si

j + wi
j . These invariants can be used to investigate the relative

importance of strain and vorticity in determining the structure of the flow. They
are related to one another through

Q = Qs + Qw,
(13.93)

R = Rs − wi
kw

k
j s

j
i .

13.6.1.1 Simulations of Turbulence

The recognition that the complicated and chaotic fluid motion of turbulence
could be simulated on a digital computer originated over forty years ago, and
the challenges faced by early pioneering computations are well described in
the 1976 review by Reynolds [13.22]. The field has progressed continuously
since then, but until the advent of digital computers powerful enough to enable
the Navier–Stokes equations to be integrated for moderate values of the
Reynolds number, very little was known about the fine-scale motions that exist
in a turbulent flow. This can be appreciated by considering the extremely small
lengths involved for a typical laboratory-size flow (for example, a few tens of
microns in the vortex-ring experiment described in Section 13.5.3). Further-
more, it is necessary to measure all nine components of the velocity gradient
field, a challenging task at any scale.

The approach used here to analyze turbulent fine-scale structure is motivated
by the example of transition in the round jet described in Chapter 11, Section
11.5, where the formation of a starting vortex was determined by the Reynolds-
number dependence of the phase portrait of particle paths. There the onset of a
starting vortex was defined by a single critical point that changed from a stable
node to a stable focus as the eigenvalues of the local vector field change from
real to complex with increasing Reynolds number. The nature of the eigenvalues
was determined by the sign of the discriminant D: real if D < 0, and complex
if D > 0. The logical generalization of this approach to turbulence is to simply
evaluate the gradient tensor everywhere at each instant in time.

Figure 13.6 shows three images of a plane mixing layer. The top image, pro-
vided mainly for reference, is a small segment of the high-Reynolds-number,
spatially developing flow studied by Brown and Roshko and shown in Figure
13.1. The bottom two images are taken from a direct numerical simulation of
a time-developing mixing layer computed by Moser and Rogers [13.7] at a
Reynolds number of 3000 based on the vorticity thickness and velocity differ-
ence across the layer. See Chen et al. [13.25]. The time-developing case enables
the numerics to be simplified by allowing the computation to be carried out in
a box with periodic boundary conditions. Crudely speaking, it is intended to
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(a)

(b)

(c)

u1

u2

Spatially
developing

Fig. 13.6. Several views of the plane mixing layer: (a) shadowgraph, (b) vorticity
magnitude, (c) dissipation of kinetic energy. (See color plate 1.)
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represent the mixing layer as seen by an observer that translates at the average
velocity of the upper and lower streams, although the analogy is not exact. The
two pictures illustrate the level of detail generated by the simulation. They also
illustrate some of the principles we have been discussing above. The middle
image shows contours of the vorticity magnitude, while the bottom one shows
the dissipation of kinetic energy. In both images these quantities are quite spiky,
with large localized peaks separated from one another by a relatively low-level
background. These pictures are consistent with the intermittent nature of the
fine scales described earlier.

Figure 13.7 from Reference [13.25] is completely different from the others.
At every point in the computational domain the invariants have been evaluated;
then each point is assigned a color depending on where the (Q, R) coordinates
of the point fall in Figure 13.8. The result is a figure that depicts the balance
between rotation and strain in the physical space of the flow. The result of this
process, applied on a computational grid, is an ensemble that can be analyzed
statistically. Typically, the total population of the ensemble is several million
samples, depending on the size of the computational grid. The invariants are
then cross-plotted in the form of joint probability density functions (pdfs). The

Fig. 13.7. Mixing-layer computation visualized in terms of local flow topology from
Reference [13.25]. Colors represent different local flow patterns: red, stable-node–
saddle–saddle; green, unstable-node–saddle–saddle; yellow, stable focus, stretching;
blue, unstable focus, compressing. See Figure 13.8. (See color plate 2.)
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Fig. 13.8. Local flow patterns defined by Q and R with P = 0 from [13.21]. Colors
refer to Figure 13.7.

velocity gradient field is independent of a nonuniformly translating observer (as
are the equations of motion) as long as the observer is not rotating. Therefore
this method enjoys the important property that structural features identified in
the pdf space of gradient tensor invariants are intrinsic to the flow and not the
result of a particular choice of the frame of reference used to view the flow.
It should be pointed out that this method is not the only way to look at the
geometry of flow structure, and an interesting alternative approach based on a
symmetric product of tensors is described in [13.23] and [13.24].

Thus the flow is broadly visualized in physical space and concisely visualized
in the space of gradient tensor invariants. The connection between the two
views is through the relationship between the invariants and local flow patterns
depicted in Figure 13.8, from Soria et al. [13.21].

With this background we can understand the probability density functions
(pdfs) in Figure 13.9, from Soria et al. [13.21]. These pdfs were generated from
data at one instant in time in the plane-mixing-layer simulation by Moser and
Rogers [13.7]. The flow geometry in the simulation is essentially the same as
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Fig. 13.9. Unnormalized probability density functions of the invariants: (a) velocity
gradient tensor Q versus R, (b) rate-of-strain tensor Qs versus Rs , (c) rate-of-strain and
rate-of-rotation tensors −Qs versus Qw . Contour levels represent the logarithm of the
number of samples.

that depicted in Figure 13.1, except as noted earlier the Reynolds number is
somewhat lower and the simulated mixing layer is developing in time rather than
space. This permits the flow to be treated as periodic in space, enabling the use
of highly accurate spectral methods that require periodic boundary conditions.
The pdfs in Figure 13.9 contain a great deal of information concerning the
geometry of the fine scales in that simulation. Points near the origin correspond
to low gradient values associated with the large-scale motions; points far away
characterize the high-gradient fine scales. In the present context we will focus
mainly on points distant from the origin. In fact, however, the vast majority of
samples pile up near the origin however, and the only way to bring out the fine
scales is to plot contours of the log of the sample population.

Several interesting features are identified by circled numbers in Figure 13.6,
Figure 13.7, and Figure 13.9:

• There is a general tendency for the (Q, R) pdf to develop a roughly elliptical
shape with the major axis of the ellipse aligned with the upper left and lower
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right quadrants. In fact, the shape is really more like an inclined teardrop with
a cusp lying along the R > 0, D = 0, branch as indicated by the ♥1 in Figure
13.9a. This tendency is seen particularly in the pdf of (Qs, Rs) in Figure 13.9b.
When we compare this pdf with Figure 13.8, we can see that the strongest
energy-dissipating motions in the flow have a saddle–saddle–unstable-node
geometry. This implies that, in a region of high dissipation, the eigenvalues
of the rate-of-strain tensor are ordered according to α > β > 0 > γ .

• Occasionally, depending on initial conditions and Reynolds number, a small
fraction of the data extend a considerable distance into the upper left quadrant,
where the local topology is stable focus stretching. See the ♥2 in Figure 13.9a.
For points far from the origin, the local vorticity dominates the rate of strain.
Moreover, points far from the origin are associated with very low rates of
kinetic energy dissipation, as seen in Figure 13.9c. This suggests that the
structure is likely to be quite long-lived. The presence or absence of these
kinds of structures is closely related to the regularity of the initial conditions.
Such structures are much less prominent in a flow with randomized initial
conditions.

• What is the vorticity field like at a point of high dissipation? This is indicated
by the ♥3 in Figure 13.9c. The indication is that points of high dissipation are
characterized by high levels of vorticity, Qw ∝−Qs, although there is a fairly
broad distribution about a 45◦ line in Figure 13.9c. Note that the converse is
not so. Points of high vorticity are not necessarily associated with high rates
of dissipation.

• At any point one can construct a locally orthogonal system of coordinates
from the eigenvectors of the rate-of-strain tensor. When the vorticity vector
is located relative to this system, one finds, in a region of high kinetic energy
dissipation, a strong tendency for the vorticity to be aligned with the direction
of the smaller of the two rate-of-strain eigenvalues (the β-direction).

13.6.1.2 A Simple Model of the Geometry of Turbulent Fine Scales

To begin to get an understanding of these results, it is instructive to look at
the solution of the restricted Euler version of (13.85) corresponding to the
homogeneous case, hi

j = 0. In this model, (13.85) becomes a set of quadratically
coupled, nonlinear ODEs for the nine components of the velocity gradient
tensor:

dai
j

dt
+ ai

kak
j − 1

3

(

am
n an

m

)

δi
j = 0. (13.94)
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Equation (13.94) is a matrix Ricatti equation. The equivalent system, setting
hi

j = 0 in (13.87), (13.89), and (13.90), is

d Q
dt

+ 3R = 0,

d R
dt

− 2
3

Q2 = 0, (13.95)

d2ai
j

dt2
+ 2

3
Q[t]ai

j = 0.

The equations for the invariants can be combined to give

3Q2
(

d Q
dt

+ 3R
)

+ 27
2

R
(

d R
dt

− 2
3

Q2
)

= d
dt

(

Q3 + 27
4

R2
)

= 0. (13.96)

The cubic discriminant (13.91) is conserved for all particles in this model.
With this integral of the motion known, the time evolution of the two invariants
can be determined. Note that all the nonlinearity is in the first two relations in
(13.95), which we solved exactly in terms of elliptic functions in Chapter 6,
Example 6.10. Once Q[t] is known, the individual components of ai

j can be
determined exactly by solving the linear second-order ODE in (13.95). The
full solution is presented in Reference [13.19]. Physically, Equation (13.94)
represents the “free” evolution of a fluid particle evolving in the absence of the
pressure and viscous stresses normally applied by neighboring fluid particles.

13.6.1.3 Asymptotic Behavior

For any initial condition, the solution of (13.94) evolves to

Ai
j = 21/3

τsingular − τ
K i

j τ < τsingular, (13.97)

where the velocity gradient is normalized by the value of the discriminant as
determined from the initial values of the invariants (Rintial, Qinitial):

Ai
j =

ai
j

D1/6
, (13.98)

and where K i
j satisfies the following matrix equation:

K i
k K k

j + 1
21/3

K i
j − 21/3δi

j = 0. (13.99)

This is not the first time we have seen a relation like (13.97). See Equation
(13.44), which describes the temporal decay of large eddies. The main and
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crucial difference is that, instead of decaying, (13.97) becomes singular in
finite time. Taking the trace of (13.99), then multiplying through by K j

l , and
taking the trace again leads to

(RK , QK ) =
(

1, −3/22/3). (13.100)

The invariants plus the relations (13.92) and (13.93) can be used to generate
relations for the asymptotic strain and rotation invariants,

RSK + 1
21/3

QSK + 1
2

= 0,

QSK + QW K = − 3
22/3

, (13.101)

RSK − 1
21/3

QW K = 1.

Note that QW K ≥ 0. All initial conditions on ai
j evolve to a particular strain and

rotation state characterized by (13.100) and (13.101).
This simple model has been applied to an ensemble of particles with ran-

dom initial values of the velocity gradient tensor by Cheng [13.26], and the
results are shown in Figure 13.10. The resulting pdfs of the evolved ensemble
in Figure 13.10 reproduce virtually all of the significant geometrical features
observed in direct numerical simulations and typified by the pdfs in Figure 13.9,
including the alignment of the vorticity vector with the principal strain direction
of the smaller of the two positive eigenvalues, β. The only feature that is not
reproduced by the model is the occasional occurrence of long-lived stretched
streamwise vortices indicated by the label ♥2 in Figure 13.6, Figure 13.7, and
Figure 13.9, although vortex stretching is a general feature of (13.94).

Just one small problem: the solution of (13.94) blows up! Luckily it is
easy to remove the singularity and to use this model to reproduce the time
decay of the gradients of the fine scales derived from energy considerations in
(13.48).

Additionally: (13.99) can be rearranged to read

(

24/3

3
K i

k + 1
3
δi

k

)(

24/3

3
K i

k + 1
3
δi

k

)

= δi
j . (13.102)

The matrix (24/3/3)K i
k + 1

3δi
k is its own inverse. Such matrices are called in-

volutory. There are an infinite number of such matrices. Indeed, any initial
condition on ai

j , when evolved to its asymptotic state through the solution of
(13.94), produces an involutory matrix.
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Fig. 13.10. Initially random pdfs of the velocity gradient tensor evolving according to
the restricted Euler equation (13.94).

13.6.1.4 Nonzero hi
j

Following [13.20], we can get a somewhat different view of the geometry of
the fine scales motivated by the form (13.97) of the asymptotic solution of
the restricted Euler problem. Now let hi

j ̸= 0. We hypothesize the existence
of an intermediate state in the evolution of a fluid particle. Assume that some
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time after a fluid element is set into motion by the flow, during which various
components of ai

j may change at different rates, the particle settles into a state
where

dai
j

dt
= ai

j f [t]. (13.103)

Under this model, the transport equation for the velocity gradient tensor be-
comes an algebraic relation between ai

j and hi
j ,

f ai
j + ai

kak
j − 1

3

(

am
n an

m

)

δi
j = hi

j . (13.104)

We have seen (13.104) before in Chapter 11, Section 11.6.3, where we con-
sidered the acceleration field in the neighborhood of critical points in the round
jet. See Equation (11.136). The similarity behavior of the jet gave f = −1, and
(13.104) was expressed in similarity coordinates. In fact, the model (13.103)
presumes that as the flow evolves, fluid particles tend to settle temporarily
into critical-point-like regions of the flow. The invariants of hi

j are formed by
squaring and cubing (13.104) and taking traces:

Qh = f 2 Q + 3 f R − 1
3 Q2,

Rh = f 3 R − f Q R − 2
3 f 2 Q2 − 2

27 Q3 − R2,
(13.105)

where

Qh = − 1
2 hi

j h
j
i , Rh = − 1

3 hi
khk

j h
j
i . (13.106)

The discriminants are related by

Q3
h + 27

4 R2
h =

(

Q3 + 27
4 R2

)

(R + f Q + f 3)2. (13.107)

Lines of constant Q3
h + 27

4 R2
h for f = −0.2 are shown in Figure 13.11. This

result is the generalization of the relationship between 3-D flow patterns and
elliptic curves discussed in Chapter 11 Section 11.6.

We can see that when hi
j ̸= 0, a new structure appears in the space of tensor

invariants. While in principle Q and R can range over the whole space, very
large values of Dh would be required to move outside the extremely steep-
sided surface depicted in Figure 13.11a. In effect this surface defines a region
of attraction in (Q, R) space. In general, the observations from direct numerical
simulations support the conclusion that very large values of Dh probably do not
occur. In this model, singular behavior is no longer a necessary property of the
solution as in the restricted Euler case.
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Fig. 13.11. Contours of constant Dh = Q3
h + 27

4 R2
h in (Q, R) coordinates. (a) See Equa-

tion (13.107); note the steepness of the surface near, D = 0, (b) Contours superimposed
on the data in Figure 13.9a. From [13.20].

Finally, it should be pointed out that these observations of the geometrical
properties of turbulent fine-scale structure are not restricted to plane mixing
layers. A wide variety of flows have been studied in this fashion [13.7], [13.25],
[13.26], including wall-bounded flows [13.27], [13.28]. The general features
of the fine scales are essentially the same as those discussed above except very
near the wall, where the turbulent fluctuations approach zero [13.28]. This is
consistent with Kolmogorov’s original assumption and the commonly accepted
notion that the behavior of kinetic-energy-dissipating motions is universal and
mostly independent of the large-scale structure except for the basic scaling laws
(13.46) and (13.47), which depend on the governing parameter M .

13.7 Concluding Remarks

A great deal of research effort has been spent trying to identify the far-field
asymptotic growth and decay rates of elementary free shear flows, including
mixing layers, wakes, and jets, and the data tend to have a lot of scatter. Although
there is considerable debate concerning whether asymptotic growth rates are
unique for a given flow, it is now well recognized that, over the range of scales
available in the laboratory, the growth rates of free shear flows are affected
by many factors. Mixing-layer growth rates are known to depend on whether
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the initial splitter-plate boundary layers are laminar or turbulent. Wakes are
strongly influenced by initial conditions related to boundary-layer transition,
both on the body that creates the wake, and in the separating free shear layers,
which feed vorticity of alternating sign into the wake, [13.4]. In addition, low-
level free-stream turbulence and acoustic waves can affect the development of
a turbulent flow, primarily through the interaction of such disturbances with the
initial development region of the flow.

When speaking about growth and decay laws for turbulent shear flows it is
important to distinguish between the rate constants, which are subject to all
the complexities just described, and the power laws that multiply those con-
stants. In geometrically simple flows, the latter can usually be derived by a
two-step procedure. The first step is to integrate the momentum over the vol-
ume of the flow, including all forces responsible for its creation. This leads to
the identification of a conserved quantity M , which governs global conserva-
tion of momentum. The second step is to invoke Reynolds-number invariance
and make use of the group (13.13). This assumes that the exponent is deter-
mined only by the global parameter of the motion, independent of the viscosity.
The many parameters that would be required to fully describe the flow are as-
sumed to have their effect only in the rate constants. While this is a reasonable
approximation to the available data, it is an open scientific question whether
this separation of effects is valid. At the present time we do not have an ad-
equate theoretical understanding of turbulent flow, and so we lack the analy-
tical tools to answer this question. Perhaps Lie theory will eventually show
the way.

13.8 Exercises

13.1 Show that a jet produced by a force that increases in proportion to the
fourth power of the time will produce a large eddy motion with length
scales that evolve in proportion to t3/2.

13.2 Determine the one-parameter dilation group that leaves invariant a
steady plane jet generated by flow from a narrow slit. The conserved
integral is

M =
∫ ∞

−∞
u2 dy. (13.108)

Compare the group invariance of the laminar and turbulent cases. Can
either or both be treated using a boundary-layer approximation? Work
out the momentum balance of the plane turbulent jet carefully, keeping
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both turbulent normal stress terms and pressure terms in the integral
(13.108). Based on the argument of Reynolds-number invariance, show
that the integral remains invariant under the same group. Do the same
for the vortex ring with integral invariant (13.17). See Chapter 11,
Exercise 11.2.

13.3 Consider the entrainment velocity ve induced by a plane turbulent jet as
shown in Figure 13.12. The area flux of the jet is Q =

∫

u dy, and the
entrainment velocity is ve = d Q/dx . How does each of these quantities
depend on x? How would you expect the volume flux and entrainment
velocity of an axisymmetric jet to depend on x?

J
ρ
---

ve

ve

xδ u0

Fig. 13.12.

13.4 Flow past a flat plate of length L is shown in Figure 13.13. Assume an
attached laminar Blasius boundary layer over the length of the plate.
Show that the drag per unit span of the plate is proportional to U 3/2

∞ L1/2.
How would you expect the turbulence intensity u′ to depend on U∞ and
L at a fixed point x in the far wake?

U ∞
x

L

∆U

u'

δ

Fig. 13.13.

13.5 Solve the turbulent counterpart of Exercise 13.4. Assume an attached
turbulent boundary layer over the length of the plate. The local skin
friction coefficient can be taken as C f = 0.06(U∞x/v)−1/5. How would
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you expect the turbulence intensity u′ to depend on U∞ and L at a fixed
point x in the far wake?

13.6 An axisymmetric buoyant jet is produced by a heated source of mo-
mentum. How would you expect the centerline velocity of the jet to
vary with distance from the source, in the near field (but away from the
source) where the momentum flux dominates the flow, and in the far
field where the buoyancy flux dominates?

13.7 Use a control-volume balance to show that the drag and lift of a 3-D
wing can be related to appropriate integrals in the downstream wake.
Assume the airfoil is in an infinite stream. (See Figure 13.14) suppose
a commercial aircraft flies straight and level overhead, leaving behind a
downward-drifting, turbulent trailing vortex pair such as that indicated
in the Trefftz plane a–a. The downward momentum of the vortex pair
exactly balances the lift on the aircraft. An optical measuring system
on the ground is designed to measure the magnitude of turbulent fluc-
tuations in the wake. How would you use such a system to measure
the weight of the aircraft? Estimate the downward drift speed Vd of
the vortex pair in terms of the aircraft weight, and then develop scal-
ing laws for the behavior of Vd in the far wake. How does the flow
Reynolds number vary with distance behind the aircraft? Show that the
wake eventually relaminarizes. Neglect all effects associated with the
stratification of the atmosphere. Suppose the relaminarization process
is to be studied in a long laboratory water channel, using a model that
is moved along the channel in a sled. For some reasonable initial wake
Reynolds number, say 10,000, how long would a laboratory observer
have to wait until the wake decayed to a Reynolds number of 100?

Lift
DragU ∞

a

a

a

a

V d

V d

Fig. 13.14.

13.8 Revisit the design of a vortex-ring apparatus. Choose the same param-
eters as used in Section 13.5.5, but with better instrumentation: let the
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resolvable Kolmogorov microscale now be reduced by a factor of ten,
so that Rλs = 2000, ηs = 5µm, and L j/d = 2. Determine the tank size
required.

13.9 Use dimensional analysis to estimate the drift speed of a vortex pair and
a vortex ring during the late stages of laminar decay. Estimate the drift
distance for the asymptotic state. Suppose the vortex-ring apparatus
designed in Section 13.5.5 is required to be long enough to permit the
ring to be observed all the way to its limiting drift distance. Using the
available data, estimate how long the tank should be. See References
[13.30], [13.31], [13.32], and [13.33].

13.10 An exact solution for an axisymmetric laminar line vortex is given by

u = (4ν)1/2t−1/2U [ξ, η],
(13.109)

v = (4ν)1/2t−1/2V [ξ, η],

where

U = −
(

.

8πν

)

η
(

1 − e−(ξ 2+η2)
)

ξ 2 + η2
, V =

(

.

8πν

)

ξ
(

1 − e−(ξ 2+η2)
)

ξ 2 + η2
,

(13.110)

and the similarity variables are

ξ = x
(4νt)1/2

, η = y
(4νt)1/2

. (13.111)

The constant . with units L2/T is the circulation of the vortex, and
the combination ./(8πν) can be thought of as a Reynolds number.
Consider the equations for unsteady particle paths,

dx
dt

= u[x, y, t],
dy
dt

= v[x, y, t]. (13.112)

Recast these equations in terms of similarity variables, and show that
they reduce to an autonomous system. Identify the critical point at the
origin. Sketch the phase portrait of particle paths, paying attention to
the flow at large distances from the origin as well as near the critical
point. Show that the second invariant at the critical point is related to
the Reynolds number by Q = .2/(8πν)2 + 1/4.

13.11 In a footnote to one of his most famous papers, J. M. Burgers [13.29]
wrote down an exact solution for a steady stretched vortex. In cylindrical
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coordinates,

ur = −Ur , uθ = u[r, t], uz = 2U z, (13.113)

where U is a constant and u(r, t) satisfies

ω = A.

2πν
e−Ar2/2ν = 1

r
∂(ru)
∂r

. (13.114)

The pressure is

p
ρ

=
∫

u2

r
dr − 1

2
U 2(r2 + 4z2). (13.115)

(1) How are U and A related?
(2) Define an appropriate Reynolds number for the flow.
(3) Work out the invariants of both ai

j and hi
j , and cross-plot the results

in the (Q, R) and (Qh, Rh) planes. Describe how the invariants
change as the Reynolds number is varied.

(4) Show that the dissipation of kinetic energy is independent of ν.
(5) Plot the equivalent of Figure 13.11a for this flow. Choose the ap-

propriate value of F.

13.12 Prove that any matrix that satisfies (13.99),

K i
k K k

j + 1
21/3

K i
j − 21/3δi

j = 0, (13.116)

when broken into a symmetric and antisymmetric part,

K i
j = Si

j + W i
j , (13.117)

has the property that the eigenvalues of Si
j are ordered so that α > β >

0 > γ and that the vorticity vector derived from W i
j is exactly aligned

with the principal rate-of-strain direction associated with the smaller of
the two positive rate-of-strain eigenvalues, β.

13.13 Use the package IntroToSymmetry.m to work out the Lie algebra
of the restricted Euler equation,

Dai
j

Dt
+ ai

kak
j − 1

3

(

am
n an

m

)

δi
j = 0, (13.118)
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where, ai
i = 0. Compare your result with the symmetries of the equiv-

alent system

d Q
dt

+ 3R = 0,

d R
dt

− 2
3

Q2 = 0, (13.119)

d2ai
j

dt2
+ 2

3
Q[t]ai

j = 0.

13.14 Use the package IntroToSymmetry.m to work out the Lie algebra
of the full velocity-gradient tensor transport equation

Dai
j

Dt
+ ai

kak
j − 1

3

(

am
n an

m

)

δi
j = hi

j , (13.120)

where ai
i = 0. Work the problem as an unclosed system. What are the

symmetries when hi
j is specified to be a symmetric tensor, as it would be

for the conventional Euler equations (i.e., viscous term zero, pressure
term nonzero)?

13.15 Consider turbulent parallel flow along a wall as shown in Figure 13.15.
All flow properties are independent of x . The equations of motion
reduce to

d
dy

(

ν
dU
dy

)

= 0, (13.121)

where ν is the kinematic viscosity and U is the mean streamwise veloc-
ity. If ν is required to be constant, then the only solution of the equation
is the linear profile U ∝ y. However, if ν is allowed to be a function of
y (i.e., ν is an effective eddy viscosity), then other profile shapes are
possible. Consider the latter case, and show that the equation is invari-
ant under a five-parameter group with three dilations and two transla-
tions (Oberlack [13.34]). Which choice of group parameters produces

y

x

U(y)

Fig. 13.15.
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the logarithmic profile, and what is the corresponding eddy-viscosity
profile?
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14
Lie–Bäcklund Transformations

Extended Lie groups, together with their transformations of derivatives up to
order p, are point transformations. They have a very particular hierarchical
structure in which the transformation of a point in the space of independent
and dependent variables (x, y) depends only on the coordinates of the point.
Thus at each level of extension, the differential function that carries out the
transformation of derivatives depends on derivatives up to and including but
not beyond the order of the derivative being transformed:

(x, y) ⇒ (x̃, ỹ),

(x, y, y1) ⇒ (x̃, ỹ, ỹ1),

(x, y, y1, y2) ⇒ (x̃, ỹ, ỹ1, ỹ2), (14.1)
...

(x, y, y1, y2, . . . , y p) ⇒ (x̃, ỹ, ỹ1, ỹ2, . . . , ỹ p).

Such transformations are closed diffeomorphisms in the Euclidean space of
differential variables (x, y, y1, y2, . . . , y p) with

q = n + m
p

∑

k=0

(n + k − 1)!
k!(n − 1)!

(14.2)

dimensions. They clearly enjoy the property that they can be used to transform
a differential equation without raising the order of the equation.

It is both possible and fruitful to consider more general transformations,
called Lie–Bäcklund groups [14.1], [14.2], where the one-parameter mapping

446
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of variables can depend on derivatives up to arbitrary order:

(x, y, y1, y2, . . .) ⇒ (x̃, ỹ, ỹ1, ỹ2, . . .). (14.3)

In this case, the extension to transformations of derivatives, up to say order p, in-
evitably produces expressions that contain derivatives of arbitrary order greater
than p. Lie–Bäcklund transformations are not closed in a space of finite dimen-
sion, and in Chapter 7 we introduced the space of differential functions, denoted
by A, to facilitate the treatment of such groups. In spite of the higher-order
derivatives generated by the procedure for constructing the extended group,
transformations of this type can be used to transform a differential equation
without raising the order of the equation.

I should point out that the name Lie–Bäcklund for these transformations is
not universally accepted. Anderson and Ibragimov [14.1] spend a good deal of
the early part of their book making a case for the name in the course of review-
ing the historical foundations of the field through the work of Lie, Bäcklund
and Bianchi. Olver [14.3] rejects “Lie–Bäcklund” altogether, preferring to use
the phrase “generalized symmetries,” and this is widely used in the litera-
ture. Bluman and Kumei [14.4] use the name Lie–Bäcklund but in agreement
with olver point out that neither Lie nor Bäcklund ever actually considered such
transformations. The first person to use transformations that depend on higher
order derivatives was probably Emmy Noether in her investigation of symme-
tries derived from a variational principle, but the term Noether symmetry is al-
ready used to describe a class of symmetries related to her discoveries. In the end
I found the arguements in Anderson and Ibragimov sufficiently convincing and
decided to use the term Lie–Bäcklund in this book and in my course. In addition
it is consistent with the terminology used by Ibragimov in the CRC series [14.5],
which I consider an essential desk reference for anyone working in the field.

14.1 Lie–Bäcklund Transformations – Infinite-Order Structure

Lie–Bäcklund groups are transformations that preserve infinite order contact
but are not necessarily simple extensions of Lie point symmetries [14.1]. To
develop the theory of Lie–Bäcklund groups, it is necessary to relax the require-
ment that the transformation be closed in the space (x, y, y1, . . . , y p). Consider
the transformation

T s :

{

x̃ j = F j [x, y, y1, y2, . . . , s], j = 1, . . . , n

ỹi = Gi [x, y, y1, y2, . . . , s], i = 1, . . . , m

}

. (14.4)
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The infinite-order extended transformation is

T s
∞:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

x̃ j = F j [x, y, y1, y2, . . . , s], j = 1, . . . , n

ỹi = Gi [x, y, y1, y2, . . . , s], i = 1, . . . , m

ỹi
j = Gi

{ j}[x, y, y1, y2, . . . , s]

ỹi
j1 j2 = Gi

{ j1 j2}[x, y, y1, y2, . . . , s]
...

ỹi
j1 j2... jp

= Gi
{ j1 j2... jp}[x, y, y1, y2, . . . , s]

...

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

, (14.5)

where the dots indicate continuation to arbitrary order. The number of indepen-
dent variables is a priori finite or infinite in the infinite-dimensional space of
differential variables z = (x, y, y1, y2, . . .). The transformation (14.4) is called
a Lie–Bäcklund transformation if it preserves the invariance of the infinite-
order system of contact conditions, that is, if the transformation (14.4) is such
that

d ỹi − ỹi
j1 dx̃ j1 = dyi − yi

j1 dx j1 = 0,

d ỹi
j1 − ỹi

j1 j2 dx̃ j2 = dyi
j1 − yi

j1 j2 dx j2 = 0,
(14.6)

d ỹi
j1 j2 − ỹi

j1 j2 j3 dx̃ j3 = dyi
j1 j2 − yi

j1 j2 j3 dx j3 = 0,

...

A transformation with this property can used to transform a differential equation
without raising the order, and therefore might be of great value in constructing
methods for solving the equation, since it would allow a given solution to be
transformed to a nontrivial, new solution. In some cases the transformation
itself could be used to originate a solution.

In Chapter 8, Section 8.1.2, we showed that a once extended point trans-
formation inherits the properties of a group and, by induction, the extended
transformation to all orders is a group. This came naturally from the fact that
the procedure for generating the extensions used the contact conditions, and
so the invariance of the contact conditions was automatically assured. In the
case of Lie–Bäcklund transformations, the invariance of the contact conditions
(14.6) is actually imposed on the infinitesimal form of the group, and this re-
stricts the kinds of transformations that are permissible. See Appendix 3 for
details. Preservation of the infinite-order contact conditions (14.6) ensures that
an extended Lie–Bäcklund transformation inherits the properties of a group;
and in particular, is a one-to-one invertible map in the space z.
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The extended group is generated using the total differentiation operator and
the contact conditions outlined in Chapter 7. The procedure is exactly the same
as that used for point groups in Chapters 8 and 9 and will not be repeated here.
For example, the transformation of first derivatives is

ỹi
j = Gi

{ j}[x, y, y1, y2, . . . , s], (14.7)

where

Gi
{ j}[x, y, y1, y2, . . . , s] = DβGi (D j Fβ)−1, (14.8)

and (D j Fβ)−1 denotes a matrix inverse. The total differentiation operator in
(14.8) reaches to infinite-order, Dβ = ∂/∂xβ + · · ·, i.e., to whatever order may
appear in (14.7). The transformation of the pth derivative is

Gi
{ j1 j2... jp}[x, y, y1, y2, . . . , s] = DβGi

{ j1 j2··· jp−1}(D jp Fβ)−1. (14.9)

This expression is identical to that for a point group except that the total dif-
ferentiation operator acts to whatever order may appear in the transformation
functions.

In view of all the high-order derivatives running around in the transformation
functions (14.9), it is not at all obvious that it can transform a differential equa-
tion without raising the order. Nevertheless, by enforcing higher-order deriva-
tives of the original equation on the invariance condition, such transformations
can be realized.

14.1.1 Infinitesimal Lie–Bäcklund Transformation

The infinitesimal form of the group (14.5) is

x̃ j = x j + sξ j [x, y, y1, y2, . . .], j = 1, . . . , n,

ỹi = yi + sηi [x, y, y1, y2, . . .], i = 1, . . . , m,
(14.10)

ỹi
j1 = yi

j1 + sηi
{ j1}[x, y, y1, y2, . . .],

...

The infinitesimals in (14.10) are formed in the usual way by differentiation with
respect to the group parameter:

ξ j [x, y, y1, y2, . . .] = ∂

∂s
F j [x, y, y1, y2, . . . , s]|s=0,

ηi [x, y, y1, y2, . . .] = ∂

∂s
Gi [x, y, y1, y2, . . . , s]|s=0.

(14.11)
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The Lie–Bäcklund operator is

X = ξ j ∂

∂x j
+ ηi ∂

∂yi
+ · · · . (14.12)

Applying the group operator to the contact conditions leads to the following
infinite system of invariance relations for the contact conditions

X̂
(

dyi − yi
j1 dx j1

)

= dηi − ηi
{ j1} dx j1 − yi

j1 dξ j1 = 0,

X̂
(

dyi
j1 − yi

j1 j2 dx j2
)

= dηi
j1 − ηi

{ j1 j2} dx j2 − yi
j1 j2 dξ j2 = 0,

(14.13)
X̂

(

dyi
j1 j2 − yi

j1 j2 j3 dx j3
)

= dηi
j1 j2 − ηi

{ j1 j2 j3} dx j3 − yi
j1 j2 j3 dξ j3 = 0,

...

(see Appendix 3 for details and for the definition of the operator X̂ , which is
enlarged to cover the prolonged space including the differentials that appear in
the contact conditions).

If we use the contact conditions to replace the differentials dyi , dyi
j , . . . to

all orders, the invariance conditions (14.13) become

X̂
(

dyi − yi
α dxα

)

=
(

D j1η
i − yi

α D j1ξ
α − ηi

{ j1}
)

dx j1 = 0,

X̂
(

dyi
j1 − yi

j1α dxα
)

=
(

D j2η
i
{ j1} − yi

j1α D j2ξ
α − ηi

{ j1 j2}
)

dx j2 = 0,

X̂
(

dyi
j1 j2 − yi

j1 j2α dxα
)

=
(

D j3η
i
{ j1 j2} − yi

j1 j2α D j3ξ
α − ηi

{ j1 j2 j3}
)

dx j3 = 0,

... (14.14)

The crucial difference between the infinite- and the finite-order case is that in
the infinite-order case, the dependence of the infinitesimals is not restricted to
order p; rather, the space is expanded naturally as the order of the transformed
derivative is increased, just as it was in the case of point groups. The contact
condition is satisfied a priori to all orders, and so the differentials dyi , dyi

j , . . .

are dependent on the dx j to all orders, i.e., only the dx j are independent
differentials. As a result there are no additional conditions that must be met,
which might severely restrict the possible dependence of the infinitesimals on
derivatives.

The theory of Lie–Bäcklund transformations is fundamentally a theory of
transformations in an infinite-dimensional space [14.2], and the appropriate
functional setting is the infinite-dimensional space of differential functions in-
troduced in Chapter 7. Appendix 3 provides full details of this point.

In order for the contact conditions to be invariant under the group, the expres-
sions in parentheses in (14.14) must be zero. In this manner (14.14) produces
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the conventional expressions for the infinitesimal transformations of partial
derivatives by Lie–Bäcklund groups:

ηi
{ j1} = D j1η

i − yi
α D j1ξ

α,

ηi
{ j1 j2} = D j2η

i
{ j1} − yi

j1α D j2ξ
α,

ηi
{ j1 j2 j3} = D j3η

i
{ j1 j2} − yi

j1 j2α D j3ξ
α,

...

(14.15)

We now use the characteristic functions

µi = ηi − yi
αξα,

µi
{ j1} = ηi

{ j1} − yi
j1αξα,

µi
{ j1 j2} = ηi

{ j1 j2} − yi
j1 j2αξα,

...

(14.16)

introduced in Chapter 9, Section 9.3. The infinitesimals (14.15) become

ηi
{ j1} = D j1µ

i + yi
j1αξα,

ηi
{ j1 j2} = D j2µ

i
{ j1} + yi

j1 j2αξα,

ηi
{ j1 j2 j3} = D j3µ

i
{ j1 j2} + yi

j1 j2 j3αξα,

...

(14.17)

This is a particularly convenient form for the infinitesimals, since

ηi
{ j1} = D j1µ

i + yi
j1αξα,

ηi
{ j1 j2} = D2

j1 j2µ
i + yi

j1 j2αξα,

...

ηi
{ j1 j2... jq } = Dq

j1 j2... jq µ
i + yi

j1 j2... jqαξα.

(14.18)

In the case where ξα = 0, (14.18) reduces to the simple form

ηi
{ j1} = D j1µ

i ,

ηi
{ j1 j2} = D2

j1 j2µ
i ,

ηi
{ j1 j2 j3} = D3

j1 j2 j3µ
i ,

...

(14.19)
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In Section 14.3 it will be shown that, without loss of generality, one can always
choose ξα = 0 as long as the transformation is permitted to depend on at least
first derivatives.

14.1.2 Reconstruction of the Finite Lie–Bäcklund Transformation

Usually all that is known about a Lie–Bäcklund transformation is the infinitesi-
mal form (14.10), and in many cases the finite form cannot be recovered without
great effort, if at all. This can be understood by looking at the formal Lie series
used to reconstruct the finite transformation,

x̃ j = x j + s X x + s2

2!
X (X x) + s3

3!
X (X (X x)) + · · · ,

ỹi = yi + s X y + s2

2!
X (X y) + s3

3!
X (X (X y)) + · · · , (14.20)

ỹi
j = yi

j + s X yi
j + s2

2!
X

(

X yi
j

)

+ s3

3!
X

(

X
(

X yi
j

))

+ · · · ,
...

where X is the infinite-order operator, X = ξ j (∂/∂x j ) + ηi (∂/∂yi ) + · · ·, and
the infinitesimals (ξ j [x, y, y1, y2, . . .], η

i [x, y, y1, y2, . . .]) depend on deriva-
tives of arbitrary order. In the practical application of Lie–Bäcklund groups, the
transformations of x and y are usually assumed to depend on derivatives up to
some finite order r , more or less arbitrarily chosen by the user. Therefore the
dependence of the infinitesimals is simplified to (ξ j [⟨z⟩], ηi [⟨z⟩]), where ⟨z⟩ is
any finite subsequence of z, namely ⟨z⟩ = (x, y, y1, y2, . . . yr ).

In general, each term in the Lie series (14.20) produces an expression in-
volving derivatives of increasingly high-order that may be impossible to sum.
Nevertheless, examples will be given shortly where the summation can be car-
ried out quite easily. Summing the Lie series (14.20) is equivalent to integrating
the characteristic equations

dx j

ξ j
= dyi

ηi
=

dyi
j1

ηi
{ j1}

=
dyi

j1 j2

ηi
{ j1 j2}

= · · · . (14.21)

This is an infinite-order autonomous system of the form

dx j

ds
= ξ j [⟨z⟩], dyi

ds
= ηi [⟨z⟩],

dyi
j1

ds
= ηi

{ j1}[⟨z⟩],
dyi

{ j1 j2}

ds
= ηi

{ j1 j2}[⟨z⟩], . . . .
(14.22)
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In principle the system (14.22) never closes, since the infinitesimals generate
ever higher derivatives at each order. In practice, however, the transformation
always arises in the context of a differential equation or system of differential
equations. Sometimes the equation and its differential consequences can be
used to eliminate all derivatives of order higher than r . Thus the system (14.22)
can become closed in ⟨z⟩ = x, y, y1, y2, . . . , yr on solutions of the equation,
and (14.20) becomes a formal power series in the finite vector ⟨z⟩. Nevertheless,
it is easy to find examples of differential equations where this happy scheme is
all but impossible to implement. The differential equation in question has to be
such that each of the required derivatives can be isolated to make the required
substitution. The integration process is then essentially the same as that for a
conventional Lie point group.

14.2 Lie Contact Transformations

Before we consider more general Lie–Bäcklund transformations, it is useful
to examine Lie contact groups, which are the simplest generalization beyond
point groups. Consider an infinitesimal transformation of the following form:

T s :

⎧

⎪

⎨

⎪

⎩

x̃ j = x j + sξ j [x, y, y1], j = 1, . . . , n

ỹ = y + sη[x, y, y1]

ỹ j = y j + sη{ j}[x, y, y1]

⎫

⎪

⎬

⎪

⎭

. (14.23)

Note that there is only one dependent variable. The form of this transformation
is suprising at first in view of our experience with extending point groups. The
fact that the transformations of x, y depend on first derivatives should imply
that the transformation of the first derivative depends on second derivatives
and so on for higher extensions, but (14.23) does not fit this expectation. By
assumption, the transformation of y j is assumed to depend only on [x, y, y1].

It is appropriate to ask whether transformation groups of this form can exist.
This is addressed by determining what, if any, requirements must be imposed
on (14.23) such that the contact conditions

d ỹ − ỹ j d x̃ j = dy − y j dx j = 0
(14.24)...

are preserved to all orders. When we dealt with Lie point transformations in
Chapter 5, the preservation of the contact condition was a natural consequence of
the differential procedure used to generate the extended group, and the extended
transformation automatically inherited the properties of a group. But when
dealing with Lie contact or Lie–Bäcklund transformations, the preservation of
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the contact conditions is a requirement that is imposed on the transformation
in order to ensure that the transformation inherits the properties of a group – to
ensure that it is a one-to-one invertible map.

It turns out that the transformation (14.23) preserves the invariance of the
contact condition (14.24) if and only if the infinitesimals of the group are of the
following form:

ξ j = − ∂ω

∂y j
, η = ω − yσ

∂ω

∂yσ

, η{ j} = ∂ω

∂x j
+ ∂ω

∂y
y j . (14.25)

See Appendix 3 for details of the derivation of (14.25). The transformation
(14.23) with infinitesimals (14.25) is called a Lie contact transformation. Note
that all three infinitesimals of the group are determined by a single generating
function, ω[x, y, y1]. Extensions of Lie contact groups to the transformations
of higher derivatives are derived using the same algorithm as for point groups.
As in the case of point groups, all higher-order contact conditions are invariant
under the extended group.

A Lie contact transformation is closed in the space (x, y, y1). Therefore such
a transformation enjoys the same property as a Lie point group, namely, it
can be used to transform a differential equation in the source space (x, y, y1)
to a new equation in the target space (x̃, ỹ, ỹ1) without raising the order of
the equation. This point is discussed in more detail in Appendix 3, where the
following theorem is proven.

Theorem 14.1. There do not exist any transformation groups that preserve
pth-order tangency and that are closed in the space (x, y, y1, . . . , y p), other
than extensions of Lie point transformations for m ≥ 1 and extensions of Lie
contact transformations for m = 1 (one dependent variable).

True contact symmetries exist only for equations involving one dependent
variable. For equations with more than one dependent variable the concept
of a contact or tangent transformation is replaced by that of a Lie–Bäcklund
transformation.

Example 14.1 (Reconstructing a finite Lie contact transformation from its
generating function). Find the finite Lie contact transformation with the
generating function

ω = −
(

1 + y2
x

)1/2
. (14.26)
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Using (14.25), the infinitesimals are

ξ j = yx
(

1 + y2
x

)1/2 , η = − 1
(

1 + y2
x

)1/2 , η{ j} = 0, (14.27)

and the group operator is

X = yx
(

1 + y2
x

)1/2

∂

∂x
− 1

(

1 + y2
x

)1/2

∂

∂y
+ (0)

∂

∂yx
. (14.28)

The Lie series (14.20) truncates to the Lie contact group in the form of a
translation in x and y depending on yx ,

x̃ = x + t yx
(

1 + y2
x

)1/2 , ỹ = y − s
(

1 + y2
x

)1/2 , ỹx̃ = yx , (14.29)

where s is the group parameter.

Example 14.2 (A Lie contact transformation and the corresponding generat-
ing function for a second-order PDE). Find a Lie contact transformation for
the equation

Uxx + aUxy + Uyy = 0. (14.30)

Running the packageIntroToSymmetry.mwith parametersxseon=1 and
r=1 leads to a large number of groups, including all of the point groups of the
equation. One of the contact groups found has the infinitesimals

ξ 1 = (−a215 + b114 + b120)Ux ,

ξ 2 = a215Uy,

η = b114U 2
x + b120U 2

y ,

(14.31)

where the superscripts label coefficients in the power series used to find the
infinitesimals (recall Chapter 9, Section 9.2.8). Now substitute these results
into (14.25). The middle relation in (14.25) gives

ω = η + Uσ

∂ω

∂Uσ

= b114U 2
x + b120U 2

y + (a215 − b114 − b120)U 2
x − a215U 2

y , (14.32)

and the generating function is

ω = (b120 − a215)
(

U 2
y − U 2

x

)

. (14.33)
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Let b120 − a215 = 1
2 , a215 = −1, b120 = − 1

2 , and b114 = 1
2 . The corresponding

group operator is

X = Ux
∂

∂x
− Uy

∂

∂y
+ 1

2

(

U 2
x − U 2

y

) ∂

∂U
+ (0)

∂

∂Ux
+ (0)

∂

∂Uy
. (14.34)

The finite transformation, generated from a truncated Lie series, is the
translation

x̃ = x + sUx ,

ỹ = y − sUy, (14.35)

Ũ = U + s
2

(

U 2
x − U 2

y

)

, Ũx̃ = Ux , Ũỹ = Uy .

Any solution U of (14.30) can be mapped to a new solution Ũ using (14.35).

Example 14.3 (The Legendre transformation). The contact transformation

x̃ i = ∂y
∂xi

, ỹ = −y + xi ∂y
∂xi

,
∂ ỹ
∂ x̃ i

= xi , (14.36)

called the Legendre transformation, can be used to map one ODE to another by
exchanging variables and derivatives. For example, the mapping

x̃ = yx ,

ỹ = −y + xyx ,

ỹx̃ = x,

ỹx̃ x̃ = 1
yxx

,

ỹx̃ x̃ x̃ = − yxxx

y3
xx

,

(14.37)

where the higher derivatives are generated using the usual extension formulas,
transforms the nonlinear third-order ODE

2ỹx̃ ỹx̃ x̃ x̃ − 3ỹ2
x̃ x̃ = 0 (14.38)

to the linear third-order equation

2xyxxx + 3yxx = 0. (14.39)
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Letting x = θ2 transforms (14.39) to yθθθ = 0, which integrates to the three-
parameter family of parabolae,

y = aθ2 + bθ + c. (14.40)

We encountered the Legendre transformation previously in Chapter 3, Section
3.4, where it was used to change variables in the Gibbs equation of thermody-
namics, and then later in Section 3.12, where it was used to transform from the
Lagrangian to the Hamiltonian formulation of classical dynamics.

14.2.1 Contact Transformations and the Hamilton–Jacobi Equation

Contact transformations come up commonly in applications in classical dy-
namics. Consider the time-independent Hamilton–Jacobi equation,

H
[

q1, . . . , qn,
∂S
∂qi

, . . . ,
∂S
∂qn

]

= E, (14.41)

with constant total energy E . We studied the solution of first-order nonlinear
PDEs like (14.41) back in Chapter 3, Section 3.8.1. The Lie contact operator
with infinitesimals (14.25) applied to (14.41) leads to

(14.42)

If ω is independent of S, (14.42) becomes the Poisson bracket of ω with H ,

{H, ω} = ∂ω

∂q j

∂ H
∂Sj

− ∂ω

∂Sj

∂ H
∂q j

= 0. (14.43)

Therefore the generating function ω is an integral of the motion for the Hamil-
tonian system

dqi

dt
= ∂ H

∂Si
,

d Si

dt
= −∂ H

∂qi
. (14.44)

See Chapter 3, Section 3.12.1. Thus searching for all Lie contact symmetries
of the system (14.44) is equivalent to searching for all integrals of the motion.

14.3 Equivalence Classes of Transformations

The generalization to Lie–Bäcklund transformations permitting the infinitesi-
mals (ξ i , η j ) to depend on derivatives leads to a very useful simplification of
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the infinitesimal form of a group. Consider the Lie point group

T s :

{

x̃ j = x j + sξ j [x, y], j = 1, . . . , n

ỹi = yi + sηi [x, y], i = 1, . . . , m

}

(14.45)

applied without loss of generality to functions of the form

)i [x, y] = yi − *i [x] = 0. (14.46)

The action of (14.45) on (14.46) is given by the Lie series

)̃i [x̃, ỹ] = )i [x, y] + s(X)i ) + s2

2!
X (X)i )) + s3

3!
X (X (X)i )) + · · · ,

(14.47)

where

X = ξ j ∂

∂x j
+ ηi ∂

∂yi
+ · · · . (14.48)

Operating on (14.46) with (14.48) produces

X)i = ηi − ∂*i

∂x j
ξ j = ηi − yi

jξ
j . (14.49)

Equation (14.49) shows that the Lie point transformation (14.45) operating on
(14.46) is equivalent to the Lie–Bäcklund transformation

x̃ j = x j , j = 1, . . . , n,

ỹi = yi + s
(

ηi [x, y] − yi
jξ

j [x, y]
)

, i = 1, . . . , m,
(14.50)

operating on (14.46). Both transformations generate the same Lie series for )i .
Therefore, with full generality and recalling (14.16), we can let the infinitesimal
transformation (14.45) have the equivalent form

x̃ j = x j , j = 1, . . . , n,

ỹi = yi + sµi [x, y, y1], i = 1, . . . , m,
(14.51)

where the Lie–Bäcklund infinitesimal is the characteristic function

µi [x, y, y1] = ηi [x, y] − yi
jξ

j [x, y]. (14.52)

In other words, by generalizing the infinitesimals to allow dependence on at
least first derivatives, we need only consider transformations that act on the
dependent variables while the independent variables are left unchanged.



14.3 Equivalence Classes of Transformations 459

14.3.1 Every Lie Point Operator Has an Equivalent
Lie–Bäcklund Operator

For example, the operator of the Lie point dilation group is

Xdil = x
∂

∂x
− 2y

∂

∂y
. (14.53)

This is equivalent to the Lie–Bäcklund operator

U dil = (−2y − xyx )
∂

∂y
. (14.54)

Any decomposition of µi into ξ j and η j yields an equivalent transformation.
For example, the Lie–Bäcklund group

U dil = 2y
yx

∂

∂x
− xyx

∂

∂y
(14.55)

is also equivalent to (14.54). In fact, for every Lie infinitesimal point generator
there are an infinite number of Lie–Bäcklund infinitesimal generators that are
equivalent to it.

14.3.2 Equivalence of Lie–Bäcklund Transformations

Consider the following two Lie–Bäcklund transformations:

x̃ j = x j + sξ j [x, y, y1, y2, . . . , yr ],

ỹi = yi + sηi [x, y, y1, y2, . . . , yr ],
...

(14.56)

and

x̃ j = x j ,

ỹi = yi + s(ηi [x, y, y1, y2, . . . , yr ] − yi
βξβ[x, y, y1, y2, . . . , yr ]),

...

(14.57)

The choice of the order of derivative, r , that appears in the transformation is
arbitrary and is a decision made by the user prior to addressing the question
of invariance of a given differential equation. The conventional Lie–Bäcklund
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operator corresponding to (14.56) is

X = ξ j ∂

∂x j
+ ηi ∂

∂yi
+

(

D j1η
i − yi

β D j1ξ
β
) ∂

∂yi
j1

+
(

D j2

(

D j1η
i − yi

β D j1ξ
β
)

− yi
j1β D j2ξ

β
) ∂

∂yi
j1 j2

+ · · · , (14.58)

and the Lie–Bäcklund operator corresponding to (14.57) is

U = ηi ∂

∂yi
+

(

D j1η
i − yi

β D j1ξ
β − ξβ yi

j1β

) ∂

∂yi
j1

+
(

D j2

(

D j1η
i − yi

β D j1ξ
β
)

− yi
j1β D j2ξ

β − ξβ yi
j1 j2β

) ∂

∂yi
j1 j2

+ · · · .

(14.59)

Generally we will use the symbol U to denote the operator of a Lie–Bäcklund
transformation, although when it comes to the application of the theory to a
particular problem there is really no pressing need to make such a distinction;
one simply has the option of setting the ξ j to zero if one wishes, as long as at
least first derivatives are included in the transformation.

The difference between the two operators (14.58) and (14.59) is a Lie–
Bäcklund operator of a particularly simple form:

X − U = ξβ ∂

∂xβ
+ ξβ yi

j1β
∂

∂yi
j1

+ ξβ yi
j1 j2β

∂

∂yi
j1 j2

+ · · · = ξβ Dβ . (14.60)

Any differential function

+ i [x, y, y1, y2, . . . , y p] = 0 (14.61)

will admit the Lie–Bäcklund operator

U 0 = ξβ Dβ, (14.62)

since all derivatives of the equations are zero (Dβ+ i = 0). Thus, for arbitrary
functions ξβ ,

U 0+ i = ξβ Dβ(+ i ) = 0. (14.63)

The implication of this result is that, if (14.61) is invariant under the operator
(14.58), then it must also be invariant under the operator (14.59), and vice versa.
The two operators are considered equivalent.
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14.3.3 Equivalence of Lie–Bäcklund and Lie Contact Operators

The infinitesimal form of a Lie contact transformation is

x̃ j = x j + sξ j [x, y, y1] = x j + s
(

− ∂ω

∂y j

)

,

ỹ = y + sη[x, y, y1] = y + s
(

ω − yσ

∂ω

∂yσ

)

,

ỹ j = y j + sη{ j}[x, y, y1] = y j + s
(

∂ω

∂x j
+ ∂ω

∂y
y j

)

,

(14.64)

where we have used (14.25). Note that the infinitesimal transformation of the
derivative is

η{ j} = D jω + y jαξα = ∂ω

∂x j
+ ∂ω

∂y
y j . (14.65)

According to the results of Section 14.3.2, the equivalence form of (14.64) is

x̃ j = x j ,

ỹ = y + s(η − yσ ξσ ) = y + sω, (14.66)

ỹ j = y j + s D j (η − yσ ξσ ) = y j + s D jω,

and so the generating function ω of a Lie contact transformation is just the
characteristic function µ of an equivalent Lie–Bäcklund transformation.

14.3.4 The Extended Infinitesimal Lie–Bäcklund Group

Using the equivalence relations established above, we can, without loss of
generality, restrict our attention to Lie–Bäcklund groups of the form

x̃ j = x j , j = 1, . . . , n,

ỹi = yi + sµi [x, y, y1, y2, . . . , yr ], i = 1, . . . , m,

ỹi
j1 = yi

j1 + sµi
{ j1}[x, y, y1, y2, . . . , yr , yr+1],

ỹi
j1 j2 = yi

j1 j2 + sµi
{ j1 j2}[x, y, y1, y2, . . . , yr , yr+1, yr+2],

...

ỹi
j1... jp

= yi
j1... jp

+ sµi
{ j1... jp}[x, y, y1, y2, . . . , yr+p],

...

(14.67)
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The extensions are

µi
{ j1} = D j1µ

i ,

µi
{ j1 j2} = D j2µ

i
{ j1} = D2

j1 j2µ
i ,

...

µi
{ j1... jp} = D p

j1... jp
µi ,

...

(14.68)

The relations (14.67) and (14.68) provide the machinery for searching for
Lie–Bäcklund symmetries in systems of differential equations.

14.3.5 Proper Lie–Bäcklund Transformations

The Lie–Bäcklund operator

U = µi [x, y, y1]
∂

∂yi
(14.69)

is equivalent to the operator of a point transformation if

∂2µi

∂yk
j ∂yr

s

= 0 (14.70)

for all i, j, k, r, s. This follows from the form of the equivalent transformation,
µi = η[x, y] − ξ j [x, y]yi

j , which is linear in the yi
j .

Definition 14.1. A proper Lie–Bäcklund transformation is defined as one that
is not equivalent to a point transformation.

Typically quadratic or higher-order products of derivatives of the yi appear
in the infinitesimals µi [x, y, y1] of a proper Lie–Bäcklund transformation.

14.3.6 Lie Series Expansion of Differential Functions
and the Invariance Condition

The algorithm for finding the unknown infinitesimals µi is similar to that for
point transformations. The main complication in working with Lie–Bäcklund
groups is that derivatives up to order r + p appear in the group operator. This
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means that, in order to solve the determining equations, it is necessary to apply
to the invariance condition the higher-order differential consequences of the
system + i = 0. That is, we require that the system

+ i = 0, D j2+
i = 0, D2

j1 j2+
i = 0, D3

j1 j2 j3+
i = 0, . . . (14.71)

up to arbitrary order be invariant under the group. The indices refer to differen-
tiation with respect to any and all of the independent variables.

We can now state the condition for invariance of such a system as follows.

Theorem 14.2. Let

+ i [x, y, y1, y2, . . . , y p] = 0, i = 1, . . . , m, (14.72)

be a system of pth-order differential functions. It may be a system of ODEs or
PDEs. The Lie–Bäcklund group assumed to depend on derivatives up to order
r is

x̃ j = x j + sξ j [x, y, y1, y2, . . . , yr ], j = 1, . . . , n,

ỹi = yi + sηi [x, y, y1, y2, . . . , yr ], i = 1, . . . , m,
...

(14.73)

The equivalent group is

x̃ j = x j , j = 1, . . . , n,

ỹi = yi + µi [x, y, y1, y2, . . . , yr ]s, i = 1, . . . , m,
...

(14.74)

where µi = ηi − yi
αξα and the extensions are given by (14.68).

Transform the system (14.72) using (14.74) and expand the result in a Lie
series. The series is

+̇ i [x̃, ỹ, ỹ1, ỹ2, . . . , ỹ p]

= + i [x, y, y1, y2, . . . , y p] + sU+ i + s2

2
U (U+ i ) + · · · , (14.75)

where U is the Lie–Bäcklund operator

U = µi ∂

∂yi
+ µi

{ j1}
∂

∂yi
j1

+ µi
{ j1 j2}

∂

∂yi
j1 j2

+ · · · + µi
{ j1... jp}

∂

∂yi
j1... jp

+ · · · ,

(14.76)
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The system + i is invariant under the equivalent group with operator U . . . ,
if and only if

U+ i = 0, i = 1, . . . , m. (14.77)

With ξ j = 0 the group extensions simply involve successive total differen-
tiation of µi . It follows from (14.77) and the identity

D j (U ) − U (D j ) = (D jξ
α)Dα (14.78)

that the higher-order differential system (14.71) is invariant under the group
(14.74), since

U
(

D j1+
i) = 0, U

(

D2
j1 j2+

i) = 0, U
(

D3
j1 j2 j3+

i) = 0, . . . , (14.79)

where the indices take on all possible values. The invariance condition (14.77)
is used to generate the determining equations, which are then solved for the
unknown infinitesimals µi that leave the system (14.72) invariant. The process
is similar to that used to determine the infinitesimals in the case of point groups.
But remember that the infinitesimals being sought are assumed to depend on
x, y, and derivatives up to order r . When the order of derivatives in the transfor-
mation is specified, the derivatives are automatically divided into dependent
and independent classes. The distinction between dependent and independent
derivatives must be carefully adhered to when the invariance condition (14.77)
is parsed into the determining equations.

Typically, the search for Lie–Bäcklund symmetries of a given system of
equations involves a process of trial and error with different choices of r . This
is the reason why relatively little is known about the Lie–Bäcklund structure of
the various equations of mathematical physics. For a general nonlinear system
there is no systematic way of knowing what order will lead to a new symmetry,
and the determining equations for the unknown µi derived from (14.77) and
(14.71) become extremely complex as the order is increased.

14.4 Applications of Lie–Bäcklund Transformations

Several examples will be presented now to give a sense of how these transfor-
mations work.

Example 14.4 (Equivalence transformation – translation group). Consider
the finite Lie point translation

x̃ = x − s,
ỹ = y

(14.80)



14.4 Applications of Lie–Bäcklund Transformations 465

with infinitesimals ξ = −1 and η = 0. The equivalent extended Lie–Bäcklund
transformation with µ = η − ξ yx is

x̃ = x,

ỹ = y + syx ,

ỹx̃ = yx + syxx ,

ỹx̃ x̃ = yxx + syxxx ,

ỹx̃ x̃ x̃ = yxxx + syxxxx ,
...

(14.81)

The finite transformation of y is determined by summing the Lie series for y.
The Lie–Bäcklund operator is

U = yx
∂

∂y
+ yxx

∂

∂yx
+ yxxx

∂

∂yxx
+ · · · + y(p+1)x

∂

∂ypx
+ · · · . (14.82)

Various terms in the Lie series for y are

U y = yx , U (U y) = yxx , U (U (U y)) = yxxx , . . . , (14.83)

and the series is

ỹ = y + s
1!

yx + s2

2!
yxx + s3

3!
yxxx + · · · =

∞
∑

k=0

sk

k!
dk y
dxk

. (14.84)

This is simply the Taylor series for a function with a translated arguement. The
series is easily summed, and the finite Lie–Bäcklund transformation equivalent
to (14.80) is

x̃ = x,

ỹ = y[x + s].
(14.85)

The point form (14.80) can be recovered by simply defining z = x + s, whereby
(14.85) becomes

x̃ = z − s,

ỹ = y[z].
(14.86)

This simple example nicely illustrates the interchangeability of point and
first-order Lie–Bäcklund groups. It also illustrates the inherently infinite nature
of the Lie–Bäcklund operator (14.82). Note that, as it stands, the extended trans-
formation (14.81) is not closed in any finite-dimensional space of differential
functions. Yet, there is no difficulty at all in summing the Lie series to recover
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the finite group. The point is that the ability to sum the Lie–Bäcklund series is
not contingent on the transformation existing in a closed space.

Example 14.5 (Equivalence transformation – dilation group). Now consider
the finite Lie point dilation group

x̃ = es x,

ỹ = es y.
(14.87)

An equivalent finite Lie–Bäcklund group is

x̃ = x,

ỹ = es y[e−s x].
(14.88)

If we expand (14.88) for small s, the result is the infinitesimal Lie–Bäcklund
transformation

x̃ = x,

ỹ = y[x] + s
(

y[x] − x
dy[x]

dx

)

.
(14.89)

Note that in both Examples 14.4 and 14.5, where there is an equivalent
point transformation, the finite Lie–Bäcklund transformation does not depend
on derivatives, whereas the infinitesimal form depends linearly on the first
derivative.

14.4.1 Third-Order ODE Governing a Family of Parabolas

This is the equation

yxxx = 0 (14.90)

and is simple enough so that we can work out its complete Lie–Bäcklund struc-
ture in detail and examine further how these transformations work. The Lie–
Bäcklund series can be summed to see how the finite form of the transformation
can be used to generate solutions of the equation.

First let’s work out the point group (ξ [x, y], η[x, y]). We are dealing with a
differential function of the form ψ = +[x, y, yx , yxx , yxxx ], and the invariance
condition in this case reduces to a single term,

X+ = η{3} = 0, (14.91)
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which fully written out is

η{3} = ηxxx + (3ηxxy − ξxxx )yx + (3ηxyy − 3ξxxy)y2
x

+ (ηyyy − 3ξxyy)y3
x − ξyyy y4

x + (3ηxy − 3ξxx )yxx

+ (3ηyy − 9ξxy)yx yxx − (6ξyy)y2
x yxx − (3ξy)y2

xx

+ (ηy − 3ξx )yxxx − (4ξy)yx yxxx = 0. (14.92)

Using yxxx = 0 in the invariance condition and equating the remaining coeffi-
cients to zero leads to the determining equations of the group,

ηxxx = 0, 3ηxxy − ξxxx = 0, 3ηxyy − 3ξxxy = 0,

ηyyy − 3ξxyy = 0, ξyyy = 0, 3ηxy − 3ξxx = 0, (14.93)

3ηyy − 9ξxy = 0, 6ξyy = 0, 3ηy = 0

with the solution

ξ = a5 + a6x + a7(x)2,

η = a1 + a2x + a3(x)2 + a4 y + a7(2xy).
(14.94)

Equation (14.90) is invariant under a seven-parameter projective point group.
Note that the group itself actually generates the solution of the equation as

follows. If we select a5 = a6 = a7 = 0 and a4 = −1, the group operator
becomes

X = (a1 + a2x + a3(x)2 − y)
∂

∂y
. (14.95)

A function y(x) will automatically satisfy the invariance condition X y = 0 if

y = a1 + a2x + a3(x)2. (14.96)

It is obvious that substituting this function into the equation puts no restriction
on the parameters, and so the function as it stands is a solution; in fact, it is the
general solution of the equation.

Now let’s work out the first-order Lie–Bäcklund transformation that leaves
yxxx = 0 invariant. The invariance condition is

µ{3} = 0. (14.97)

Let the Lie–Bäcklund transformation depend on the first derivative; i.e., choose
r = 1:

x̃ = x,

ỹ = y + sµ[x, y, yx ].
(14.98)
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The first extension is

µ{1} = Dµ = µx + yxµy + yxxµyx . (14.99)

The second extension is

µ{2} = Dµ{1} =
(

µxx + 2yxµxy + y2
x µyy + 2yxηyyx

)

+ yxx
(

2µxyx + µy
)

+ y2
xx

(

µyx yx

)

+ yxxx
(

µyx

)

, (14.100)

and the third extension is

µ{3} = Dµ{2} =
(

µxxx + 3yxµxxy + 3y2
x µxyy + y3

x µyyy
)

+ yxx
(

3µxxyx + 6yxµxyyx + 3µxy + 3yxµyy
)

+ y2
xx

(

3µxyx yx + 3µyyx + 3yxµyyx yx

)

+ y3
xx

(

µyx yx yx

)

+ yxxx
(

3yxµyyx + µy
)

+ yxx yxxx
(

3µyx yx

)

+ yxxxx (µyx ).

(14.101)

The equation and its differential consequences

yxxx = 0, yxxxx = 0 (14.102)

are applied to the invariance condition (14.91), and the remaining terms are
gathered together. The result is the determining equations of the Lie–Bäcklund
group,

µxxx + 3yxµxxy + 3y2
x µxyy + y3

x µyyy = 0,

3µxxyx + 6yxµxyyx + 3µxy + 3yxµyy = 0,

3µxyx yx + 3µyyx + 3yxµyyx yx = 0,

µyx yx yx = 0.

(14.103)

The unknown infinitesimal turns out to be

µ[x, y, yx ] = a1 + a2x + a3(x)2 + a4 y + a5(yx ) + a6(xyx )

+ a7(2xy − x2 yx
)

+ a8(4y2 − 4xyyx + x2 y2
x

)

+ a9(xy2
x − 2yyx

)

+ a10(y2
x

)

. (14.104)

Several points should be noted:

• In the process of generating the Lie–Bäcklund group, the point groups de-
termined in (14.94) are recovered as equivalent transformations. These cor-
respond to the parameters a1 through a7. The parameters a8 through a10

represent new proper Lie–Bäcklund symmetries, as evidenced by the depen-
dence of these symmetries on y2

x .
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• Occasionally the equation and its higher-order differential consequences can
be used to eliminate higher-order derivatives that appear in the extended trans-
formation and thus achieve closure of the transformation on solutions of the
equation. The Lie–Bäcklund transformation in this example, in conjunction
with the equation, is closed in the space (x, y, yx , yxx , yxxx ). Since µ{3} = 0,
the extended transformation is

x̃ = x,

ỹ = y + sµ[x, y, yx ],

ỹx̃ = yx + sµ{1}[x, y, yx , yxx ],

ỹx̃ x̃ = yxx + sµ{2}[x, y, yx , yxx , yxxx ],

ỹx̃ x̃ x̃ = yxxx ,

ỹx̃ x̃ x̃ x̃ = yxxxx ,
...

(14.105)

• We could continue to generate Lie–Bäcklund transformations dependent on
higher-order derivatives. For a general equation, however, there is no way to
predict the outcome of this process. More often than not, no new symmetries
are found beyond the point and first-order symmetries. In the case of a linear
equation and certain nonlinear equations a systematic procedure for generat-
ing higher-order transformations can be developed using recursion operators.
These will be discussed in the next section.

What good is a Lie–Bäcklund transformation? For one thing, it can be used
to generate new solutions of the equation in two somewhat distinct ways. This
can be seen as follows. Let y[x] be a function that satisfies the invariance
condition (14.91). Such a function can be constructed from the infinitesimal
itself. Consider the group corresponding to a9. The invariance condition applied
to y, X9 y = 0, leads to a first-order ODE for y[x],

(

xy2
x − 2yyx

) ∂

∂y
(y) = xy2

x − 2yyx = 0, (14.106)

with the solution

ψ = y/x2. (14.107)

This is a special case of the general solution (14.96). The groups a7 and a8

generate the same solution, while the groups a1, a2, a3, a4 reduce to the general
solution described earlier, (14.96).
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Secondly, if the Lie series can be summed, the finite Lie–Bäcklund transfor-
mation can be generated from the infinitesimal to produce ỹ = G[x, y, yx ]. In
this case, quite complex solutions can be generated from simple ones.

This is a particularly simple example where the Lie series can be summed
quite easily. Consider the Lie–Bäcklund operator with parameter a7. The
extended transformation, with yxxx = 0 imposed, is

x̃ = x,

ỹ = y + s(2xy − x2 yx ),

ỹx̃ = yx + s(2y − x2 yxx ),

ỹx̃ x̃ = yxx + s(2yx − 2xyxx ),

ỹx̃ x̃ x̃ = yxxx ,
...

(14.108)

and is clearly closed in the space (x, y, yx , yxx , yxxx ). Because all higher-order
extensions are zero, the Lie–Bäcklund operator truncates in this particular
case to

U = (2xy − x2 yx )
∂

∂y
+ (2y − x2 yxx )

∂

∂yx
+ (2yx − 2xyxx )

∂

∂yxx
. (14.109)

The various terms in the Lie series for y are as follows:

U y = 2xy − x2 yx ,

U (U y) = 2x2 y − 2x3 yx + x4 yxx , (14.110)

U (U (U y)) = 0.

The series truncates to the finite one-parameter transformation

ỹ = y + s(2xy − x2 yx ) + s2

2!
(2x2 y − 2x3 yx + x4 yxx ), (14.111)

where s is not necessarily small and can be regarded as an arbitrary constant.
The corresponding transformations of the first and second derivatives are as
follows:

ỹx̃ = yx + s(2y − x2 yxx ) + s2

2!
(4xy − 4x2 yx + 2x3 yxx ),

ỹx̃ x̃ = yxx + s(2yx − 2xyxx ) + s2

2!
(4y − 4xyx + 2x2 yxx ).

(14.112)
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The transformations (14.111) and (14.112) completely define (along with
x̃ = x) the finite Lie–Bäcklund invariance of the equation yxxx = 0 under the
group a7. Note that, in contrast to Examples 14.4 and 14.5, this symmetry is not
equivalent to a point symmetry, and that the finite form of the transformation
depends explicitly on derivatives.

The transformation (14.111) takes a given solution y and transforms it to a
new solution ỹ. Let’s rearrange the transformation as follows:

ỹ = (1 + 2sx + s2x2)y − (sx2 + s2x3)yx +
( 1

2 s2x4
)

yxx . (14.113)

If we apply (14.113) successively to a seed solution y = constant, we get the
following sequence of solutions:

y = C,

ỹ = C(1 + sx)2,

˜̃y = C(1 + 2sx)2,

˜̃̃y = C(1 + 3sx)2,
...

(14.114)

This is an especially simple example where all aspects of the theory can be
carried out in a transparent way for a particular group. The solutions (14.114)
are fairly trivial and less general than the exact solution (14.96); however, they
illustrate the point that transformations can generate solutions.

14.4.2 The Blasius Equation yxxx + yyxx == 0

The invariance condition for the point group of this equation is

ηyxx + η{2}y + η{3} = 0. (14.115)

The point group of the Blasius equation was worked out in Chapter 8. Letting

x̃ = x + sξ [x, y],

ỹ = y + sη[x, y]
(14.116)

and solving the invariance condition leads to the infinitesimals

ξ = a + bx, η = −by. (14.117)

Now let’s work out the first-order Lie–Bäcklund group. Since the equa-
tion does not depend explicitly on x , the invariance condition has the same
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form as (14.115):

µyxx + µ{2}y + µ{3} = 0. (14.118)

Let the transformation depend on the first derivative:

x̃ = x,

ỹ = y + sµ[x, y, yx ].
(14.119)

One expands the invariance condition and uses the differential consequences of
the equation to replace higher-order derivatives:

yxxx = −yyxx , yxxxx = −yx yxx + y2 yxx . (14.120)

Solving the determining equations leads to

ξ = 0, η = ayx + b(y + xyx ). (14.121)

This result is just the two-parameter group of Lie–Bäcklund transformations,
which is equivalent to the point group of the Blasius equation. In this case no
new symmetries are found. Nevertheless, this form of the point group can be
used to generate an invariant solution of the Blasius equation as follows:

η
∂

∂y
(y) = 0 ⇒ y + xyx = 0 ⇒ ψ = (x + C)y. (14.122)

Where the group (14.121) is used with a = 0. If we substitute (14.122) into the
Blasius equation to evaluate ψ , the result is the exact solution

y = 3
x + C

. (14.123)

We have seen this solution before in Chapter 10, Section 10.3.2, where the
phase portrait of the Blasius equation was discussed. The solution (14.123)
corresponds to the invariant solution at the spiral-node critical point in Figure
10.2 at position (γ , H ) = (− 1

3 , − 2
3 ).

Let’s repeat the process, and this time allow the infinitesimal to depend on
the second derivative:

x̃ = x,

ỹ = y + sµ[x, y, yx , yxx ].
(14.124)
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Now the invariance condition is

yxxµ[x, y, yx , yxx ] + yµ{2}[x, y, yx , yxx , yxxx , yxxxx ]

+ µ{3}[x, y, yx , yxx , yxxx , yxxxx , yxxxxx ] = 0, (14.125)

where the dependences on derivatives up to order r + p = 5 are shown. The
Blasius equation and its differential consequences are as follows:

yxxx = −yyxx ,

yxxxx = −yx yxx + y2 yxx , (14.126)

yxxxxx = −y2
xx + 3yyx yxx − y3 yxx .

Using (14.126), no y-derivative of greater than second order will appear in
the invariance condition, and the extended group is closed in the space
(x, y, yx , yxx ):

x̃ = x,

ỹ = y + sµ[x, y, yx , yxx ],
(14.127)

ỹx̃ = yx + sµ{1}[x, y, yx , yxx , −yyxx ],

ỹx̃ x̃ = yxx + sµ{2}[x, y, yx , yxx , −yyxx , −yx yxx + y2 yxx ].

In principle the infinitesimal transformation (14.127) could be used in a Lie
series to generate the finite form of the transformation:

x̃ = x,

ỹ = G[x, y, yx , yxx , s].
(14.128)

Such a transformation, if it could be found, would be extremely interesting,
because it could be used to generate nontrivial solutions of the Blasius equation
from a given solution merely by differentiation and substitution in the trans-
formation. However, when the invariance condition (14.125) is worked out and
the determining equations of the group are solved, the result is

ξ = 0, µ = ayx + b(y + xyx ) (14.129)

The first-order Lie–Bäcklund transformation is retrieved again. Nothing new is
generated at the second order.

This example highlights the fundamental conundrum of Lie–Bäcklund trans-
formations. There is usually no way of knowing at what order, if any, new non-
trivial results will be obtained. It is therefore critical that the process of finding
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Lie–Bäcklund transformations be automated to allow one to search the various
possible orders. Now let the transformation depend on third derivatives,

x̃ = x,

ỹ = y + sµ[x, y, yx , yxx , yxxx ].
(14.130)

When higher-order consequences of the Blasius equation (up to sixth deriva-
tives) are generated and the invariance condition is solved, the result is the
following:

µ = a(yx ) + b(y + xyx ) + c(yx )(yxxx + yyxx )

+ d(yx )(yxxx + yyxx )2 + e(y + xyx )(yxxx + yyxx ). (14.131)

At this order, three new proper Lie–Bäcklund symmetries are found, but they are
rather trivial in that they are formed from products of the two basic symmetries
and the equation itself. Since the variable satisfies the equation, these three
symmetries are identically zero. If we proceed to include the fourth derivative
in the infinitesimal, we get back the same result (14.131).

14.4.3 A Particle Moving under the Influence of a Spherically
Symmetric Inverse-Square Body Force

Let’s return to the Kepler problem discussed in Chapter 2, Section 2.2 and in
Chapter 3, Example 3.11. A particle moving in three dimensions under the
influence of a spherically symmetric body force satisfies the following system
of three ODEs:

+x [t, x, y, z, xt , yt , zt , xtt , ytt , ztt ] = mxtt + γ x
r3

= 0,

+ y[t, x, y, z, xt , yt , zt , xtt , ytt , ztt ] = mytt + γ y
r3

= 0, (14.132)

+ z[t, x, y, z, xt , yt , zt , xtt , ytt , ztt ] = mztt + γ z
r3

= 0,

where

r = (x2 + y2 + z2)1/2. (14.133)

If γ > 0 the force is attracting, and if γ < 0 the force is repelling.
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First, let’s find the point groups that leave the system (14.132) invariant.
Assume an infinitesimal transformation of the following form:

t̃ = t + sξ [t, x, y, z],

x̃ = x + sηx [t, x, y, z],

ỹ = y + sηy[t, x, y, z],

z̃ = z + sηz[t, x, y, z].

(14.134)

Expanding each equation in a Lie series and requiring invariance under the
group (14.134) leads to the following three invariance conditions:

X{2}+
x [t, x, y, z, xt , yt , zt , xtt , ytt , ztt ] = 0,

X{2}+
y[t, x, y, z, xt , yt , zt , xtt , ytt , ztt ] = 0, (14.135)

X{2}+
z[t, x, y, z, xt , yt , zt , xtt , ytt , ztt ] = 0,

where the group operator is of the form

X{2} = ξ
∂

∂t
+ ηx ∂

∂x
+ ηy ∂

∂y
+ ηz ∂

∂z
+ ηx

{t}
∂

∂xt
+ η

y
{t}

∂

∂yt
+ ηz

{t}
∂

∂zt

+ ηx
{t t}

∂

∂xtt
+ η

y
{t t}

∂

∂ytt
+ ηz

{t t}
∂

∂ztt
. (14.136)

Carrying through the differentiation leads to the following three invariance
conditions:

mηx
{2} − ηx

(

− γ

r3
+ 3γ

x2

r5

)

− ηy
(

3γ
xy
r5

)

− ηz
(

3γ
xz
r5

)

= 0,

mη
y
{2} − ηx

(

3γ
yx
r5

)

− ηy
(

− γ

r3
+ 3γ

y2

r5

)

− ηz
(

3γ
yz
r5

)

= 0, (14.137)

mηz
{2} − ηx

(

3γ
zx
r5

)

− ηy
(

3γ
zy
r5

)

− ηz
(

− γ

r3
+ 3γ

z2

r5

)

= 0.

Substituting the expressions for the extensions, gathering terms, and solving
the resulting set of 48 determining equations for the unknowns (ξ, ηx , ηy, ηz)
using the package IntroToSymmetry.m leads to the following
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infinitesimals:

ξ = a1 + a5
( 3

2 t
)

,

ηx = a5x − a4 y − a3z,

ηy = a4x + a5 y − a2z,

ηz = a3x + a2 y + a5z.

(14.138)

The system (14.132) is invariant under a five-parameter group of time transla-
tion, three rotations, and one dilation:

X1 = ∂

∂t
,

X2 = y
∂

∂z
− z

∂

∂y
, X3 = −z

∂

∂x
+ x

∂

∂z
, X4 = x

∂

∂y
− y

∂

∂x
, (14.139)

X5 = 2
3

x
∂

∂x
+ 2

3
y

∂

∂y
+ 2

3
z

∂

∂z
+ t

∂

∂t
.

Now let’s look for first order Lie–Bäcklund groups. We seek a transformation
of the following form that leaves the system (14.132) invariant:

t̃ = t,

x̃ = x + sηx [t, x, y, z, xt , yt , zt ],

ỹ = y + sηy[t, x, y, z, xt , yt , zt ],

z̃ = z + sηz[t, x, y, z, xt , yt , zt ].

(14.140)

Here we have used the symbol η for the unknown infinitesimal instead of
µ, in recognition of the fact that there is no fundamental need to distinguish
symbolically between the two types of transformations. This is consistent with
the software package provided with the text, which only uses the symbol η.
Thus the invariance condition (14.135) remains symbolically the same, and the
twice extended operator (14.136) and differentiated operator condition (14.137)
retain the same form except that the detailed expressions for the infinitesimals
η{1} and η{2} are considerably longer and the group operator symbol X{2} is
replaced by U to indicate that the independent variable is left untransformed.

The invariance conditions are

U+x [t, x, y, z, xt , yt , zt , xtt , ytt , ztt ] = 0,

U+ y[t, x, y, z, xt , yt , zt , xtt , ytt , ztt ] = 0, (14.141)

U+ z[t, x, y, z, xt , yt , zt , xtt , ytt , ztt ] = 0,
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where

U = ηx ∂

∂x
+ ηy ∂

∂y
+ ηz ∂

∂z
+ ηx

{t}
∂

∂xt
+ η

y
{t}

∂

∂yt
+ ηz

{t}
∂

∂zt

+ ηx
{t t}

∂

∂xtt
+ η

y
{t t}

∂

∂ytt
+ ηz

{t t}
∂

∂ztt
+ · · · . (14.142)

Expanding the invariance conditions (14.141) and collecting terms leads to
(only) three determining equations for the unknown infinitesimals of the group.
The reason for the dramatic reduction in the number of determining equations
from 48 to 3 is that now the first derivatives are regarded as independent variables
and not free coefficients in the invariance condition. As a result, the invariance
condition parses into a much smaller set of grouped terms.

Here is the result. First, here are the Lie–Bäcklund groups, which are equiv-
alent to the five original point groups:

U 1 = xt
∂

∂x
+ yt

∂

∂y
+ zt

∂

∂z
,

U 2 = −z
∂

∂y
+ y

∂

∂z
, U 3 = −z

∂

∂x
+ x

∂

∂z
, U 4 = −y

∂

∂x
+ x

∂

∂y
,

U 5 =
(

− 2
3

x + t xt

)

∂

∂x
+

(

− 2
3

y + t yt

)

∂

∂y
+

(

− 2
3

z + t zt

)

∂

∂z
.

(14.143)

In addition to these five, three new symmetries are identified

U 6 =
(

−1
2

yyt − 1
2

zzt

)

∂

∂x
+

(

−1
2

yxt + xyt

)

∂

∂y
+

(

−1
2

zxt + xzt

)

∂

∂z
,

U 7 =
(

yxt − 1
2

xyt

)

∂

∂x
+

(

− 1
2

xxt − 1
2

zzt

)

∂

∂y
+

(

−1
2

zyt + yzt

)

∂

∂z
,

U 8 =
(

zxt − 1
2

xzt

)

∂

∂x
+

(

zyt − 1
2

yzt

)

∂

∂y
+

(

−1
2

xxt − 1
2

yyt

)

∂

∂z
.

(14.144)

The operators (14.144) can be written more concisely as

U j =
(

x j xi
t − 1

2
xi x j

t − 1
2

(

xk xk
t

)

δ
j
i

)

∂

∂xi
, j = 1, 2, 3. (14.145)

In (14.145) the index j refers to each coordinate direction in turn and should
not be confused with that on the first three operators in (14.143). We can use
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these groups to generate particular solutions of the system of equations. For
example, the operator U 5 generates the system of first-order equations

U 5x = −2
3

x + t xt = 0,

U 5 y = −2
3

y + t yt = 0, (14.146)

U 5z = −2
3

z + t zt = 0,

The system (14.146) generates the solution for a particle beginning at the origin
with a singular velocity and moving outward along a radius against an attractive
force,

x = 31/6

21/3

(

γ

m

)1/3

t2/3,

y = 31/6

21/3

(

γ

m

)1/3

t2/3, (14.147)

z = 31/6

21/3

(

γ

m

)1/3

t2/3,

where γ > 0. The finite point transformation equivalent to U 5 is just the dilation
group of the Kepler equations,

x̃ = e2a x, ỹ = e2a y, z̃ = e2az, t̃ = e3at, m̃ = m, (14.148)

used in Chapter 4, Example 4.4 [see Equation (4.112)] to define Kepler’s third
law. In Chapter 15 we will use these groups to generate invariants of the motion
for the system (14.132).

14.5 Recursion Operators

In some cases, higher-order Lie–Bäcklund symmetries can be generated di-
rectly from lower-order symmetries without having to solve the determining
equations generated by an increasingly complicated invariance condition at
every level. Instead one can use what are called recursion operators. Given
some differential equation, the basic idea is to search for nontrivial differ-
ential operators that commute with the Lie–Bäcklund operator derived from
the invariance condition. The basic ideas behind recursion operators will
be described primarily through several selected examples. An excellent
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treatment can be found in Olver [14.3] and in Chapter 5 of Bluman and
Kumei [14.4].

14.5.1 Linear Equations

For linear equations, recursion operators can be generated directly from the
equivalence form of the Lie–Bäcklund operator corresponding to the point
groups of the equation.

14.5.1.1 The Heat Equation

Consider the linear heat equation yxx − yt = 0. The corresponding invariance
condition is η{xx} − η{t} = 0. If η is the infinitesimal of a Lie–Bäcklund trans-
formation with the ξ j equal to zero, then using (14.68) the invariance condition
(14.77) can be written in the operator form

Lη = 0, (14.149)

where L is the differential operator

L = D2
x − Dt (14.150)

and η in general depends on (x, t, y, yx , yt , yxx , yxt , ytt , . . .). Clearly the in-
variance condition is satisfied by η = y, simply by the assumption that y is a
solution of the heat equation. In other words,

Ly = D2
x y − Dt y = yxx − yt = 0. (14.151)

Similarly, (14.149) is satisfied by η = f [x, t] where f is any function that
satisfies the heat equation. Such solutions of the invariance condition are called
trivial groups.

In general, for a linear equation, η has a special structure in that it depends
linearly on the dependent variables and their derivatives. For example, the first-
order Lie–Bäcklund infinitesimal of the heat equation is

η = ayx + b(xy + 2t yx ) + c(2t yt + xyx )

+ d
((

t
2

+ x2

4

)

y + t2 yt + xtyx

)

+ eyt + f y. (14.152)

Notice that every term in (14.152) contains y or some derivative of y. This is
always the case when the groups are equivalent to point groups, and generally the



480 14 Lie–Bäcklund Transformations

case for nontrivial Lie–Bäcklund groups that leave linear equations invariant.
We can use this fact to write (14.152) as

η = Ry, (14.153)

where R is the operator

R = aDx + b(x + 2t Dx ) + c(2t Dt + x Dx )

+ d
((

t
2

+ x2

4

)

+ t2 Dt + xt Dx

)

+ eDt + f. (14.154)

The invariance condition (14.149) now becomes

L Ry = 0. (14.155)

So if y satisfies Ly = 0, then η = Ry satisfies Lη = 0. Similarly, η̃ = Rη =
R2 y satisfies L η̃ = 0, and so forth, up to any order.

The operator R in (14.154) is a recursion operator for the heat equation and
can be used to generate Lie–Bäcklund symmetries of any order we wish. For
example, the group with parameter c and recursion operator Rc = 2t Dt + x Dx

generates

Rc y = 2t yt + xyx ,

Rc(Rc y) = 4t yt + 4t2 ytt + 4xtyxt + xyx + x2 yxx ,
...

(14.156)

as the first few symmetries.
Notice that, when one begins with a Lie–Bäcklund infinitesimal equivalent

to a point group, at every level the infinitesimal is linear in y and the various
derivatives of y. In general, a system of linear equations has Lie–Bäcklund
infinitesimals of the form

ηi = f i
k [x]yk + f i j

k [x]yk
j + f i j1 j2

k [x]yk
j1 j2 + · · · (14.157)

with the matrix of operators

Ri
k = f i

k [x] + f i j
k [x]D j + f i j1 j2

k [x]y D j1 D j2 + · · · , (14.158)

enabling one to state the following theorem.

Theorem 14.3. Let the vector y be the solution of a system of linear differential
equations ψ i = + i [x, y, y1, y2, . . .] with invariance condition operators Li
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and infinitesimals ηi and with recursion operators of the form (14.158). Given
that

Li yi = 0 (no sum) (14.159)

and

Liηi = 0 (no sum), (14.160)

where ηi = Ri
k yk . Then η̃i = Ri

kη
k satisfies Lη̃i = 0, ˜̃ηi = Ri

k η̃
k , satisfies

L ˜̃ηi = 0, and so forth to any order.

The whole process of constructing the recursion operator for linear equations
relies on the fact that one immediately has a solution of the invariance condition
in the form of a solution of the original equation.

14.5.2 Nonlinear Equations

Recursion operators can often be constructed for nonlinear equations by solving
a system of determining equations for the coefficients in the operator. The basic
idea is to search for a differential operator that commutes with the Lie–Bäcklund
operator of the invariance condition. The procedure is illustrated in the following
examples.

14.5.2.1 Burgers Potential Equation

Let’s construct recursion operators for the Burgers potential equation,

φt + 1
2 (φx )2 − φxx = 0. (14.161)

First analyze the point symmetries of (14.161). Let the variables be trans-
formed as

x̃ = x + sξ [x, t, φ],

t̃ = t + sτ [x, t, φ], (14.162)

φ̃ = φ + sη[x, t, φ].

The invariance condition is

φxη{x} + η{t} − η{xx} = 0. (14.163)

The various extensions in (14.163) are substituted, and the resulting expres-
sion is parsed into the determining equations of the group. Using the package
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IntroToSymmetry.m to solve the resultant set of determining equations
leads to the basic point symmetries of the Burgers potential equation, which
constitute a six-parameter Lie algebra with the following infinitesimals:

ξ = a1 + a2t + a3x + a4(2xt),

τ = a5 + a3(2t) + a4(2t2), (14.164)

η = a6 + a2x + a4(2t + x2).

The corresponding group operators are

X1 = ∂

∂x
, X2 = t

∂

∂x
+ x

∂

∂φ
, X3 = x

∂

∂x
+ 2t

∂

∂t
,

X4 = (2xt)
∂

∂x
+ (2t2)

∂

∂t
+ (2t + x2)

∂

∂φ
, X5 = ∂

∂t
, X6 = ∂

∂φ
.

(14.165)

In addition, the invariance condition (14.163) is satisfied by the infinite-
dimensional group

X7 = f [x, t]eφ/2 ∂

∂φ
, (14.166)

where f [x, t] is a solution of the heat equation fxx = ft .
Formulating the equation in terms of a potential leads to two additional sym-

metries over the five-parameter point group of the Burgers equation: invariance
under translation in φ, and the infinite-dimensional group (14.166). The latter
will be discussed again in Chapter 16, where it will be seen to be related to a
nonlocal group of the Burgers equation.

Next we need to work out the first-order Lie–Bäcklund transformation of
(14.161). Let the variables be transformed as

x̃ = x,

t̃ = t, (14.167)

φ̃ = φ + sη[x, t, φ, φx , φt ].

Since Equation (14.161) does not depend explicitly on the independent vari-
ables, the invariance condition retains the same basic form as (14.163):

φxη{x}[x, t, φ, φx , φt , φxx , φxt , φt t ] + η{t}[x, t, φ, φx , φt , φxx , φxt , φt t ]

− η{xx}[x, t, φ, φx , φt , φxx , φxt , φt t , φxxx , φxxt , φxtt , φt t t ] = 0. (14.168)
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The extensions are worked out, and the determining equations are solved for
the infinitesimal yielding

η = a1φx + a2(x − tφx ) + a3(−xφx − 2tφt )

+ a4(x2 + 2t − 2xtφx − 2t2φt
)

+ a5φt + a6. (14.169)

In addition there is the Lie–Bäcklund symmetry identical to (14.166),

U = f [x, t]eφ/2 ∂

∂φ
. (14.170)

At the first order, we only find the seven Lie–Bäcklund symmetries equivalent
to the point groups (14.165). No new symmetries are revealed. If we let η

depend on second derivatives, the same result prevails. But if we go to third
order, four additional symmetries are found. To develop these higher-order
symmetries we could return to the invariance condition (14.168), allow the
unknown infinitesimal η to depend on third derivatives, and then sort and solve
the determining equations. An alternative is to use recursion operators.

Recursion operators for the Burgers potential equation can be determined as
follows. Let η[x, t, φ, φx , φt ] be a solution of the invariance condition (14.168),

ηxx − φxηx − ηt = 0, (14.171)

which we write as follows

Lη[x, t, φ, φx , φt ] = 0, (14.172)

where the differential operator is

L = Dxx − φx Dx − Dt . (14.173)

The equation (14.172) is a linear PDE for the unknown η. The idea now is to
seek an operator that will commute with (14.173). By analogy with the recursion
operator for a linear equation, (14.158), let’s adopt the ansatz that a recursion
operator exists of the form

R = f [x, t, φ, φx , φt ] + g[x, t, φ, φx , φt ]Dx (14.174)

such that

L(Rv) = 0, (14.175)

where v(x, t) is a solution of the linear PDE

vxx − φxvx − vt = 0. (14.176)
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Now search for the conditions on f and g such that

(Dxx − φx Dx − Dt )( f + gDx )v = 0. (14.177)

In (14.177) φ[x, t] is a solution of the nonlinear equation (14.161), and v[x, t]
is a solution of the linear PDE (14.176). Expanding (14.177) leads to

Dxx ( f v + gvx ) − φx Dx ( f v + gvx ) − Dt ( f v + gvx ) = 0. (14.178)

The next step is to fully expand the invariance condition (14.178) and gather
together various factors of v[x, t] and its derivatives:

v(Dxx f − φx Dx f − Dt f ) + vx (2Dx f + Dxx g − φx Dx g − Dt g − f φx )

+ vxx (2Dx g + f − gφx ) + vxxx (g) + vxt (−g) + vt (− f ) = 0. (14.179)

The function v[x, t] is a solution of (14.176), leading to the following re-
placements:

vxxx = φxxvx + φxvxx + vxt ,

vt = vxx − φxvx .
(14.180)

These reduce (14.179) to

v(Dxx f − φx Dx f − Dt f ) + vx (2Dx f + Dxx g − φx Dx g − Dt g + φxx g)

+ vxx (2Dx g) = 0. (14.181)

Since v, vx , and vxx are arbitrary, the result is three determining equations for
the two unknowns f and g:

Dxx f − φx Dx f − Dt f = 0,

2Dx f + Dxx g − φx Dx g − Dt g + φxx g = 0, (14.182)

2Dx g = 0.

Solving the determining equations (14.182) leads to expressions for the un-
known functions f = 1, − 1

2φx ,
1
2 (−tφx − x) and g = 0, 1, t and to the follow-

ing three recursion operators for the Burgers potential equation:

R1 = 1, R2 = − 1
2φx + Dx , R3 = 1

2 (−tφx − x) + t Dx . (14.183)

Let’s check R2 in (14.175). Let η[x, t, φ, φx , φt ] be a solution of

Dxxη − φx Dxη − Dtη = 0. (14.184)
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The invariance condition (14.175) is

(Dxx − φx Dx − Dt )
(

− 1
2φx + Dx

)

η = 0, (14.185)

or

Dxx
(

− 1
2φxη + Dxη

)

− φx Dx
(

− 1
2φxη + Dxη

)

− Dt
(

− 1
2φxη + Dxη

)

= 0.

(14.186)

Expand the first term

Dxx
(

− 1
2φxη + Dxη

)

= − 1
2φxxxη − φxx Dxη − 1

2φx Dxxη + Dxxxη,

(14.187)

the second term

φx Dx
(

− 1
2φxη + Dxη

)

= − 1
2φxφxxη − 1

2φ2
x Dxη + φx Dxxη, (14.188)

and the third term

Dt
(

− 1
2φxη + Dxη

)

= − 1
2φxtη − 1

2φx Dtη + Dxtη. (14.189)

Fully expanded, (14.186) can be organized as follows:

1
2ηDx

(

φt + 1
2 (φx )2 − φxx

)

− 1
2φx (Dxxη − φx Dxη − Dtη)

+ Dx (Dxxη − φx Dxη − Dtη) = 0. (14.190)

The first term in (14.190) is zero by (14.161), and so we have the expected
result that the recursion operator R2 commutes with the Lie–Bäcklund operator
(14.173): L(Rη) = R(Lη), or

(Dxx − φx Dx − Dt )
((

− 1
2φx − Dx

)

η
)

=
(

− 1
2φx − Dx

)

((Dxx − φx Dx − Dt )η) = 0. (14.191)

The same sort of result can be worked out for R3.
Since the recursion operator produces a function that satisfies the invari-

ance condition, it can be used repeatedly to produce a symmetry of any order.
Beginning with the Lie–Bäcklund transformation corresponding to the point
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translation group in x , the first few symmetries generated by R2 are

η = φx ,

R2η =
(

− 1
2φx + Dx

)

φx = − 1
2φ2

x + φxx = φt ,

R2(R2η) =
(

− 1
2φx + Dx

)

(φt ) = − 1
2φxφt + φxt , (14.192)

R2(R2(R2η)) =
(

− 1
2φx + Dx

)(

− 1
2φxφt + φxt

)

= 1
4φ2

xφt − φxφxt − 1
2φxxφt + φxxt .

In (14.192), operating once generates the group equivalent to a translation in
time. Operating a second or third time produces proper Lie–Bäcklund symme-
tries (symmetries that are not equivalent to point symmetries).

14.5.2.2 Burgers Equation and Integro-differential Operators

If we differentiate (14.161) with respect to x , the result is

φxt + φxφxx − φxxx = 0. (14.193)

Thus u = φx is a solution of the Burgers equation

ut + uux − uuxx = 0, (14.194)

and φ is a potential function. First let’s work out the point groups of (14.194).
Let the variables be transformed as

x̃ = x + sξ [x, t, u],

t̃ = t + sτ [x, t, u], (14.195)

ũ = u + sη[x, t, u].

The invariance condition is

uxη + uη{x} + η{t} − η{xx} = 0. (14.196)

Working out the various extensions and solving the determining equations leads
to the following infinitesimals of the five-parameter point group that leaves the
Burgers equation invariant:

ξ = a1 + a2t + a3x + a4xt,

τ = a5 + 2a3t + a4(t2), (14.197)

η = a2 − a3u + a4(x − tu),
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with corresponding operators

X1 = ∂

∂x
, X2 = t

∂

∂x
+ ∂

∂u
, X3 = x

∂

∂x
+ 2t

∂

∂t
− u

∂

∂u
,

(14.198)
X4 = x

∂

∂x
+ t2 ∂

∂t
+ (x − tu)

∂

∂u
, X5 = ∂

∂t
.

Now let’s work out the first-order Lie–Bäcklund group of (14.194). Let the
variables be transformed as

x̃ = x,

t̃ = t, (14.199)

ũ = u + sη[x, t, u, ux , ut ].

Since the equation does not depend explicitly on the independent variables, the
invariance condition (14.196) retains the same basic form:

uxη[x, t, u, ux , ut ] + uη{x}[x, t, u, ux , ut , uxx , uxt , utt ]

+ η{t}[x, t, u, ux , ut , uxx , uxt , utt ]

− η{xx}[x, t, u, ux , ut , uxx , uxt , utt , uxxx , uxxt , uxtt , uttt ] = 0. (14.200)

Using the package IntroToSymmetry.m the extensions are worked out,
and the determining equations are solved for the infinitesimal

η = a1ux + a2(1 − tux ) + a3(−u − xux − 2tut )

+ a4(x − ut − xtux − t2ut ) + a5ut . (14.201)

At the first order we only find the five symmetries equivalent to the point
groups. No new symmetries are revealed. If we let the infinitesimal depend on
second derivatives, the same result (14.201) prevails. But if we go to third order,
four additional symmetries are found:

U 6 =
(

4uxxx − 6uuxx − 6u2
x + 3u2ux

) ∂

∂u
,

U 7 =
(

4tuxxx + (2x − 6tu)uxx − 6tu2
x + (3tu2 − 2xu)ux − u2) ∂

∂u
,

U 8 =
(

4t2uxxx + (4t x − 6t2u)uxx − 6t2u2
x

+ (3t2u2 − 4t xu + x2)ux − 2tu2 + 2xu + 6
) ∂

∂u
, (14.202)
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U 9 =
(

4t3uxxx + (6t2x − 6t3u)uxx − 6t3u2
x

+ (3t3u2 − 6t2xu + 3t x2 + 12t2)ux − 3t2u2

+ 6xtu − 3x2 − 6t
) ∂

∂u
.

Would we find more symmetries at higher-order? The effort required, even
computationally, is very substantial, so let’s seek an alternative approach.

Additional symmetries of (14.194) can be generated using recursion oper-
ators. Let’s identify a couple derived from recursion operators of the Burgers
potential equation. The potential φ can be expressed in terms of u using the
integral operator

φ = D−1
x u. (14.203)

A first-order Lie–Bäcklund transformation of φ is written as follows:

x̃ = x,

t̃ = t,

φ̃ = φ + sη[x, t, φ, φx , φt ].

(14.204)

The equivalent transformation of u is

x̃ = x,

t̃ = t,

D−1
x ũ = D−1

x u + sη
[

x, t, D−1
x u, Dx D−1

x u, Dt D−1
x u

]

,

(14.205)

or

x̃ = x,

t̃ = t,

ũ = u + sη′,

(14.206)

where η′ = Dxη[x, t, D−1
x u, u, Dt D−1

x u] depends on integrals of the dependent
variable. For example, the dilation group of the Burgers potential equation,

x̃ = x,

t̃ = t,

φ̃ = φ + s
(

−tφt − 1
2 xφx

)

,

(14.207)



14.5 Recursion Operators 489

generates

x̃ = x,

t̃ = t,

ũ = u + s Dx
(

−t Dt D−1
x u − 1

2 xu
)

,

(14.208)

which can be written as

x̃ = x,

t̃ = t,

ũ = u + s Dx
(

−t Dt D−1
x u − 1

2 xu
)

= u + s
(

− 1
2 u − tut − 1

2 xux
)

,

(14.209)

which is equivalent to the point dilation group of the Burgers equation.
Now let’s look at the recursion operators of the Burgers potential equa-

tion. If

x̃ = x,

t̃ = t,

φ̃ = φ + s Rη[x, t, φ, φx , φt ],

(14.210)

then

x̃ = x,

t̃ = t,

ũ = u + s Dx R
(

D−1
x η′).

(14.211)

The recursion operators of the Burgers equation corresponding to R2 and R3

for the Burgers potential equation are

R2
Burgers = Dx

(

− 1
2 u + Dx

)

D−1
x = Dx

(

− 1
2 u D−1

x + 1
)

= − 1
2 ux D−1

x − 1
2 u + Dx ,

R3
Burgers = Dx

( 1
2 (−tu − x) + t Dx

)

D−1
x (14.212)

= 1
2 (−tux − 1)D−1

x + 1
2 (−tu − x) + t Dx .

These are both integro differential recursion operators (see Bluman and Kumei
[14.4, Chapter 5]). Let’s apply R2

Burgers to the point dilation group of the Burgers
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equation expressed as an equivalent Lie–Bäcklund operator:

(

− 1
2 ux D−1

x − 1
2 u + Dx

)(

− 1
2 u − tut − 1

2 xux
)

= 1
4

ux
(

D−1
x u

)

+ −3
4

tu2ux + t
2

u2
x + x

2
uux + x2

8
u2

x

+ 1
4

u2 + 3
2

tuuxx − 1
2

ux + tux uxx − tuxxx − 1
2

ux − 1
2

xuxx . (14.213)

The result (14.213) defines a proper Lie–Bäcklund symmetry of the Burgers
equation. Moreover, the symmetry is nonlocal in that it depends on the integral
of u through the term 1

4 ux (D−1
x u). We shall have more to say about nonlocal

symmetries in Chapter 16.

14.5.2.3 The Classical Recursion Operator for
the Korteweg–de Vries Equation

Let’s work out an integrodifferential recursion operator for the Korteweg–de
Vries (KdV) equation

ut + uux + uxxx = 0. (14.214)

The invariance condition is

Lη = 0, (14.215)

where the operator L is

L = Dxxx + ux + u Dx + Dt . (14.216)

Let’s assume that an integrodifferential recursion operator exists of the form

R = f1[x, t, u, ux , ut ]D−1
x + f2[x, t, u, ux , ut ]

+ f3[x, t, u, ux , ut ]Dx + f4[x, t, u, ux , ut ]Dxx (14.217)

such that

L Rv = 0 (14.218)

when v[x, t] is solution of the linear PDE

vxxx + uxv + uvx + vt = 0 (14.219)

and u[x, t] is a solution of the nonlinear PDE (14.214). Equation (14.217) is of
course one of those guesses that is aided hugely by the fact that the answer is
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already known. That’s the problem with nonlinear equations – a brilliant ansatz
is needed to get anywhere.

Now expand (14.218):

(Dxxx + ux + u Dx + Dt )
(

f1 D−1
x + f2 + f3 Dx + f4 Dxx

)

v = 0. (14.220)

The first term fully expanded is

Dxxx
(

f1 D−1
x v + f2v + f3vx + f4vxx

)

= (Dxxx f1)D−1
x v + 3(Dxx f1)v + 3(Dx f1)vx + f1vxx

+ (Dxxx f2)v + 3(Dxx f2)vx + 3(Dx f2)vxx + f2vxxx

+ (Dxxx f3)vx + 3(Dxx f3)vxx + 3(Dx f3)vxxx + f3vxxxx

+ (Dxxx f4)vxx +3(Dxx f4)vxxx +3(Dx f4)vxxxx + f4vxxxxx . (14.221)

The second term is

ux
(

f1 D−1
x v + f2v + f3vx + f4vxx

)

= (ux f1)D−1
x v + (ux f2)v + (ux f3)vx + (ux f4)vxx . (14.222)

The third term is

u Dx
(

f1 D−1
x v + f2v + f3vx + f4vxx

)

= (u Dx f1)D−1
x v + (u f1)v + (u Dx f2)v + (u f2)vx

+ (u Dx f3)vx + (u f3)vxx + (u Dx f4)vxx + (u f4)vxxx , (14.223)

and the fourth term is

Dt
(

f1 D−1
x v + f2v + f3vx + f4vxx

)

= (Dt f1)D−1
x v + ( f1)D−1

x vt + (Dt f2)v + ( f2)vt

+ (Dt f3)vx + ( f3)vxt + (Dt f4)vxx + f4vxxt . (14.224)

The invariance condition (14.220) can now be rearranged to read as follows:

(Dxxx + ux + u Dx + Dt )
(

f1 D−1
x + f2 + f3 Dx + f4 Dxx

)

v

= f2(vxxx + uxv + uvx + vt )

+ D−1
x v(Dxxx f1 + ux f1 + u Dx f1 + Dt f1)

+ v(3Dxx f1 + Dxxx f2 + u f1 + u Dx f2 + D1 f2)

+ vx (3Dx f1 + 3Dxx f2 + Dxxx f3 + ux f3 + u Dx f3 + Dt f3)

+ vxx ( f1 +3Dx f2 +3Dxx f3 + Dxxx f4 +ux f4 +u f3 +u Dx f4 + Dt f4)

+ vxxx (3Dx f3 + 3Dxx f4 + u f4) + vxxxx ( f3 + 3Dx f4)

+ vxxxxx ( f4) + vxt ( f3) + vxxt ( f4) + D−1
x vt ( f1). (14.225)
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We now substitute the following rules derived from (14.219), vxxx + uxv +
uvx + vt = 0:

D−1
x vt = −vxx − uv,

vxt = −vxxxx − uxxv − 2uxvx − uvxx ,

vxxt = −vxxxxx − uxxxv − 3uxxvx − 3uxvxx − uvxxx .

(14.226)

With these substitutions (14.225) becomes the following:

(Dxxx + ux + u Dx + Dt )
(

f1 D−1
x + f2 + f3 Dx + f4 Dxx

)

v

= f2(vxxx + uxv + uvx + vt )

+ D−1
x v(Dxxx f1 + ux f1 + u Dx f1 + Dt f1)

+ v(3Dxx f1 + Dxxx f2 + u f1 + u Dx f2

+ Dt f2 − u f1 − uxxx f4 − uxx f3)

+ vx (3Dx f1 + 3Dxx f2 + Dxxx f3 + ux f3 + u Dx f3

+ Dt f3 − 3uxx f4 − 2ux f3)

+ vxx ( f1 + 3Dx f2 + 3Dxx f3 + Dxxx f4 + ux f4

+ u f3 + u Dx f4 + Dt f4 − f1 − 3ux f4 − u f3)

+ vxxx (3Dx f3 + 3Dxx f4 + u f4 − u f4)

+ vxxxx ( f3 + 3Dx f4 − f3) + vxxxxx ( f4 − f4). (14.227)

The first term on the right-hand side of (14.227) is zero, and we finally we
have the following six determining equations for the four unknowns, f1, f2, f3,
and f4:

Dxxx f1 + ux f1 + u Dx f1 + Dt f1 = 0,

3Dxx f1 + Dxxx f2 + u f1 + u Dx f2 + Dt f2 − u f1 − uxxx f4 − uxx f3 = 0,

3Dx f1 + 3Dxx f2 + Dxxx f3 + ux f3 + u Dx f3 + Dt f3 − 3uxx f4 − 2ux f3 = 0,

3Dx f2 +3Dxx f3 + Dxxx f4 +ux f4 +u f3 +u Dx f4 + Dt f4 −3ux f4 −u f3 = 0,

3Dx f3 + 3Dxx f4 = 0,

3Dx f4 = 0.

(14.228)

We can simplify (14.228) to the following:

Dxxx f1 + ux f1 + u Dx f1 + Dt f1 = 0,

3Dxx f1 + Dxxx f2 + u Dx f2 + Dt f2 − uxxx f4 − uxx f3 = 0,

3Dx f1 + 3Dxx f2 + Dxxx f3 + u Dx f3 + Dt f3 − 3uxx f4 − ux f3 = 0,
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3Dx f2 + 3Dxx f3 + Dxxx f4 + u Dx f4 + Dt f4 − 2ux f4 = 0,

3Dx f3 + 3Dxx f4 = 0,

3Dx f4 = 0.

(14.229)

Using the last two determining equations, (14.229) becomes

Dxxx f1 + ux f1 + u Dx f1 + Dt f1 = 0,

3Dxx f1 + Dxxx f2 + u Dx f2 + Dt f2 − uxxx f4 − uxx f3 = 0,

3Dx f1 + 3Dxx f2 + Dt f3 − 3uxx f4 − ux f3 = 0,
(14.230)

3Dx f2 + Dt f4 − 2ux f4 = 0,

Dx f3 = 0,

Dx f4 = 0.

This final set of determining equations can be solved, yielding

f1 = 1
3 ux , f2 = 2

3 u, f3 = 0, f4 = 1. (14.231)

The final result is the classical recursion operator of the Korteweg de Vries
equation:

R = 1
3 ux D−1

x + 2
3 u + Dxx . (14.232)

The four-parameter point group of the KdV equation is as follows:

Xa = ∂

∂x
, Xb = ∂

∂t
, Xc = t

∂

∂x
+ ∂

∂u
,

Xd = x
∂

∂x
+ 3t

∂

∂t
− 2u

∂

∂u
,

(14.233)

with equivalent Lie–Bäcklund operators

U a = ux
∂

∂u
, U b = ut

∂

∂u
, U c = (1 − tux )

∂

∂u
,

U d = (2u + xux + 3tut )
∂

∂u
.

(14.234)

Now use the recursion operator (14.232) to study the symmetries that can be
generated from the translational group U a . Note that this symmetry is in the
form of a total differential and so the inverse operator is well defined. The first
two symmetries generated by (14.232) are the following:

η0 = Dx u = ux ,

η1 =
( 1

3 ux D−1
x + 2

3 u + Dxx
)

Dx u = uux + uxxx = −ut .
(14.235)
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Note that η1 is simply the infinitesimal corresponding to a point translation in
time. Using the KdV equation, it can be written as a total derivative,

η1 = Dx
( 1

2 u2 + uxx
)

. (14.236)

The next symmetry is

η2 =
( 1

3 ux D−1
x + 2

3 u + Dxx
)

(uux + uxxx )

= 5
6 u2ux + 10

3 ux uxx + 5
3 uuxxx + uxxxxx , (14.237)

which is a proper Lie–Bäcklund symmetry. This expression can also be written
as a total derivative,

η2 = Dx
( 5

18 u3 + 5
6 u2

x + 5
3 uuxx + uxxxx

)

. (14.238)

The next symmetry is

η3 =
( 1

3 ux D−1
x + 2

3 u + Dxx
)( 5

6 u2ux + 10
3 ux uxx + 5

3 uuxxx +uxxxxx
)

, (14.239)

which becomes

η3 = 35
54 u3ux + 35

18 u3
x + 70

9 uux uxx + 35
18 u2uxxx

+ 35
3 uxx uxxx + 7

3 uuxxxx + uxxxxxxx + 20
3 ux uxxxx + 1

3 ux uxxx . (14.240)

Once again this expression can be put in the form of a total derivative,

η3 = Dx
( 1

3 u
( 5

18 u3 + 5
6 u2

x + 5
3 uuxx + uxxxx

)

+ 1
3

( 5
24 u4 + 5

3 u2uxx + 1
2 u2

xx + uuxxxx − ux uxxx
)

+ Dxx
( 5

18 u3 + 5
6 u2

x + 5
3 uuxx + uxxxx

))

. (14.241)

It looks like there is a pattern here! Each of the generated symmetries can be
written as a total derivative. In general one can write

ηk+1 = Dx
( 1

3 u
(

D−1
x ηk

)

+ 1
3 D−1

x (uηk) + Dxη
k
)

. (14.242)

Carrying through the differentiation to check gives

ηk+1 = 1
3 ux

(

D−1
x ηk

)

+ 2
3 uηk + Dxxη

k, (14.243)

which is the correct form of the recursion operator acting on the current in-
finitesimal.
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Both integrals appearing inside the outer parentheses in (14.242) can be
removed as follows. The middle term uηk generates the infinite sequence

uη0 = u Dx u = Dx
( 1

2 u2
)

,

uη1 = u Dx
( 1

2 u2 + uxx
)

= Dx
( 1

3 u3 + uuxx − 1
2 u2

)

,

uη2 = u Dx
( 5

18 u3 + 5
6 u2

x + 5
3 uuxx + uxxxx

)

= Dx
( 5

24 u4 + 5
3 u2uxx + 1

2 u2
xx + uuxxxx − ux uxxx

)

,

...

(14.244)

In other words, uηk = Dxα
k , where αk is a differential function, the first few

terms of which are in (14.244) and so

ηk+1 = Dx
( 1

3 u
(

D−1
x ηk

)

+ 1
3αk + Dxη

k
)

. (14.245)

The term D−1
x ηk can be expressed recursively in terms of ηk, . . . , η0.

In summary, the recursion operator (14.232) acting on the translational sym-
metry, of the KdV equation generates an infinite sequence of Lie–Bäcklund
symmetries, the first few of which are

η0 = Dx u,

η1 = Dx
( 1

2 u2 + uxx
)

,

η2 = Dx
( 5

18 u3 + 5
6 u2

x + 5
3 uuxx + uxxxx

)

,

η3 = Dx
( 1

3 u
( 5

18 u3 + 5
6 u2

x + 5
3 uuxx + uxxxx

)

+ 1
3

( 5
24 u4 + 5

3 u2uxx + 1
2 u2

xx + uuxxxx − ux uxxx
)

+ Dxx
( 5

18 u3 + 5
6 u2

x + 5
3 uuxx + uxxxx

))

,

...

(14.246)

The corresponding sequence of Lie–Bäcklund operators is U k = ηk∂/∂u and
since u is a solution of the KdV equation, U ku = 0. The result is an infinite
sequence of conservation laws for the KdV equation, ηk = Dx ( ) = 0.

A close look at how this all comes about reveals that the key feature of
the KdV equation that enables the succession of infinitesimals to be put in
conservation form is the fact that the highest and second highest derivatives in
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the equation are separated by two orders. The same analysis would not work
on the Burgers equation, for example.

14.6 Concluding Remarks

The discussion of Lie–Bäcklund groups is nearly done. Our work won’t quite be
complete, however, until we discuss the use of Lie–Bäcklund transformations to
establish the invariance properties of integrals in Chapter 15. A generalization
to many independent variables of the theory of classical dynamics for one
independent variable, covered in Chapter 4, will be used to derive a generalized
system of Euler–Lagrange equations. In the process we will establish Noether’s
theorem connecting symmetries and conservation laws. This whole subject is
an area of active research, and much more about these fascinating symmetries
can be found in References [14.1] to [14.6].

It was pointed out in Section 14.4.3, where the Kepler problem was described,
and it bears repeating here, that the software package IntroToSymmetry.m
uses the symbol η for the unknown infinitesimal instead of µ in recognition of
the fact that there is no fundamental need to distinguish symbolically between
the two quantities. As far as the software is concerned, the difference between a
Lie point and a Lie–Bäcklund transformation is a matter of choosing the order
of derivative that the unknown infinitesimals are assumed to depend on (the
program parameterr) and deciding whether the transformations of independent
variables should be turned off or not (the program parameter xseon).

14.7 Exercises

14.1 Derive the expressions for the infinitesimals (14.18) from (14.16).
14.2 Show by hand that (14.30) is invariant under the contact transformation

(14.35).
14.3 Show that the equation for a harmonic oscillator, yxx + y = 0, admits

the contact symmetries

(ξ, η) = (yyx , −y3),

(ξ, η) = (yx sin x, −y2 sin x), (14.247)

(ξ, η) = (yx cos x, −y2 cos x).

14.4 Use the software package IntroToSymmetry.m to work out all the
point and first-order Lie–Bäcklund symmetries of the equation

Uxx + aUxy + Uyy = 0. (14.248)
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Which, if any, are proper Lie–Bäcklund symmetries? Develop recursion
operators for each of the point groups of the equation. Use these to
generate the first three Lie–Bäcklund symmetries from each point group.

14.5 Use the package to work out the first order Lie–Bäcklund symmetries
(14.169), (14.201) and (14.202)

14.6 Show that

R3 = 1
2 (−tφx − x) + t Dx (14.249)

is a valid recursion operator for the Burgers potential equations φt +
1
2 (φx )2 − φxx = 0. Use it to generate the first three Lie–Bäcklund sym-
metries arising from translational invariance in space, η = φx . Compare
with the symmetries generated by R2.

14.7 Use the package IntroToSymmetry.m to work out all point and
first-order Lie–Bäcklund symmetries of the equation

ψt t + ψxxxx + 2ψxxyy + ψyyyy = 0. (14.250)

Note that the linearity of the equation means that an arbitrary solution
of (14.250) will appear in η, the infinitesimal transformation of ψ . This
will be evidenced by the package as successively higher-order terms in
the solution for η. These will need to be collected together in order to
identify the remaining groups.
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15
Variational Symmetries and Conservation Laws

15.1 Introduction

In Chapter 4 the Euler–Lagrange equations of classical dynamics were
developed from a variational integral for the action S. In one of the seminal
contributions to modern physics in the early twentieth century, Amalie Emmy
Noether, in her famous 1918 paper [15.1], showed that the conservation laws of
classical physics are directly related to Lie symmetries of the corresponding sys-
tem of Euler–Lagrange equations. Noether (1882–1935) grew up in Erlangen,
where Felix Klein a decade before her birth had established his “Erlangen
programm” designed to unify group theory and geometry. She joined Kline
and David Hilbert at the University of Göttingen in 1915, eventually gaining
recognition as one of the foremost algebraic theorists of her time. She remained
there until 1933, when she and many other Jewish professors were dismissed
when the Nazis came to power. She emigrated to the United States and became
a visiting professor of mathematics at Bryn Mawr College and lecturer at the
Princeton Institute for Advanced Study. Noether’s ideas connecting symmetries
to conservation laws have had a profound effect on the development of mod-
ern field theories impacting a vast range of disciplines in mechanics, quantum
mechanics and relativity.

One of the main themes of this book has been to present in some detail the
procedure for transforming a differential function under a group. In each case
the end result is an invariance condition for the differential function being trans-
formed. This chapter is the logical extension of this theme to the transformation
of a volume integral of a differential function. The procedure is fundamentally
the same although the details are a little more complicated. In this case the
invariance condition yields a generalized system of Euler–Lagrange equations
and a formula by which conserved vectors can be constructed from the invariant
groups.

498
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15.1.1 Transformation of Integrals by Lie–Bäcklund Groups

In Chapter 4 we followed a conventional approach and considered Lagrangians
of the form L[q, dq/dt, t]. This covers many of the most common applica-
tions in Physics. However, Noether recognized that much more general
Lagrangians could be defined, and she extended the theory to the vector of inde-
pendent variables, x = (x1, . . . , xn), and to Lagrangians dependent on higher-
order derivatives. Here we let the Lagrangian be a differential function of
the form

L = L[x, y, y1, . . . , y p]. (15.1)

Our goal is to establish the conditions under which the action integral

S =
∫

V
L[x, y, y1, . . . , y p] dx1 dx2 · · · dxn (15.2)

is invariant under the extended infinitesimal Lie–Bäcklund group with group
parameter s:

x̃ j = x j + sξ j [x, y, y1, . . . , yr ],

ỹi = yi + sηi [x, y, y1, . . . , yr ],

ỹi
j = yi

j + sηi
{ j}[x, y, y1, . . . , yr , yr+1],

(15.3)
ỹi

j1 j2 = yi
j1 j2 + sηi

{ j1 j2}[x, y, y1, . . . , yr , yr+1, yr+2],

...

ỹi
j1 j2··· jp

= yi
j1 j2··· jp

+ sηi
{ j1 j2··· jp}[x, y, y1, . . . , yr , . . . , yr+p],

where for any order p,

ηi
{ j1 j2··· jp} = D jp η

i
{ j1 j2··· jp−1} − yi

j1 j2··· jp−1α
D jp ξ

α. (15.4)

15.1.2 Transformation of the Differential Volume

First we need to develop the transformation law for the product of differentials

dV = dx1 dx2 · · · dxn. (15.5)

The infinitesimal transformation (15.3) gives the prolongation,

dx̃ j = dx j + s
(

∂ξ j

∂xα

+ ∂ξ j

∂yβ

dyβ

dxα

+ ∂ξ j

∂yγ
β

∂yγ
β

∂xα
+ · · ·

)

dxα. (15.6)

The only term that contributes a quantity of order s to the sum over α in (15.6) is
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the term with α = j . Therefore, to lowest order in s, Equation (15.6) becomes

dx̃ j = dx j + s
(

∂ξ j

∂x j
+ ∂ξ j

∂yβ

dyβ

dx j
+ ∂ξ j

∂yγ
β

∂yγ
β

∂x j
+ · · ·

)

dx j (no sum over j),

(15.7)

or

dx̃ j = (1 + s D jξ
j ) dx j (no sum over j). (15.8)

The product of differentials is now

dx̃1 dx̃2 · · · dx̃n

= (1 + s D1ξ
1)(1 + s D2ξ

2) · · · (1 + s Dnξ
n)dx1 dx2 · · · dxn (15.9)

Retaining only terms of order s, we have

dṼ = dV + s D jξ
j dV . sum over j = 1, 2, . . . , n (15.10)

The differential function L[x, y, y1, . . . , y p] can be expanded in a Lie series

L[x̃, ỹ, ỹ1, . . . , ỹ p] = L[x, y, y1, . . . , y p] + s X{p}L + O(s2) + · · ·,
(15.11)

where X{p} is the pth-order Lie–Bäcklund operator,

X{p} = ξ j ∂

∂x j
+ ηi ∂

∂yi
+ ηi

{ j1}
∂

∂yi
j1

+ · · · + ηi
{ j1 j2··· jp}

∂

∂yi
j1 j2··· jp

. (15.12)

Now expand the integral (15.2). For small s,

S =
∫

L[x̃, ỹ, ỹ1, . . . , ỹ p] dx̃1 dx̃2 · · · dx̃n

≈
∫

(L[x, y, y1, . . . , y p] + s X{p}L)(1 + s D jξ
j ) dV . (15.13)

15.1.3 Invariance Condition for Integrals

Retaining only the lowest-order terms in (15.13), the transformation of the
integral (15.2) becomes

S̃ = S + s
∫

(X{p}L + L(D jξ
j )) dV + D(s2) + · · · (15.14)

The integral (15.2) is invariant under the group (15.3) if and only if

X{p}L + L(D jξ
j ) = 0. (15.15)
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Notice that in deriving the result (15.15) there was no consideration of the
surface terms that normally come up in the context of variational calculus. In a
sense the condition (15.15) is overly restrictive. A slightly weaker, and therefore
more broadly applicable, condition is to require that the kernel of the integral
in (15.14) be equal to the divergence of a vector:

X{p}L + L(D jξ
j ) = D jβ

j (15.16)

(cf. Equation 4.20 and the related discussion in Chapter 4). The integral over V
can be converted to an integral over the surface A using the divergence theorem:

S̃ = S + s
∫

A
β j d A j , (15.17)

where d A j is a component of the differential outward normal vector on the
surface. The integral (15.2) is invariant if and only if

∫

A
β j d A j = 0. (15.18)

Here it is convenient to introduce the characteristic function discussed in
Chapter 14, Section 14.1.1:

µi = ηi − yi
αξα. (15.19)

The functions for the infinitesimal transformations of derivatives take on the
following form:

ηi
{ j1} = D j1µ

i + yi
j1αξα,

ηi
{ j1 j2} = D j1 j2µ

i + yi
j1 j2αξα,

(15.20)...

ηi
{ j1 j2··· jp} = D j1 j2··· jp µ

i + yi
j1 j2··· jpα

ξα,

and the left-hand side of Equation (15.16) becomes

X{p}L + L(D jξ
j )

= L(D jξ
j ) + ξ j ∂L

∂x j
+ ηi ∂L

∂yi

+ D j1µ
i ∂L

∂yi
j1

+ D j1 j2µ
i ∂L

∂yi
j1 j2

+ · · · + D j1 j2··· jp µ
i ∂L

∂yi
j1 j2··· jp

+ ∂L

∂yi
j1

yi
j1 jξ

j + ∂L

∂yi
j1 j2

yi
j1 j2 jξ

j + · · · + ∂L

∂yi
j1 j2··· jp

yi
j1 j2··· jp jξ

j .

(15.21)
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Combining terms and replacing ηi with µi + yi
jξ

j in (15.21), yields

X{p}L + L(D jξ
j ) = D j (Lξ j ) + µi ∂L

∂yi

+ D j1µ
i ∂L

∂yi
j1

+ D j1 j2µ
i ∂L

∂yi
j1 j2

+ · · · + D j1 j2··· jq µ
i ∂L

∂yi
j1 j2··· jp

. (15.22)

Introduce the Euler operator

Ei ( ) = ∂( )
∂yi

− D j1

(

∂( )
∂yi

j1

)

+ D j1 j2

(

∂( )
∂yi

j1 j2

)

− · · ·

+ · · · + (−1)p D j1 j2··· jp

(

∂( )
∂yi

j1 j2··· jp

)

, (15.23)

and use (15.23) to replace ∂L/∂yi in (15.22):

X{p}L + L(D jξ
j )

= D j (Lξ j ) + µi (Ei L)

+ µi D j1

(

∂L

∂yi
j1

)

− µi D j1 j2

(

∂L

∂yi
j1 j2

)

+ · · · (−1)p−1µi D j1 j2··· jp

(

∂L

∂yi
j1 j2··· jp

)

+ D j1µ
i
(

∂L

∂yi
j1

)

+ D j1 j2µ
i
(

∂L

∂yi
j1 j2

)

+ · · · + D j1 j2··· jp µ
i
(

∂L

∂yi
j1 j2··· jp

)

.

(15.24)

Integrating by parts repeatedly, (15.24) can be rearranged to read as follows:

X{p}L + L(D jξ
j ) = D j (Lξ j ) + µi (Ei L) + D j1θ

j1 , (15.25)

where

θ j1 =
[

µi

{

∂L

∂yi
j1

− D j2
∂L

∂yi
j1 j2

+ D j2 j3
∂L

∂yi
j1 j2 j3

− · · · + (−1)p−1 D j2··· jp

∂L

∂yi
j1··· jp

}

+ D j2µ
i

{

∂L

∂yi
j1 j2

− D j3
∂L

∂yi
j1 j2 j3

+ D j3 j4
∂L

∂yi
j1··· j4

· · ·

(−1)p−2 D j3··· jp

∂L

∂yi
j1··· jp

}
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+ D j2 j3µ
i

{

∂L

∂yi
j1 j2 j3

− D j4
∂L

∂yi
j1··· j4

+ · · · (−1)p−3 D j4··· jp

∂L

∂yi
j1··· jp

}

+ · · ·

+ D j2··· jp−1µ
i

{

∂L

∂yi
j1 j2··· jp−1

− D jp

∂L

∂yi
j1··· jp

}

+ D j2··· jp µ
i

{

∂L

∂yi
j1 j2··· jp

}]

. (15.26)

The transformation of the integral (15.14) finally becomes

S̃ = S + s
∫

(µi (Ei L) + D j1 (Lξ j1 + θ j1 )) dV . (15.27)

Since the volume of integration is arbitrary, invariance of the integral (15.2)
can hold only if the integrand in (15.27) is zero. We can now state Noether’s
theorem in the following form.

Theorem 15.1. Let L[x, y, y1, . . . , y p] be a differential function. The action
integral

S =
∫

L[x, y, y1, . . . , y p] dx1 dx2 · · · dxn (15.28)

is invariant under the Lie–Bäcklund group (15.3) with infinitesimals (ξ j , ηi )
( j = 1, . . . , n, i = 1, . . . , m) if and only if

µi (Ei L) + D j1 (Lξ j1 + θ j1 ) = D j1β
j1 , (15.29)

where µi = ηi − yi
αξα and

∫

β j d A j = 0. The vector θ j1 is

θ j1 =
[

µi

{

∂L

∂yi
j1

+
p

∑

k=2

(−1)k−1 D j2··· jk
∂L

∂yi
jl ··· jk

}

+
p−1
∑

λ=2

[

D j2··· jλµ
i

{

∂L

∂yi
j1··· jλ

+
p−1
∑

k=λ

(−1)k−λ+1 D jλ+1··· jk+1

∂L

∂yi
jl ··· jλ+1··· jk+1

}]

+ D j2··· jp µ
i

{

∂L

∂yi
j1 j2··· jp

}]

. j1 = i, . . . , n (15.30)
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The condition (15.29) is met if y is a solution of the generalized Euler–Lagrange
system

Ei L = ∂L
∂yi

+
p

∑

k=1

(−1)k D j1 j2··· jk
∂L

∂yi
j1 j2··· jk

= 0 (15.31)

and if

D j (Lξ j + θ j − β j ) = 0 (15.32)

holds on solutions of (15.31). The combination

) j = Lξ j + θ j − β j (15.33)

is a conserved vector for the system (15.31), and (15.32) is a conservation law.

The infinitesimals that leave the integral (15.28) invariant are found by
investigating the invariance properties of the generalized Euler–Lagrange sys-
tem Ei L = 0. The operator X = ξ j (∂/∂x j ) + ηi (∂/∂yi ) that generates a con-
served vector (15.33) is called a variational symmetry. For a given equation,
derivable from a Lagrangian, the variational symmetries are a subset of the set
of Lie point and Lie–Bäcklund symmetries. Stephani [15.2] distinguishes be-
tween variational symmetries, where

∫

A β j d A j = 0, and Noether symmetries,
where

∫

A β j d A j = constant, causing the action in (15.17) to be shifted by a
constant.

Noether’s theorem is the justification for the discussion in Chapter 1, where
it was stated that the symmetries are as fundamental as the conservation laws
themselves. It is one of the major advances in modern physics for it highlights
the key role of symmetries in the analysis of physical phenomena.

15.2 Examples

Example 15.1 (The free motion of a mass in the absence of body forces). The
Lagrangian for a mass moving in the absence of any body forces is given by its
kinetic energy

L = 1
2 m

((

x1
t

)2 +
(

x2
t

)2 +
(

x3
t

)2)
. (15.34)

The Euler equations corresponding to (15.34) are as follows

Ei L = ∂L
∂xi

− Dt

(

∂L

∂xi
t

)

= −Dt (mxi
t ) = −mxi

tt = 0, (15.35)
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which states that the acceleration of the particle is zero. The Euler system
(15.35) is invariant under the four-parameter group of space–time translations,

X1 = ∂

∂x1
, X2 = ∂

∂x2
, X3 = ∂

∂x3
, X4 = ∂

∂t
, (15.36)

and the three-parameter group of rotations SO(3),

X5 = y
∂

∂z
− z

∂

∂y
, X6 = z

∂

∂x
− x

∂

∂z
, X7 = x

∂

∂y
− y

∂

∂x
. (15.37)

Actually the system (15.35) is invariant under a much more general projective
group, of which the operators (15.36) and (15.37) are a subgroup. See Chapter 8,
Section 8.6.1. Using (15.26) and (15.33), conserved vectors corresponding to
each of the groups can be constructed. In this case, where time is the only
independent variable, the conserved vectors have only one component.

Conserved vectors corresponding to each of the independent space transla-
tions are the three components of the momentum,

P1 = Lξ j +
(

ηi − yi
αξα

) ∂L

∂yi
j

= ∂L
∂x1

t
= mx1

t ,

P2 = Lξ j +
(

ηi − yi
αξα

) ∂L

∂yi
j

= ∂L
∂x2

t
= mx2

t , (15.38)

P3 = Lξ j +
(

ηi − yi
αξα

) ∂L

∂yi
j

= ∂L
∂x3

t
= mx3

t .

The vector momentum is usually denoted P , and so the conserved quantity is

P = mv . (15.39)

The conserved “vector” corresponding to invariance under time translation is
the kinetic energy of the particle,

−E = Lξ j + (ηi − yi
αξα)

∂L

∂yi
j

= L(1) + (−xi
t )

∂L

∂xi
t

= 1
2 m

(

(

x1
t

)2 +
(

x2
t

)2 +
(

x3
t

)2
)

− m
(

(

x1
t

)2 +
(

x2
t

)2 +
(

x3
t

)2
)

= − 1
2 m

(

(

x1
t

)2 +
(

x2
t

)2 +
(

x3
t

)2
)

, (15.40)

or

E = 1
2 mv2. (15.41)
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Invariance under rotation produces the three components of angular momentum,

M1 = Lξ j +
(

ηi − yi
αξα

) ∂L

∂yi
j

= x3 ∂L
∂x2

t
− x2 ∂L

∂x3
t

= m
(

x2x3
t − x3x2

t

)

,

M2 = Lξ j +
(

ηi − yi
αξα

) ∂L

∂yi
j

= x1 ∂L
∂x3

t
− x3 ∂L

∂x1
t

= m
(

x3x1
t − x1x3

t

)

,

M3 = Lξ j +
(

ηi − yi
αξα

) ∂L

∂yi
j

= x2 ∂L
∂x1

t
− x1 ∂L

∂x2
t

= m
(

x1x2
t − x2x1

t

)

,

(15.42)

or

M = r × P. (15.43)

In Chapter 1 it was stated that the fundamental symmetries of free space
are homogeneity and isotropy. Time is also homogeneous and isotropic. The
equations of motion remain the same when the sign of time is changed. Thus
the homogeneity of space leads to conservation of momentum, the isotropy of
space leads to conservation of angular momentum, and the homogeneity of time
leads to conservation of energy.

Example 15.2 (A particle moving under the influence of a spherically
symmetric inverse-square body force). The Lagrangian for such a par-
ticle is

L = 1
2

m
((

x1
t

)2 +
(

x2
t

)2 +
(

x3
t

)2) + γ

((x1)2 + (x2)2 + (x3)2)1/2
. (15.44)

If γ < 0, the force is repelling from the origin. If γ > 0, the force is attracting
to the origin. The corresponding Euler-Lagrange equations are

∂L
∂xi

− Dt

(

∂L

∂xi
t

)

= −
(

γ xi

r3
+ mxi

tt

)

= 0, i = 1, 2, 3, (15.45)

where

r = ((x1)2 + (x2)2 + (x3)2)1/2. (15.46)

From Chapter 14 Section 14.4.3 we know that the system (15.45) is invariant
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under a five-parameter group of time translation, three rotations, and one
dilation,

X1 = ∂

∂t
,

X2 = y
∂

∂z
− z

∂

∂y
, X3 = z

∂

∂x
− x

∂

∂z
, X4 = x

∂

∂y
− y

∂

∂x
(15.47)

X5 = 2x
∂

∂x
+ 2y

∂

∂y
+ 2z

∂

∂z
+ 3t

∂

∂t
.

Invariance under time translation leads to the expression for the total energy of
the system,

−E = Lξ j +
(

ηi − yi
αξα

) ∂L

∂yi
j

= L(1) +
(

− xi
t

) ∂L

∂xi
t

= 1
2

m
(

(

x1
t

)2 +
(

x2
t

)2 +
(

x3
t

)2
)

+ γ

((x1)2 + (x2)2 + (x3)2)1/2

− m
(

(

x1
t

)2 +
(

x2
t

)2 +
(

x3
t

)2
)

= −1
2

m
(

(

x1
t

)2+
(

x2
t

)2 +
(

x3
t

)2
)

+ γ

((x1)2 + (x2)2 + (x3)2)1/2
, (15.48)

or

E = 1
2

mv2 − γ

r
, (15.49)

as a conserved quantity.
Invariance under rotation leads to conservation of the three components of

angular momentum,

M1 = Lξ j +
(

ηi − yi
αξα

) ∂L

∂yi
j

= x3 ∂L
∂x2

t
− x2 ∂L

∂x3
t

= m
(

x2x3
t − x3x2

t

)

,

M2 = Lξ j +
(

ηi − yi
αξα

) ∂L

∂yi
j

= x1 ∂L
∂x3

t
− x3 ∂L

∂x1
t

= m
(

x3x1
t − x1x3

t

)

,

M3 = Lξ j +
(

ηi − yi
αξα

) ∂L

∂yi
j

= x2 ∂L
∂x1

t
− x1 ∂L

∂x2
t

= m
(

x1x2
t − x2x1

t

)

,

(15.50)

or

M = r × P. (15.51)
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Now, if we try to follow Noether’s theorem and use invariance under the dilation
group X5 to produce a conservation law, the result is

R = Lξ j +
(

ηi − yi
αξα

) ∂L

∂yi
j

= 3
4

mt
(

(

x1
1

)2 +
(

x2
t

)2 +
(

x3
t

)2
)

− 3
2

γ t
((x1)2 + (x2)2 + (x3)2)1/2

+
(

x1 − 3
2

t x1
t

)

mx1
t +

(

x2 − 3
2

t x2
t

)

mx2
t +

(

x3 − 3
2

t x3
t

)

mx3
t

= −
(

3
4

)

mt
(

(

x1
t

)2 +
(

x2
t

)2 +
(

x3
t

)2
)

− 3
2

γ t
(

(x1)2 + (x2)2 + (x3)2
)1/2

+ m
(

x1x1
t + x2x2

t + x3x3
t

)

, (15.52)

or

R = − 3
2 Et + P · x. (15.53)

If we take the divergence of (15.53), the result using (15.45) is

Dt
(

− 3
2 E t + P · x

)

= 1
2 mv2, (15.54)

which is not a conserved quantity. The dilation group X5 is not a variational
symmetry of the Kepler system.

The system (15.45) is also invariant under the three-parameter Lie–Bäcklund
transformation

X6 =
(

2x1xi
t − xi x1

t −
(

xk xk
t

)

δi
1

) ∂

∂xi
,

X7 =
(

2x2xi
t − xi x2

t −
(

xk xk
t

)

δi
2

) ∂

∂xi
, (15.55)

X8 =
(

2x3xi
t − xi x3

t −
(

xk xk
t

)

δi
3

) ∂

∂xi
.

Let’s construct the one-component conserved vectors corresponding to each
of these groups. Let x = x1, y = x2, and z = x3. Thus the once extended group
corresponding to X6 is

X6
{1} = (−yyt − zzt )

∂

∂x
+ (2xyt − yxt )

∂

∂y
+ (2xzt − zxt )

∂

∂z

+
(

−y2
t − yytt − z2

t − zztt
) ∂

∂xt

+ (xt yt + 2xytt − yxtt )
∂

∂yt

+ (xt zt + 2xztt − zxtt )
∂

∂zt
. (15.56)
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The action of this operator on the Lagrangian is

X6
{1}L = 2γ

r3

(

xyyt − y2xt + xzzt − z2xt
)

, (15.57)

where (15.45) has been used to eliminate the second-derivative terms. The result
(15.57) can be written as

X6
{1}L = −Dt

(

2γ
x
r

)

, (15.58)

where

r = (x2 + y2 + z2)1/2. (15.59)

The expression 2γ x/r is the vector B j that appears in (15.16). Note that ξ j = 0
for the groups (15.55). This process can be repeated for the remaining operators
in (15.55) to give

X7
{1}L = −Dt

(

2γ
y
r

)

,

(15.60)
X8

{1}L = −Dt

(

2γ
z
r

)

.

Now the conserved vector (15.33) can be constructed as follows:

−2Q1 = Lξ j +
(

ηi − yi
αξα

) ∂L

∂yi
j

− B j = ηi ∂L

∂yi
j

+ 2γ
x1

r

= −mxi
t η

i + 2γ
x1

r

=
(

2x1xi
t − xi x1

t −
(

xk xk
t

)

δi
1

)(

−mxi
t

)

+ 2γ
x1

r

= m
(

xk xk
t x1

t + xi xi
t x1

t − 2x1xi
t x i

t

)

+ 2γ
x1

r
. (15.61)

Similarly,

−2Q2 = m
(

xk xk
t x2

t + xi xi
t x2

t − 2x2xi
t x i

t

)

+ 2γ
x2

r
,

(15.62)

−2Q3 = m
(

xk xk
t x3

t + xi xi
t x3

t − 2x3xi
t x i

t

)

+ 2γ
x3

r
.

In vector notation,

Q = m((u · u)x − (x · u)u) − γ
x
r
, (15.63)

where u = xt . One can show that Dt (Q) = 0.
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Using the vector identity u × (x × u) = x(u · u) − u(u · x), the conserved
vector (15.63) can be written as

Q = u × M − γ
x
r
. (15.64)

This vector originates in a Lie–Bäcklund symmetry of the Kepler equations
and is called in the literature Laplace’s vector or the Runge–Lenz vector. The
vector Q lies in the plane of the orbit and points along the major axis from
the origin (which in the reduced-mass problem is a focus of the orbit) toward
the perihelion (the point of closest approach to the origin). The magnitude of
Q is proportional to the eccentricity of the orbit:

|Q| = γ e = γ

(

1 + 2H)2

mα2

)1/2

. (15.65)

In summary, there are a total of seven conserved quantities for this problem:

E = 1
2

mv2 − γ

r
,

M = r × P, (15.66)

Q = u × M − γ
x
r
.

In addition to these constants of the motion, there is the scaling symmetry
X5 that gives Kepler’s third law. Although X5 does not produce a conservation
law for the Kepler system, such a possibility is not precluded simply because
the symmetry is a dilation. See Exercise 15.3.

Example 15.3 (Conservation law for a higher-order PDE). The fourth-order
PDE

ψt t + ψxxxx + 2ψxxyy + ψyyyy = 0 (15.67)

can be derived from the Lagrangian

L = 1
2ψ2

t − (ψxx + ψyy)2. (15.68)

Equation (15.67) is invariant under the translation in time, X = ∂/∂t . The con-
served vector generated from this symmetry using (15.30) is

) j1 = Lξ j1 + θ j1 , (15.69)
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where

θ j1 = µi

{

∂L

∂yi
j1

− D j2
∂L

∂yi
j1 j2

}

+ D j2µ
i

{

∂L

∂yi
j1 j2

}

(15.70)

For the present problem, noting that η = 0, ξ t = 1, ξ x = 0, and ξ y = 0, these
relations become, )t = L + θ t , )x = θ x , and )y = θ y , and, taking the indicated
derivatives, the components of θ j1 are

θ t = −ψt

{

∂L
∂ψt

− Dt
∂L
∂ψt t

− Dx
∂L

∂ψt x
− Dy

∂L
∂ψt y

}

+ Dt (−ψt )
{

∂L
∂ψt t

}

+ Dx (−ψt )
{

∂L
∂ψt x

}

+ Dy(−ψt )
{

∂L
∂ψt y

}

= −ψ2
t ,

(15.71)

θ x = −ψt

{

∂L
∂ψx

− Dt
∂L

∂ψxt
− Dx

∂L
∂ψxx

− Dy
∂L

∂ψxy

}

+ Dt (−ψt )
{

∂L
∂ψxt

}

+ Dx (−ψt )
{

∂L
∂ψxx

}

+ Dy(−ψt )
{

∂L
∂ψxy

}

= 2Dxψt (ψxx + ψyy) − 2ψt Dx (ψxx + ψyy), (15.72)

and

θ y = (−ψt )
{

∂L
∂ψy

− Dt
∂L

∂ψyt
− Dx

∂L
∂ψyx

− Dy
∂L

∂ψyy

}

+ Dt (−ψt )
{

∂L
∂ψyt

}

+ Dx (−ψt )
{

∂L
∂ψyx

}

+ Dy(−ψt )
{

∂L
∂ψyy

}

= 2Dyψt (ψxx + ψyy) − 2ψt Dy(ψxx + ψyy), (15.73)

giving the conservation law for (15.67), namely

Dt

{

1
2ψ2

t + (ψxx + ψyy)2
}

+ Dx {2ψt Dx (ψxx + ψyy) − 2(ψxx + ψyy)Dxψt }

+ Dy
{

2ψt Dy(ψxx + ψyy) − 2(ψxx + ψyy)Dyψt
}

= 0. (15.74)

15.3 Concluding Remarks

This concludes our discussion of the invariance condition for an integral of a
differential function. The derivation of Noether’s theorem provides a fitting end
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to our theoretical development of symmetry analysis. The main results (15.31)
and (15.32) unite two vast disciplines: Lagrangian–Hamiltonian Dynamics and
Symmetry theory that by themselves unify a wide diversity of physical phenom-
ena. The brief introduction presented here is mainly intended to bring closure
to the material on dynamics in Chapter 4 by revisiting it in the context of Lie–
Bäcklund symmetries presented in Chapter 14. The result is a mere glimpse into
an important and growing field. In the final chapter we will discuss a class of
generalized symmetries called Bäcklund transformations. These are normally
not defined as parametric mappings, and at first sight there would seem to be no
direct connection to either Lie point or Lie–Bäcklund groups. However, as we
shall see, such a connection can often be made, and when it is, nonlocal groups
are often involved.

15.4 Exercises

15.1 Take the Kepler system,

(

γ xi

r3
+ mxi

tt

)

= 0, i = 1, 2, 3, (15.75)

and put it into canonical form as a set of six first-order ODEs. Set up the
characteristic equations, and write down the first-order PDE that gov-
erns integrals of the system. Use the software package IntroToSym-
metry.m to work out all the point and first-order Lie–Bäcklund sym-
metries of the resulting system. Compare with the results in Example
15.2. Work out the integrals of this system, and compare with the re-
sults in (15.66). Are all seven conserved quantities in (15.66) indepen-
dent?

15.2 Show that Dt Q = 0, where Q is the Runge–Lenz vector (15.64).
15.3 In Chapter 4, Example 4.4 we solved the two-body problem in a cen-

tral force field with a general potential function V [r ]. The equations of
motion are

mxi
tt + xi

r

(

∂V
∂r

)

= 0. (15.76)

The solution for the radius is expressed implicitly in terms of the time

t =
∫ r

r0

dr
( 2

m (H − V [r ]) − )2

m2r2

)1/2 , (15.77)



References 513

and the angle is determined from conservation of angular momentum:

θ − θ0 =
∫ r

r0

)dr

r2
(

2m(H − V [r ]) − )2

r2

)1/2 . (15.78)

For a general V [r ] the particle is constrained to move in an annular disk
between two radii, rmin and rmax. Eventually the particle motion fills the
region between the two radii. Only when V = −γ /r does the trajectory
execute a closed path, and this is the situation for the Kepler problem. The
quantity )2/(m2r2) is called the centrifugal energy [15.3] and becomes
infinite as the radius of the orbit goes to zero, preventing the particle
from falling in to the origin for any initial condition with a finite angular
momentum. The term

( 2
m

)

V [r ] +)2/(m2r2) in the integrands in (15.77)
and (15.78) is called the effective potential energy, and the only way the
particle can fall to the origin is if this term becomes negative or zero as
the radius goes to zero. In this case the attractive force at the origin is
strong enough to overcome the centrifugal energy. Study the symmetries
and conservation laws for the system (15.76) for V = −γ /rn . Show that
for the case n = 2 the dilation group generates a variational symmetry.
Compare your result with Example 15.2, and interpret it physically. What
is special about n = 2?

15.4 Show that the fourth-order PDE treated in Example 15.3,

ψt t + ψxxxx + 2ψxxyy + ψyyyy, = 0 (15.79)

can be derived from the Lagrangian

L = 1
2ψ2

t − (ψxx + ψyy)2. (15.80)

Use the package IntroToSymmetry.m to work out all point sym-
metries of the equation (15.79). Note that the linearity of the equa-
tion means that an arbitrary solution of (15.79) will appear in η, the
infinitesimal transformation of ψ . This will be evidenced by the pack-
age as successively higher-order terms in the solution for η that will need
to be collected together in order to identify the remaining groups. Use
Noether’s theorem to generate a conservation law from each of the point
symmetries of the equation.
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16
Bäcklund Transformations and Nonlocal Groups

In the discussion of one-parameter Lie groups we made quite a fuss over the
parametric nature of the transformations and the fact that the group definition
ensures that they are single-valued, one-to-one invertible maps. The analytic
nature of Lie groups is the main attribute that makes them so useful and that
enabled Lie to develop the infinitesimal theory.

Lie contact and Lie Bäcklund transformations were given the same under-
pinning through the introduction of the space of differential functions and the
enforcement of the contact conditions. These higher-order parametric transfor-
mations enjoy the same features as conventional groups. In particular, they can
be used to transform a differential equation either to itself or to another equation
without raising the order – all in all, a remarkable property, given the depen-
dence of the basic (nonextended) transformation on first and possibly higher
derivatives.

There exists a large class of nonparametric, many-valued transformations
that also have the property that they can be used to transform an equation
without raising the order. These are generically called Bäcklund transforma-
tions and arise in many different forms and contexts. A general discussion
of Bäcklund transformations and their categorization can be found in Forsyth
[16.1].

Most (but not all) applications involve two independent variables and one
dependent variable u(x, y). A typical Bäcklund transformation is of the form

x̃ = x,

ỹ = y,
(16.1)

ũ x̃ = G1[x, y, u, ux , uy],

ũ ỹ = G2[x, y, u, ux , uy].

Recalling the discussion of equivalence transformations in Chapter 14, we

515
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recognize that there is no real loss of generality in leaving the independent
variables untransformed.

In contrast to a one-parameter Lie group, the Bäcklund transformation (16.1)
has no standing in and of itself. It must be accompanied by the integrability
condition,

∂2ũ
∂x ∂y

= ∂G1

∂y
= ∂G2

∂x
. (16.2)

This condition is generally satisfied only if the functions u(x, y) and ũ(x̃, ỹ)
are solutions of some PDE or pair of PDEs. If both solve the same PDE, the
transformation is termed an auto-Bäcklund transformation. It is in this sense that
the transformation (16.1) must be viewed as many-valued. If we supply specific
numbers for (x, y, u, ux , uy) to the right-hand side of (16.1), then specific values
for the first derivatives on the left are determined, but the function ũ is not
assigned a value. It can range over the entire subset of solutions corresponding
to the particular values assigned to the first derivatives.

Bäcklund transformations can be extremely useful for generating solutions
of nonlinear equations. Great progress has been made, especially in the past
four decades, and a large number of Bäcklund transformations are now known.
A modern exposition of this topic can be found in the text by Rogers and Ames
[16.2]. Bäcklund transformations tend to fall generally into two categories:
those that transform a nonlinear equation to a linear one, and auto-Bäcklund
transformations (mentioned above) that map a nonlinear equation to itself. In
the first case, linear methods can be used to solve the equation completely
for a broad class of boundary and initial conditions. In the second case the
transformation can be used recursively to generate a sequence of solutions,
sometimes leading to a nonlinear superposition principle for the equation. The
great value of these transformations is in their ability to generate large classes
of nontrivial exact solutions for nonlinear partial differential equations and the
deep insight into the fundamental nature of nonlinearity that results.

At first sight, Bäcklund transformations seem unrelated to Lie groups. Al-
though arbitrary constants often appear in the transformations, they generally
do not define a one-to-one invertible map as in one-parameter Lie groups.
Nevertheless, a Bäcklund transformation is an expression of a fundamental
symmetry of an equation, and so some connection to a Lie group might be
expected. In fact such a connection can be drawn, and in the several exam-
ples described in this chapter, Bäcklund transformations are shown to arise
directly from a one-parameter point or nonlocal group symmetry of a potential
equation one or even two integrations removed from the original differential
equation.



16.1 Two Classical Examples 517

16.1 Two Classical Examples

A couple of examples will illustrate some of the basic ideas. Both examples are
generalizations of the famous Klein–Gordon equation

θt t − θxx + θ = 0, (16.3)

which admits periodic solutions of the form

θ = A cos(κx −ωt), (16.4)

where the frequency ω is a real function of the wave number κ. Solutions of the
Klein–Gordon equation are dispersive in that the phase speed of a wave depends
on the wave number, c(κ) = ω(κ)/κ. In a superposition of waves of different
wavelength, unless ω(κ) = c0κ (i.e., ωκκ ̸= 0), the various modes moving at
different speeds will tend to separate, and an initially narrow solution will tend to
broaden as it evolves. The Klein–Gordon equation is the protypical example of a
linear equation with a nontrivial dispersion relation, ω2 = κ2 + 1, c = κ + 1/κ .

The simplest nonlinear generalization of the Klein–Gordon equation is

θt t − θxx + f (θ) = 0. (16.5)

Two of the most widely studied choices of f (θ) will be discussed below.

16.1.1 The Liouville Equation

This is

θȳ ȳ − θx̄ x̄ + e−θ = 0. (16.6)

Using the new variables

x = x̄ − ȳ
2

, y = x̄ + ȳ
2

, (16.7)

equation (16.6) can be transformed to the familiar cross-derivative form of the
Liouville equation,

θxy = e−θ. (16.8)

This equation admits the Bäcklund transformation

θ̃ x − θx

2
= ae−(θ̃+θ )/2,

θ̃ y + θy

2
= be−(θ̃−θ )/2.

(16.9)
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To see the relationship between (16.8) and (16.9) we have to generate the
integrability condition (16.2) by differentiating the first transformation with
respect to y and the second with respect to x :

θ̃ xy − θxy

2
= −ae−(θ̃+θ)/2 θ̃ y + θy

2
= −abe−θ̃ ,

θ̃ xy + θxy

2
= −be−(θ̃−θ )/2 θ̃ x − θx

2
= −abe−θ̃ .

(16.10)

Now add and subtract the equations in (16.10). The functions θ and θ̃ must
satisfy the PDEs

θ̃ xy = −2abe−θ̃ ,

θxy = 0.
(16.11)

If we choose b = −1/(2a), then

θ̃ xy = e−θ̃ (16.12)

and

θxy = 0. (16.13)

The general solution of (16.13) is

θ = f [x] + g[y], (16.14)

where f and g are arbitrary functions. The Bäcklund transformation (16.9)
provides the solution of (16.12) through the quadrature d θ̃ = θ̃ x̃ d x̃ + θ̃ ỹ d ỹ:

d θ̃ =
(

2ae−(θ̃ + f + g)/2 + fx
)

dx +
(

− 1
a

e−(θ̃− f −g)/2 − gy

)

dy. (16.15)

For example, if we seed the process with f = g= 0, the corresponding exact
solution of the Liouville equation found by integrating (16.15) is

θ̃ = ln
[

ax − 1
2a

y + C
]2

, (16.16)

which exhibits a singularity propagating along the line y = 2a2x + 2aC as
shown in Figure 16.1. Further solutions can be generated by selecting other
seed functions.

Now let’s consider an example of an auto-Bäcklund transformation.
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Fig. 16.1. Basic solution (16.16) of the Liouville equation with a = 1, C = 0.

16.1.2 The Sine–Gordon Equation

Now choose f [θ ] = sin[θ]. Transforming to new variables as in the above
example, the resulting equation is

θxy = sin[θ]. (16.17)

This equation admits the auto-Bäcklund transformation

θ̃ x − θx

2
= a sin

[

θ̃ + θ

2

]

,

θ̃ y + θy

2
= 1

a
sin

[

θ̃ − θ

2

]

.

(16.18)

Now generate the integrability condition

θ̃ xy − θxy

2
= a cos

[

θ̃ + θ

2

]

θ̃ y + θy

2
= cos

[

θ̃ + θ

2

]

sin
[

θ̃ − θ

2

]

,

θ̃ xy + θxy

2
= 1

a
cos

[

θ̃ − θ

2

]

θ̃ x − θx

2
= cos

[

θ̃ − θ

2

]

sin
[

θ̃ + θ

2

]

.

(16.19)

First add the two equations above yielding

θ̃ xy = sin[θ̃ ]. (16.20)

Then subtract to give

θxy = sin[θ]. (16.21)
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We can generate solutions from the Bäcklund transformation just as in the
previous example. Let’s seed the process with the solution θ = 0. Then (16.18)
gives

θ̃ x = 2a sin
[

θ̃

2

]

,

θ̃ y = 2
a

sin
[

θ̃

2

]

.

(16.22)

The solution is generated from the quadrature

d θ̃ = θ̃ x dx + θ̃ y dy = 2a sin
[

θ̃

2

]

dx + 2
a

sin
[

θ̃

2

]

dy. (16.23)

Integrating (16.23),
∫

d θ̃

sin [θ̃/2]
= 2ax + 2

a
y + 2C (16.24)

produces the exact solution

θ̃ = 4 tan−1 [

eax+(1/a)y+C]

, (16.25)

where C is a constant of integration. Equation (16.25), shown in Figure 16.2,
depicts a smooth step located at the origin.

-4 -2 2 4
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θ̃

x + y

π

2π

Fig. 16.2. Fundamental solution of (16.17) for a = 1, C = 0.
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The sine–Gordon equation was studied in relation to the theory of surfaces
of negative curvature by Darboux [16.3] and Bianchi [16.4], [16.5]. Bianchi
showed that a theorem of permutability (a law of nonlinear superposition) exists
for the sine–Gordon equation. If θ1, θ2, θ3 are solutions of (16.17), then a fourth
solution can be determined from

tan
[

θ4 − θ1

4

]

= a2 + a3

a2 − a3
tan

[

θ2 − θ3

4

]

. (16.26)

In recent years the sine–Gordon equation has been shown to govern a wide
variety of wave phenomena where the coordinate y is timelike. The solution
(16.25) can be regarded as a “front” that propagates undeformed in the minus
x-direction. It illustrates, for this equation, a balance that can occur between the
effects of dispersion, which tend to spread the front, and those of nonlinearity,
which tend to steepen the front. This is a prototypical example of a solitary
wave.

16.2 Symmetries Derived from a Potential Equation;
Nonlocal Symmetries

In the previous examples, the Bäcklund transformations (16.9) and (16.18) were
simply stated a priori, and the implications for finding solutions of the associ-
ated nonlinear PDE were then discussed. But the nagging question is: Where do
these transformations come from? In particular, are they related to a Lie sym-
metry of the equation, and if they are, how can this symmetry be found? The
general answer to this question is not known. However, in the remainder of this
chapter several important examples will be described where the required trans-
formation can be generated from a Lie symmetry of a related potential equation.
The equivalent symmetry of the original equation is generally nonlocal. That
is, it involves an integral of the dependent variable. The nonlocality of these
symmetries is both encouraging and troublesome. The upside is that when such
a symmetry can be found, it can often be used in quite remarkable ways to
generate exact solutions of nonlinear problems. The downside is that when we
solve the determining equations of the group for any given system of PDEs,
we must be prepared to search for solutions that may involve integrals of the
dependent variables. This is not an easy task, since there are no general meth-
ods for finding such solutions. For this reason they are often termed hidden
symmetries.

Perhaps the clearest example of this is the use of a nonlocal symmetry to
achieve the complete integration of the Burgers equation.
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16.2.1 Solution of the Burgers Equation

In the late 1930s, J. M. Burgers [16.6], [16.7] at the University of Delft looked
at a variety of model equations that were intended to reproduce several key as-
pects of the physical behavior of turbulent flow. He was particularly interested in
modeling the well-known kinetic energy cascade where, at high Reynolds num-
ber, turbulence comprises a wide range of eddy length scales. Most of the kinetic
energy is contained in the viscosity-independent, low-velocity-gradient, large
scales and most of the dissipation of kinetic energy occurs in the viscosity-
dependent, high-velocity-gradient, small scales. We discussed this ubiquitous
feature of turbulence at some length in Chapter 13.

Burgers’s idea was to seek evolution equations that were simplifications of
the Navier–Stokes equations but contained the essential features of nonlinear
convection and linear diffusion, in the hope of reproducing some of the essential
physics. In his famous 1939 paper he looked at several candidates and finally
concentrated his attention on the nonlinear convective heat equation,

ut + uux − νuxx = 0, (16.27)

which has been known as the Burgers equation ever since. In Burgers’ nota-
tion u is the flow velocity in the x-direction and t is time. The equation can be
integrated in space to yield

d
dt

∫ ∞

−∞
u dx +

(

1
2

u2 − ν
∂u
∂x

)∞

−∞
= 0. (16.28)

As long as the velocity and velocity derivative are zero at infinity, the integral
of u is conserved.

Let

A =
∫ ∞

−∞
u dx, (16.29)

which we can interpret as the total one-dimensional impulse (cf. Chapter 11,
Section 11.5.1). One more quantity is needed to fully specify the problem. Let
u0 be the amplitude of the initial distribution of velocity:

u[x, 0] = u0g[x], (16.30)

where g is dimensionless. Define new variables as follows:

U= u
u0

, χ= xu0

ν
, τ = u2

0t
ν

. (16.31)



16.2 Symmetries Derived from a Potential Equation 523

Equations (16.27) and (16.29) become

Uτ + UUχ − Uχχ = 0 (16.32)

and

Re =
∫ ∞

−∞
U [χ ] dχ , (16.33)

where Re = A/ν can be thought of as an effective Reynolds number for the
problem.

16.2.1.1 Burgers Potential Equation Revisited

We want to solve (16.32) and (16.33) for general initial conditions (16.30). To
this end we first consider the potential equation that governs the incompletely
integrated impulse. Let

φ[χ ] =
∫ χ

−∞
U [χ̂ ] dχ̂ . (16.34)

The new variable φ is a potential function for U :

U = φχ . (16.35)

Substitute (16.35) into (16.32) to get

D
Dχ

(

φτ + 1
2

(φχ )2 − φχχ

)

= 0. (16.36)

The Burgers potential equation

φτ + 1
2

(φχ )2 − φχχ = 0 (16.37)

is invariant under the infinitesimal group

χ̃ = χ + sξ [χ , τ, φ],

τ̃ = τ + sζ [χ , τ, φ],

φ̃ = φ + sη[χ , τ, φ]

(16.38)

with the invariance condition

η{τ } + φχη{χ} − η{χχ} = 0. (16.39)
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We analyzed (16.37) and the invariance condition (16.39) in Chapter 14, Section
14.5.2.1, where we used the package IntroToSymmetry.m to solve for the
basic point symmetries of the equation. The equation is invariant under a six-
parameter Lie algebra with the following operators:

X1 = ∂

∂χ
, X2 = ∂

∂τ
, X3 = ∂

∂φ
,

X4 = τ
∂

∂χ
+ χ

∂

∂φ
, X5 = 1

2
χ

∂

∂χ
+ τ

∂

∂τ
,

X6 = 2χτ
∂

∂χ
+ 2τ 2 ∂

∂τ
+ (χ2 + 2τ )

∂

∂φ
.

(16.40)

These comprise all of the conventional point groups where the polynomial form
of the infinitesimals truncates, but, as we noted in Chapter 14, an additional
symmetry can also be found that solves (16.39), and it is worthwhile showing
some of the details. Let the transformation (16.38) be of the form

χ̃ = χ ,

τ̃ = τ,

φ̃ = φ + sη[χ , τ, φ].

(16.41)

The invariance condition (16.39) becomes

Dτ η + φχ Dχη − Dχχη = 0. (16.42)

Equation (16.42) is satisfied by the infinite-dimensional point group

η = f [χ , τ ]eφ/2, (16.43)

where f is any solution of the heat equation, fτ = fχχ . Let’s check (16.43)

Dτ η =
(

fτ + f
2

φτ

)

eφ/2,

φχ Dχη =
(

φχ fχ + f
2

φ2
χ

)

eφ/2,

Dχχη =
(

fχχ + fχφχ + f
4

φ2
χ + f

2
φχχ

)

eφ/2,

(16.44)

and the invariance condition (16.42) is

Dτ η + φχ Dχη − Dχχη = ( fτ − fχχ ) + eφ/2 f
2

(

φτ + 1
2
φ2

χ − φχχ

)

. (16.45)
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It works! The invariance condition is satisfied if f is a solution of the heat
equation and φ is a solution of (16.37). Now the question is: what finite trans-
formation corresponds to (16.43)? To answer this we must sum the Lie series,

φ̃ = φ + s Xφ + s2

2!
X (Xφ) + s3

3!
X (X X (φ)) + · · · , (16.46)

where the group operator is

X = f [χ , τ ]eφ/2 ∂

∂φ
. (16.47)

The first few terms are as follows:

Xφ = 2
(

f
2

eφ/2
)

,

X2φ = 2(1)
(

f
2

eφ/2
)2

,

X3φ = 2(1 × 2)
(

f
2

eφ/2
)3

,
(16.48)

X4φ = 2(1 × 2 × 3)
(

f
2

eφ/2
)4

,

X5φ = 2(1 × 2 × 3 × 4)
(

f
2

eφ/2
)5

,

...

Let

a = s
f
2

eφ/2. (16.49)

The Lie series (16.46) becomes

φ̃ = φ + 2
{

a + a2

2
+ a3

3
+ a4

4
+ a5

5
+ · · ·

}

. (16.50)

Consider the series

g(a) = a + a2

2
+ a3

3
+ a4

4
+ a5

5
+ · · · ,

dg
da

= a + a2 + a3 + a4 + a5 + · · · = 1
1 − a

.

(16.51)
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Integrating the second equation in (16.51) leads to

g(a) = − ln[1 − a]. (16.52)

Using this result in (16.50) generates the finite transformation corresponding
to the infinitesimal operator (16.47):

φ̃ = φ − 2 ln
[

1 − s
2

f [χ , τ ]eφ/2
]

, χ̃ = χ , τ̃ = τ. (16.53)

Once the process is complete, the group parameter s can obviously be merged
with f [χ , τ ], but for the moment we will retain it as a reminder of the origin
of (16.53) in a Lie series expansion of the group operator (16.47).

What is the implication of this result? Well, if, in (16.53), φ is a solution
of (16.37), then for any f [χ , τ ] that is a solution of the heat equation the new
function φ̃ is a new solution of (16.37). In effect, (16.53) is a machine for
churning out exact solutions of the Burgers potential equation (16.37).

To satisfy ourselves that the finite transformation (16.53) is correct, let’s work
out the transformations of derivatives to check that it leaves (16.37) invariant.
The transformation formulas for derivatives greatly simplify in this case, be-
cause the independent variables are not transformed. First derivatives transform
as follows:

φ̃τ̃ = Dτ

(

φ − 2 ln
[

1 − s
2

f [χ , τ ]eφ/2
])

= φτ +
(

fτ + f
2 φτ

)

seφ/2

1− s
2 feφ/2

(16.54)

and

φ̃χ̃ = Dx

(

φ − 2 ln
[

1 − s
2

f [χ , τ ]eφ/2
])

= φχ +
(

fχ + f
2 φχ

)

seφ/2

1− s
2 feφ/2

.

(16.55)

Squaring the first derivative produces

(φ̃χ̃ )2 = (φχ )2 +
(

2φχ fχ + f φ2
χ

)

seφ/2

1− s
2 f eφ/2

+
(

fχ + f
2 φχ

)2s2eφ

(

1− s
2 feφ/2

)2 . (16.56)

The second derivative transforms as

φ̃χ̃ χ̃ = Dχχ

(

φ − 2 ln
[

1 − s
2

f [χ , τ ]eφ/2
])

, (16.57)
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or

φ̃χ̃ χ̃ = φχχ +
(

fχχ + fχφχ + f
2 φχχ + f

4 φ2
χ

)

seφ/2

1− s
2 f eφ/2

+
(

fχ + f
2 φχ

)2 s2

2 eφ

(

1− s
2 f eφ/2

)2 .

(16.58)

Summing (16.54), (16.56), and (16.58) and canceling terms leads to the finite
transformation of the Burgers potential equation

φ̃τ̃ + 1
2

(φ̃χ̃ )2 − φ̃χ̃ χ̃ =
(

φτ + 1
2

(φχ )2 − φχχ

)

+
( fτ − fχχ ) + f

2

(

φτ + 1
2 (φχ )2 − φχχ

)

(

1− s
2 f eφ/2

) seφ/2

(16.59)

The right-hand side of (16.59) is proportional to Burgers potential equation, if
and only, if f [χ , τ ] is a solution of the heat equation: fτ− fχχ = 0.

16.2.1.2 The Nonlocal Group of the Burgers Equation

The finite transformation of the Burgers potential equation (16.53) will now be
used to generate solutions of the Burgers equation. Recall that U = φχ . Replace
φ in (16.53) with

φ =
∫ χ

−∞
U dχ̂ = D−1

χ U. (16.60)

The result is the finite one-parameter group corresponding to (16.53),

χ̃ = χ ,

τ̃ = τ,

Ũ = U + Dχ ln
[

1 − s
2

f [χ , τ ]eD−1
χ U/2

]−2

= U +
s
(

fχ + f
2 U

)

eD−1
χ U/2

1− s
2 f eD−1

χ U/2
,

(16.61)

which leaves the Burgers equation invariant. The transformation (16.61) is of
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the general form

χ̃ = F1[χ , τ, U, s],

τ̃ = F2[χ , τ, U, s],

Ũ = G[χ , τ, U, D−1
x U, s]

(16.62)

and represents an example of a nonlocal group – one that depends on all values
of the dependent variable over some interval of the independent variable.

Although the transformation (16.62) is rather nonstandard in its appearance,
it fits quite nicely within Lie theory in that it simply represents another type of
solution of the invariance condition, albeit one that is often not easy to find. The
fact that such a transformation can lead to a general solution of a nonlinear PDE
is a powerful reminder that there may be important symmetries out there that
are not simple point symmetries or conventional Lie–Bäcklund symmetries.
We need to recognize that solutions of the invariance condition can include in-
tegrals – even multiple integrals. Thus, the search for symmetries of an equation
is an open-ended process until all possible solutions of the invariance condition
have been nailed down.

Expand (16.61) for small values of s to generate the infinitesimal group
corresponding to (16.61),

χ̃ = χ ,

τ̃ = τ,

Ũ = U + s
(

fχ + f
2

U
)

eD−1
χ U/2.

(16.63)

The infinitesimal

η =
(

fχ + f
2

U
)

eD−1
χ U/2 (16.64)

is a nonlocal solution of the invariance condition for Burgers equation, namely

η{τ } + ηUχ + Uη{χ} − η{χχ} = 0. (16.65)

Since the independent variables are not transformed, the invariance condition
becomes

Dτ η + ηUχ + UDxη − Dχχη = 0. (16.66)
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When the various terms appearing in (16.66) are formed and summed, the
result is

(

fχ + f
2

U
)

eD−1
χ U/2

(

D−1
x Uτ

2
+ U 2

4
− Uχ

2

)

+ eD−1
χ U/2

(

( fτ − fχχ )χ + ( fτ− fχχ )
U
2

+ f
2

(Uτ + UUχ − Uχχ )
)

= 0.

(16.67)

Note that the coefficient of the first term is the integral of the Burgers equation,

D−1
x Uτ

2
+ U 2

4
− Uχ

2
= D−1

χ (Uτ + UUχ − Uχχ ). (16.68)

Thus the invariance condition (16.66) is satisfied as long as fτ − fχχ = 0 and
U is a solution of Uτ + UUχ − Uχχ = 0.

The remarkable transformation (16.61) can be used to generate solutions
of the Burgers equation by succesive transformation beginning with an initial
seed solution and with an arbitrary choice of f [χ , τ ] at each step. Note that the
transformation (16.61) preserves the conserved integral of the Burgers equation.
Substitute (16.61) into (16.29):

∫ ∞

−∞
Ũd x̃ =

∫ ∞

−∞
Udx − 2 ln

[

1 − s
2

f [χ , τ ]eD−1
χ U/2

]∞

−∞
. (16.69)

For f → 0 at plus and minus infinity the integral is invariant:
∫ ∞

−∞
Ũ d x̃ =

∫ ∞

−∞
U dx . (16.70)

16.2.1.3 The Cole–Hopf Transformation

Suppose we take U = 0 as a first solution. Then (16.61) becomes

Ũ = s fχ
1 − s

2 f
. (16.71)

If the function f is a solution of the heat equation, then so is

θ [χ , τ ] = 1 − s
2

f [χ , τ ]. (16.72)

The transformation (16.71) becomes

Ũ = −2
θχ

θ
. (16.73)
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This is the usual form given for the famous transformation of the Burgers
equation, discovered independently in the early 1950s by Hopf [16.8] and
Cole [16.9], that bears their names.

Although the Cole–Hopf transformation is often regarded as an infinitely
many-valued transformation and therefore outside the class of one-parameter
Lie groups, we can see from the development above that (16.73) actually arises
from a point group, (16.43), of the Burgers potential equation that leads, in turn,
to a nonlocal group, (16.61), of the Burgers equation.

The general transformation (16.61) can be rearranged in the form (16.73),
and so at first sight (16.61) would seem to be no more general than (16.73).
However, (16.61) has one attribute that is not shared by (16.73), which we will
now investigate. The Cole–Hopf transformation can be expressed as a Bäcklund
transformation,

θχ = − 1
2Uθ,

θτ = − 1
2 (Uθ)χ ,

(16.74)

where the second relation is generated by differentiating the first with respect to
x and making the replacement θχχ → θτ . Equating cross derivatives produces
the integrability condition

U (θτ − θχχ ) + θ (Uτ + UUχ − Uχχ ) = 0 (16.75)

that must be satisfied by (16.74) in order for it to have any meaning. Are
the transformations (16.74) and (16.61) the same? In one sense they are: they
generate the same solutions of the Burgers equation. But in one important
way they are not the same: the Bäcklund form (16.74) has no standing by
itself; it must be accompanied by the integrability condition θχτ = θτχ and
only makes sense when U is a Burgers-equation solution and θ is a heat-
equation solution. In contrast, (16.61) is a one-to-one invertible map; U and
all its derivatives are defined by the transformation. It can be used to transform
any integrable U given any f . In this respect, the Burgers-equation and heat-
equation solutions constitute only a subset of the general group defined by
(16.61).

16.2.1.4 Burgers Equation Related to Turbulence

What about Burgers’s original program to search for solutions with behav-
ior that resembles turbulence? Let’s look at the Burgers-equation solution
corresponding to the following solution of the heat equation involving the
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complementary error function erfc[x] = (2/
√

π )
∫ ∞

x e−ζ 2
dζ :

θ = 1 + eRe/2−1√
π

∫ ∞

χ/
√

4τ

e−ζ 2
dζ. (16.76)

The integral (16.33) is satisfied identically, and the corresponding Burgers-
equation solution is

U =
(

eRe/2 − 1
)

e−χ2/4τ

√
τ
(√

π +
(

eRe/2 − 1
) ∫ ∞

χ/
√

4τ
e−ζ 2 dζ

) . (16.77)

At small Reynolds numbers the solution (16.77) becomes

U = 1√
πτ

(

Re
2

)

e−χ2/4τ (16.78)

In dimensioned variables (16.78) is the elementary-source solution of the heat
equation,

u = A√
4πνt

e−x2/4νt . (16.79)

To study the solution at high Reynolds number, we follow Whitham [16.10]
and rearrange (16.77) to read as follows:

V = U
√

πτ√
Re

=
(

eRe/2 − 1
)

e−λ2 Re

√
Re

(

1 + eRe/2−1√
π

∫ ∞
λ
√

Re e−ζ 2
dζ

)

. (16.80)

The single-hump velocity distribution (16.80) is shown in Figure 16.3 for several
Reynolds numbers. If λ < 0 as Re → ∞ the complimentary error function in
the denominator of (16.80) goes to one and the solution simplifies to

V ≈ 1√
Re

e−λ2 Re. (16.81)

For λ > 0 the integral can be approximated asymptotically by

1√
π

∫ ∞

λ
√

Re
e−ζ dζ ≃ e−λ2 Re

2
√

π (λ
√

Re)
. (16.82)

If 0 < λ2 < 1
2 and Re → ∞,

V
√

τ → 2λ. (16.83)
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Fig. 16.3. The single-hump solution of the Burgers equation at several Reynolds
numbers.

If λ > 1/
√

2 and Re → ∞,

V
√

τ → 0, (16.84)

where χ/
√

4τ = λ
√

Re. Thus at high Reynolds number there is a sudden
transition in V located near λ = 1/

√
2. In the transition layer we can make the

approximation λ2 ≈
√

2(λ − 1/
√

2), and the velocity distribution becomes

V
√

τ ≃
√

2

1 + (
√

2π Re)e
√

2 Re (λ−1/
√

2)
. (16.85)

The solution (16.80) has precisely the behavior sought by Burgers. As the
Reynolds number is increased, two transition layers develop at the upstream
and downstream ends of a hump of rightward-moving fluid. In the upstream
layer, confined to negative χ (or λ), the moderately large velocity gradient, using
(16.81), is approximately

∂U
∂χ

≃ − 4χ√
4πτ

e−χ2/4τ (16.86)

and is independent of the Reynolds number – a property shared by the inertial
subrange of turbulence. In the neighborhood of the origin there is also a transi-
tion in the profile shape from (16.81) to (16.83). In the downstream layer, near
λ = 1/

√
2, the very large velocity gradient is, in the limit of high Reynolds
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number,

∂U
∂χ

≃ −
√

8Re
π

. (16.87)

In this layer the velocity gradient increases in proportion to the square root of
the Reynolds number, precisely the same Reynolds-number dependence ob-
served in the fine-scale (large-gradient) motions in three-dimensional turbu-
lence. Burgers’s great achievement was to demonstrate the nature of nonlinear
steepening in a convective–diffusive environment. What makes the one-
dimensional Burgers model interesting in the context of turbulence is that the
steepening of the velocity gradient occurs in the absence of any mechanism
akin to the vortex stretching that occurs in three-dimensional turbulence.

16.2.2 Solitary-Wave Solutions of the Korteweg–de Vries Equation

The Burgers equation provides the canonical example illustrating the balance
that can occur, in more general phenomena, between nonlinear convection
and diffusion. In a study of the motion of long waves in a rectangular chan-
nel, Korteweg and de Vries in 1895 [16.15] developed the following model
equation,

ut + 6uux + uxxx = 0 (16.88)

which has since become the canonical example of the combined effects of non-
linear convection and dispersion. When water is shallow (but not so shallow
so as to bring into play surface tension), waves of small amplitude become
slightly dispersive. In this case a localized disturbance on the surface of a chan-
nel will tend to spread as it propagates. However, if the amplitude is not small,
the tendency to spread due to dispersion may be balanced by the proportion-
ality between wave speed and water depth, c ∝

√
h, which causes a wave of

sufficiently large amplitude to tend to steepen and form a bore. The result is a
localized bump in the surface that propagates but does not spread at all.

This is an outstanding example of a solitary wave, or soliton, as introduced in
Section 16.1 in the context of the sine–Gordon equation. The first observation of
a solitary wave of this type was on a canal near Edinburgh, Scotland in 1834 by
an engineer named Scott Russell. Russell later wrote of his experience follow-
ing the wave on horseback for over a kilometer, describing a “large solitary
elevation . . . which continued its course along the channel apparently without
change of form.” The speed of a solitary wave increases with the height of
the wave, so that if a high-amplitude wave is formed behind a low-amplitude
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one, it will catch up. It turns out that when it does so, it passes through the
low-amplitude wave and reemerges ahead with its shape unchanged but shifted
forward in position.

It is now known that many of the nonlinear wave equations that arise in
diverse branches of physics admit large-amplitude solitary-wave solutions, and
it is recognized that the suprising ability of solitons to survive collisions with
other solitons is one of the universal traits of nonlinear wave behavior. Whitham
[16.10] gives a very complete exposition of the sine–Gordon equation along
with its relation to other types of nonlinear wave equations. The role of the sine–
Gordon equation in various physical phenomena, including the self-focusing
of light beams in nonlinear optics is described by Barone et al. [16.11]. Segev
and Stegeman [16.12] describe experimental observations of spatial solitons in
nonlinear optical media governed by the related cubic Schrödinger equation.
An exposition of the wide variety of physical phenomena involving solitary
waves, as well as a history of their discovery, can be found in Remoissenet
[16.13].

We worked out the point groups and the classical recursion operator for
(16.88) in Chapter 14, Section 14.5.2.3. The variable u is the height of the free
surface, and, as we shall see later, the dispersion relation is

ω = κ3, (16.89)

where κ is the wave number. For the coming analysis it is convenient to genera-
lize equation [16.88] slightly to

ut + 3βuux + β

2
uxxx = 0, (16.90)

where β is an arbitrary constant.

16.2.2.1 Nonlocal Group of the KdV Potential Equation

Our search for a Bäcklund transformation of this equation begins with a poten-
tial equation two derivatives removed from the KdV equation. We consider

θt + β

2
θ3

x − βθxxx = 0, (16.91)

where β is arbitrary. The relationship between this equation and the KdV
equation is described by Lamb [16.16] and will be elucidated in the following.
The invariance condition for (16.91) is

η{t} + 3β

2
θ2

x η{x} − βη{xxx} = 0. (16.92)
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The elementary four-parameter point group of (16.91) has the operators

X1 = ∂

∂x
, X2 = ∂

∂t
, X3 = ∂

∂θ
, X4 = x

3
∂

∂x
+ t

∂

∂t
. (16.93)

The last operator corresponds to invariance under the one-parameter dilation
group,

x̃ = es x,

t̃ = e3s t, (16.94)

θ̃ = θ .

which leaves invariant the dispersion relation (16.89).
But these are not all the possible solutions of the invariance condition (16.92);

there is also a nonlocal solution. We search for an invariant group of (16.91)
with the following infinitesimal form:

x̃ = x,

t̃ = t, (16.95)

θ̃ = θ + sη[x, t, θ ].

The independent variables are not transformed, and so the invariance condition
for (16.91) takes on the simplified form

Dtη + 3β

2
θ2

x Dxη − β Dxxxη = 0. (16.96)

Equation (16.96) is satisfied by the nonlocal group

η =
∫

e−θ dx = D−1
x (e−θ ). (16.97)

Let’s verify (16.97). We have

Dtη = −D−1
x (e−θ θt ),

Dxη = e−θ ,
(16.98)

Dxxη = −e−θ θx ,

Dxxxη = e−θ θ2
x − e−θ θxx .
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Substituting (16.98) into (16.96) leads to

−D−1
x

(

e−θ θt
)

+ β

2
θ2

x e−θ + βe−θ θxx

= D−1
x

(

−e−θ

(

θt + β

2
θ3

x − βθxxx

))

= 0, (16.99)

which confirms that (16.97) satisfies (16.96) on solutions of (16.91). Thus
(16.97) is a symmetry of (16.91). A second nonlocal solution of (16.96) is

η =
∫

eθ dx = D−1
x (eθ ). (16.100)

The linearity in η of the invariance condition (16.96) enables any combination
of exponentials to be used to construct nonlocal symmetries, including

η = D−1
x (sinh θ ),

η = D−1
x (cosh θ).

(16.101)

Notice that the transformation (16.97) also leaves invariant the spatial terms in
(16.91). If we consider just the equation

1
2θ3

x − θxxx = 0, (16.102)

the invariance condition becomes

3
2θ2

x Dxη − Dxxxη

= 1
2θ2

x e−θ + e−θ θxx

= D−1
x

(

−e−θ
( 1

2θ3
x − θxxx

))

= 0. (16.103)

The integrated form of (16.91) is

−D−1
x (e−θ θt ) + β

2
θ2

x e−θ + βe−θ θxx = 0, (16.104)

for which the corresponding steady equation is

1
2θ2

x + θxx = 2e−θ/2
(

eθ/2
)

xx = 0 (16.105)

In summary, the nonlocal group (16.97) is a symmetry of all three equations,
(16.91), (16.102), and (16.105), or for that matter any linear combination of
these equations.
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Equation (16.105) can be generalized to

1
2θ2

x + εθxx = 2e−εθ/2
(

eεθ/2
)

xx = 0, (16.106)

where ε = ± 1. The invariance condition (16.96) is satisfied by the nonlocal
group generalized from (16.97) and (16.100):

η = D−1
x

(

e−εθ
)

. (16.107)

The group (16.107) satisfies the invariance condition for (16.106) identically
as follows:

θx Dxη + ε(Dxxη) = θx e−εθ + ε(−εe−εθ θx ) = 0. (16.108)

Notice that a function satisfying (16.105) or (16.102) can have an arbitrary
dependence on time.

Now let’s generate the finite transformation corresponding to the group
(16.97) by summing the Lie series

θ̃ = θ + s Xθ + s2

2!
X2θ + s3

3!
X3θ + s4

4!
X4θ + · · ·, (16.109)

where the group operator is

X = D−1
x (e−θ )

∂

∂θ
. (16.110)

Various terms in the series are

Xθ = D−1
x (e−θ ),

X2θ = −D−1
x (e−θ )2,

(16.111)X3θ = 2D−1
x (e−θ )3,

X4θ = −(2 × 3)D−1
x (e−θ )4.

...

The Lie series becomes

θ̃ = θ −
(

α + α2

2
+ α3

3
+ α4

4
+ · · ·

)

, (16.112)

where

α = −s D−1
x (e−θ ). (16.113)
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Consider the series

f (α) = α + α2

2
+ α3

3
+ α4

4
+ · · · (16.114)

with

d f
dα

= 1 + α + α2 + α3 + α4 + · · · = 1
1 − α

. (16.115)

Integrating (16.115) leads to

f (α) = ln[1 − α] + ln γ , (16.116)

where γ is a constant of integration. The finite transformation (16.112) becomes
the following:

θ̃ = θ − λ ln
[

γ + γ s D−1
x (e−θ )

]

+ λ ln γ . (16.117)

The added constant makes the identity element of the transformation s = 0.
Notice that the constant β that appears in equation (16.91) does not appear in
(16.117).

There is a scaling ambiguity in the finite transformation (16.117). If we
differentiate (16.117) with respect to the group parameter s, the result is

η = d
ds

(

θ − λ ln
[

γ + γ s D−1
x (e−θ )

])

s=0 = −λD−1
x (e−θ ), (16.118)

which matches the infinitesimal (16.97) up to the factor −λ. Note that the
invariance condition (16.96) is satisfied for any value ofλbecause of its linearity.

To develop the final form of the transformation, (16.117) is substituted into
(16.91) to evaluate λ. The final result is the non local transformation

θ̃ = θ + 2 ln
[

1 − s D−1
x (e−θ )

]

, x̃ = x, t̃ = t (16.119)

where, without loss of generality, the quantity s/γ has, for convenience, been
replaced by the equivalent group parameter −s. The parameter s is an arbitrary
constant in the finite, nonlocal transformation (16.119). Substitution of (16.119)
into the KdV potential equation (16.91) confirms that θ̃ is a solution of (16.91)
as long as θ is a solution.

We can use (16.119) to generate a Bäcklund transformation for the KdV
potential equation (16.91). This is accomplished by differentiating (16.119)
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with respect to x and then t and then reusing (16.119) to remove the argument
of the logarithim in the result:

θ̃ x − θx = −2se−θ

1 − s D−1
x (e−θ )

= −2se−θ

e(θ̃−θ )/2
= −2se−(θ̃+θ )/2, (16.120)

or

θ̃ x − θx

2
= −se−(θ̃+θ )/2 (16.121)

Now differentiate with respect to time

θ̃ t − θt = 2s D−1
x (e−θ θt )

1−s D−1
x (e−θ )

= 2s D−1
x (e−θ θt )

e(θ̃−θ )/2

=
2s

(

(β/2)θ2
x e−θ + βe−θ θxx

)

e(θ̃−θ )/2
(16.122)

Finally, a Bäcklund transformation for (16.91) derived from the nonlocal
group (16.119) is

θ̃ x − θx

2
= −se−(θ̃+θ)/2,

θ̃ t − θt

2
= s

(

β

2
θ2

x + βθxx

)

e−(θ̃+θ )/2.

(16.123)

If we use (16.123) to generate an exact solution of (16.91) beginning with the
vacuum seed solution θ = 0, we end up with the quadrature

d θ̃ = −(2s)e−θ̃/2 dx + (0) dt, (16.124)

leading to the solution

θ̃ = ln [1 − s(x − xa)]2, (16.125)

where xa is an effective origin in space. The solution (16.125) corresponds to
inserting θ = 0 into (16.119). If we iterate on this solution, the result is a trivial
sequence of solutions identical to (16.125) with varying values of s.

The simplest time-dependent solution of (16.91) is the linear phase front,

θ = κ(x − xa) − β

2
κ3(t − ta) + c (16.126)
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Fig. 16.4. Elementary solution of the potential KdV equation.

(see Figure 16.4). The factors κ and κ3 reflect the dispersion relation (16.89)
that we expect for the KdV equation and are directly linked to the invariance
of the KdV potential equation (16.91) under the dilation group (16.94). The
nontrivial solution generated from (16.119) using (16.126) is

θ̃ = κ(x − xa) − β

2
κ3(t − ta) + c

+ ln
[

1 + s
κ

e−(κ(x−xa )−(β/2)κ3(t− ta ) + c)
]2

. (16.127)

plotted in Figure 16.4.
Note that we have seen the first of the transformations in (16.123) in the con-

text of the Bäcklund transformation for the Liouville equation. If, for the mo-
ment, we imagine that θ is a function of both x and y, and we write the trans-
formation twice with a change in sign and a new parameter, then

θ̃ x − θx

2
= −se−(θ̃+θ )/2,

θ̃ y + θy

2
= −ŝe−(θ̃−θ )/2.

(16.128)

If we choose ŝ = −1/(2s), the result is the Bäcklund transformation (16.10)
for the Liouville equation (16.8).
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16.2.2.2 Exact Solutions of the KdV Equation

Differentiate (16.91) with respect to x , and let

h = 1
2θx . (16.129)

The function h satisfies the modified KdV equation

ht + (6β)h2hx − (β)hxxx = 0. (16.130)

Returning to (16.105), let’s look at the equation that would govern a variable
constructed from the combination (β/2)θ2

x + εβθxx , which is invariant under
(16.107). Let

w =
(

β

4

)

θ2
x + ε

(

β

2

)

θxx = βh2 + εβhx , (16.131)

where ε can take on the values +1 or − 1. The relation (16.131) is recognized
to be the well-known Miura transformation [16.17] connecting h and w. Using
(16.130) and (16.131), we can derive the relation

ht = εwxx − 2(hw)x . (16.132)

Now bring together, (16.131) and (16.132)

hx = ε

(

1
β

w − h2
)

,

(16.133)
ht = εwxx − 2(hw)x ,

where h satisfies (16.130) and w satisfies

wt + 6wwx − βwxxx = 0. (16.134)

The transformation (16.133) constitutes the classical form of the Bäcklund
transformation of the KdV equation (see [16.18]). The transformation is directly
connected to the one-parameter nonlocal transformation (16.119) that leaves
the KdV potential equation (16.91) invariant.

The mapping accomplished by the Miura transformation (16.131) using
either sign of ε produces a solution of the KdV equation (16.90). That is,

wt + 6wwx − βwxxx

=
(

2βh + εβ
∂

∂x

)

(ht + (6β)h2hx − (β)hxxx ) = 0, (16.135)
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where β can be selected to match whatever form of the KdV equation is being
considered. Let

w+ =
(

β

4

)

θ2
x +

(

β

2

)

θxx = βh2 + βhx ,

w− =
(

β

4

)

θ2
x −

(

β

2

)

θxx = βh2 − βhx .

(16.136)

The superscripts in (16.136) correspond to letting ε = ±1 in (16.131). Substi-
tuting (16.119) into the ε = +1 relation in (16.136) results in

w̃+
1 =

(

β

4

)

θ̃2
x +

(

β

2

)

θ̃ xx =
(

β

4

)

θ2
x +

(

β

2

)

θxx , (16.137)

which is already implied by the result (16.108). In other words, the ε = +1
transformation reaches all the way back to the original solution θ , no matter
how many recursions of the transformation (16.119) may have been performed.
The ε = −1 transformation in (16.136) produces the following KdV solution:

w̃−
1 =

(

β

4

)

θ̃2
x −

(

β

2

)

θ̃ xx =
(

β

4

)

θ2
x −

(

β

2

)

θxx

+
2βs2 − 2βseθ θx

(

1 − s D−1
x (e−θ )

)

e2θ
(

1 − s D−1
x (e−θ )

)2 . (16.138)

The transformation (16.138) in conjuction with (16.119) provides a procedure
for generating solutions of the KdV equation.

Now let’s look at a particular case, beginning with the simplest propagating
solution of the KdV potential equation (16.91):

θ0 = κ(x − xa) − β

2
κ3(t − ta) + c, (16.139)

where xa and ta are the origins in time and space, and where κ is a constant that
determines both the speed of propagation and the amplitude of the solution. The
solution of the KdV potential equation (16.91) generated by the transformation
(16.119) – repeated here for convenience:

θ̃ = θ + 2 ln
[

1 − s D−1
x (e−θ )

]2 (16.140)

– is

θ1 = θ0 + 2 ln
[

1 + s
κ

e−θ0

]2

. (16.141)
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The corresponding solutions of the KdV equation

w̃ t̃ + 6w̃w̃ x̃ − βw̃ x̃ x̃ x̃ = 0 (16.142)

generated from (16.137) and (16.138) are

w̃+ = β

4
κ2,

w̃− = β

4
κ2 − 2(βs)κeθ0

(

eθ0 + s
κ

)2 .

(16.143)

Both regular and singular cases of solution w̃− the are plotted in Figure 16.5
for several choices of β and s.

The solutions generated thus far are displaced forms of the single-hump
solitary-wave solution that is the distinguishing feature of the KdV equation.
The undisplaced solution can be easily constructed from the two solutions in
(16.143). Let

u = 1
β

(

β

4
κ2 − w̃−

)

= 2sκ
eθ0

(

eθ0 + s
κ

)2 . (16.144)
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Fig. 16.5. Solutions of the KdV equation (16.142) corresponding to w− in (16.143).
Parameter values are: κ = 1, and (a) β =− 1, s = 1; (b) β = 1, s = 1; (c) β = 1, s =−1;
(d) β = −1, s =−1.
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Fig. 16.6. Classical single-hump solution of the KdV equation presented in Equation
(16.144). Parameter values are k = 1, s = 1.

The function u satisfies

ut + 3βuux + β

2
uxxx = 0. (16.145)

The choice β = 2 in the KdV potential equation (16.91) produces the usual
form of the KdV equation in (16.145). The solution (16.144) with β = 2 corre-
sponds to a localized disturbance propagating along

θ0 = κ(x − xa) − κ3(t − ta) + c. (16.146)

This is the classical undisplaced single-hump solution of the KdV equation
shown in Figure 16.6.

We can get to this same solution in a much more direct way. Begin with the
group

θ1 = θ0 + 2 ln
[

1 + s
κ

e−θ0

]2

, (16.147)

where θ0 is given by (16.139). If we differentiate (16.147) twice with respect
to x , we immediately get (16.144):

u = θ1xx = 2sκ
eθ0

(

eθ0 + s
κ

)2 . (16.148)

This result follows directly from the transformations (16.137) and (16.138)
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as follows:

u = 1
β

(

β

4
κ2 − β

4
θ2

1x + β

2
θ1xx

)

= 1
β

(

β

4
κ2 −

(

β

4
κ2 − β

2
θ1xx

)

+ β

2
θ1xx

)

= θ1xx . (16.149)

16.2.2.3 Colliding Solitons

Multiple interacting soliton solutions of the KdV equation can be generated
following the procedure described by Whitham [16.10]. Let

u = px . (16.150)

The KdV equation (16.145) can be integrated once to give

ut + 3βuux + β

2
uxxx = ∂

∂x

(

pt + 3β

2
p2

x + β

2
pxxx

)

. (16.151)

The basic solution of

pt + 3β

2
p2

x + β

2
pxxx = 0 (16.152)

is, using (16.144) in (16.150),

p = θx − κ = 2(ln F)x (16.153)

where F is

F(x, t) = 1 + s
κ

e−θ (16.154)

and

θ = κ(x − xa) − β

2
κ3(t − ta) + c. (16.155)

Substituting (16.153) into (16.152) leads to the equation for F(x, t):

{

Fxt

F
− Ft Fx

F2

}

− 3βs
κ

{

F2
xx

F2
− 2

F2
x Fxx

F3
+ F4

x

F4

}

+ β

2

{

Fxxxx

F
− 3

F2
xx

F2
− 4

Fx Fxxx

F2
+ 12

F2
x Fxx

F3
− 6

F4
x

F4

}

= 0. (16.156)
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To make further progress, we must choose the group parameter to be s = −κ .
Equation (16.156) becomes

F
{

Ft + β

2
Fxxx

}

x
− Fx

{

Ft + β

2
Fxxx

}

+ 3β

2

{

F2
xx − Fx Fxxx

}

= 0.

(16.157)

Consider two solutions:

F0 = 1 − e−θ0 , (16.158)

where

θ0 = κ0(x − xa0) − β

2
κ3

0 (t − ta0) + c0, (16.159)

and

F1 = 1 − e−θ1 , (16.160)

where

θ1 = κ1(x − xa1) − β

2
κ3

1 (t − ta1) + c1. (16.161)

Equation (16.157) is known to admit the exact solution

F = 1 + e−θ0 + e−θ1 +
(

κ1 − κ0

κ1 + κ0

)2

e−(θ1+θ0). (16.162)

The corresponding KdV solution is generated using (16.150) and (16.153).
After differentiating (16.162) twice, we have

u = 2

⎧

⎨

⎩

κ2
0 e−θ0 + κ2

1 e−θ1 + (κ1 − κ0)2e−(θ1+θ0)

1 + e−θ0 + e−θ1 +
(

κ1−κ0
κ1+κ0

)2e−(θ1+θ0)

⎫

⎬

⎭

+ 2

⎧

⎪

⎨

⎪

⎩

(

κ0e−θ0 + κ1e−θ1 + (κ1−κ0)2

κ1+κ0
e−(θ1+θ0)

)2

(

1 + e−θ0 + e−θ1 +
(

κ1−κ0
κ1+κ0

)2e−(θ1+θ0)
)2

⎫

⎪

⎬

⎪

⎭

. (16.163)

The solution (16.163) is plotted in Figure 16.7 at various times.
The solution in Figure 16.7 depicts a collision between two solitons of differ-

ent amplitude. The larger-amplitude “particle” overtakes the smaller amplitude
one and, after an interaction, emerges with its shape unchanged. The residual
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Fig. 16.7. Exact solution of the KdV equation depicting the collision of two solitons.

effect of the collision is to induce a phase shift causing the overtaking particle to
be suddenly “flung forward” to a position ahead of where it would have been in
the absence of the collision. This example and the others treated in this chapter
involve one space dimension and time but one should be aware that solitary
wave behavior in two space dimensions is well known. See References [16.19]
and [16.20].

16.3 Concluding Remarks

The discovery of solitons and the associated methods of integration of nonlinear
wave equations can fairly be described as one of the most important advances in
mathematical physics in the 20th century. The solutions provide insight into the
nature of nonlinearity and into the nonlinear interactions that can occur between
colliding “particles” of all sorts. Most importantly, approximately solitonic
behavior to a high degree of accuracy is readily observed in the laboratory.
The numerous examples described by Remoissenet [16.13] vividly illustrate
the breadth of concrete applications.

The Bäcklund transformations described in this chapter possess a clear link
to an underlying one parameter group leaving invariant a potential equation.
Moreover the group can be used to generate classical soliton solutions of the
related wave equation. It is quite satisfying to think that Bäcklund transfor-
mations can fit into the general framework of Lie theory. Perhaps the most
salutary lesson from all this is to remind us of the open-ended nature of the
invariance condition X{p}2

i = 0 and of the continuing pursuit of solutions that
is the ongoing task of symmetry analysis.
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16.4 Exercises

16.1 Derive the Bianchi permutation relation for the sine–Gordon equation.
Show that if θ1, θ2, θ3 are three solutions of the sine–Gordon equation,
then a fourth can be obtained from the permutation relation

tan
(

θ4 − θ1

4

)

= a2 + a3

a2 − a3
tan

(

θ2 − θ3

4

)

, (16.164)

where a2 and a3 are arbitrary constants. See Anderson and Ibragimov
[16.21].

16.2 Show that the infinitesimal

η =
(

fχ + f
2

U
)

eD−1
χ U/2 (16.165)

is a nonlocal solution of the invariance condition for the Burgers equation,

Dτ η + ηUχ + U Dχη − Dχχη = 0, (16.166)

as long as fτ − fχχ = 0 and U is a solution of Uτ + UUχ − Uχχ = 0.
16.3 Confirm the nonlocal solution of the Burgers equation

Ũ = U +
(

fχ + f
2 U

)

seD−1
χ U/2

1 − s
2 f eD−1

χ U/2
, (16.167)

by direct substitution. That is, show that if U is a solution of the Burgers
equation and f is a solution of the heat equation, then Ũ is a solution of
the Burgers equation. In the process you will need to use the higher-order
differential consequences of the equations

fχτ − fχχχ = 0,

Uχτ + U 2
χ + UUχχ − Uχχχ = 0.

(16.168)

16.4 Derive the equation governing the Burgers kinetic energy,

∂k
∂t

+ u
∂k
∂x

− ν
∂2k
∂x2

+ ν

(

∂u
∂x

)2

= 0, (16.169)

where k = u2/2. Using the single-hump solution of the Burgers equa-
tion, discuss the Reynolds-number dependence of the energy dissipation
integral

3 =
∫ ∞

−∞
ν

(

∂u
∂x

)2

dx . (16.170)
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What part of the solution contributes most to the integral (16.170)? What
part contributes most to the total kinetic energy

E =
∫ ∞

−∞

u2

2
dx ? (16.171)

16.5 The point-source solution of the heat equation is

φ =
(

2
π

)1/2

A(2νt)−1/2e−ξ 2/2 + B, ξ = x
(2νt)1/2

. (16.172)

(i) Use this to generate the classical N -wave solution of the Burgers
equation. Discuss the nature of this solution at small and large time.
This solution has been used to model the shock structure associated
with the sonic boom.

(ii) Generate a periodic solution of the Burgers equation by taking for
φ a periodic distribution of heat sources spaced a distance λ apart.
Show that for small time this corresponds to a periodic set of shocks,
and for large time to a decaying sine wave. See Whitham [16.10]
for the solution.

16.6 Show by direct substitution that

θ̃ = θ + 2 ln
(

1 − s D−1
x (e−θ )

)

(16.173)

is a solution of the KdV potential equation

θt + β

2
θ3

x − βθxxx = 0 (16.174)

as long as θ is a solution.
16.7 Use (16.136) to construct an auto-Bäcklund transformation of the KdV

equation (16.134). Recall that θx = 2h, and consider the change of
variable w = px .

16.8 Show that the 1 – D compressible flow equations

ut + uux + (1/ρ) px = 0, ρt + uρx + ρux = 0,

pt + upx + F[ρ]ux = 0

Are invariant under the group with operator

X = t2

2
∂

∂x
+ t

∂

∂u
− R

∂

∂p
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where R is a non-local variable that satisfies the equations Rx = ρ,

Rt = −ρu. Note that the integrability condition Rxt = Rtx is satisfied
according to the continuity equation. Show that the corresponding finite
transformation is

t̃ = t, x̃ = x + at2/2, ũ = u + at, ρ̃ = ρ, p̃ = p − a
∫

ρdx

This is a transformation to a coordinate system accelerating at the rate a
and is an example of a hidden symmetry. See Reference [16.21].
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Appendix 1
Review of Calculus and the Theory of Contact

It is useful to review certain of the tools of calculus that play a central role
in the development of Lie theory. A thorough understanding of the chain rule
and the concept of total differentiation of implicit functions is crucial to the
manipulation of transformations that act on variables and their derivatives.

First, the concept of a differential is reviewed along with the chain rule for
partial differentiation. This discussion leads to the definition of the total differ-
entiation operator, which is required to overcome certain notational ambiguities
that arise when we take partial derivatives of a function of a function. This opera-
tor plays a central role in the development of Lie theory and is of immense help
in maintaining concise, unambiguous notation. Finally the notion of contact
between a curve and a surface is reviewed.

A1.1 Differentials and the Chain Rule

Consider the function

u = H [ f ]. (A1.1)

Assume that H is a differentiable function of f . Then two symbols, du and d f ,
can be introduced that allow the derivative to be manipulated as a fraction. Let
d f denote a real number, and define du = d(H ( f )) to be a function of the two
independent variables f and d f prescribed by the equation

du ≡ H f [ f ] d f. (A1.2)

The quantity H f [ f ] is the slope of the function H [ f ] at the point f and is con-
structed geometrically by the usual limiting process. The differential notation
just described is convenient for the treatment of explicit, implicit, inverse, and
parametrically defined functions.

552
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If u is a function of several variables, say

u = H [ f 1, f 2, . . . , f q ], (A1.3)

then the total differential of u is

du = ∂ H
∂ f 1

d f 1 + ∂ H
∂ f 2

d f 2 + · · · + ∂ H
∂ f q

d f q . (A1.4)

The variable du is a function of 2q independent variables: the coordinates f 1,
f 2, . . . , f q , and the differentials d f 1, . . . , d f q .

A1.1.1 A Problem with Notation

Suppose that the f 1, f 2, . . . , f q are assumed to depend on new variables
x1, x2, . . . , xn . The functional dependence of u is

u = H [ f 1[x1, x2 . . . , xn], f 2[x1, x2 . . . , xn], . . . , f q [x1, x2 . . . , xn]].
(A1.5)

According to the chain rule, the partial derivative of u with respect to x j is

∂u
∂x j

= ∂ H
∂ f 1

∂ f 1

∂x j
+ ∂ H

∂ f 2

∂ f 2

∂x j
+ · · · + ∂ H

∂ f q

∂ f q

∂x j
, j = 1, . . . , n. (A1.6)

In the derivative notation adopted in Chapter 7, Equation (A1.6) would be
written

∂u
∂x j

= H f 1 f 1
j + H f 2 f 2

j + · · · + H f q f q
j , j = 1, . . . , n. (A1.7)

The notation of (A1.6) or (A1.7) is perfectly adequate in most circumstances.
However a common ambiguity can arise. Consider the function

u = H [x1, x2 . . . , xn, f 1, . . . , f q ], (A1.8)

where x1, x2 . . . , xn, f 1, . . . , f q are initially assumed to be independent vari-
ables. The partial derivative of u with respect to x j is

∂u
∂x j

= ∂ H
∂x j

. (A1.9)

However, if f 1, . . . , f q depend on x1, x2 . . . , xn , the functional dependence of
u is

u = H [x1, x2 . . . , xn, f 1[x1, x2 . . . , xn], . . . , f q [x1, x2 . . . , xn]], (A1.10)
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and the partial derivative of u with respect to x j is now written

∂u
∂x j

= ∂ H
∂x j

+ ∂ H
∂ f 1

∂ f 1

∂x j
+ · · · + ∂ H

∂ f q

∂ f q

∂x j
. (A1.11)

Here we have a problem. The symbols ∂u/∂x j and ∂ H/∂x j have two entirely
different relationships to one another – one given by (A1.9), the other given
by (A1.11). Our partial derivative notation has failed to unambiguously define
exactly what operation is intended in the second case. As it happens, the func-
tional forms that we commonly deal with in group theory present this ambiguity
so often that it is necessary to define a special derivative symbol.

A1.1.2 The Total Differentiation Operator

Symmetry analysis is concerned with quantities that depend on independent
variables x = [x1, x2, . . . , xn] and dependent variables y = [y1, y2, . . . , ym]
via functions of the form

ψ = #[x, y[x], f 1[x], f 2[x], . . . , f q [x]], i = 1, . . . , m. (A1.12)

The derivative of (A1.12) with respect to x j is

∂ψ

∂x j
= D#

Dx j
, (A1.13)

where the operator D/Dx j is defined as

D( )
Dx j

= D j ( )

= ∂( )
∂x j

+ ∂( )
∂yi

∂yi

∂x j
+ ∂( )

∂ f 1

∂ f 1

∂x j
+ ∂( )

∂ f 2

∂ f 2

∂x j
+ · · · + ∂( )

∂ f q

∂ f q

∂x j
, (A1.14)

and the Einstein summation condition on repeated indices is used.
The operator (A1.14) is called the total differentiation operator with respect to

the j th independent variable. Throughout the literature on group theory, there is
a tendency to shorten the name and call it merely the total derivative, thus causing
some confusion with the concept of a total differential. This is unfortunate given
the fact that, for more than one independent variable, (A1.14) well and truly
defines a partial derivative. One could perhaps come up with a more appropriate
name and call (A1.14), say, the complete partial derivative operator, but this
sounds like an oxymoron. Since current usage is so pervasive, there is probably
no way to change it without causing added confusion, and so we will adopt the
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traditional nomenclature. To the usual partial derivative notation, ∂( )/∂( ) we
will assign the meaning of (A1.9) where the derivative is with respect to the
explicit dependence of # on x j . Note that in fluid mechanics, D( )/Dt is called
the substantial derivative and has the interpretation of describing the change
with time of some property of a fluid particle.

A1.1.3 The Inverse Total Differentiation Operator

Chapters 14 and 16 describe the application of nonlocal group operators in-
volving integrals of the dependent variables. Here it is necessary to consider
the inverse of the operation of total differentiation. Define the integral operator

D−1
j ( ) =

∫ x j

−∞
( ) dx j . (A1.15)

This operator satisfies

Dx j D−1
x j g[x] = g[x], D−1

x j Dx j g[x] = g[x], (A1.16)

where g[x] is any differentiable function of the vector x with compact support
such that (A1.15) converges.

A1.2 The Theory of Contact

The extended transformations discussed in Chapters 8 and 9 are required to pre-
serve all tangency conditions (contact conditions) up to order p. It turns out that
transformations that satisfy this requirement actually preserve tangency up to
infinite order, and this is utilized in the theory of Lie–Bäcklund transformations
described in Chapter 14. This property, together with the parametric represen-
tation of a Lie group, ensures that the transformation, extended to whatever
order, constitutes a single-valued, invertible map.

To help introduce the notion of contact conditions, the theory that describes
the degree of contact between a curve and a surface is reviewed here.

A1.2.1 Finite-Order Contact between a Curve and a Surface

Let’s examine the degree to which a curve C can make contact with a surface
ψ . Assume that both C and ψ are continuous and differentiable to order at least
q. Let C be a space curve in n dimensions described parametrically by

x j = F j [s], j = 1, . . . , n, (A1.17)
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Fig. A1.1. Four intersection points between curve C and surface S.

where the variable s is a parameter along the curve. The surface ψ in n dimen-
sions is given by

#[x] = 0. (A1.18)

Now suppose that C and ψ intersect at a point x j
1 = F j [s1] and also at q−1 other

points x j
2 = F j [s2], x j

3 = F j [s3], . . . , x j
q = F j [sq ] in some neighborhood of

x1. Figure A1.1 depicts the situation where q = 4.
Now consider the function

g[s] = #[x[s]]. (A1.19)

At the successive intersections we have

g[s1] = #[x[s1]] = 0,

g[s2] = #[x[s2]] = 0,

g[s3] = #[x[s3]] = 0, (A1.20)

...

g[sq ] = #[x[sq ]] = 0.

It is clear from Figure A1.1 that there are intermediate points s ′
2, s ′

3, . . . , s ′
q

where

s1 ≤ s ′
2 ≤ s2, s2 ≤ s ′

3 ≤ s3, . . . , sq−1 ≤ s ′
q ≤ sq (A1.21)

such that the first derivatives of g[s] are zero:

dg[s ′
2]

ds
= dg[s ′

3]
ds

= dg[s ′
4]

ds
= · · · =

dg[s ′
q ]

ds
= 0. (A1.22)
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This follows from the definition of the derivative and the fact that between two
intersection points of C where the function # is zero, the derivative of g[s] must
change sign. Therefore, between the two points there must be a point where the
derivative of g[s] is zero. Similarly there must exist points s ′′

3 , s ′′
4 , . . . , s ′′

q where

s ′
2 ≤ s ′′

3 ≤ s ′
3, s ′

3 ≤ s ′′
4 ≤ s ′

4, . . . , s ′
q−1 ≤ s ′′

q ≤ s ′
q (A1.23)

such that the second derivatives of g(s) are zero:

d2g[s ′′
3 ]

ds2
= d2g[s ′′

4 ]
ds2

= · · · =
d2g[s ′′

q ]

ds2
= 0. (A1.24)

Continuing in this manner, one finds that there exist s1, s ′
2, s ′′

3 , s ′′′
4 , . . . , s(q−1)

q ,
all in a neighborhood of s1, such that

g[s1] = dg[s ′
2]

ds
= d2g[s ′′

3 ]
ds2

= d3g[s ′′′
4 ]

ds3
= · · · =

dq−1g
[

s(q−1)
q

]

dsq−1
= 0.

(A1.25)

Now consider the limit as s ′
2, s ′′

3 , s ′′′
4 , . . . , s(q−1)

q approach s1. That is, we
imagine that the curve C is modified and distorted while remaining smooth as
the points of intersection with the surface ψ are collapsed toward s1. In the limit
we find that

g[s1] = dg[s1]
ds

= d2g[s1]
ds2

= d3g[s1]
ds3

= · · · = dq−1g[s1]
dsq−1

= 0. (A1.26)

To picture this, imagine that the surface is a piece of cloth and the curve is a
length of thread stitched q times through the cloth with a needle. Let the thread
be pulled tight, and then let the length of the stitches be reduced to zero.

The curve C is then said to have q-order contact with the surface ψ . This
leads to the following definition.

Definition A1.1. A curve x j = F j [s], j = 1, . . . , n, is said to have q-order
contact with a surface #[x] = 0 at the point x corresponding to s1 if and only
if the function g[s] = #[x[s]] satisfies (A1.26) but has the qth derivative at s1

not equal to zero, i.e., dq g[s1]/dsq ̸= 0.



Appendix 2
Invariance of the Contact Conditions under Lie

Point Transformation Groups

A2.1 Preservation of Contact Conditions – One Dependent and One
Independent Variable

A2.1.1 Invariance of the First-Order Contact Condition

The once extended group (ξ, η, η{1}) leaves invariant the contact condition

d ỹ − ỹx̃ d x̃ = 0. (A2.1)

To show this, we prolong the infinitesimal form of the once extended group to
include the transformation of differentials,

x̃ = x + sξ [x, y],

ỹ = y + sη[x, y],

ỹx̃ = yx + sη{1}[x, y, yx ], (A2.2)

dx̃ = dx + s(ξx dx + ξy dy) = dx + s(dξ ),

d ỹ = dy + s(ηx dx + ηy dy) = dy + s(dη).

The differentials dx and dy are independent variables. Therefore the differ-
entials dξ and dη are functions of four independent variables x, y, dx , and
dy [ignoring, for the moment, the contact condition (A2.1)]. In this sense the
underlying space has been prolonged from two to four variables. The group
operator corresponding to (A2.2) is

X̂ {1} = ξ
∂

∂x
+ η

∂

∂y
+ η{1}

∂

∂yx
+ dξ

∂

∂(dx)
+ dη

∂

∂(dy)
, (A2.3)

where X̂ (with the ˆ) is used to distinguish a group operator that includes dif-
ferentials as variables.
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The contact condition (A2.1) is invariant under the prolonged group (A2.2).
To demonstrate this we apply the operator (A2.3) to (A2.1). The result is

X̂ {1}(dy − yx dx) = dη − η{1} dx − yx dξ . (A2.4)

Writing out the differentials in (A2.4) in full, we have

X̂ {1}(dy − yx dx)

= ηx dx + ηy dy − (Dxη − yx Dxξ ) dx − yx (ξx dx + ξy dy)

= ηx dx + ηy dy − (ηx + ηy yx − (ξx + ξy yx )yx ) dx

− yx (ξx dx + ξy dy)

= ηy dy − (ηy yx − ξy yx yx ) dx − yxξy dy

= (ηy − ξy yx )(dy − yx dx) = 0. (A2.5)

Thus the contact condition (A2.1) is invariant under the extended group (A2.2),
and we can write

d ỹ − ỹx̃ d x̃ = dy − yx dx . (A2.6)

A2.1.2 Invariance of the Second-Order Contact Condition

The transformation (ξ, η) leaves invariant the second-order contact condition

dyx − yxx dx = 0. (A2.7)

To show this, we now consider the infinitesimal form of the twice extended
group including the transformation of differentials:

x̃ = x + sξ [x, y],

ỹ = y + sη[x, y],

ỹx̃ = yx + sη{1}[x, y, yx ],

ỹx̃ x̃ = yxx + sη{2}[x, y, yx , yxx ], (A2.8)

dx̃ = dx + s(ξx dx + ξy dy) = dx + s(dξ ),

d ỹ = dy + s(ηx dx + ηy dy) = dy + s(dη),

d ỹx̃ = dyx + s
(

η{1}x dx + η{1}y dy + η{1}yx dyx
)

= dy + s
(

dη{1}
)

,
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where dx, dy, and dyx are independent variables. The group operator corre-
sponding to (A2.8) is

X̂ {2} = ξ
∂

∂x
+ η

∂

∂y
+ η{1}

∂

∂yx
+ η{2}

∂

∂yxx

+ dξ
∂

∂(dx)
+ dη

∂

∂(dy)
+ dη{1}

∂

∂(dyx )
. (A2.9)

If we apply this operator to the contact condition (A2.7), the result is

X̂ {2}(dyx − yxx dx) = dη{1} − η{2} dx − yxx dξ . (A2.10)

Writing out the differentials in (A2.10) in full, we have

X̂ {2}(dyx − yxx dx)

= η{1}x dx + η{1}y dy + η{1}yx dyx

−
(

Dxη{1} − yxx Dxξ
)

dx − yxx (ξx dx + ξy dy)

= η{1}x dx + η{1}y dy + η{1}yx dyx

−
(

η{1}x + η{1}y yx + η{1}yx yxx − (ξx + ξy yx )yxx
)

dx

− yxx (ξx dx + ξy dy)

= η{1}y dy + η{1}yx dyx −
(

η{1}y yx + η{1}yx yxx − (ξy yx )yxx
)

dx

− yxxξy dy

=
(

η{1}y − ξy yxx
)

(dy − yx dx) + η{1}yx (dyx − yxx dx) = 0,

(A2.11)

and so the second-order contact condition is preserved:

d ỹx̃ − ỹx̃ x̃ d x̃ = dyx − yxx dx . (A2.12)

A2.1.3 Invariance of Higher-Order Contact Conditions

Now we consider the infinitesimal form of the pth extended group, including
its prolongation to include transformations of differentials up to order p − 1:

x̃ = x + sξ [x, y],

ỹ = y + sη[x, y],

ỹx̃ = yx + sη{1}[x, y, yx ],

ỹx̃ x̃ = yxx + sη{2}[x, y, yx , yxx ],

...
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ỹpx̃ = ypx + sη{p}[x, y, yx , yxx , . . . , ypx ],

dx̃ = dx + s(ξx dx + ξy dy)s = dx + s(dξ ), (A2.13)

d ỹ = dy + s(ηx dx + ηy dy)s = dy + s(dη),

d ỹx̃ = dyx + s
(

η{1}x dx + η{1}y dy + η{1}yx dyx
)

= dy + s
(

dη{1}
)

...

d ỹ(p−1)x̃ = dy(p−1)x + s
(

η{p−1}x dx + · · · + η{p−1}y(p−1)x dy(p−1)x
)

= dy(p−1)x + s
(

dη{p−1}
)

,

where dx , dy, and dyx , . . . , dy(p−1)x are regarded as independent variables.
The group operator corresponding to (A2.8) is

X̂ {p} = ξ
∂

∂x
+ η

∂

∂y
+ · · · + η{p}

∂

∂ypx

+ (dξ )
∂

∂(dx)
+ · · · +

(

dη{p−1}
) ∂

∂
(

dy(p−1)x
) . (A2.14)

If we apply this operator to the pth-order contact condition, the result is

X̂ {p}
(

d
(

y(p−1)x
)

− ypx dx
)

= dη{p−1} − η{p} dx − ypx dξ . (A2.15)

Writing out the differentials in (A2.15) in full, we have

X̂ {p}
(

d
(

y(p−1)x
)

− ypx dx
)

= η{p−1}x dx + η{p−1}y dy + · · · + η{p−1}y(p−1)x dy(p−1)x

−
(

Dx
(

η{p−1}
)

− ypx Dxξ
)

dx − ypx (ξx dx + ξy dy)

= η{p−1}x dx + η{p−1}y dy + · · · + η{p−1}y(p−1)x dy(p−1)x

−
(

η{p−1}x + η{p−1}y yx + · · ·

+ η{p−1}y(p−1)x ypx − (ξx + ξy yx )ypx
)

dx

− ypx (ξx dx + ξy dy)

= η{p−1}y dy + η{p−1}yx dyx + · · · + η{p−1}y(p−1)x dy(p−1)x

−
(

η{p−1}y yx + η{p−1}yx yxx + · · · + η{p−1}y(p−1)x ypx − ξy yx ypx
)

dx

− ypxξy dy

=
(

η{p−1}y − ξy ypx
)

(dy − yx dx) + η{p−1}yx (dyx − yxx dx)

+ · · · + η{p−1}y(p−1)x

(

dy(p−1)x − ypx dx
)

= 0. (A2.16)
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By induction the contact condition (A2.17) is preserved to all orders, and we
can state the following theorem.

Theorem A2.1. The pth-order contact condition

d
(

y(p−1)x
)

− ypx dx = 0 (A2.17)

is preserved by the group (ξ, η). The transformation (ξ, η) preserves the contact
conditions

d ỹ − ỹx̃ d x̃ = dy − yx dx,

d ỹx̃ − ỹx̃ x̃ d x̃ = dyx − yxx dx,

... (A2.18)

d
(

ỹ(p−1)x̃
)

− ỹpx̃ d x̃ = d
(

y(p−1)x
)

− ypx dx,

and so forth to all orders.

A2.2 Preservation of the Contact Conditions – Several Dependent
and Independent Variables

A2.2.1 Invariance of the First-Order Contact Condition

The first extension leaves invariant the first-order contact condition

dyi − yi
j dx j = 0. (A2.19)

To prove this we use the once extended infinitesimal transformation including
its prolongation to include the transformation of differentials:

x̃ j = x j + sξ j [x, y], j = 1, . . . , n,

ỹi = yi + sηi [x, y]; i = 1, . . . , m,

ỹi
j = yi

j + sηi
{ j}[x, y, y1], (A2.20)

dx̃ j = dx j + s
(

∂ξ j

∂xα
dxα + ∂ξ j

∂yβ
dyβ

)

= dx j + s(dξ j ),

d ỹi = dyi + s
(

∂ηi

∂xα
dxα + ∂ηi

∂yβ
dyβ

)

= dyi + s(dηi ).

The differentials dxα and dyβ are independent variables.
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The prolonged group operator corresponding to (A2.20) is

X̂{1} = ξ j ∂

∂x j
+ ηi ∂

∂yi
+ ηi

{ j}
∂

∂
(

yi
j

) + dξ j ∂

∂(dx j )
+ dηi ∂

∂(dyi )
. (A2.21)

If we apply this operator to the contact condition, the result is

X̂{1}
(

dyα − yα
β dxβ

)

= (dηi )δα
i − yα

β (dξ j )δβ
j − ηi

{ j}δ
α
i δ

j
β(dxβ), (A2.22)

or

X̂{1}
(

dyα − yα
β dxβ

)

= dηα − yα
β dξβ − ηα

{β} dxβ . (A2.23)

Replacing indices, we have

X̂{1}(dyi − yi
j dx j ) = dηi − yi

j dξ j − ηi
{ j} dx j , (A2.24)

or

X̂{1}
(

dyi − yi
j dx j) =

(

∂ηi

∂xα
dxα + ∂ηi

∂yβ
dyβ

)

− yi
j

(

∂ξ j

∂xα
dxα + ∂ξ j

∂yβ
dyβ

)

−
(

D jη
i−yi

β D jξ
β
)

dx j . (A2.25)

The total differentiation indicated in (A2.25), can be written out as

D jη
i − yi

β D jξ
β = ∂ηi

∂x j
+ yα

j
∂ηi

∂yα
− yi

β

(

∂ξβ

∂x j
+ yα

j
∂ξβ

∂yα

)

. (A2.26)

Now (A2.25) becomes

X̂ {1}
(

dyi − yi
j dx j) =

(

∂ηi

∂xα
dxα + ∂ηi

∂yβ
dyβ

)

− yi
j

(

∂ξ j

∂xα
dxα + ∂ξ j

∂yβ
dyβ

)

−
(

∂ηi

∂x j
+ yα

j
∂ηi

∂yα
− yi

β

(

∂ξβ

∂x j
+ yα

j
∂ξβ

∂yα

))

dx j .

(A2.27)

Equation (A2.27) can be rearranged to read, after canceling terms,

X̂ {1}
(

dyi − yi
j dx j) =

(

∂ηi

∂yβ
− yi

j
∂ξ j

∂yβ

)

dyβ −
(

∂ηi

∂yα
− yi

β

∂ξβ

∂yα

)

yα
j dx j .

(A2.28)
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Upon exchanging indices again,

X̂ {1}
(

dyi − yi
j dx j) =

(

∂ηi

∂yα
− yi

β

∂ξβ

∂yα

)

(

dyα − yα
j dx j) = 0, (A2.29)

which proves that the contact condition (A2.1) is invariant under the group
(A2.20). In other words, if (A2.19) were to be expanded in a Lie series in the
operator X̂ {1}, the series would truncate to

d ỹi− ỹi
j d x̃ j = dyi−yi

j dx j . (A2.30)

A2.2.2 Invariance of the Second-Order Contact Conditions

The twice extended group leaves invariant the second-order contact condition

d ỹi
j1− ỹi

j1 j2 dx̃ j2 = 0. (A2.31)

To show this, we consider the prolongation of the twice extended group to
include differentials:

x̃ j = x j + sξ j [x, y], j = 1, . . . , n,

ỹi = yi + sηi [x, y], i = 1, . . . , m,

ỹi
j1 = yi

j1 + sηi
{ j1}[x, y, y1],

ỹi
j1 j2 = yi

j1 j2 + sηi
{ j1 j2}[x, y, y1, y2], (A2.32)

dx̃ j = dx j + s
(

∂ξ j

∂xα
dxα + ∂ξ j

∂yβ
dyβ

)

= dx j + s(dξ j ),

d ỹi = dyi + s
(

∂ηi

∂xα
dxα + ∂ηi

∂yβ
dyβ

)

= dyi + s(dηi ),

d ỹi
j1 = dyi

j1 + s
(

∂ηi
{ j1}

∂xα
dxα +

∂ηi
{ j1}

∂yβ
dyβ +

∂ηi
{ j1}

∂yβ
α

dyβ
α

)

= dyi + s
(

dηi
{ j1}

)

.

Again, the differentials dx j , dyi , and dyi
j are independent variables. The group

operator corresponding to (A2.32) is

X̂ {2} = ξ j ∂

∂x j
+ ηi ∂

∂yi
+ ηi

{ j1}
∂

∂
(

yi
j1

) + ηi
{ j1 j2}

∂

∂
(

yi
j1 j2

)

+ (dξ j1 )
∂

∂(dx j1 )
+ (dηi )

∂

∂(dyi )
+

(

dηi
{ j1}

) ∂

∂
(

dyi
j1

) . (A2.33)
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Operating with (A2.33) on the contact condition (A2.31) gives

X̂ {2}
(

dyα
β1

− yα
β1β2

dxβ2
)

= dηi
{ j1}δ

α
i δ

j1
β1

−
(

ηi
{ j1 j2}δ

α
i δ

j1
β1

δ
j2
β2

)

dxβ2 − yα
β1β2

dξ j1 δ
β2
j1 . (A2.34)

After taking the indicated sums, (A2.34) becomes

X̂ {2}
(

dyα
β1

− yα
β1β2

dxβ2
)

= dηα
{β1} − ηα

{β1β2} dxβ2 − yα
β1β2

dξβ2 . (A2.35)

Now we supply the various expressions on the right-hand side of (A2.35):

dηα
{β1} − ηα

{β1β2} dx̃β2 − ỹα
{β1β2} dξβ2

=
∂ηα

{β1}

∂xγ
dxγ +

∂ηα
{β1}

∂yε
dyε +

∂ηα
{β1}

∂yε
γ

dyε
γ

− ỹα
β1β2

(

∂ξβ2

∂xγ
dxγ + ∂ξβ2

∂yε
dyε

)

−
(

Dβ2η
α
{β1} − ∂2 yα

∂xβ1∂xγ
Dβ2ξ

γ

)

dx̃β2 . (A2.36)

Inserting the total differentiation operator, Equation (A2.36) can be rearranged
to read

dηα
{β1} − ηα

{β1β2} dx̃β2 − ỹα
β1β2

dξβ2

=
∂ηα

{β1}

∂xγ
dxγ +

∂ηα
{β1}

∂yε
dyε +

∂ηα
{β1}

∂yε
γ

dyε
γ

− ỹα
β1β2

(

∂ξβ2

∂xγ
dxγ + ∂ξβ2

∂yε
dyε

)

−
(

∂ηα
{β1}

∂xβ2
+ ∂yθ

∂xβ2

∂ηα
{β1}

∂yθ
+ ∂yθ

ε

∂xβ2

∂ηα
{β1}

∂yθ
{ε}

)

dx̃β2

+ yα
β1γ

(

∂ξγ

∂xβ2
+ ∂yθ

∂xβ2

∂ξγ

∂yθ

)

dx̃β2 . (A2.37)

Finally,

X̂ {2}
(

dyα
β1

− yα
β1β2

dxβ2
)

= dηα
{β1} − ηα

{β1β2} dxβ2 − yα
β1β2

dξβ2

=
(

∂ηα
{β1}

∂yε
− ỹα

β1β2

∂ξβ2

∂yε

)

(

dyε − yε
γ dxγ

)

+
∂ηα

{β1}

∂yε
γ

(

dyε
γ − yε

γβ2
dxβ2

)

= 0. (A2.38)
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The result (A2.38) demonstrates the invariance of the second-order contact
condition. As in the case of two variables, operating on the contact condition
with X̂ produces two terms on the left-hand side, each of which is zero.

A2.2.3 Invariance of Higher-Order Contact Conditions

The pth-order extended group leaves invariant the pth-order contact condition

d ỹi
j1 j2... jp−1

− ỹi
j1 j2... jp

d x̃ jp = 0. (A2.39)

To prove this we now consider the prolongation of the pth extended group,

x̃ j = x j + sξ j [x, y], j = 1, . . . , n,

ỹi = yi + sηi [x, y], i = 1, . . . , m,

ỹi
j1 = yi

j1 + sηi
{ j1}[x, y, y1],

ỹi
j1 j2 = yi

j1 j2 + sηi
{ j1 j2}[x, y, y1, y2],

...

ỹi
j1 j2... jp

= yi
j1 j2... jp

+ sηi
{ j1 j2... jp}[x, y, y1, y2, . . . , yp],

dx̃ j = dx j + s
(

∂ξ j

∂xα
dxα + ∂ξ j

∂yβ
dyβ

)

= dx j + s(dξ j ),

d ỹi = dyi + s
(

∂ηi

∂xα
dxα + ∂ηi

∂yβ
dyβ

)

= dyi + s(dηi ), (A2.40)

d ỹi
j1 = dyi

j1 + s
(

∂ηi
{ j1}

∂xα
dxα +

∂ηi
{ j1}

∂yβ
dyβ +

∂ηi
{ j1}

∂yβ
α

dyβ
α

)

= dyi + s
(

dηi
{ j1}

)

,

...

d ỹi
j1 j2... jp−1

= dyi
j1 j2... jp−1

+ s
(

∂ηi
{ j1 j2... jp−1}

∂xα
dxα +

∂ηi
{ j1 j2... jp−1}

∂yβ
dyβ

+
∂ηi

{ j1 j2... jp−1}

∂yβ
α

dyβ
α + · · · +

∂ηi
{ j1 j2... jp−1}

∂yβ
α1α2...αp−1

dyβ
α1α2...αp−1

)

= dyi
j1 j2... jp−1

+ s
(

dηi
{ j1 j2... jp−1}

)

.



A2.2 Preservation of the Contact Conditions 567

The differentials dx j, dyi, and dyi
j1 , . . . , dyi

j1 j2... jp−1
are independent vari-

ables. Notice that differentials only up to order p−1 are required. The group
operator corresponding to (A2.40) is

X̂ {p} = ξ j ∂

∂x j
+ ηi ∂

∂yi
+ ηi

{ j1}
∂

∂yi
j1

+ · · ·

+ ηi
{ j1 j2... jp}

∂

∂yi
j1 j2... jp

+ dξ j1 ∂

∂(dx j1 )
+ dηi ∂

∂(dyi )
+ dηi

{ j1}
∂

∂
(

dyi
j1

) + · · ·

+ dηi
{ j1... jp−1}

∂

∂
(

dyi
j1... jp−1

) . (A2.41)

Operating on the contact condition (A2.39) gives

X̂ {p}
(

dyα
β1β2...βp−1

− yα
β1β2...βp

dxβp
)

=
(

dηi
{ j1 j2... jp−1}

)

δα
i δ

j1
β1

. . . δ
j1
βp−1

−
(

ηi
{ j1 j2... jp}

)

δα
i δ

j1
β1

δ
j2
β2

. . . δ
j2
βp

dxβp

− yα
β1β2...βp

dξ j1 δ
βp

j1 . (A2.42)

After taking the indicated sums, (A2.42) becomes

X̂ {p}
(

dyα
β1β2...βp−1

− yα
β1β2...βp

dxβp
)

= dηα
{β1β2...βp−1} − ηα

{β1β2...βp} dxβp − ỹα
β1β2...βp

dξβp . (A2.43)

When we supply the various expressions on the right-hand side of (A2.43), the
result is

dηα
{β1β2...βp−1} − ηα

{β1β2...βp} dxβp − yα
β1β2...βp

dξβp

=
∂ηi

{ j1 j2... jp−1}

∂xα
dxα +

∂ηi
{ j1 j2... jp−1}

∂yβ
dyβ

+
∂ηi

{ j1 j2... jp−1}

∂yβ
α

dyβ
α + · · · +

∂ηi
{ j1 j2... jp−1}

∂yβ
α1α2...αp−1

dyβ
α1α2...αp−1

− yα
β1β2...βp

(

∂ξβp

∂xγ
dxγ + ∂ξβp

∂yε
dyε

)

−
(

Dβp

(

ηα
{β1β2...βp−1}

)

− ∂ p yα

∂xβ1 ∂xβ2 · · · ∂xβp−1 ∂xα
Dβp ξ

α

)

dxβp .

(A2.44)
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Working out the total derivatives, Equation (A2.44) can be rearranged as
follows:

dηα
{β1β2...βp−1} − ηα

{β1β2...βp} dxβp − yα
β1β2...βp

dξβp

=
∂ηα

{β1β2...βp−1}

∂xα
dxα +

∂ηα
{β1β2...βp−1}

∂yβ
dyβ +

∂ηα
{β1β2...βp−1}

∂yβ
α

dyβ
α + · · ·

+
∂ηα

{β1β2...βp−1}

∂yβ
α1α2...αp−1

dyβ
α1α2...αp−1

− yα
β1β2...βp

(

∂ξβp

∂xγ
dxγ + ∂ξβp

∂yε
dyε

)

−
(

∂ηα
{β1β2...βp−1}

∂xβp
+ ∂yθ

∂xβp

∂ηα
{β1β2...βp−1}

∂yθ

+ ∂yθ
ε

∂xβp

∂ηα
{β1β2...βp−1}

∂yθ
ε

+ · · · +
∂yθ

ε1ε2...εp−1

∂xβp

∂ηα
{β1β2...βp−1}

∂yθ
ε1ε2... εp−1

)

dxβp

+ yα
β1β2...βp−1γ

(

∂ξγ

∂xβp
+ ∂yθ

∂xβp

∂ξγ

∂yθ

)

dxβp . (A2.45)

Finally, the prolonged group operator acting on the pth-order contact condition
gives

X̂{p}
(

dyα
β1β2...βp−1

− yα
β1β2...βp

dxβp
)

= dηα
{β1β2...βp−1} − ηα

{β1β2...βp} dxβp − yα
β1β2...βp

dξβp

=
(

∂ηα
{β1β2...βp−1}

∂yε
− yα

β1β2...βp

∂ξβp

∂yε

)

(

dyε − yε
γ dxγ

)

+
∂ηα

{β1β2...βp−1}

∂yε
σ

(

dyε
σ − yε

σγ dxγ
)

+ . . .

+
∂ηα

{β1β2...βp−1}

∂yε
σ1σ2...σp−1

(

dyε
σ1σ2...σp−1

− yε
σ1σ2...σp−1γ

dxγ
)

= 0, (A2.46)

and the pth-order contact condition is invariant under the pth extended group.
By induction the contact conditions (A2.39) are invariant to all orders under
the group (ξ j , ηi ).



Appendix 3
Infinite-Order Structure of Lie–Bäcklund

Transformations

The proper functional setting of the theory of Lie–Bäcklund groups is the space
A of differential functions of arbitrary derivative order [A3.1]. The reason can
be found in the requirement that such transformations preserve the contact
conditions discussed in the context of Lie point groups in Appendix 2. The
purpose of this appendix is to explain this concept. The discussion outlines the
proof presented in Anderson and Ibragimov [A3.1], and the reader should look
there for further details.

A3.1 Lie Point Groups

Classical Lie groups comprise point transformations together with their exten-
sions to include transformations of derivatives up to order p. At each level of
extension the differential function that carries out the transformation of deriva-
tives depends on derivatives up to and including but not beyond the order of the
derivative being transformed:

(x, y) ⇒ (x̃, ỹ),

(x, y, y1) ⇒ (x̃, ỹ, ỹ1),

(x, y, y1, y2) ⇒ (x̃, ỹ, ỹ1, ỹ2), (A3.1)

...

(x, y, y1, y2, . . . , yp) ⇒ (x̃, ỹ, ỹ1, ỹ2, . . . , ỹp).

Such transformations are closed in the Euclidean space of differential variables
(x, y, y1, y2, . . . , yp) with q dimensions, where

q = n + m
p

∑

k=0

(n + k − 1)!
k!(n − 1)!

(A3.2)
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A3.2 Lie–Bäcklund Groups

Lie–Bäcklund groups are more general invertible mappings where the transfor-
mation of a point can depend on derivatives of the dependent variables up to
arbitrary order:

(x, y, y1, y2, . . .) ⇒ (x̃, ỹ, ỹ1, ỹ2, . . .). (A3.3)

In this case the extension to transformations of derivatives, up to say order
p, inevitably produces expressions that contain derivatives of arbitrary order
greater than p. Anderson and Ibragimov [A3.1] show that, except in the case
of Lie contact transformations (to be discussed shortly), such transformations,
when extended to include derivatives, cannot be closed in a space of finite
dimension.

A3.3 Lie Contact Transformations

To begin, consider the case where the transformation of coordinates can depend
on the first derivative. Consider the one-parameter transformation

T s :

⎧

⎪

⎪

⎨

⎪

⎪

⎩

x̃ j = F j [x, y, y1, s], j = 1, . . . , n

ỹi = Gi [x, y, y1, s], i = 1, . . . , m

ỹi
j = Gi

{ j}[x, y, y1, s]

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(A3.4)

with infinitesimal form

T s :

⎧

⎪

⎪

⎨

⎪

⎪

⎩

x̃ j = x j + sξ j [x, y, y1, s], j = 1, . . . , n

ỹi = yi + sηi [x, y, y1, s], i = 1, . . . , m

ỹi
j = yi

j + sηi
{ j}[x, y, y1, s]

⎫

⎪

⎪

⎬

⎪

⎪

⎭

, (A3.5)

where

ξ j = ∂ F j

∂s

∣

∣

∣

∣

s=0
, ηi = ∂Gi

∂s

∣

∣

∣

∣

s=0
, ηi

{ j} =
∂Gi

{ j}

∂s

∣

∣

∣

∣

s=0
. (A3.6)

Here we have used the convention adopted in Chapter 7 that subscripts with-
out braces denote partial differentiation with respect to the j th independent
variable, while subscripts encased in braces represent labels of the function that
transforms the j th derivative. Such a transformation, if it could be found, would
be of considerable interest because it could be used to transform an equation in
the source space (x, y, y1) to an equation in the target space (x̃, ỹ, ỹ1) without
raising the order of the equation.
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By the same token, the form of (A3.4) is somewhat unexpected. Recalling the
procedure used to generate transformations of derivatives in the case of point
groups, one would, because of the dependence of F j and Gi on y1, expect the
function Gi

{ j} to depend on y2. But we have assumed that it doesn’t. So it is
legitimate to ask whether groups (with all that is implied by the definition of a
group) of the form (A3.4) can exist. In other words, what, if any, restrictions
must be placed on F j , Gi , and Gi

{ j} to ensure that the transformation (A3.4)
preserves the contact condition

d ỹi − ỹi
j d x̃ j = dyi − yi

j dx j (A3.7)

To examine this question, we make use of the prolongation of (A3.5) to
include the differentials of x and y:

x̃ j = x j + sξ j [x, y, y1, s], j = 1, . . . , n,

ỹi = yi + sηi [x, y, y1, s], i = 1, . . . , m,

ỹi
j = yi

j + sηi
{ j}[x, y, y1, s],

dx̃ j = dx j + s
(

∂ξ j

∂xα
dxα + ∂ξ j

∂yβ
dyβ + ∂ξ j

∂yβ
γ

dyβ
γ

)

= dx j + s(dξ j ),

d ỹi = dyi + s
(

∂ηi

∂xα
dxα + ∂ηi

∂yβ
dyβ + ∂ηi

∂yβ
γ

dyβ
γ

)

= dyi + s(dηi ),

(A3.8)

where the differentials dx j , dyi , and dyi
j are, prior to the application of the

contact condition (A3.7), assumed to be independent. The space is closed in that
the transformations involve at most the first derivative, and the corresponding
contact condition only involves the first derivative.

The prolonged infinitesimal operator corresponding to (A3.8) is

X̂{1} = ξ j ∂

∂x j
+ ηi ∂

∂yi
+ ηi

{ j}
∂

∂yi
j

+ (dξ j )
∂

∂(dx j )
+ (dηi )

∂

∂(dyi )
. (A3.9)

The contact condition (A3.7) is invariant under the prolonged group (A3.8) if
and only if

X̂{1}
(

dyi − yi
j dx j) = 0. (A3.10)

Following the same procedure used in Appendix 2, we now apply (A3.9) to
(A3.7). The result is

X̂{1}
(

dyi − yi
j dx j) = dηi − ηi

{ j} dx j − yi
j dξ j = 0. (A3.11)



572 A3 Infinite-Order Structure of Lie–Bäcklund Transformations

Written out in full, (A3.11) is

X̂{1}
(

dyi − yi
j dx j) =

(

∂ηi

∂xα
dxα + ∂ηi

∂yβ
dyβ + ∂ηi

∂yβ
γ

dyβ
γ

)

− ηi
{ j} dx j

− yi
j

(

∂ξ j

∂xα
dxα + ∂ξ j

∂yβ
dyβ + ∂ξ j

∂yβ
γ

dyβ
γ

)

= 0.

(A3.12)

Using dyi = yi
j dx j to replace dyi in (A3.12), the invariance condition becomes

X̂{1}
(

dyi − yi
j dx j) =

(

∂ηi

∂x j
+ ∂ηi

∂yβ
yβ

j − yi
σ

(

∂ξσ

∂x j
+ ∂ξσ

∂yβ
yβ

j

)

− ηi
{ j}

)

dx j

−
(

∂ηi

∂yβ
j

− yi
σ

∂ξσ

∂yβ
j

)

dyβ
j = 0. (A3.13)

Now here is the key point. Notice that in forming the transformation of dif-
ferentials we have, because of the dependence of ξ j and ηi on y1, generated
the differential dyβ

j in (A3.13). However, because the space is assumed to be
closed in x, y, and y1 [cf. Equation (A3.4)], there is nothing to restrict the pos-
sible values of this differential. Therefore, in order for (A3.13) to be satisfied,
both terms in parentheses in (A3.13) must be individually equal to zero. Thus
the infinitesimals of the group (A3.4) must satisfy

ηi
{ j} = ∂ηi

∂x j
+ ∂ηi

∂yβ
yβ

j − yi
σ

(

∂ξσ

∂x j
+ ∂ξσ

∂yβ
yβ

j

)

(A3.14)

and

∂ηi

∂yβ
j

− yi
σ

∂ξσ

∂yβ
j

= 0. (A3.15)

Here it is convenient to use the characteristic function

µi [x, y, y1] = ηi − yi
σ ξσ (A3.16)

used in Chapter 14. In terms of µi the conditions (A3.14) and (A3.15)
become

ηi
{ j} = ∂µi

∂x j
+ ∂µi

∂yβ
yβ

j ,

(A3.17)

0 = ∂µi

∂yβ
j

+ δi
βξ j .
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A3.3.1 The Case m>1

For m > 1, the second relation in (A3.17) is

0 = ∂µi

∂yβ
j

, i ̸= β,

(A3.18)

− ξ j = ∂µ1

∂y1
j

= ∂µ2

∂y2
j

= · · · = ∂µm

∂ym
j

, i = β.

Note that the ξ j are highly constrained by having to satisfy each of the multiple
equalities in (A3.18). The only solution of (A3.18) is

µi = ηi [x, y] − yi
σ ξσ [x, y], (A3.19)

which is the Lie–Bäcklund transformation equivalent to a point group, i.e., ηi

and ξ j cannot depend on y1.
So for m > 1 the transformation (A3.4) can preserve the contact condition

(A3.7) only if it is an extension of a Lie point group. Moreover, we know from
our earlier discussion that point groups preserve tangency up to infinite order.
Notice that the first relation in (A3.17) is the conventional point-group formula
for the infinitesimal transformation of the first partial derivative.

A3.3.2 The Case m = 1

Now consider the case of one dependent variable. In this case (A3.17) re-
duces to

η{ j} = ∂µ

∂x j
+ ∂µ

∂y
y j ,

(A3.20)

0 = ∂µ

∂y j
+ ξ j .

In (A3.20) each ξ j is specified by only a single equality. The infinitesimals of
the group for the case m = 1 are derived from (A3.20):

ξ j = − ∂µ

∂y j
, η = µ − yσ

∂µ

∂yσ

, η{ j} = ∂µ

∂x j
+ ∂µ

∂y
y j . (A3.21)

In this instance µ can depend on x, y, and y1. The conclusion is that first-order
contact transformations of the form (A3.4) can preserve the contact condition
(A3.7) only when there is just one dependent variable. Otherwise (A3.4) must
be a simple first extension of a point group. The transformation (A3.5) with
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infinitesimals (A3.21) is called a Lie contact group. Note that all three infinites-
imals of the group are defined by a single function, µ[x, y, y1].

Extensions of the group to higher derivatives are generated using the same
algorithm based on the contact conditions used for point groups. Also, as in the
case of point groups, the contact conditions are invariant under the extended
group to all orders.

A3.4 Higher-Order Tangent Transformation Groups

Now the question is whether there are any transformations that are not simple
extensions of Lie contact groups or Lie point groups and for which higher-order
tangency is an invariant condition. To examine this question, we now consider
a generalization of (A3.4) to a transformation that can depend on derivatives of
order higher than one, say of order p. Consider the transformation

T s :

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

x̃ j = F j [x, y, y1, . . . , yp, s], j = 1, . . . , n

ỹi = Gi [x, y, y1, . . . , yp, s], i = 1, . . . , m

ỹi
j1 = Gi

{ j1}[x, y, y1, . . . , yp, s]

...

ỹi
j1... jp

= Gi
{ j1... jp}[x, y, y1, . . . , yp, s]

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

(A3.22)

with infinitesimal form

T s :

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

x̃ j = x j + sξ j [x, y, y1, . . . , yp, s], j = 1, . . . , n

ỹi = yi + sηi [x, y, y1, . . . , yp, s], i = 1, . . . , m

ỹi
j1 = yi

j1 + sηi
{ j1}[x, y, y1, . . . , yp, s]

...

ỹi
j1... jp

= yi
j1... jp

+ sηi
{ j1... jp}[x, y, y1, . . . , yp, s]

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

, (A3.23)

where

ξ j = ∂ F j

∂s

∣

∣

∣

∣

s=0
, ηi = ∂Gi

∂s

∣

∣

∣

∣

s=0
, ηi

{ j} =
∂Gi

{ j}

∂s

∣

∣

∣

∣

s=0
, . . . ,

(A3.24)

ηi
{ j1... jp} =

∂Gi
{ j1... jp}

∂s

∣

∣

∣

∣

s=0
.

Here again, as in the case of Lie contact transformations, the form of (A3.22)
and (A3.23) is somewhat unexpected in that a straightforward procedure for
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generating the extensions of the group should raise by one the order of deriva-
tives appearing in the functional dependence of each derivative being trans-
formed. So again, we have to ask what restrictions must be placed on F j , Gi ,
and Gi

{ j}, . . . , Gi
{ j1... jp} to ensure that (A3.22) preserves the invariance of the

contact conditions

dyi − yi
j1 dx j1 = 0,

dyi
j1 − yi

j1 j2 dx j2 = 0,
(A3.25)...

dyi
j1... jp−1

− yi
j1... jp

dx jp = 0.

Initially we assume:

(1) The transformation (A3.23) is closed in the space x, y, y1, . . . , yp (as are
pth extended point groups and first-order contact groups).

(2) Extensions of the transformation are generated using the contact conditions
(A3.25). This is required if the transformation (A3.23) is to preserve pth-
order tangency and to inherit the properties of a group.

So, as in the case treated in Section A3.3, the question of the existence of such
transformations boils down to the identification of the conditions that must be
met in order to preserve tangency in the closed space of the transformation.

Now prolong (A3.23) to include differentials dx j , dyi up to dyi
j1 , . . . ,

dyi
j1... jp−1

:

x̃ j = x j + sξ j [x, y, y1, . . . , yp, s], j = 1, . . . , n,

ỹi = yi + sηi [x, y, y1, . . . , yp, s], i = 1, . . . , m,

ỹi
j1 = yi

j1 + sηi
{ j1}[x, y, y1, . . . , yp, s],

...

ỹi
j1... jp

= yi
j1... jp

+ sηi
{ j1... jp}[x, y, y1, . . . , yp, s],

dx̃ j = dx j+s
(

∂ξ j

∂xα
dxα+ ∂ξ j

∂yβ
dyβ+ ∂ξ j

∂yβ
γ1

dyβ
γ1

+ · · · + ∂ξ j

∂yβ
γ1...γp

dyβ
γ1...γp

)

= dx j + s(dξ j ),

d ỹi = dyi+s
(

∂ηi

∂xα
dxα+ ∂ηi

∂yβ
dyβ+ ∂ηi

∂yβ
γ1

dyβ
γ1

+ · · · + ∂ηi

∂yβ
γ1...γp

dyβ
γ1...γp

)
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= dyi + s(dηi ),
...

d ỹi
j1... jp−1

= dyi
j1... jp−1

+ s
(

∂ηi
{ j1... jp−1}

∂xα
dxα + · · · + ∂ηi { j1 . . . jp−1}

∂yβ
γ1...γp

dyβ
γ1...γp

)

= dyi
j1... jp−1

+ s
(

dηi
{ j1... jp−1}

)

, (A3.26)

where the differentials dx j , dyi , and dyi
j , . . . , dyi

j1... jp−1
are initially assumed to

be independent. The prolonged infinitesimal operator corresponding to
(A3.26) is

X̂{p} = ξ j ∂

∂x j
+ ηi ∂

∂yi
+ ηi

{ j1}
∂

∂yi
j1

+ · · · + ηi
{ j1... jp}

∂

∂yi
j1... jp

+ dξ j ∂

∂(dx j )
+ dηi ∂

∂(dyi )
+ dηi

{ j}
∂

∂
(

dyi
j

) + · · ·

+ dηi
{ j1... jp−1}

∂

∂
(

dyi
j1... jp−1

) . (A3.27)

Apply the prolonged operator (A3.27) to the contact conditions (A3.26):

X̂{p}
(

dyi − yi
j1 dx j1

)

= dηi − ηi
{ j1} dx j1 − yi

j1 dξ j1 = 0,

X̂{p}
(

dyi
j1 − yi

j1 j2 dx j2
)

= dηi
{ j} − ηi

{ j1 j2} dx j2 − yi
j1 j2 dξ j2 = 0,

...

X̂{p}
(

dyi
j1... jp−1

− yi
j1... jp

dx jp
)

= dηi
{ j1... jp−1} − ηi

{ j1... jp} dx jp − yi
j1... jp

dξ jp = 0,

(A3.28)

Expand the first relation in (A3.28):

X̂{p}
(

dyi − yi
j1 dx j1

)

= ∂ηi

∂xα
dxα + ∂ηi

∂yβ
dyβ + ∂ηi

∂yβ
γ1

dyβ
γ1

+ · · · + ∂ηi

∂yβ
γ1...γp

dyβ
γ1...γp

− ηi
{ j1} dx j1

− yi
j1

(

∂ξ j1

∂xα
dxα + ∂ξ j1

∂yβ
dyβ + ∂ξ j1

∂yβ
γ1

dyβ
γ1

+ · · · + ∂ξ j1

∂yβ
γ1...γp

dyβ
γ1...γp

)

.

(A3.29)
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Now use the contact conditions up to order p to replace dyβ by yβ
α dxα, dyβ

γ1

by yβ
γ1α

dxα , and so on up to replacing dyβ
γ1...γp−1

by yβ
γ1...γp−1α

dxα .
Here again is the key point. Note that, because we have assumed that the trans-

formation is closed in the space (x, y, y1, . . . , yp), the differential dyβ
γ1...γp

, that
appears in the prolonged transformation (A3.26) must remain an independent
variable, since the corresponding contact condition would require the inclu-
sion of yβ

γ1...γp+1
in the variable space, which, through the differential dyβ

γ1...γp+1
,

would in turn require the inclusion of yβ
γ1...γp+2

, and so on. Equation (A3.29)
now becomes

X̂{p}
(

dyi − yi
j1 dx j1

)

=
(

D j1 (ηi )
∣

∣

p−1 − yi
α D j1 (ξα)

∣

∣

p−1 − ηi
{ j1}

)

dx j1

+
(

∂ηi

∂yβ
γ1...γp

− yi
j1

∂ξ j1

∂yβ
γ1...γp

)

dyβ
γ1...γp

= 0, (A3.30)

where α has been replaced by j and we have used a modified total differentiation
operator that involves differentiation only up to order p−1 of functions that, so
far, could depend on derivatives up to order p. For example,

Dα(ηi )|p−1 = ∂ηi

∂xα
+ yβ ∂ηi

∂yβ
+ yβ

γ1

∂ηi

∂yβ
γ1

+ · · · + yβ
γ1...γp−1

∂ηi

∂yβ
γ1...γp−1

. (A3.31)

Expanding the second relation in (A3.28) produces

X̂{p}
(

dyi
j1 − yi

j1 j2 dx j2
)

=
(

D j2

(

ηi
{ j1}

)
∣

∣

p−1 − yi
j1α D j2 (ξα)

∣

∣

p−1 − ηi
{ j1 j2}

)

dx j2

+
(

∂ηi
{ j}

∂yβ
γ1...γp

− yi
j1 j2

∂ξ j2

∂yβ
γ1...γp

)

dyβ
γ1...γp

= 0, (A3.32)

and so on up to order p − 1:

X̂{p}
(

dyi
j1... jp−1

− yi
j1... jp

dx jp
)

=
(

D jp

(

ηi
{ j1... jp−1}

)
∣

∣

p−1

− yi
j1... jp−1α

D jp (ξα)
∣

∣

p−1 − ηi
{ j1... jp}

)

dx jp

+
(

∂ηi
{ j1... jp−1}

∂yβ
γ1...γp

− yi
j1... jp

∂ξ jp

∂yβ
γ1...γp

)

dyβ
γ1...γp

= 0. (A3.33)

The differentials dx j and dyβ
γ1...γp

in (A3.33) are independent, and so the in-
variance of the contact conditions (A3.25) leads to the following relations for
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the infinitesimals of the group from (A3.30), (A3.32), and (A3.33):

ηi
{ j1} = D j1 (ηi )|p−1 − yi

α D j1 (ξα)|p−1,

ηi
{ j1 j2} = D j2

(

ηi
{ j1}

)
∣

∣

p−1 − yi
j1α D j2 (ξα)|p−1,

(A3.34)
...

ηi
{ j1... jp} = D jp

(

ηi
{ j1... jp−1}

)
∣

∣

p−1 − yi
j1... jp−1α

D jp (ξα)|p−1,

together with the extra conditions from (A3.30), (A3.32), and (A3.33),

∂ηi

∂yβ
γ1...γp

− yi
j1

∂ξ j1

∂yβ
γ1...γp

= 0,

∂ηi
{ j}

∂yβ
γ1...γp

− yi
j1 j2

∂ξ j1

∂yβ
γ1...γp

= 0,

(A3.35)...

∂ηi
{ j1... jp−1}

∂yβ
γ1...γp

− yi
j1... jp

∂ξ jp

∂yβ
γ1...γp

= 0,

that must be satisfied in order for (A3.30), (A3.32), and (A3.33) to be satisfied.
Now use the characteristic functions introduced in Chapter 14:

µi = ηi − yi
j1ξ

j1 ,

µi
{ j1} = ηi

{ j1} − yi
j1 j2ξ

j2 ,
(A3.36)...

µi
{ j1... jp−1} = ηi

{ j1... jp−1} − yi
j1... jp−1 jp

ξ jp .

Equations (A3.35) become

∂µi

∂yβ
γ1...γp

= 0,

∂µi
{ j}

∂yβ
γ1...γp

= 0,

... (A3.37)

∂µi
{ j1... jp−2}

∂yβ
γ1...γp

= 0,

∂µi
{ j1... jp−1}

∂yβ
γ1...γp

+ δi
βδ j1

γ1
. . . δ

jp
γp ξ

γp = 0.
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Compare (A3.37) with (A3.18). Note that in the case m > 1, the ξγp are required
to satisfy multiple equalities by the last equation in (A3.37). That is,

∂µi
{ j1... jp−1}

∂yβ
γ1...γp

= 0, i ̸= β,

∂µi
{ j1... jp−1}

∂yi
γ1...γp

= 0 (lower indices not all equal), (A3.38)

∂µi
{ j1... jp−1}

∂yi
j1... jp

= −ξ jp (no sum).

Thus, as in the case p = 1 treated in Section A3.3 (Lie contact transformations),
the ξ j cannot depend on yp, and the general solution of (A3.38) is

µi
{ j1... jp−1}[x, y, y1, . . . , yp−1] = ηi

{ j1... jp−1}[x, y, y1, . . . , yp−1]

−yi
j1... jp−1 jp

ξ jp [x, y, y1, . . . , yp−1], (A3.39)

i.e., the infinitesimals ξ j and ηi
{ j1... jp−1} cannot depend on yp. Similarly, from

the remaining relations in (A3.37) we can deduce that all of the infinitesi-
mals ηi , ηi

{ j1}, . . . , η
i
{ j1... jp−2} are independent of yp. Repeating this process p − 1

times shows by induction that the infinitesimals (ξ j , ηi ) can only depend on x
and y for m > 1. Thus the group (A3.23) must be the pth-order extension of a
Lie point group.

For m = 1 the relations (A3.38) become

∂µ{ j1... jp−1}

∂yγ1...γp

= 0 (lower indices not all equal),

(A3.40)
∂µ{ j1... jp−1}

∂y j1... jp

= −ξ jp (no sum).

Once again the ξ j cannot depend on y{p}, and the general solution of (A3.40) is

µ{ j1... jp−1}(x, y, y1, . . . , y p−1) = η{ j1... jp−1}[x, y, y1 . . . , yp−1]

− y j1... jp−1 jp ξ
jp [x, y, y1, . . . , yp−1], (A3.41)

i.e., the infinitesimals ξ j and η{ j1... jp−1} cannot depend on y p. Similarly, from
the remaining relations in (A3.37) we can deduce that all of the infinitesi-
mals ηi , ηi

{ j1}, . . . , η
i
{ j1... jp−2} are independent of yp. Again, by induction, the

infinitesimals can only depend on x, y, and y1 for m = 1. Therefore, if m = 1
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the group (A3.23) must be the pth-order extension of a Lie point or Lie contact
transformation.

A3.5 One Dependent Variable and One Independent Variable

For the case m = n = 1 the relations (A3.36) are

µ = η − yxξ,

µ{1} = η{1} − yxxξ,
... (A3.42)

µ{p−2} = η{p−2} − y(p−1)xξ,

µ{p−1} = η{p−1} − ypxξ,

where

η{1} = D(η)|p−1 − yx D(ξ )|p−1,

η{2} = D
(

η{1}
)

|p−1 − yxx D(ξ )|p−1,

... (A3.43)

η{p−1} = D
(

η{p−2}
)
∣

∣

p−1 − y(p−1)x D(ξ )
∣

∣

p−1,

η{p} = D
(

η{p−1}
)

|p−1 − ypx D(ξ )|p−1,

and (A3.40) reduces to

∂µ

∂ypx
= 0,

∂µ{p−2}

∂ypx
= 0, (A3.44)

∂µ{p−1}

∂ypx
= −ξ .

The last of (A3.44) combined with (A3.42) shows that ξ, η, η1, . . . , ηp−1 cannot
depend on ypx . Nor, by induction, can they depend on any derivatives beyond
the first. So the case m = 1, n = 1 reduces to the extension of a Lie contact
transformation.

Theorem A3.1. There do not exist any transformation groups that preserve
pth-order tangency and that are closed in the space x, y, y1, . . . , yp other than
extensions of Lie point transformations for m > 1 and extensions of Lie contact
transformations for m = 1.
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A3.6 Infinite Order Structure

Lie–Bäcklund groups are transformations that preserve infinite-order contact
and are not simple extensions of Lie point or Lie tangent transformations. They
are interesting transformations, which can be used to transform systems of
differential equations without raising the order. To develop the theory of Lie–
Bäcklund groups, it is necessary to relax the requirement that the transformation
be closed in the space x, y, y1, . . . , yp. Consider a one-parameter transformation
of the form

T s :

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

x̃ j = F j [x, y, y1, y2, . . . , s], j = 1, . . . , n

ỹi = Gi [x, y, y1, y2, . . . , s], i = 1, . . . , m

ỹi
j1 = Gi

{ j1}[x, y, y1, y2, . . . , s]
...

⎫

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎭

, (A3.45)

where the dots indicate continuation to infinite order.
The number of independent variables in F j , Gi , Gi

{ j1}, . . . is a priori finite
or infinite in the infinite-dimensional space (x, y, y1, y2, . . . , s). The group is
prolonged to include the transformations of the differentials

d̃x j = ∂ F j

∂xα
dxα + ∂ F j

∂yβ
dyβ + ∂ F j

∂yβ
γ

dyβ
γ + · · · ,

d̃ yi = ∂Gi

∂xα
dxα + ∂Gi

∂yβ
dyβ + ∂Gi

∂yβ
γ

dyβ
γ + · · · , (A3.46)

d ỹi
j1 =

∂Gi
{ j1}

∂xα
dxα +

∂Gi
{ j1}

∂yβ
dyβ +

∂Gi
{ j1}

∂yβ
γ

dyβ
γ + · · · ,

...

Definition A3.1. The transformation (A3.45) is called a Lie-Bäcklund trans-
formation if the infinite-order system of contact conditions

dyi − yi
j1 dx j1 = 0,

dyi
j1 − yi

j1 j2 dx j2 = 0, (A3.47)

dyi
j1 j2 − yi

j1 j2 j3 dx j3 = 0,

...

is invariant with respect to the action of the prolonged group (A3.45) and
(A3.46).
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A3.6.1 Infinitesimal Transformation

The infinitesimal form of the extended group (A3.45) is

T s :

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

x̃ j = x j + sξ j [x, y, y1, y2, . . .], j = 1, . . . , n

ỹi = yi + sηi [x, y, y1, y2, . . .], i = 1, . . . , m

ỹi
j1 = yi

j1 + sηi
{ j1}[x, y, y1, y2, . . .]

...

⎫

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎭

, (A3.48)

and the infinitesimal form of the group prolonged to include the transformations
of differentials is (A3.48) plus

dx̃ j = dx j + s
(

∂ξ j

∂xα
dxα + ∂ξ j

∂yβ
dyβ + ∂ξ j

∂yβ
γ1

dyβ
γ1

+ · · ·
)

= dx j + s(dξ j ),

d ỹi = dyi + s
(

∂ηi

∂xα
dxα + ∂ηi

∂yβ
dyβ + ∂ηi

∂yβ
γ1

dyβ
γ1

+ · · ·
)

= dyi + s(dηi ),

d ỹi
j1 = dyi

ji + s
(

∂ηi
{ j1}

∂xα
dxα +

∂ηi
{ j1}

∂yβ
dyβ +

∂ηi
{ j1}

∂yβ
γ1

dyβ
γ1

+ · · ·
)

= dyi
j1 + s

(

dηi
{ j1}

)

,

... (A3.49)

Prior to the application of the contact conditions, the differentials dx j and
dyi , dηi

{ j}, . . . are independent. The infinitesimal operator corresponding to the
extended group (A3.48) and (A3.49) is

X̂ = ξ j ∂

∂x j
+ ηi ∂

∂yi
+ ηi

{ j1}
∂

∂yi
j1

+ · · ·

+ (dξ j )
∂

∂(dx j )
+ (dηi )

∂

∂(dyi )
+

(

dηi
{ j1}

) ∂

∂(dyi
j1 )

+ · · · . (A3.50)

Applying the extended operator to the contact conditions leads to the following
infinite system of invariance conditions:

X̂
(

dyi − yi
j1 dx j1

)

= dηi − ηi
{ j1} dx j1 − yi

j1 dξ j1 = 0,

X̂
(

dyi
j1 − yi

j1 j2 dx j2
)

= dηi
{ j1} − ηi

{ j1 j2} dx j2 − yi
j1 j2 dξ j2 = 0,

X̂
(

dyi
j1 j2 − yi

j1 j2 j3 dx j3
)

= dηi
{ j1 j2} − ηi

{ j1 j2 j3} dx j3 − yi
j1 j2 j3 dξ j3 = 0,

...
(A3.51)
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If we use the infinite-order contact conditions to replace the differentials
dyi , dyi

j , . . . to all orders, the invariance conditions (A3.51) become

X̂
(

dyi − yi
α dxα

)

=
(

D j1η
i − yi

α D j1ξ
α − ηi

{ j1}
)

dx j1 = 0,

X̂
(

dyi
j1 − yi

j1α dxα
)

=
(

D j2η
i
{ j1} − yi

j1α D j2ξ
α − ηi

{ j1 j2}
)

dx j2 = 0,

X̂
(

dyi
j1 j2 − yi

j1 j2α dxα
)

=
(

D j3η
i
{ j1 j2} − yi

j1 j2α D j3ξ
α − ηi

{ j1 j2 j3}
)

dx j3 = 0,

...
(A3.52)

The crucial difference between the infinite- and the finite-order case is that, in
the infinite-order case, the dependence of the infinitesimals is not restricted to
order p; rather, the space is expanded naturally as the order of the transformed
derivative is increased, just as it was in the case of point groups. The contact
condition is satisfied a priori to all orders, and so the differentials dyi , dyi

j , . . .

are dependent on the dx j to all orders, i.e., only the dx j are independent dif-
ferentials. As a result, there are no extra conditions such as (A3.35) that must
be met and that might severely restrict the possible dependence of the infinites-
imals on derivatives. Therefore the theory of Lie–Bäcklund transformations is
fundamentally a theory of transformations in an infinite-dimensional space, and
the appropriate functional setting is the infinite-dimensional space A of differ-
ential functions. Lie point and tangent groups are regarded as special cases of
Lie–Bäcklund transformations.

REFERENCE
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Applications. SIAM Studies in Applied Mathematics.



Appendix 4
Symmetry Analysis Software

Throughout this chapter Courier boldface will be used to denote
Mathematica® format. The application Mathematica® has been used to cre-
ate a software package that eases the labor of finding the invariant groups of a
differential equation. Without any question, the bulk of the effort in group ana-
lysis comes in the generation of the formulae for the determining equations of
the group. The software provided with this text automates this process. The
package is called IntroToSymmetry.m. Details for how to load and use
the package on various computer systems is provided in the Readme file on
the CD enclosed with this book. The CD also contains the source file for the
package, an auto-save file and a large number of sample notebooks organized
by chapter numbers corresponding to those in the text.

There are a number of functions provided with the package but the two
core ones are called FindDeterminingEquations and SolveDeter-
miningEquations.

The function FindDeterminingEquations takes a set of ODEs or
PDEs provided by the user and executes a purely algorithmic process to produce
a list of linear PDEs called the determining equations of the group. This is where
the vast bulk of hand calculation was needed in the past to implement the Lie
algorithm. This function has proven to be fast, reliable and requires only a
modest amount of computer memory. There are a number of variables and
tables that the user can access to follow the process at any desired level of
detail.

The functionSolveDeterminingEquations attempts to solve the sys-
tem of determining equations using a multivariate polynomial approach. This
function is useful for finding groups of algebraic type but is not useful for find-
ing groups that depend on special or transcendental functions nor does it have
an option for simplifying the system of determining equations. This can usually
be accomplished using Mathematica® built-in functions.

584
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After entering relevant data, the user begins by calling the functionFindDe-
terminingEquations. The software first generates the long sum of terms
in the invariance condition X{p}! = 0. Then the original equation or system
of equations and perhaps their differential consequences are used to create a
table of rules for the elimination of dependent derivative terms in the invari-
ance condition. Finally, derivatives of the unknown infinitesimals are separated
from products of y-derivatives (derivatives of the dependent variables) and col-
lected together to form the determining equations of the group. The resulting
(usually overdetermined) system of linear PDE’s for the unknown infinitesimals
is presented as a table of string expressions. The series of steps leading to the
determining equations is purely algorithmic and the package can be relied on
to produce the correct result. Although, in the case of Lie–Bäcklund transfor-
mations, the user may wish to apply replacement rules that differ from the
standard set produced internally by the program. The software is set up to allow
user defined rules to be applied to the invariance condition. The software is
very robust and will produce the determining equations for virtually any math-
ematical expression or set of expressions including systems of under determined
equations.

Also included in the package, is a function called SolveDetermining-
Equations which enables the user to attempt a first pass at solving the deter-
mining equations for the unknown infinitesimals. The approach is to let each of
the unknown infinitesimal functions be approximated by a multivariable poly-
nomial expansion up to some order selected by the user. These are substituted
into the determining equations. Terms multiplying the same products of expan-
sion variables are collected together and the coefficients are set to zero enabling
various polynomial coefficients to be evaluated in terms of a small subset us-
ing the Mathematica® function Solve. The remaining subset constitutes the
infinitesimal parameters of the symmetry group of the system of equations be-
ing analyzed. The rationale for this approach is that the determining equations
are always linear and are usually highly overdetermined. It is therefore reason-
able to expect solutions in the form of truncated power series. Quite often the
infinitesimals contain arbitrary functions and SolveDeterminingEqua-
tions can be used to pick these up by searching over a range of orders of the
trial polynomial looking for terms in the infinitesimals that fail to truncate.

However, there are many examples where the infinitesimals contain tran-
scendental functions including logarithms and exponentials as well as periodic
functions, etc. These cannot be found through a simple polynomial expansion
and must be treated using more sophisticated approaches (See References [4.1],
[4.2], and the review of software by Hereman [4.3]). Nevertheless, solving for
the infinitesimal functions that do truncate is extremely useful and a major first
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step toward the complete solution of the determining equations. Furthermore,
Mathematica® provides a variety of built-in functions that can be used to manip-
ulate and simplify the system of determining equations. A number of examples
are included with the sample notebooks on the CD.

A4.1 Summary of the Theory

The system, ! i , of m, pth order partial differential equations,

! i [x, y, y1, y2, . . . , y p] = 0; i = 1, . . . , m (A4.1)

is transformed under the extended infinitesimal Lie–Bäcklund group

x̃ = x + sξ j [x, y, y1, y2, . . . , yr ]; j = 1, . . . , n

ỹ = y + sηi [x, y, y1, y2, . . . , yr ]; i = 1, . . . , m

ỹi
j1 = yi

j1 sηi
{ j1}[x, y, y1, y2, . . . , yr+1]

(A4.2)
ỹi

j1 j2 = yi
j1 j2 + sηi

{ j1 j2}[x, y, y1, y2, . . . , yr+2]

. . . . . . . . .

ỹi
j1 j2··· jp

= yi
j1 j2··· jp

+ sηi
{ j1 j2··· jp}[x, y, y1, y2, . . . , yr+p]

The transformed equation is expanded in the form of a Lie series

! i [x̃, ỹ, ỹ1, ỹ2, . . . , ỹ p] = ! i [x, y, y1, y2, . . . , y p]

+ s X{p}!
i + s2

2!
X{p}

(

X{p}!
i) + s3

3!
X{p}

(

X{p}
(

X{p}!
i)) + · · · · · · · · ·

(A4.3)

where X{p} is the p-times extended group operator

X{p} = ξ j ∂

∂x j
+ ηi ∂

∂yi
+ ηi

{ j1}
∂

∂yi
j1

+ ηi
{ j1 j2}

∂

∂yi
j1 j2

+ · · · + ηi
{ j1 j2··· jp}

∂

∂yi
j1 j2··· jp

(A4.4)

The system (A4.1) is invariant under the group (A4.2) if and only if

X{p}!
i = 0; i = 1, . . . , m (A4.5)

Generally the system of equations, (A4.1), is given and the infinitesimal trans-
formation functions (ξ j , ηi ) which leave the equation invariant are unknowns



A4.1 Summary of the Theory 587

that need to be determined. The infinitesimals of the extended transformation
appearing in (A4.2) and (A4.4) are given by the following formulae.

ηi
{ j1} = D j1η

i − yi
α D j1ξ

α

ηi
{ j1 j2} = D j2η

i
{ j1} − yi

j1α D j2ξ
α = D j2 D j1η

i − yi
α D j2 D j1ξ

α

(A4.6)
− yi

j1α D j2ξ
α − yi

j2α D j1ξ
α

. . . . . . . . . . . .

ηi
{ j1 j2··· jp} = D jp η

i
{ j1 j2··· jp−1} − yi

j1 j2··· jp−1α
D jp ξ

α

where the operator of total differentiation with respect to the variable x j is,

D j = ∂

∂x j
+ yi

j
∂

∂yi
+ yi

j1 j
∂

∂yi
j1

+ · · · · · · + yi
j1 j2··· jp j

∂

∂yi
j1 j2··· jp

(A4.7)

+ yi
j1 j2··· jp+1 j

∂

∂yi
j1 j2··· jp+1

+ · · · · · · + yi
j1 j2··· jp+r−1 j

∂

∂yi
j1 j2··· jp+r−1

The invariance condition (A4.5) is typically a very long sum. Each term in the
sum is a product of two kinds of factors; the first is a product of derivatives of
the dependent variables, yi , and the second is an isolated derivative of one of the
unknown infinitesimal functions, (ξ j , ηi ). The highest y-derivative appearing
in (A4.6) is of order p + r . The highest derivative of an unknown infinitesimal
is of order p. The y-derivatives are constrained by the requirement that the
solution, yi solves the original system (A4.1) and its differential consequences
up to order r ,

D j!
i = 0; D j1 j2!

i = 0; D j1 j2 j3!
i = 0; . . . . . . ; D j1 j2··· jr !

i = 0
(A4.8)

where the indices denote all possible combinations of derivatives. In practice,
these constraints are applied by substituting (A4.1) and (A4.8) into the invari-
ance condition (A4.5). Common y-derivative terms are collected together and,
since these remaining y-derivatives are free to take on any value, the only way
the invariance condition can be satisfied is to set the coefficients of these terms
to zero. The coefficients form the set of determining equations for the infinites-
imal functions of the group (ξ j , ηi ). Because of the linearity of the extensions,
(A4.6), in the ξ ,s and η,s and their derivatives the determining equations of the
group are always linear (except in the non-classical approach, several exam-
ples of which are included with the CD). Furthermore, for equations of second



588 A4 Symmetry Analysis Software

order and higher the determining equations generally form an overdetermined
set. For first order ODE’s and simple functions of x and y there is only a single
determining equation for the two unknown infinitesimals (i.e., the invariance
condition itself) and in this case, the invariant groups are undetermined.

Note that when seeking the infinitesimals of a system of differential equations
each equation in the system generates its own set of determining equations sub-
ject to the constraints implied by the entire system. The full set of determining
equations is generated by concatenating those found for each equation.

Some care is required when substituting (A4.1) and (A4.8) into the invariance
condition. This has to do with the variables upon which the infinitesimals are
assumed to depend (independent variables, dependent variables and possibly
derivatives up to order r ). If none of these variables appear in the input equation
(A4.1) then it makes no difference which term in the input equation is replaced
in the invariance condition. However if any of the these variables do appear then
care is needed to insure that one does not create an infinitely recursive loop when
the replacement is made. Generally one replaces the highest derivative in the
equation and its differential consequences. However if the equation involves
complicated expressions given as general functions this may not be possible.
In any case the rule of thumb is to isolate a y-derivative term in the equation
which the infinitesimals do not depend on and use that term and its derivatives to
make the substitution. In some cases the replacement process may be tailored
to enable one to search for some particular restricted type of Lie–Bäcklund
transformation.

A4.2 The Program

The program generates the determining equations of the infinitesimals of the Lie
point, Lie contact or Lie–Bäcklund group which leaves a given input equation
invariant. The package can take as input simply a general function, an ODE, a
PDE, a system of ODEs or a system of PDEs. Moreover the system need not be
closed. For example one can analyze the invariance of a system of two equations
in three unknowns. Such systems commonly arise in the development of engi-
neering models such as in turbulence modeling. If necessary, the determining
equations can be manipulated using Mathematica® built-in functions prior to
attempting to solve them. The infinitesimals are designated xsej (for ξ j ) and
etai (for ηi ). About the spelling of the greek letter ξ : it is usual to use ‘xi’.
However the software involves a lot of string manipulations with combinations
such as ‘xj’ appearing in reference to the independent variables. To avoid any
possible conflict I decided to coin my own spelling. The spelling of η is the
conventional one.
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A4.2.1 Getting Started

Open a new Mathematica® notebook and read the package into memory using

Needs[”SymmetryAnalysis’IntroToSymmetry’”]

or

<<IntroToSymmetry.m .

The equation is entered as a string which I usually call inputequation
with the derivatives written as Mathematica® input. Please note that for the
purposes of this appendix, I will use the names that I customarily employ in
the sample notebooks but the choice of what to call any variable input to the
package is entirely up to the user. The Blasius equation would be entered as

inputequation=”D[y[x],x,x,x]+y[x]*D[y[x],x,x]”.

The heat equation would be entered as

inputequation=”D[u[x,t],t]-k*D[u[x,t],x,x]”

and so forth. Note that the symbols, ==0, are not entered.
The next piece of data required by the package is the table of rules that need to

be applied to the invariance condition. The rule appropriate to the heat equation
would be entered as

rulesarray={”D[u[x,t],x,x]->(1/k)*D[u[x,t],t]”.

Alternatively, the rule could be entered as

rulesarray={”D[u[x,t],t]->k*D[u[x,t],x,x]”.

Either form is suitable however if the intention is to solve for, say, the first
order Lie–Bäcklund transformation where the infinitesimals depend on first
derivatives, only the first rule may be used. If the second rule is used in-
advertently Mathematica® will try to replace ut everywhere in the determin-
ing equations when in fact it needs to be treated as an independent variable.
Generally, when searching for a point group, rulesarray will contain only
the elements gotten by rearranging the original system of equations. If one is an-
alyzing, say, the incompressible Navier–Stokes equations then rulesarray
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will contain four items corresponding to the constraints implied by the three
momentum and one continuity equations.

The user can express the equation and rules in terms of any symbols per-
mitted by Mathematica®. The variable names must be entered as strings. For
example, for the heat equation the user would enter independentvari-
ables={”x”,”t”} and dependentvariables={”u”}. Internally, the
package works entirely in terms of generic variables xj and yi and one
of the first things to occur is that the equation and rules are converted to
these variables. So the heat equation would be converted internally to read
D[y1[x1,x2],x2]-k*D[y1[x1,x2],x1,x1]. The user needs to know
this because if there are constant or function names that might be corrupted by
the conversion process then they must be protected. For example if the function
Exp appears in the equation then it will be converted to Ex1p causing an error.
To prevent this the user must enter a table of names that are to be preserved. In
the case of the heat equation one would enterfrozennames={”k”} although
in this case no corruption would occur. Even if there are no names that need to
be protected a null table must still be entered, i.e., frozennames={””}.

In addition to this data, there are several other input parameters.
p – the order of the highest derivative in the system of equations being

analyzed.
r – the order of the highest derivative which the infinitesimals xsej and

etai are assumed to depend on. In the case of Lie point groups the dependence
is only on the xj’s and yi’s and r would be set to zero. However for Lie–
Bäcklund groups the infinitesimals can depend on derivatives up to whatever
order, r, is selected by the user.
xseon – Setting this parameter to one or any number greater than zero causes

the xsej’s to be included in the transformation of variables. This is essential
for determining Lie point groups (r=0) and an option if one is considering Lie–
Bäcklund groups (r=1 or more). In the case of Lie–Bäcklund transformations,
one can, without loss of generality, transform only the dependent variables. This
point is addressed in the discussion of equivalence classes of transformations
in Chapter 14. In this case, xseon may be set to zero so that the xsej’s are
not included in the transformation of variables. The length and complexity of
the extended transformations and the invariance condition is greatly reduced in
this case.
internalrules – In the case of Lie–Bäcklund transformations, the origi-

nal equation must be supplemented with additional replacement rules cor-
responding to the differential consequences of the original equation. When
internalrules=1, a standard set of replacement rules is generated inter-
nally by constructing all the derivatives up to order r of the original set of
input equations. However additional rules can be included at the discretion
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of the user. This may be useful when looking for certain restricted types of
Lie–Bäcklund transformations. The internally generated rules are concatenated
to those contained in rulesarray to produce a new table of rules called
rulesarrayexpanded. If internalrules=0, this is not done and only
the rules in rulesarray are applied. This way the user has complete flex-
ibility to put in whatever replacement rules may be appropriate to a given
problem.

A4.2.2 Using the Program

Once the data for independentvariables,dependentvariables,
frozennames,p,r,xseon,inputequation,rulesarray andin-
ternalrules have been entered, the user calls the function
FindDeterminingEquations[independentvariables,

dependentvariables,frozennames,p,r,xseon,inputequa-
tion,rulesarray,internalrules].

To save space the information can be entered directly into the various slots in
the function call. When the process is complete the function returns a message
to that effect. The output determining equations of the group are contained in
the table of strings

determiningequations.

This is the primary result of the functionFindDeterminingEquations.
However the user may be interested in following the progress of the calculation
and so several other arrays are also available to see how the the procedure fared.
The y-derivative factors which multiply the determining equations are given in
the table of expressions

yderivfactortable.

The invariance condition in the form of a table of terms is contained in

termsoftheinvarianceconditionrulesapplied.

In addition, the invariance condition is available as a sum called

invarianceconditiontablerulesappliedsum.

The invariance condition prior to the application of rulesarray is also
available as the table

termsoftheinvarianceconditionnorules.
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The various partial derivatives of the input equation which appear in (A4.5)
are available as the table

invarconditiontable .

The string expressions contained in the table determiningequations
can be somewhat difficult to read in the usual Mathematica® output form with
the derivatives and dependencies of each infinitesimal indicated by somewhat
lengthy strings of variable names. To simplify the look of the output, each inde-
pendent variable in the infinitesimals (that is, the xj’s, yi’s and derivatives of
the yi’s up to order r) is replaced by a simpler form; x1->z1,x2->z2,y1-
>z3,y2->z4, and so forth. The determining equations expressed in terms of
z-variables are contained in the table of strings

zdeterminingequations .

The correspondence between conventional variables and z-variables is con-
tained in

ztableofrules.

These last two tables are the primary output of the program which generates
the determining equations. When analyzing a system of equations the user
calls the function FindDeterminingEquations once for each equation.
Before attempting to solve for the unknown infinitesimals, the determining
equation tables must be joined into a single long table of string expressions
using the Mathematica® built-in function Join.

Finally, I would like to say a word about the variable names that I used in
the package. Mathematica® places no restriction on the length of a name and in
the interest of clarity, sometimes very lengthy variable names are used which
contain as much information about the entity being named as possible. The
reason for this is simple. In the future, when it might become necessary to modify
or upgrade the program or to correct a bug it is essential for me to be able to
exactly reconstruct what I was doing; what the motivation was for a particular
step and what line of reasoning led to a particular approach. The long, but
descriptive, variable names will make this much easier for me. So, for example,
termsoftheinvarianceconditionrulesapplied denotes a table
containing the terms of the invariance condition after the application of the
rules contained in rulesarray or rulesarrayexpanded. For the same
reason every single line in the package is commented.
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Generally speaking, the function FindDeterminingEquations works
extremely well. Even rather lengthy systems of equations with fairly high
order derivatives can be analyzed on a machine with fairly modest mem-
ory capacity very quickly. In fact the input equation does not have to be a
differential equation; it can be merely a function of independent variables
(p=0) and the routine will generate the appropriate (not very useful) invariance
condition.

A4.2.3 Solving the Determining Equations and Viewing the Results

A solution for the infinitesimals in the form of power series can be attempted
by calling the function
SolveDeterminingEquations[independentvariables,depe-
ndentvariables,r,xseon,zdeterminingequations,order].

When the process is complete the function returns a message that it has
finished executing. The parameter order is used to select the order of the
multivariable polynomial used in the expansion. The polynomials are of the
form

xsej[z1,z2,z3,. . .,zq]=

aj0+aj1*z1+· · · ajq*zq+aj(q+1)*z1̂ 2+· · ·
etai[z1,z2,z3,. . .,zq]=

bi0+bi1*z1+· · ·biq ∗ zq+bi(q+1)∗z1̂ 2+· · · .

Recall that the variable count for a given n, m and r is

q(n, m, r ) = n + m
r

∑

k=0

(n + k − 1)!
k!(n − 1)!

. (A4.9)

One approach is to callSolveDeterminingEquations successively with
increasing orders. The procedure is stopped when the infinitesimals stop chang-
ing. If after a reasonable number of steps, any of the expressions continues to
grow longer, one should consider whether the infinitesimal in question might
admit an arbitrary function. The results of the solver are available in two forms.
The tables

xsefunctions

and

etafunctions
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contain lists of strings for the infinitesimals in the form of polynomial expres-
sions with the group parameters as coefficients. In addition the table

infinitesimalgroups

contains a list of the individual groups with the group parameters stripped
away. The expressions in these three tables are given in terms of zvariables
and are ordered according to the usual ordering of independent and dependent
variables. Usually the user will want to look at the list of groups by converting
the zvariables to ordinary variables using the command
infinitesimalgroupsxy = infinitesimalgroups/.{z1->

x,z2->t,. . .}
The best way to view the results is to present the listinfinitesimalgroup-
sxy as a column using the Mathematica® built-in function ColumnForm.

The package function
MakeCommutatorTable[independentvariables,dependent

variables,infinitesimalgroupsxy]
generates the commutator table of the group from the list infinitesimal-
groupsxy. The table is contained in commutatortable and is best dis-
played as a matrix using MatrixForm[commutatortable].

A4.3 Timing, Memory and Saving Intermediate Data

The function SolveDeterminingEquations does not always find the
complete solution of the determining equations for the reasons described above.
Furthermore for a complicated equation or system of equations it tends to be
slow and hog a lot of memory. The problem is with the Mathematica® built-
in function Solve which, at a certain point in the program, uses Gaussian
elimination to symbolically solve what may be a very large algebraic system for
the coefficients of the infinitesimals, most of which are zero. For an expansion
of order three or more the number of coefficients begins to get quite large and,
even though the equations for the coefficients are linear and quite simple there
is a fairly large number of them and Solve tends to bog down rather badly.
To help the user address this, the Mathematica built-in functions Timing
and MaxMemoryUsed are used to inform the user of the time and memory
requirements of each sample notebook.

When the functionFindDeterminingEquations[. . .] is called I usu-
ally imbed it in the timing function. Thus the usual command is Timing-
[FindDeterminingEquations[. . .]] so that at the end of execution,
the time in seconds required to execute the function is output to the notebook.
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For most simple input equations the time required to find the determining equa-
tions is usually only a few seconds on a modern desktop machine. For a complex
equation that may be one of a system of equations such as one component of
the 3-D Navier Stokes equations the time may be several minutes.

Searching for Lie–Bäcklund symmetries of a system of equations is another
matter. It is not difficult to define a problem where FindDetermining-
Equations can take a very long time and use enormous amounts of mem-
ory. The infinitesimals of Lie–Bäcklund symmetries depend on derivatives of
the dependent variables and if the number of dependent variables is large then
the number of variables on which the infinitesimals depend can be quite large.
For example, the four infinitesimals of the first order Lie–Bäcklund symme-
try of the incompressible, unsteady, 3-D Navier–Stokes equations depend on
4 independent variables, 4 dependent variables and 16 first derivatives; twenty
four in all! Generating the determining equations can take 4–5 hours per
equation.

Therefore it is important to realize that the user need not generate all the
results in a single run of the notebook. Results can be written to the hard disc
by the Mathematica® built-in function Save. For example, the command
Save[”zdeterminingequations1file”, zdeterminingeq-

uations]
takes the table of determining equations called zdeterminingequations
and saves it on the hard disc in a file called zdeterminingequations1-
file. The file is located in the Mathematica® folder. Intermediate results
that take a long time to generate can be saved and the notebook can be closed.
At a later date when the notebook is reopened the table zdetermininge-
quations can be called back into memory using the command <<zdeter-
miningequations1file. The notebook can then pick up where it left off
without having to re-execute the function FindDeterminingEquations
that generated zdeterminingequations previously. This way the results
of a long calculation can be generated and saved in several sessions.

Similarly, when the function SolveDeterminingEquations[. . .] is
called I generally imbed it in the timing function. The call is Timing[Solve
DeterminingEquations[. . .]] so that at the end of execution the time in
seconds needed to solve the determining equations is output to the
notebook. The package function SolveDeterminingEquations substi-
tutes a multivariable polynomial expansion of the infinitesimals into the
determining equations and various products of the dependent and independent
variables are then gathered together. The factors multiplying each product are
set to zero forming a linear system of equations for the polynomial coefficients.
The functionSolveDeterminingEquations then calls the Mathematica®
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built-in function Solve which uses Gaussian elimination to symbolically de-
termine the polynomial coefficients (most of which are usually zero). In the
end, the nonzero coefficients are expressed in terms of a small subset of the
original polynomial coefficients and these remaining coefficients become the
set of group parameters of the infinitesimal transformation. If the number of
linear equations for the polynomial coefficients is large then the process of
symbolic solution via Gaussian elimination can take a long time. To help the
user estimate the time required, SolveDeterminingEquations outputs
to the notebook the number of unknowns being solved for and the (generally
larger) number of equations being solved before Solve begins executing. If it
looks like the time is going to be excessive the user can interrupt the calculation.
The time required to execute can be roughly estimated from

T
Tref

=
(

Number of equations
Number of equations-ref

)n

(A4.10)

where the exponent n is between 2.4 and 2.7. RunningSolveDetermining-
Equations for low order polynomials, say 1 and 2, provides good reference
data for the execution time, Tref , for the number of equations being solved
Number of equations-ref, and for estimating the exponent. This way the user
can estimate whether the time required to run SolveDeterminingEqua-
tions is measured in minutes, hours or days. If the time is excessive then
the best strategy is to use built-in Mathematica® functions to manually reduce
the number of determining equations by using some of the simpler, typically
one-term, equations as rules applied to the rest. A few iterations of this pro-
cess can usually reduce the set of determining equations to a manageable
size.

Memory requirements also grow rapidly as the polynomial order increases.
The user should appreciate that it is quite easy to pose a problem forSolveDe-
terminingEquations that will bring even the largest, fastest computer to
its knees. This is particularly true when one is trying to find Lie–Backlund trans-
formations that depend on derivatives of order two or more. As noted above,
the number of variables that the infinitesimals are assumed to depend on grows
rapidly with the derivative order. In addition, rather high order polynomials are
required to capture high order Lie–Backlund groups. For example, searching
for 3rd derivative order Lie–Backlund transformations of the Blasius equation
(a modest third-order ODE with two unknown infinitesimals) expressed as 5th
order polynomials requires the solution of 730 equations. Searching for third
order Lie–Backlund transformations of the Burgers potential equation, a PDE
with three unknown infinitesimals expressed as 5th order polynomials, requires
the solution of 3850 equations.
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The package is fully capable of finding high order Lie–Bäcklund symmetries
of a system of equations but this requires very substantial supercomputing
resources to execute.

A4.3.1 Why Give the Output in the Form of Strings?

Any of the tables of strings generated by the program can be immediately
converted to expressions by using the built-in Mathematica® function ToEx-
pression. The reason for presenting the determining equations and infinites-
imal functions as strings is to provide the user with an essentially immutable
form of the results. Any expressions created from these strings become active
and Mathematica® will immediately evaluate xsej and etai wherever they
appear. For the same reason the xsej and etai symbols are cleared at the be-
ginning of the functions FindDeterminingEquations and SolveDe-
terminingEquations. This avoids any name conflicts which might occur
if the user decides to call these functions more than once.

A4.3.2 Summary of Program Functions

GenerateVariableTable[numberindependentvars,number
dependentvars,porderoftheequation]
This function generates a table of all the various variables in [x, y, y1, y2, . . . ,

y p]. The output is a table of strings contained in variablestringtable.
The indices of the various y-derivatives which appear in the table are also
available to the user as a table called derivativeindextable.
SecondTerm[numberindependentvars,numberdependentv-

ars,yindex,plocal,rorderofinfinitesimals, j1,j2,j3,
j4,j5,j6,j7,j8,j9,j10,j11,j12,j13,j14]
This function generates the second term in the pth order infinitesimal trans-
formation function (See equation (A4.6)). The parameters j1 to j14 are the
indices of the partial derivative being transformed. Derivatives up to 14th order
are permitted by the program. The function is defined so that the indices j2
to j14 are optional arguements. Indices which are not explicitely defined are
automatically set to zero. The limitation to 14th order is due to the fact that
Mathematica® apparently will not allow more than 13 optional arguements.
The fact is, that any circa 2000 desktop computer will be quickly overwhelmed
for derivatives above 5th or 6th order.
PthInfinitesimal[numberindependentvars,numberdepe-

ndentvars,yindex,porderoftheequation,rorderofinfini-
tesimals,xseon, j1,j2,j3,j4,j5,j6,j7,j8,j9,j10,j11,
j12,j13,j14]
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This nested function generates the pth order extended infinitesimal transfor-
mation expression (See (A4.6). In the process it repeatedly calls the function
SecondTerm however many times is required to reach the required order. For
high order derivatives and/or many variables the result can be extremely long.
This is the most time consuming step in the function FindDetermining-
Equations although it will typically run in a few seconds on a reasonably
fast desktop machine. It is, of course, precisely the calculus we want to avoid
having to carry out by hand.
GenerateInfinitesimalTable[numberindependentvars,

numberdependentvars,porderoftheequation,rorderofinf-
initesimals,xseon]
This function generates a table of strings with the same indices as generate-
variabletable. Each element in the table is a call to PthInfinitesi-
malwhich will be evaluated once it is determined which extended infinitesimals
will be needed based on the structure of the inputequation.
InvarianceConditionNoRules[numberindependentvars,

numberdependentvars,porderoftheequation,rorderofinf-
initesimals,xseon,inputequation]
This function generates a table of expressions for the terms in the invariance
condition before any transformation rules have been applied. The result is con-
tained in the table termsoftheinvarianceconditionnorules.
InvarianceConditionRulesApplied[numberindependent-

vars,numberdependentvars,porderoftheequation,rorder-
ofinfinitesimals,xseon, inputequation,rulesarray,in-
ternalrules]
This function generates a table of expressions for the terms in the invariance con-
dition after the transformation rules have been applied. The result is contained
in termsoftheinvarianceconditionrulesapplied. In addition,
the invariance condition is available in the form of a sum called invari-
anceconditiontablerulesappliedsum.
MakeRulesArray[numberindependentvars,numberdepend-

entvars, mequindexsep98,rorderofinfinitesimals, rul-
esarray]
This function generates the supplementary array of rules which are applied to
the invariance condition in the case of a Lie–Bäcklund transformation. The rules
are standard in the sense that they are simply all the possible derivatives of the
input equation up to order r. The final set of rules, concatenated with those in-
put in rulesarray, are contained in the table rulesarrayexpanded. If
internal=1 then rulesarrayexpanded is applied to finalinvari-
anceconditionsumnorules. Whereas if internal=0 then only the
rules in rulesarray are applied.
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FindDeterminingEquations[independentvariables,de-
pendentvariables,frozenstrings,porderoftheequation,
rorderofinfinitesimals,xseon, inputequation,rulesar-
ray,internalrules]
This is the main function of the Mathematica® package IntroToSymme-
try.m. The results are contained in the table of strings determininge-
quationswhich contains the determining equations of the group. For conve-
nience, the variables upon which the infinitesimals depend are converted to a set
of dummy variables,i.e., x1->z1, x2->z2, y1->z3, etc. This result is
contained in zdeterminingequations and the correspondence between
variables is contained in ztableofrules. These tables are the main out-
put of the package. The derivatives of the input equation which appear in the
invariance condition (See (A4.4)and (A4.5)) are also available as a table in-
varconditiontable. All these various outputs allow the user to follow
the progress of the calculation in considerable detail.
SolveDeterminingEquations[independentvariables,de-

pendentvariables,rorderofinfinitesimals,xseon,zdet-
erminingequationstable,order]

This function is used to attempt a solution of the determining equations in
the form of a multivariable polynomial. The parameter order is used to select
the order of the polynomial used in the expansion. The results of the solver are
contained in the tables xsefunctions and etafunctions. The strings in
these two tables are given in terms of zvariables and ordered according to
the usual ordering of independent and dependent variables.
MakeCommutatorTable[independentvariables,dependen-

tvariables,infinitesimalgroupsxy]
This function is used to generate the commutator table of the Lie alge-

bra of the groups contained in infinitesimalgroupsxy. The symbols
used for independentvariables and dependentvariables must
correspond to the symbols in infinitesimalgroupsxy. The output is
contained in the table commutatortable. This is the last function in the
package.

All function names in the package are protected using the Mathematica®

Protect function.
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binary operation of composition, 123
binomial series, 135

Blasius, 281, 439

Blasius equation, 179, 219, 278, 284,
471, 596

invariant group, 219
similarity variables, 282
thermal analogy, 299

blast wave problem, 375
in 2-D, 392

boundary layers, 277
stream function equation, 301, 305

invariant group, 301
unsteady, 302, 316

invariant group, 302
with pressure gradient, 301

Boussinesq approximation, 315, 407
Brahe, Tycho, 34
Buckingham Pi theorem, 12, 47, 283
buoyancy induced flow, 316
buoyant jet, 440
Burgers equation, 180, 486

Bäcklund transformation for, 530
Burgers potential equation, 22, 481
integro-differential operator for, 486, 522
kinetic energy, 548
nonlocal group, 527, 528, 548
N wave solution, 549
point group for, 482, 486
relation to turbulence, 530
single hump solution, 531
solution, 524

Burke–Schumann flame, 273

canonical coordinates, 162, 163
reduction of order by, 215

Cardano formula, 89
surface, 89

Cardano, Girolamo, 88
Cauchy initial value problem, 278, 291, 294
Cauchy–Riemann conditions, 60, 92

604
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centrifugal energy, 513
central force field, 35, 111, 112, 506
chain rule, 179, 552
characteristic equations, 57, 71, 81, 107, 121,

130, 162, 202, 206, 247, 326, 338
Lagrange and Charpit method, 74
Lagrange method, 70, 82, 204

characteristic function, 255, 256, 451, 458
characteristic surface, 80
characteristics, 56, 64

family of, 56
in n dimensions, 79, 81

chord line, 304, 385
chord–tangent construction, 173, 174
circular cylinder drag, 42, 43
circular cylinder wake, 322
circulation, 441
Clairaut equation, 166
closure, 9, 124, 125
Cole–Hopf transformation, 529
colliding solitons, 545
Coloumb gauge, 74
commutator, definition, 135

table, Blasius equation group, 221
table, heat equation group, 253
table, projective group, 137, 138, 599

complete set of orthogonal functions, 262
complete solution, 77
complex lamellar field, 73
complimentary error function, 21
composition of groups, 122, 123, 124, 125
compressible Euler equations, 365
compressible flow, 364, 549
confluent hypergeometric functions, 261
conic section, 114
conservation law, 119, 495, 498, 504
conservation of energy, 505, 507
conserved integral, 258, 265, 325, 334, 438
conserved vector, 504
constant of the motion, 98
contact between a curve and a surface, 552
contact conditions, 187, 189, 192, 245, 246, 448

first order, 187, 238
higher order, 189
infinite order, 448
invariance of, 200, 201, 558

contact transformation, 67, 453, 496
continuity equation, 30, 68, 280, 323, 365
coordinate independence, 11
covariance, principle of, 10, 11, 20, 33, 39, 40
covariant vector, 101
critically damped, 117
critical points

classification in 2-D, 86
classification in 3-D, 89, 91
in a turbulent vortex ring, 418
in the unsteady round jet, 344, 345, 346

linear, 84, 88
nonlinear, 87

cubic discriminant, 89, 168, 173, 340, 427
cubic equation, 88
curl of a vector, 58
curly brace notation, 15, 183
cylindrical coordinates, two body problem, 111

d’Alembert’s paradox, 304
d’Alembert’s principle, 96, 97
damped, linear second order system, 116
damping coefficient, 116
Darcy’s law, 263
determining equations, 178, 209, 212, 237, 248,

584, 587, 591
method of solution, 130

deviation function, 99
diffeomorphism, 13, 23, 446
differentiable manifold, 58
differential, 80, 552
differential 1-form, 58, 60
differential consequences, 463
differential function, 129, 178, 179, 186, 499

definition of, 185
differential variables, 185, 448
differential volume, 59

transformation of, 499
diffusion coefficient, 19
diffusion equation with shearing convection,

275
diffusivity, 20, 254

of pressure, 264
dilation group, 18, 39, 126, 133, 158, 168

blast wave problem, 379
Clairault equation, 166
heat equation, 18
Kepler system, 116
Navier–Stokes equations, 30, 283, 313, 320,

330, 336
nonlinear heat equation, 293
stream function equation, 281

dimensional analysis, 33, 283
dimensional homogeneity, 11, 12
dimension, definition of, 33
“dimensions of” notation, 35
Diophantene construction, 173, 357
Diophantus, 173
Dirac delta function, 336
discrete groups, 10
discriminant of a cubic equation, 89
discriminant of a quadratic equation, 85
dispersion, 533
dissipation of turbulent kinetic energy, 400, 419
diverging channel, 325
drag coefficient, 41, 47
dragging, 132
drag of a circular cylinder, 42, 43
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drag of a sphere, 38, 44, 46, 47, 48
dual stream function, 69

Earth, diameter and mass, 35
eccentricity, 35, 38, 114, 510
eigenvalues of a cubic, 90
eigenvectors, 86, 296
Einstein derivative notation, 24
Einstein summation convention, 15, 80
elliptical orbit, 35, 114
elliptic curve, 172

3-D flow patterns, 353
elliptic function, 170, 171
elliptic integral, 170
entrainment velocity, 439
energy dissipation integral, 548
ensemble mean, 397
enthalpy, 66, 68, 92, 370
entropy, 66, 67, 378
equation of state, 66

ideal gas, 67, 370
equivalence classes of transformations, 457
ergodic theorem, 2
error function, complimentary, 21
Euler equations, incompressible, 401

compressible, 365
Euler–Lagrange equations, 97, 100, 101, 498
Euler operator, 502
exponential map, 132
extended group, 15, 17, 18, 178, 179, 185
extended Lie–Bäcklund group, 461

in the plane, 15, 17, 183, 191
operator, 188, 202, 247

extended versus prolonged group, 200
exterior differential forms, 59

Falkner–Skan boundary layers, 305, 325, 357
Falkner–Skan equation, 307
sink flow, 310, 312
source flow, 310
velocity profiles, 308

falling dominos, 52, 53
family of curves, 56, 131

circles, 131
ellipses, 165
parabolas, 63, 457, 466
solution curves, 167

FindDeterminingEquations, 209, 210,
255, 584, 585, 591, 593, 594, 595, 597,
599

fine scale motions, 408, 424
finite form of a Lie group, 132, 163
finite Lie–Bäcklund transformation, 447, 449
finite transformation of first derivatives in the

plane, 15, 193
finite transformation of second derivatives in the

plane, 195

finite transformation of higher derivatives in the
plane, 196

finite transformation of first partial derivatives,
239

finite transformation of second and higher
partial derivatives, 239, 240

first order linear ODE in n dimensions, 62, 160
first order linear PDE in n dimensions, 81
first order ODEs, 55, 57, 61, 69, 149, 157, 206

table of, 158
first order PDEs, 55, 57, 61, 70, 81

nonlinear, 74
flow in a diverging channel, 325
force free convection equation, 275
Foucault pendulum, 119
frames of reference, 321, 322, 351, 362, 404

nonuniform translation, incompressible flow,
321

nonuniform translation, compressible flow,
549

free shear flows, 397
friction coefficient, 52, 288

Galilean invariance, 6
gamma function, 262
gasdynamic equations, 370, 392
gasdynamic–shallow water analogy, 371
Gauss’ theorem, 332
generalized coordinates, 98, 102
generalized Euler–Lagrange system, 504
generalized momenta, 101, 102
generalized symmetries, 447
general solution of a nonlinear first order ODE,

77
GenerateInfinitesimalTable, 598
GenerateVariableTable, 597
generating function of a Lie contact

transformation, 454
geometry of turbulent fine scales, 432
Gibbs equation, 66, 92
global parameter, 401
gravitational constant, 35, 115, 125
group, 4, 9, 10, 13

Blasius equation, 219
boundary layer stream function equation, 301
compressible Euler equations, 367
dilation, 18, 39, 126, 133

of the Kepler system, 116
discrete, 10, 125
infinitesimal form, 127
invariants, 129
once-extended, 15
one-parameter, 13
parameter, 13, 122, 123, 124, 127, 240
point, 56, 237
projective, 135
reconstruction of the finite form, 132
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rotations
in 3-D SO(3), 148, 505
in 2-D SO(2), 7, 131, 133, 149, 153
once extended, 225

space-time translations, 505
translation, 17, 122, 134, 160
translation, equivalence, 464
unsteady boundary layer equations, 302

group operator, 10, 132, 152, 162, 164, 178,
202, 212

canonical coordinates, 163
definition, 128, 129
dilation group, 133, 151
diverging channel flow, 327
family of ellipses, 165
Lie–Bäcklund, 450, 462
projective group, 135
prolonged, 200, 245, 450
p-times extended, 202
rotation group, 133, 149
translation group, 134

Hamiltonian, 98, 108
definition, 102
damped oscillator, 116, 118
Hamilton’s equations, 101
Hamilton’s principle, 98
Hamiltonian system, 68, 104, 107
two body problem, 101
undamped harmonic oscillator, 102

Hamilton–Jacobi equation, 83, 105, 106, 119
relation to contact groups, 457

harmonic oscillator, unforced, 12, 97, 108
forced, 120
undamped, 102

heat capacities, 68, 370
heat conduction, nonlinear, 293, 314
heat equation, 18, 248

invariance condition, 251
classical group, 252
commutator table, 253
determining equations, 251
Lie algebra, 253
nonclassical point group, 270
recursion operator, 479
source solution, 257

modified problem, 263
Heaviside function, 263
helical group, 146, 176
Hermite polynomials, 260
hexagonal group, 9
hidden symmetries, 272, 324, 521, 549
higher order ODEs, 213
homentropic flow, 370, 392
homogeneous and isotropic turbulence, 419
hydrodynamic impulse, 330, 332, 334, 415
hyperbolic group, 146, 176

hyperbolic trajectory, Kepler problem, 114
hypergeometric functions, 261

ideal gas, 67
equation of state, 67
universal gas constant, 67

ideal Lie subalgebra, 139
identity element, 10, 13, 122, 124, 127, 130
impulse integral, 330 to 336

compressible, 393
impulsively started jet, 335

compressible started jet, 393
incompressible flow, 73, 318
incompressible Euler equations, 320
incompressible Navier–Stokes equations, 30,

180, 313, 318, 361
inertial subrange, 410, 532
infinite dimensional group, 302
infinite order structure, 447
infinitesimal form of a Lie group, 26
infinitesimal of a group, definition, 127
infinitesimal operator of a group, 129
infinitesimal transformations of derivatives in

the plane, formulae, 198, 199
infinitesimal transformations of partial

derivatives, formulae, 243, 244
integrability condition, 58, 516
integral length scale, 399, 403
integral momentum flux, 402
integral of the motion of a Hamiltonian system,

103, 457
integral velocity scale, 399, 403
integrating factor, 60, 62, 65, 66, 72, 118, 131,

155, 156, 159, 161, 162, 166, 176, 177
integro-differential recursion operators, 486
internal energy, 65, 68, 370
IntroToSymmetry.m, 29, 203, 513, 524,

584, 589
applied to

Blasius equation, 221
Burgers equation, 487
Burgers potential equation, 482
buoyancy-induced boundary layers, 316
compressible viscous flow equations, 393
contact transformation, 455
Falkner-Skan boundary layers, 305
force-free convection equation, 275
fourth order PDE, 513
gasdynamic equations, 392
heat equation, 252, 255
incompressible Navier–Stokes equations,

319
incompressible sink flow, 327
Kepler system, 475, 512
nonclassical symmetries, 272
nonlinear heat equation, 274
nonlinear 2nd order ODEs, 225, 234, 235
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IntroToSymmetry.m (contd.)
restricted Euler equation, 442
second order PDE, 496
simple linear 2nd order ODE, 209
steady boundary layer stream function

equation, 301
transonic equation, 392
unsteady boundary layer stream function

equation, 317
velocity gradient transport equation, 443

multivariate polynomial procedure, 210
invariance

definition, 4, 127
infinitesimal condition for, 128, 129
of a family of curves, 152, 153
of a family of parabolas, 126
of a family of ellipses, 165
of a family of solutions, 225, 228
of a function, 14, 15, 125, 126
of boundary conditions, 19, 282, 286
of contact conditions, 200, 245, 558

invariance condition for differential functions,
463, 464

for ODEs, 202, 203, 206, 207
for PDEs, 247

InvarianceConditionNoRules, 598
InvarianceConditionRulesApplied,

598
invariant

family, 149, 152, 153 , 155, 159, 161, 162,
163, 217

function, 14, 125
manifold, 168
points, 132
solution curves, 166, 168
solutions of a PDE, 255

invariants
of a group, 129
of a matrix, 84, 85, 88, 168

inverse, 10, 122, 125
inverse square law, 112, 474, 506
inverse total differentiation operator, 555
invertible map, 13, 179, 188, 193, 446
inviscid compressible flow, 147, 365
involutory matrix, 434
irreversible process, 67
irrotational field, 72, 73
irrotational flow, 73, 280, 303, 313
isentropic flow, 369
isentropic flow of a monatomic gas, 369, 374

Jacobian, 59
Jacobi elliptic functions, 170
Jacobi identity, 104, 137, 145
Jeffery-Hamel flow, 325, 329, 336, 361
jets, 405
jet space, 24, 129, 446

Jordan algebra, 144
Jordan identity, 144
jump conditions across a shock wave, 377

Kepler
first law, 34, 114
Johannes, 34
problem, 34, 112, 474, 506
second law, 34, 111
system, 113, 116, 474, 512
third law, 34, 37, 38, 478

kinematic pressure, 319
kinematic viscosity, 320, 339
kinetic energy, 505, 507
Klein–Gordon equation, 517
Kolmogorov length and velocity scales, 410,

411
Korteweg de Vries equation, 533

Bäcklund transformation, 541
exact solution, 541
non-local group, 534
point group, 493
potential equation, nonlocal group, 534, 549

Bäcklund transformation for, 539
elementary solution, 540
nonlocal group, 535, 538
point group, 535

recursion operator, 490
single hump solution, 543, 544
solitary wave solution, 533

Kutta condition, 304

Lagrange and Charpit, method of, 74, 106, 157
Lagrange, method of, 70, 82
Lagrangian, 108, 101, 110, 499

Foucault pendulum, 119
two body problem, 111
unforced oscillator, 100

laminar
boundary layer, 277
line vortex, 441
mixing layer, 397

Landau–Squire jet solution, 341, 342, 344
Laplace’s equation, 275, 303
Laplace’s vector, 510
Laplacian, 332
large eddy length scale, 399
lateral correlation function, 419
latus rectum, 114
law of composition, 124
Legendre transformation, 65, 66, 119, 456
Lie

algebra, definition, 136
algorithm, 4, 29, 247, 584
contact transformation, 453, 496, 570
derivative, 129
group, definition, 123, 124
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once extended, 15
working definition, 13

point group, 56, 237
series, 525, 537

representation of a function, 128, 129
expansion of an ODE, 201
expansion of a PDE, 247
expansion of differential functions, 462

Sophus, 139
subalgebra, 138

Abelian, 139
ideal, 139
solvable, 139, 157

Lie–Bäcklund
group, 35, 179, 446, 499, 570
extended group, 461
finite, reconstruction of, 452
infinite order structure, 569
infinitesimal form, 449
Kepler system, 508
operator, 450, 452
proper transformation, 462
transformation, 446, 448

Linear flows in three dimensions, 88
in two dimensions, 85

Liouville equation, 517
cross derivative form, 517

Lorentz group, 146, 206
Lorentz transformation, 6, 12

Mach number, 46, 47, 385
magnetostatics, analogy, 333
MakeRulesArray, 598
MakeCommutatorTable, 599
Mars atmosphere, 42
matrix invariants, 84, 85, 88, 340, 345, 429
matrix inverse, 242, 434
method of canonical coordinates, 215
method of differential invariants, 216, 222, 226,

230, 310
method of Lagrange, 70, 82, 204
method of Lagrange and Charpit, 74
method of variation of parameters, 228
Miura transformation, 541
mixing layer, 397
momenta, generalized, 101
monatomic gas, 374, 392
multi-parameter group, 134, 157, 217
multipole expansion, 333

Navier–Stokes equations, 30, 318, 393
invariant groups, 319
microscales, 419

Newton’s law, 96
nodal point, 348
Noether symmety, 504
Noether’s theorem, 119, 504, 513

non-Abelian, 9
non-classical symmetries, 269
nonlinear critical points, 87
nonlinear diffusion, 293
nonlinear eigenvalue problem, 266
nonlinear superposition law

for the sine-Gordon equation, 521, 546
for the KdV equation, 546

nonlinear wave equation, 275, 534
non-local group, 515, 521, 528

Burgers equation, 527
KdV potential equation, 535, 538

non-uniform translation group, 319, 320
notation, 15, 23, 24, 101, 178, 181, 183, 240,

250
notation for “dimensions of”, 35
null algebra, 136
null element, 144

once-extended finite group, 193, 239
once-extended infinitesimal group, 197, 242
one parameter shear flows, 401

table of, 408
one-parameter Lie group, 13, 123

definition of, 123
orbit, 113, 115
orbital period, 115
ordinary differential equations, 191, 203

first order, 57, 62, 121, 191, 203
higher order, 221
second order linear, 209
second order, nonlinear, 225, 234, 235

orthogonal functions, 262
overdamped, 117

parabolic cylinder functions, 262, 268
partial differential equations, 237

fourth order, 513
linear, first order, 55, 57, 61, 70, 121
nonlinear, first order, 74, 82
second order, 496

particle path equations, 339, 351, 404, 441
in similarity coordinates, 404
in three dimensions, 69
in two dimensions, 68
Landau–Squire jet, 337, 338, 344
low Reynolds number jet, 346
turbulent vortex ring, 418
unsteady dipole, 345

pathline of a group, 122
pendulum, simple, 93
pendulum, spherical, 119
perfect differential, 57, 60, 63, 80
perigee, 114
perihelion, 115
permeability, 263
permutability theorem, 521
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perturbation velocity potential, 386
Pfaffian 1-form, 58, 72, 155, 168
Pfaff’s theorem, 59, 66, 73, 157
phase plane analysis, 85, 284, 287
phase portrait, 83, 287, 318

bifurcation, 330, 349
impulsively started jet, 348, 349, 350
turbulent vortex ring, 418

phase space, 83, 293, 318
plane laminar jet, 361, 438
plane mixing layer, 396, 406
planets, table of, 36
plane turbulent jet, 402, 438
point explosion, 375
point symmetry, point group, point

transformation, 56, 178, 185, 237
Poisson brackets, 103, 104
Poisson equation, 74, 331

for pressure, 353
porosity, 263
porous medium, 264
potential energy, 110
potential equation, 521
potential function, 60, 385, 523
power monomial function, 48
Prandtl–Glauert rule, 389
pressure, 42, 44, 63

coefficient, 384, 385, 390
distribution, 384, 386
far field, 334

Principle of Least Action, 98, 99
production of turbulent kinetic energy, 400
projective group, 135, 137, 145, 208
prolongation, 200
prolonged group, 200, 245, 558, 562

operator, 200, 245, 558, 563
prolonged versus extended group, 200
proper Lie–Bäcklund symmetry, 462, 486, 494
Pthinfinitesimal, 597

quadratic discriminant, 85, 117
quadrature, integration by, 57, 62, 63, 156,

162, 230
quarter chord point, 304

racing shell, 51
radial vorticity function, 344
rate-of-rotation, 426
rate-of-strain, 426
rational root, elliptic curve, 173, 177, 349,

353, 356
ratio of specific heats, 382
recursion operators, 478

Burgers equation, 486
Burgers potential equation, 481, 497
heat equation, 479
integro-differential, 486

KdV equation, 490
reduced mass, 110
reflection, 8
reflectional symmetry, 9
restricted Euler equation, 432, 442
reversible process, 67
Reynolds decomposition, 397
Reynolds averaged Navier-Stokes equations,

398, 399
Reynolds number

boundary layer, 279, 284, 329
Burgers equation, 523
circular Couette flow, 330
Falkner–Skan sink flow, 308
flow past a circular cylinder, 42, 43, 53
flow past a sphere, compressible, 45, 48
flow past a sphere, incompressible, 41
incompressible flow, 318
Jeffrey-Hamel flow, 326
round jet, 335, 336, 339, 343, 346, 348
Taylor microscale, 414, 420
turbulent vortex ring, 413, 419

Reynolds number invariance, 395, 397,
400, 401

group interpretation, 401
Reynolds number scaling, 407
Reynolds stresses, 398
Ricatti equation, 120, 204, 213, 232

solution, 205
rotation group, 7

in three dimensions, SO(3), 148, 505
in two dimensions, SO(2) 7, 131, 133, 149,

153
in 2-D once extended, 225

rotation invariants, 434
Runge–Kutta, 132, 147
Runge–Lenz vector, 510

saddle, 86, 288, 296, 348, 417
second order ODE invariant under a given

group, 213
second order ODEs, table of, 214
SecondTerm , 597
series solution of the determining equations,

209, 251
shallow water approximation, 371
shock wave, 45, 375
similarity rules, 395, 403
similarity rules, inertial subrange, 411
similarity rules, vortex ring, 416
similarity variables, 19

Blasius boundary layer, 282
diverging channel flow, 326
Falkner–Skan boundary layers, 307, 357
Falkner–Skan sink flow, 308
heat equation, 19, 20, 260
homentropic equations, 372
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nonlinear diffusion equation, 294
spherical blast wave, 380
turbulent vortex ring, 417
unsteady round jet, 338

sine–Gordon equation, 519, 521
single hump solution, KdV equation, 543
singular solution, 77, 79
skin friction coefficient, 52, 288
solitary wave

Korteweg de Vries equation, 533
sine–Gordon equation, 521

soliton, 521
solvable Lie algebra, 139, 140, 141, 142,

217, 233
definition, 140

SolveDeterminingEquations, 210,
252, 255, 584, 585, 593, 594, 595,
596, 597, 599

source point, 13, 14, 127, 132
source space, 188, 192, 240, 454, 570
space of differential functions, 185
spatial similarity rules, 405
sphere drag, 38, 41, 44, 46, 47, 48

low Re, 41
spherical blast wave, 375
stable focus, 288, 417, 418
starting vortex, 330, 335
state-space analysis, 83, 318
Stokes creeping jet, 343, 347
Stokes equations, 30
Stokes stream function, 336, 337, 341, 343
strain invariants, 434
stream function, 60, 68, 74, 280, 323
stream function equation, 323
string variables, 597
structure constants

of a Lie algebra, 136
of a vector space, 142

Sturm–Liouville equation, 260
subalgebra, 138

Abelian, 139
ideal, 139
solvable, 139, 157

subgroup, 10, 138
subsonic flow, 386
subsonic similarity, 388
substantial derivative, 185, 555
superposition principle for linear equations, 161
supersonic flow, 389
supersonic similarity, 389
symmetry

and beauty, 2
continuous, 12
definition, 4
discrete, 4, 10
hexagonal, 9
in nature, 1

nonclassical, 269
of functions, definition, 15, 127
of mathematical objects, definition, 121
types of, 272, 273

symmetry analysis software, 584
symplectic space, 104

tangent space, 15, 129, 188, 191, 237
infinite order, 188

target point, 13, 14, 127, 132
target space, 188, 192, 240, 454, 570
Tartaglia, Niccolo, 88
Taylor microscale, 409, 410
Taylor series, 13
Taylor series expansion of a group, 128
temperature gradient shock, 293, 298
temporal similarity rules, 403
theory of contact, 555
thermal analogy to the Blasius boundary layer,

299
thermal conductivity, 19, 20, 293
thermodynamics, 65

first law, 65, 66
second law, 67

thickness to chord ratio, 385, 389
thin airfoil, 384
total differential, 76, 88
total differentiation operator, 26, 179, 184, 186,

237, 244
definition, 554

transition in jets, 329
translation group, 17, 122, 134, 163
transonic similarity, 390
transonic small disturbance flow, 392
Trefftz plane, 440
trivial group, 155
turbulence intensity, 399
turbulence modeling, 398
turbulent kinetic energy, 399, 400, 409, 416

dissipation of, 400
turbulent kinetic energy spectrum, 412
turbulent shear flow, 395
two body problem, 34, 109, 474, 506
two body solution, 112

undamped spring mass system, 97, 108
underdamped, 117
unsteady boundary layer equations, 302
unsteady dipole, 333, 343, 345
unsteady jet, transition, 329
unsteady stream function equation, 323

van der Pol equation, 94
variable count, 241
variable of state, 66
variational symmetry, 498, 504
variation of parameters, 228
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vector field, 80, 128, 130
vector potential, 73, 331
vector spaces, 142
velocity gradient

tensor, 340, 353, 408
transport equation, 190, 425
Burgers solution, 532

velocity potential, 60, 385
viscosity, 38, 45
vortex ring 352, 402, 413

apparatus, 414
drift, 441

formation of, 420
particle paths in, 417

vorticity, 73, 331
vorticity diffusion equation, 344

wake integral, 406
wave speed, 533
wave-number, 411, 534
wedge product, 58
work, 65
working fluid, 423
Wronskian, 23
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